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ABSTRACT 

The recent increase in the widespread use of short messages, for example micro-blogs or SMS 

communications, has created an opportunity to harvest a vast amount of information through 

machine-based classification. However, traditional classification methods have failed to 

produce accuracies comparable to those obtained from similar classification of longer texts. 

Several approaches have been employed to extend traditional methods to overcome this 

problem, including the enhancement of the original texts through the construction of 

associations with external data enrichment sources, ranging from thesauri and semantic nets 

such as Wordnet, to pre-built online taxonomies such as Wikipedia.  Other avenues of 

investigation have used more formal extensions such as Latent Semantic Analysis (LSA) to 

extend or replace the more basic, traditional, methods better suited to classification of longer 

texts. 

This work examines the changes in classification accuracy of a small selection of classification 

methods using a variety of enhancement methods, as target text length decreases. The 

experimental data used is a corpus of micro-blog (twitter) posts obtained from the 

‘Sentiment140’1 sentiment classification and analysis project run by Stanford University and 

described by Go, Bhayani and Huang (2009), which has been split into sub-corpora 

differentiated by text length. 

Key words: text classification, short text, naïve-Bayes, support vector machine, latent semantic 

analysis, twitter, enrichment, enhancement.  

  

                                                 

1 http://help.sentiment140.com/for-students/ 
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1. INTRODUCTION 

1.1. Research Focus 

The focus of this research is to characterise the performance of binary classification of short 

texts as a function of the target text length, when using a variety of text enhancement methods 

in conjunction with a small selection of classifiers. 

 

1.2. Background 

Traditional supervised learning techniques for machine classification of texts, for example a 

bag-of-words approach using a naïve-Bayes classifier, rely on statistical methods which in turn 

rely on a sufficiency of ‘meaningful’ data, (words), within the texts to allow differentiation into 

classes.  In the case of short texts, the performance of such classifiers is reported as being poor 

in comparison with their performance on longer texts, because insufficient data is present 

within the body of the target texts.  

Despite quite extensive coverage in published literature of the general area of short test 

classification, very little specific information has been available relating to the deterioration of 

classifier performance for shorter texts; the exact nature of the relationship between text length 

and classifier performance has been unclear and, consequently, no common definition of how 

short a target text may be before it can be considered troublesome is available. 

One promising avenue for the improvement of classifier performance has been the 

enhancement of the short text by the addition of synonyms, or other semantically linked words, 

to the body of the original text prior to classification.  As its simplest, this consists of adding 

synonyms from a thesaurus for all words present in a text, but more sophisticated methods can 

use the text to ‘concept mine’ related terms from a semantic net such as Wordnet2, or from a 

pre-built classification scheme such as those used to organise encyclopaedias like Wikipedia3.  

The implicit hope in such supplementation of the text is that the additional words are 

conceptually related to the words in the original text and will therefore ‘amplify’ the underlying 

meaning and context of the original. 

                                                 

2 http://wordnet.princeton.edu/ 

 
3 https://en.wikipedia.org/wiki/Wikipedia:FAQ/Categories 
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1.3. Research Project/Problem  

The primary focus of this work is defined by the research question: 

“Do the changes in performance of different short-text classification methods, as measured by 

weighted average accuracy (F1 Score), differ between text enhancement methods and 

classifiers as target text length decreases?”. 

In attempting to answer this question, the experimental portion of this project will investigate 

two related sub-questions:  

1.3.1 Research Sub-question 1 

“Does classification performance for any of the included text enhancement methods change as 

texts decrease in length?” 

In graphical terms, this may be thought of as asking whether the plot of classification 

performance against text length for any enhancement method has a significant non-zero slope.  

For example, Enhancement A, in Figure 1-1 below, shows no change in performance with 

decreasing text length, while Enhancements B and C appear to show some change in 

performance with respect to text length. In practical terms, any method showing robust 

performance with respect to decreasing text length, such as Enhancement A below, would 

substantially ‘solve’ the difficulties associated with short text classification. 

