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ABSTRACT 

 
A series of π conjugated systems were studied by absorption, photoluminescence and vibrational  spectroscopy. As is 
common for these systems, a linear relationship between the positioning of the absorption and photoluminescence 
maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple 
particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In 
addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined 
relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and 
chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering 
is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus 
nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies 
and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing 
luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such 
structure property relationships in terms of materials design are discussed. 
 

1. INTRODUCTION 
 
Conjugated monomeric and polymeric materials have attracted significant attention over the past decades due to their 
potential applications in a range of technological areas. Organic dyes are well established in laser applications [1], 
organic molecules and polymers have long been vaunted as candidates for non-linear optical devices [2,3], and in the 
past decade, the observation of electro luminescence and stimulated emission from polymeric thin films has rejuvenated 
interest in this class of materials [4,5]. 
 
Low cost and ready processability of these materials are often cited advantages, but potentially the greatest bonus is that 
the optical and electronic properties can be chemically tuned over a broad range. In addition to the practical advantages, 
this tunability enables structure property relationships to be derived to aid material optimisation, as well as a 
fundamental understanding of the underlying physical processes in these materials. 
 
To this end, systematic studies of oligomeric series have contributed greatly. Although they may break down in the 
infinite chain length limit of polymeric systems, simple models may be applied to such molecular series to demonstrate 
the effect of the π delocalisation on the optical band gap [6] and even the non-linear optical response [7]. However, 
while the energetics associated with the molecular electronic structures has received considerable attention, little has 
been paid to the vibrational coupling processes, which compete with radiative relaxation and ultimately limit 
luminescence efficiencies. Extended conjugated systems are well known for the correlation between electron and 
vibrational degrees of freedom [8] and this indicates that the vibrational relationships can be defined in terms of 
structural variations. Several studies have been undertaken to examine vibrational-structural relationships in oligomers, 
from both a theoretical and experimental view point [9, 10]. This study presents an investigation into the effect of 
oligomeric structure on easily measurable spectroscopic parameters examined through means of optical and vibrational 
spectroscopy, which will help to establish empirical relationships from which insight into design characteristics can be 
achieved. The study is aimed at developing a further understanding of the non-radiative decay processes in these 
materials, and their structural dependence. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  N-phenylenes, acene, phenyl and enyne oligomer structures. 
 
The acene and phenyl oligomers, shown in figure 1, are used to provide insight into the effect of increasing conjugation 
length on the photophysical properties, particularly electron-vibrational coupling, of organic materials. Results are 
compared to those of other related oligomeric series where available from literature, particularly the N-phenylenes [11] 
and enyne oligomers [2] shown in figure 1. Optical absorption and photoluminescence spectroscopies are used to 
elucidate the electronic behaviour and Raman spectroscopy coupled with Stokes shift are used as a probe of the 
vibrational coupling. 
 

2. EXPERIMENTAL 
 
The acene and phenyl series were purchased commercially. The oligomers were prepared in a chloroform solution of 
molarity ≈ 10-5 for the absorption and luminescence spectroscopies. Self-absorption and aggregation effects were 
minimised with the use of low concentrations [12]. These solutions were sonicated for 15 min to aid solubilisation. The 
absorption spectroscopy was carried out using a Perkin Elmer Lambda 900 UV/VIS/NIR absorption spectrometer. The 
luminescence measurements were performed using a Perkin Elmer LS55 luminescence spectrometer. The other 
oligomeric data shown was taken from literature and is used in a mainly comparative nature. 
 
Raman spectroscopy was performed using an Instruments SA Labram 1B confocal Raman imaging microscope system. 
A Helium-Neon (632.8nm/11mW) light source was used. The light is imaged to a diffraction-limited spot via the 
objective of an Olympus BX40 microscope. All experiments were carried out at room temperature (300K). For the 
Raman spectroscopy, the same oligomers were used but prepared as thin films of thickness ≈ 0.5mm by compression of 
the powder. A number of studies have shown that there is negligible difference between solution and solid state Raman 
spectra in similar systems, as they are dominated by the intramolecular vibrations of the polarisable π – conjugated 
backbone and intermolecular modes are low energy and at most weakly coupled to the electronic system [13-15]. A ×10 
objective was used, to maximise the focal depth and so sample the bulk of the film. The focal depth of the system was 
calculated to be 0.183mm, over 100 times greater than that achieved with a ×100 objective. This and the large spot size 
(~10μm) helped to eliminate the effects of any slight variation in sample density. The conditions were identical for all 
samples, and spectral intensities were reproducible within 1%. The measurement does not enable the calculation of 
absolute Raman cross-sections but the reproducibility allows a semi-quantitative comparative study. 
 