 

Figure 1-1  Conceptualizing changes in classifier performance with decreasing text length 
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1.3.2 Research Sub-question 2 

“If classification performance varies, as texts decrease in length, for two or more of the 

included text enhancement methods, do those performance variations differ between 

enhancement methods?” 

In graphical terms, this can be understood as asking whether there is a significant difference 

between the curves plotted for Enhancements B and C in Figure 1-1 above.  In practical terms, 

any method showing superior performance with respect to decreasing text length, such as 

Enhancement B above, which shows more robust behaviour than C, would, all else being equal, 

be a preferred method for short text classification. 

These sub-questions will be more formally stated as experimental hypotheses in the next 

section. 

 

1.4. Research Objectives 

Two main hypotheses will be tested during the course of this work.  These null hypotheses are, 

in order of specificity: 

1.4.1 Hypothesis 1  

The performance of short-text classification enhancement methods, as measured by weighted 

average accuracy (F1 Score), will not change as target text length decreases. 

1.4.2 Hypothesis 2 

The changes in performance of different short-text classification enhancement methods as 

target text length decreases, measured by weighted average accuracy (F1 Score), will not differ 

between enhancement methods. 

1.4.3 Research Objective 1  

Measure and analyse the performance of selected classification enhancement methods with 

respect to message length. 

1.4.4 Research Objective 2 

Measure and analyse the changes in relative performance of selected classification 

enhancement methods with respect to message length. 

1.4.5 Experimental Tasks 

The high-level tasks undertaken to achieve the research objectives were: 
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• Obtain and prepare master dataset 

• Build enhanced datasets using selected enhancement methods 

• Split data sets into subsets according to message length 

• Train and test classifiers for different message length subsets and methods 

• Measure accuracy within enhancement methods with respect to message length 

 • Test for significant differences in text-length related reduction in accuracy between 

classification enhancement methods  

 

1.5. Research Methodologies 

The research associated with this project will be secondary and quantitative, as it relies on a 

corpus of data previously collected by the Stanford University’s Sentiment140 project and will 

carry out a series of binary text classification experiments upon subsets of that data with a view 

to conducting statistical analyses to determine the character of the inter-relationships between 

the text length of messages within the corpus and the accuracy of the binary classification of 

those messages.   The nature of the statistical analyses and the chosen hypotheses dictate that 

the research will be empirical rather than theoretical. This work has, primarily, inductive 

characteristics as it will attempt to verify the commonly held view that text classification 

becomes more difficult as text length decreases, and will also try to establish general 

characteristic behaviours of a range of text enhancement methods based on experimental 

results. 

This work is not intended to create a production software solution and, as a result, the 

commonly used CRISP-DM4 methodology is not completely applicable throughout its 

lifecycle.  However, the broad outline of the early stages of the CRISP-DM model will be 

followed.  The Data Understanding phase of CRISP-DM will be covered in Section 4.1.  The 

Data Preparation phase corresponds to section 4.2 of this work.   Section 4.3 is indicative of 

the iteration between CRISP-DM’s data Understanding and Modelling phases, and comprised 

some pre-experimentation and adjustment before modelling began in earnest. Section 4.4 will 

cover the Modelling phase, and the evaluation phase corresponds to the remainder of chapter 

                                                 

4 http://www.comp.dit.ie/btierney/BSI/CRISP-DM%20Process%20Model.pdf 
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4 and the entirety of chapter 5.  In the context of this work CRISP-DM’s Business 

Understanding phase may be considered analogous to the Literature Review at the start of the 

cycle, and at the end of the CRISP-DM cycle, to the Conclusions which are outlined in Chapter 

6. 

 

1.6. Scope and Limitations 

The scope of this work is strictly limited to the examination of the changes in classification 

performance as text length decreases and comparison of the performance of text enhancement 

methods when used in conjunction with a particular classifier.  Specifically, no attempt beyond 

the most basic was made to optimise or tune classifier performance, and any reference to the 

comparative performance of classifiers is made in an informal sense.  The use of multiple 

classifiers was undertaken only in order to demonstrate the general applicability of the findings, 

if any, and to rule out any effect that may arise from the use of any specific classifier: reflecting 

this purpose, the three classifiers chosen were used in their most basic configurations. 

It should also be noted that the experimental twitter data from the Sentiment1405 project 

originally formed part of that project’s training data, and that the classes assigned by that 

project, used as this project’s training and test data, were determined based on the presence of 

either positive or negative emoticons within the body of the ‘tweet’. Positive emoticons were 

assigned a positive sentiment and negative emoticons were assigned a negative sentiment.  It 

is possible, since all the pre-classified tweets, by design, contained either a negative or positive 

emoticon, that these messages may not be representative of short messages in general in terms 

of the ease of classification with respect to sentiment: it would not seem unreasonable to 

conjecture that a tweet-author motivated to add an emoticon to a message may be writing a 

message containing more significant sentiment than the average message. If true, this might 

imply that the task of differentiating between positive and negative sentiment in the 

Sentiment140 corpus will be a relatively easy classification task. 

1.7. Document Outline 

The remainder of this document will be laid out as follows:  Chapter 2 will review the available 

published literature relating to the classification of short texts, methods of enhancing short texts 

prior to classification and commonly used classifiers within the short-text domain. The 

                                                 

5 http://help.sentiment140.com/for-students/ 
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Literature Review corresponds to the initial Business Understanding phase of the CRISP-DM 

model. 

Chapter 3 will discuss the underlying design of the experiments used in this study, including 

the statistical treatments of experimental results. 

Chapter 4 will cover the implementation of the experimental design including data acquisition, 

data preparation, enhancement of tweet texts and classification steps.  Chapter 4 will also 

present the results of experiments in both graphical and tabular form. This Chapter corresponds 

to the Data Understanding, Data Preparation and Modelling phases of the CRISP-DM lifecycle. 

Chapter 5 will discuss statistical testing of results and draw quantitative conclusions on the 

specific hypotheses set out in Section 1.3 above. This Chapter corresponds to the Evaluation 

phase of the CRISP-DM lifecycle. 

Chapter 6 will conclude the main body of this work, and evaluate the design, results and 

conclusions presented in earlier chapters, and discuss gaps and opportunities for refinements 

and further work.  The Conclusion represents the re-visiting phase of CRISP-DM’s Business 

Understanding phase. 

Chapter 7 will comprise a bibliography of relevant published work, presented in APA6 

referencing format. 

Chapter 8 will be formed of appendices relating to additional relevant information including a 

glossary of terms. 
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2. LITERATURE REVIEW AND RELATED WORK 

  

2.1. Supervised Text Classification 

King, Feng, and Sutherland (1995), in their wide-ranging comparative study, outline several 

general cautions relating to supervised classification which can be assumed to continue to hold 

today: specifically, they observe that classifier performance is very dependent on the particular 

data set in use, that studies using 'only a handful' of classifiers are inherently limited and that 

classifiers need to be carefully tuned, preferably by an expert, before optimum performance 

can be realised. They also recommend that Bayes classifiers are not used for sets containing 

any significant degree of co-variation between variables. However, Lim, Loh and Shih (2000) 

found that there was little difference in accuracy over a large selection of classification 

algorithms used on a selection of real world datasets and suggest, in production situations, that 

training time requirements, scalability and comprehensibility of results should be given more 

weight in the algorithm selection process. 

Holte (1993), in a paper relating specifically to one-level decision tree classifiers, makes the 

more general observation that simple problems often respond very well to simple classification 

approaches and characterises his datasets with the comment: 

The practical significance of this research was assessed by examining whether or not 

the datasets used in this study are representative of datasets that arise in practice. It was 

found that most of these datasets are typical of the data available in a commonly 

occurring class of 'real' classification problems. Very simple rules can be expected to 

perform well on most datasets in this class. 