3. RESULTS 
 
In figure 2a, the absorbance spectra of the phenyl series are shown for example. It is evident that with increased 
conjugation there is a considerable bathochromatic shift, as predicted by Kuhn et al [16] Biphenyl has of an absorption 



shoulder at 270nm, however by the time the series reaches a six-ringed structure (sexiphenyl) the longest wavelength 
absorption peak has shifted to 380nm. By addition of four phenyl monomer units the band–gap has reduced by 110nm 
(1.32eV). The vibronic substructure also becomes increasingly evident as the chain length is increased. The presence of 
vibronic sub-structure in the absorption spectra suggests a planar rigid molecular and there is a marked increase in the 
prominence of the vibronic structure as the oligomers go from the relatively flexible phenyl to the more rigid planar 
acene series [17].  
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Figure 2a/2b. Position of maximum absorbance against 1/ (N+σ) and Progression of Phenyl oligomers from 2 to 6 repeat units. 

In the free electron model first described by Kuhn for carbocyanine dyes [18] and adapted by Rustagi and Ducuing [3], 
the dependence of the optical band gap on the conjugation length is given by 
 

ΔE = Vo + (
h2

4mLo
2  -

Vo
4  )  

1
N+σ   Equation 1.  

 
where h is Planck’s constant and m is the electron mass, V0 in the infinite chain length band-gap, m is the mass of the 
electron, L0 is the average length of one conjugation and 2N is the number of electrons in the one dimensional box of 
length 2L, σ accounting for end-group terminations. This model predicts a systematic decrease in the band separation 
with increasing conjugation and has been shown to fit well with the observed behaviour of the length dependence of the 
absorption gap for enyne oligomers [2].  
 
Figure 2b shows a plot of the energies of the first absorption maxima of the various oligomeric series plotted against 
inverse conjugation length. Along with the acene and phenyl series mentioned earlier, enyne [2], and [N] phenylene [11] 
oligomers are also presented. For all series, σ is taken to be zero, as they are terminated by a C-H unit, except the enyne 
series for which σ is taken to be 0.5, as they are terminated by a CH3 group [2].  For the aromatic oligomers, N is taken 
to be the total number of double bonds in the molecule e.g. for Naphthalene N = 6, for bi-phenyl N = 7.  
 
In all the oligomer series, the variation in both the absorption and emission band gap with increasing conjugation fits 
well to a simple nearly free electron model. Such well-defined behaviour is well established and is the basis for our 
understanding of linear conjugated systems [2, 19 -22]. It is clear however, that both the short chain limit and the rate of 
decrease with increasing chain limit differ significantly with monomeric structure and the degree of coupling between 
the monomeric units. The differences in the long chain limit of the phenyl versus the acenes series mirrors the 
differences in bandgaps of cis versus trans polyacetylene, [7] and zig-zag versus armchair single wall carbon nanotubes 
[23]. In extrapolation to the infinite chain limit questions have been raised as to the role of electron vibrational coupling. 
Polarons, bipolarons, self-trapped excitons have all been reported in polymeric systems and the debate continues over 
the chain length at which excited states are no longer distributed over the molecule continues [24,25]. That the oligomer 
series are well behaved according to this simple model indicates that excited states are distributed over the extent of the 



oligomer and are thus molecular in nature. As well as introducing controversy over the nature of the excited species in 
these systems [26, 27], electron-vibrational coupling plays a dominant role in determining nonradiative processes. To 
optimise radiative relaxation in these systems, design principles to control the nonradiative relaxation of excited species 
are desirable.  
 
A previous paper [ref] shows an intrinsic link between the Stokes shift and the molecular structure of the oligomer and 
furthermore this correlation was extended to encompass the vibrational activity of the molecule as measured by Raman 
spectroscopy. The variation of vibrational activity has been studied by many with differing degrees of systematicity in 
the method. Regardless of the structural make-up of the oligomers employed a power law relationship was always 
observed with the Raman intensity as a function increasing conjugation length. This shows that although the electronic 
properties of simple oligomeric series are well known to vary in a well-defined manner with conjugation, the vibrational 
activity and the Stokes shift can also be seen to be well-defined in terms of molecular/conjugation length. In figure 3a 
the spectrally integrated Raman intensities, in the range 100cm-1-3500cm-1, are plotted as a function of the chain length 
N. All integrated Raman intensities were normalised for molecular weight so as to give a true reflection of the variation 
of the intensity with increasing molecular length. The graph yields an approximate power law relationship of order 2 for 
both the phenyl and acene systems. For the acene and phenyl series, a plot of the dominant vinyl stretch in the region of 
1550-1650cm-1 against N exhibits higher order dependence, approaching 4, as shown in figure 3(b). Theoretical studies, 
based on nodal analysis combined with ab initio calculations, predict an N4 dependence of the Raman intensity for the 
C=C stretch of polyene systems [10]. A novel approach to the spectroscopic determination of non-linear optical 
properties of conjugated materials has demonstrated that Raman cross-sections can be utilised to determine the third 
order hyperpolarisability of centrosymmetric conjugated molecules [13] a parameter which has been shown to vary with 
an L4 power dependence [38]. In previous studies, the dependence of the intensity of specific peaks of the Raman 
spectra of polyene oligomers has been seen to show a length dependence of the order N2.7 [7]. This shows that the 
conjugated C=C stretch is the most strongly dependent on the conjugation length, and integrating over the entire Raman 
spectrum reduces the observed power law dependence. In either representation, the spectroscopic data is well behaved in 
terms of the structural variation indicating that the electron – vibrational coupling may be characterised through routine 
spectroscopic investigations.  
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Figure 3a/3b. Integrated Raman intensity plotted against N. Figure (a) integrated from 100-3200cm-1; figure (b) the relative 
intensities of the C=C vibrational modes along the backbone. The solid lines show slopes of 2(a) and 4(b). 
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Both the electronic and vibrational spectroscopic properties of the structurally well defined, commercially available oligomeric series 
are well defined indicating that simple structure property relationships can be derived for both radiative and nonradiative processes in 
these systems. In advance of extending the study to the structurally and morphologically more complex polymeric ststems, it is 
informative to consider more complex model structures. 

N

A c e n e  O l ig o m e r s

In
te

gr
at

ed
 V

ib
ra

tio
na

l I
nt

en
si

ty
/ a

rb
t. 

un
its P h e n y l  O l ig o m e r s

3 4 5 6 7 8 9 2 01 0



 
NEED A SENTENCE AS AN INTRO TO THE NEXT GRAPH 

 
 

 
 

Figure 4 Structures of model oligomers (1MO→5MO), left, and synthesised polymers, right. The [ ] n=1 is not really right. 

In figure 4a (what is a and b)the model oligomers are shown, these structures where chosen specifically to investigate 
the ability of bulkier substituents to restrict vibrational coupling, in short chain molecules, by essentially preventing 
coherent electron-phonon interaction along the π conjugated back-bone. The molecular structures, above, represent an 
intermediary between the novel polymers synthesised, figure 4b, and the simple well-defined oligomers shown earlier 
and can be used as a guide  to the effect larger molecular substitutions have on the overall vibrational progression of the 
series. Having already developed a clear understanding of the well-defined progression of the vibrational coupling in the 
acene and phenyl series, the empirical relationships uncovered can then be applied to the modelled oligomers to see if 
this relationship holds true for oligomers where the progression is not from one monomer to two but the addition of a 
bulkier side group. 
 
Problems in the synthesis of the entire molecular series shown above necessitated the use of a modelling package 
(HyperChem) as the most acceptable solution was to gain vibrational information. The disadvantages of not being able 
to physically study the oligomers are that the Raman spectrum was not available and thus the vibrational data obtained 
from the simulation program are restricted to IR active modes, which are not as sensitive to the changes along the back-
bone as was seen using Raman spectroscopy. It has been documented that the Raman intensity shows a superlinear 
increase with increasing conjugation length, but the IR signal tends to show a much less dramatic change as the 
conjugation length is varied. However the overall trends observed in the IRir and Raman should be the same as both are 
measures of vibrational coupling albeit by differing means.  
 
A semi-empirical quantum mechanical method approach was used to calculate the vibrational spectrum of the 
oligomers, which form the base of this study. The PM3 method, which incorporates a reparameterisation of the AM1 



method, was chosen as it contains a larger database from which to approximate the required parameters and as such is 
deemed to be more accurate for organic molecules. The molecules were geometrically optimised using a Polak-Ribiere 
conjugate gradient.  Configuration interaction (C.I.) of singly excited states was use to calculate the electronic 
transitions. The vibrational spectrum was calculated from the molecule in a non-excited state. Table 1 lists the 
wavenumbers of the dominant vibrational modes, ring breathing and the ring stretch respectively, in the spectrum with 
the accompanying vibrational intensities. In calculating the total intensity the IR spectra where integrated from 20cm-1 to 
3500cm-1.  
 
 

Name 

 
Ring stretch 

λ/cm-1

(intensity/km/mol) 
 

Ring breathing 
λ/cm-1

(intensity/km/mol) 

Total intensity 
intensity/km/mol 

Biphenyl 1558.03 

(13.97) 
758.61 

(60.99) 
 

187.8 

Terphenyl 1561.53 
(27.74) 

771.96 
(71.24) 275.84 

Quaterphenyl 1563.14 
(44.12) 

777.08 
(75.81) 365.41 

Pentaphenyl 1564.2 
(62.18) 

778.49 
(76.49) 456.41 

Sexiphenyl 1564.75 
(81.32) 

778.74, 
(76.87) 
850.87 
(84.79) 

548.24 

Bezene 
 

1547.41 
(4.00) 

711.51 
(43.35) 98.36 

Napthalene 1411.51 
(5.52) 

798 
(48.09) 143.87 

Anthracene 1400.88 
(7.51) 

757.49 
(38.35) 189.45 

Tetracene 1400.43 
(9.82) 

767.41 
(41.15) 237.66 

Pentacene 1401.92 
(13.10) 

761.61 
(38.59) 288.75 

Sexacene 1403.23 
(16.36) 

761.38 
(39.48) 342.71 

1MO 1507.53 
(6.36) 

783.31 
(48.2) 233.10 

2MO 1496.36 
(10.5) 

765.79 
(35.31) 280.40 

3MO 1484.81 
(7.97) 

777.35 
(38.1) 330.10 

4MO 1485.19 
(8.79) 

776.74 
(30.86) 383.78 

5MO 1401.20 
(9.486) 

775.75 
(33.66) 436.17 

6MO 1405.32 
(14.10) 

776.18 
(32.55) 498.00 

 
Table 1.  Infra-red intensities for model oligomers and the acene and phenyl series. 
 
With the information from the above table, a graph of both the dominant ring stretching mode and the total vibrational 
intensity of the system were plotted as a function N, with N being outlined earlier for figure 2. The IR data for the 
modelled molecules can be seen in figure 5. The total integrated IR intensity plotted as a function of N can be seen in 
figure 5b. It is apparent that as the conjugation length of the molecule is increased the IR intensity increases. However it 



is a linear increase as the graph demonstrates careful – this is a log log graph. This dependence is significantly less that 
the power dependence observed in the aforementioned Raman study due to the fact that the IR mode’s dependence with 
increasing conjugation length will be dominated by the ability of the 
………………………………………………………………………………..ir dependence description Depends on 
dipole rather than polarisability 
  
A more refined look at the modes at which the bonded carbons could couple to each other, i.e. the ring stretching modes, 
reveals a more complicated and less uniform behaviour being demonstrated between the various series examined 
(Figure 5a). The acene and phenyl series show behaviour which again is similar to that observed in Raman 
spectroscopy. Both show a power dependence of 1 and 2 for the acene and phenyl respectively. The phenyl is closer to 
the power relationship observed in the earlier Raman? vibrational work and match well with theoretical predictions [ref] 
but both the model and acene series show a variation for the expected intensity enhancements. As this plot is solely 
reliant on the ability of the coupling modes to contribute constructively to produce a peak intensity which is 
representative of the molecules as a whole it doesn’t take into account softening of the vibrational spectrum which is a 
significantly observable factor in the acene series [29] and other acene derivatives. This spectral softening will broaden 
the vibrational band thus essentially smearing the intensity over a broader range of wavelengths, this phenomenon is 
present in the phenyl but not to such a degree. This accounts for the some of the variation for the power dependence 
seen in the phenyl but it would be extremely tenuous to suggests this is the only factor that contributes to the obvious 
structure-vibrational variation that are apparent the two series present that contain acene moieties. 
 
The examination of the peak intensity for the ring stretching shows the effective coupling across the carbon-carbon 
single bond on both the phenyl and model oligomers and the effective coupling along the molecule as a whole when 
considering the fused ring nature of the acenes. As such it should be a better indication of the ability of the said 
molecule to communicate across the π conjugated backbone and hence allow empirical relationships to be drawn 
concerning the ability of the varying moieties to effectively vibrational couple to each other. The results show that as the 
number of monomer units is increased there is a well-defined relationship between the vibrational intensity of the ring 
stretching peak and the back-bone structure for both the acene and phenyl oligomers, which show a linear and power of 
2 dependence respectively. However the model oligomers, which include phenyl moieties linked to an acene chain of 
increasing length, show on first inspection a further reduced vibrational intensity with an almost linear relationship, 
similar to the acenes. On closer inspection however, it can be seen that although there is an overall linear trend, the 
variation of the individual bands tend to be of amore complicated nature.When going from biphenyl to the MO1 (one 
phenyl replaced by naphthalene) there is a significant drop in the vibrational intensity, the addition of a further fused 
ring then shows an increase in the peak vibrational intensity. Compare Phenyl/acene oligomer with corresponding acene 
– MO1 is also less that naphthalene. After initial zigzag they increase according to the acene power dependence 
indicating that there is little e-phonon coupling with the Phenyl? 
This behaviour can be explain due to change of the constructive/ destructive interference of the coupling vibrational 
modes as the molecule changes from two to three fused rings. With the further addition of more rings the alternated 
trend of large decrease then a small increase in intensity is continued but eventually reaches a plateau, leaving the 
overall trend of that of a decrease in the degree of coupling as the larger bulkier substitutions are added to disrupt the 
back-bone continuation. 
Any reference for the zigzag? 
 



 
Figure 5a/5b. Integrated IR intensity plotted against N. Figure (a) the relative intensities of the C=C vibrational modes along the 
backbone; figure (b) integrated from 100-3500cm-1. The solid lines show slopes of 1 and the dotted line shows a slope of 2. 

Can you draw the zig zag, but not in colour 
Having modelled the intermediary oligomers and plotted them to establish if the empirical relationships elucidated 
during the Raman study were borne out in the theoretical IR spectral data. The well-defined relationship for the acene 
and phenyl oligomers between the structure and the vibrational properties hold true for the IR albeit with a reduction to 
a linear dependence for the total vibrational intensity and also a reduction to linear for the acene series when considering 
the ring stretching mode of vibration. When considering the model oligomers it is evident that as the molecular heavier 
and less electron donating substituent replaces the phenyl moiety that there is an overall reduction in the vibrational 
intensity of the co-operation in the ring stretching mode of vibration. This trend allows the conclusion that as the back-
bone is systematically disrupted it is possible to minimise the vibrational activity and hence in doing so reduce or tailor 
the non-radiative decay. 
 
With these relationships established for both the phenyl and acene in both IR and Raman spectroscopy and the 
confirmation of the decrease in IR vibrational activity in the modelled oligomers the next stage was to synthesise novel 
polymer systems which incorporated the knowledge gained for the exploration of the well-defined oligomer systems. 
The polymers were synthesised by P. Lynch et al[ref] and can be seen in figure ??. The polymers were investigated 
using both florescence and uv/visible spectroscopy which again showed a well-defined progression in electronic 
structure as well as Stokes shift [ref]. The results shown below are of the Raman spectroscopic  characterisation which 
will be discussed in terms of their structure property relationships to attempt to reconcile them with the already 
examined oligomers structures. The aim is to attempt to limit the non-radiative decay which finds an avenue to 
relinquish energy through electron-phonon coupling. As such the addition of molecular heavier substituents should 
allow the limitation of the co-operation coupling along the back-bone. This was shown to have a significant effect on 
the ring stretching intensity in the model oligomers and as the polymers also incorporate a vinylene bond it is of interest 
to see if the effect of limiting the vibrational coupling can be extended past the ring stretching modes and incorporated 
into an overall trend in the molecular structure which will act to optimise the yield. 

 



 
 
Figure 6. Polymer Raman spectra (offset for clarity) 
 
Figure 6 is a graph of the Raman spectra of all the polymers studied. The 1600cm-1super vibrational modes which 
corresponds to the ring and also a C=C stretching along the conjugated backbone is increasing evident as the series goes 
from the PmPV, PNNV, PNPV and finally to the original material PPV Use same labels as paddy. The other 
characteristic peak observed occurs at 1100cm-1 to 1300cm-1. It can be clearly seen that as the conjugation is disrupted 
along the back-bone the Raman intensities peaks appear to decrease dramatically (you need to summarise the results of 
the UV/vis) . 

LINK 
In figure 7a the variation of the vibrational sum against Stokes shift is plotted. Here it is evident that there is again a 
power law relationship as was seen with the oligomers. In the previous study it was shown that well defined oligomers 
show an approximate power relationship (-0.5) between Stokes shift and vibrational activity. The polymers used here 
also show a well defined relationship which suggests that for a given polymeric series which has systematic changes in 
back-bone structure there is a well definable and systematic change in the electron-vibrational coupling mechanisms. 
The general trend here is the same as that observed for the oligomers. However  the Stokes shift does not decease with 
the number of calculated modes available as in the case of the oligomers. This is due to the limitations on the available 
modes placed upon the system due to the poor electronic communication across the vinyl bond.  The plot of the 
experimental modes shows a decrease in Stokes shift as the number of modes is increased which correlates well with the 
behaviour observed for the oligomers. This result also reinforces the assumption that the disruption on the conjugated 
backbone does indeed limit the modal access of the molecule.  Since the Stokes shift in this case is determined by the 
electronic coupling, as is the Raman intensity, the overall result and trend mirror that of the oligomers (figure 7.8??). 
The power law dependence for the polymers was calculated to be –2 as opposed to the -0.5 relationship observed for the 
oligomers. 
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Figure 7. Figure captions – switch figures around 
 
Figure 7b shows the variation of the fluorescence yield with vibrational intensity again a clear relationship can be seen 
which fits well with the predicts of the model oligomers suggested earlier. The electron-phonon coupling along the 
backbone is reduced due to the introduction of the napthyl units along the backbone. The napthyl units do not contribute 
as much as the phenyl to a strong conjugation along the length of the backbone thus effectively limiting the amount of 
vibrational coupling along the entirety of the backbone structure. The fluorescence yield shows a clear trend of 
increasing efficiency as the napthyl units are added. The PmPV is shown to have a higher yield than its sister PPV due 
to the meta linkage not being fully conjugated but still has a significantly low yield in comparison to the PNPV and 
PNNV, this is due to the fact that its conjugation is disrupted. It is still essentially the same as the PPV apart from the 
one meta linkage and as such an increase in fluorescence is expected but not in the same league as with the napthyl 
substituted polymers.  

Elaborate 
 

4. CONCLUSION 
 

The study of the acene and phenyl oligomer series confirms the structural dependence of the electronic properties of 
π conjugated materials. It furthermore demonstrates that the electron vibrational coupling are similarly well behaved 
with backbone structure. Both the Stokes shift and the integrate Raman intensity are shown to be well-correlated 
measures of the electron vibrational coupling in the oligomer series and in the selection of polymers employed. 
Furthermore, it is demonstrated that these parameters can be employed as indicators of the efficiency of the nonradiative 
processes and can be readily employed as the foundation for structure property relationships for the optimization of 
radiative processes. The model oligomer series demonstrate that…. between acene units and phenyl units is weak and 
the introduction of such units into the backbone disruptselectron phonon coupling. This is cinfirmed in the polymeric 
series. The study should, of course be extended by expanding the polymer series, and synthesis of the anthracene, 
anthracene-phenyl, and anthracene – naphthalene equivalents are currently underway. Furthermore, the structural 
dependence of other competing processes such as intersystem crossing remains to be elucidated. This study does 
however show that control over the vibrational as well as the electronic properties is warranted and further highlights 
the importance of systematic studies based on well-defined materials such as oligomers. 
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