 

2.1.1 Naïve-Bayes 

Lewis (1998) describes naïve-Bayes as “a favorite [sic] punching bag of new classification 

techniques” but this is only partially borne out in a general review of the more recent published 

work on this algorithm. It might be more accurate to say that modern research takes a sensibly 

nuanced approach to naïve-Bayes and recognises that within certain contexts it can perform on 

a par with far more sophisticated, and more costly, methods. In their work, specifically 

designed to update the work of King, Feng and Sutherland (1995), Caruana and Niculescu-

Mizil (2006) agree with the earlier authors in their opinions on naïve-Bayes, but also qualify 
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this caution by commenting "These generalizations [on naïve-Bayes], however, do not always 

hold."  They found that Support Vector Machines, on average, significantly out-performed 

naïve-Bayes but they conclude that there is significant variation across problems between 

methods. A different perspective was demonstrated by Peng and Schuurmans (2003) who 

augmented naïve-Bayes with n-gram techniques to good effect, in a method they named ‘chain 

augmented naïve-Bayes’, over a set of text classification problems and they conclude that their 

technique yields "state of the art performance that competes with the best-known methods in 

these cases" due to the inherent relaxation on the ‘naïve’ independence assumption. 

Kim, Han, Rim and Myaeng (2006) make two points in relation to the text classification of 

naïve-Bayes which are particularly significant in the context of the current work.  They propose 

that the perceived weaknesses of naïve-Bayes in the domain of text classification are due, 

firstly, to poor parameter estimation related to inaccurate estimation of word frequencies which 

is caused by an imbalance in document sizes. They comment “parameter estimation in this 

model is affected more by long documents than by short documents; the longer a document, 

the more terms participate in parameter estimation”.  In the context of this project, the 

document lengths for a given classification run are, by design, confined to a set of similar 

values.  In a more general sense, “short” texts, such as tweets, may be considered to have 

broadly similar document lengths throughout the whole domain.  Kim, Han, Rim and Myaeng’s 

second identified weakness relates to an insufficient number of training samples for some 

categories: in the current work, this is patently not an issue as training sets were well populated 

and balanced between categories.  The authors assert that by circumventing these weaknesses 

in their own experiments they demonstrated “our proposed naïve Bayes text classifier performs 

very well in the standard benchmark collections, competing with state-of-the-art text classifiers 

based on a highly complex learning methods such as SVM.”.   

Rennie, Shih, Teevan, and Karger (2003) identify imbalanced representations of target 

categories within training data as a primary weakness of naïve-Bayes and, once again, claim 

that the removal of this ‘skewed data’ weakness significantly improves classification 

performances. 

The material absence of all of the above-mentioned weaknesses in the current work may 

contribute to an explanation of the comparatively successful performance of naïve-Bayes 

presented in Sections 4 and 5 below, which may appear unusual in light of so many caveats in 

the published literature. 
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2.1.2 Support Vector Machines 

Although a more recent innovation than naïve-Bayes, Support Vector Machines (SVMs) have 

a long history of implementation in text classification problems.  Early work by Cortes and 

Vapnik (1995) introduced SVMs specifically in the context of binary classification 

commenting particularly on their high capacity for generalization and their superior 

performance, when compared with what were then traditional methods, over a variety of 

problems.    

Joachims (1998) also claimed substantial performance gains for SVM methods, and detailed 

reasons on why SVMs are particularly appropriate for text classification tasks. Joachim’s four 

arguments were that 1) SVMs easily handled high dimensional space problems as the 

mechanisms for prevention of over fitting were not sensitive to the number of features. 2) The 

ability to handle high dimensional spaces is crucial since it can be shown that text has the 

property that even the less informative features still contain significant discriminatory 

information. 3) SVMs cope well with the sparse vectors that are characteristic of high 

dimensionality text problems. 4) Joachim asserts that “most text categorization problems are 

linearly separable” which facilitates the fitting of a hyperplane. Joachims also commented on 

the lack of a requirement for feature selection and concluded that the robustness of SVMs, the 

ability to run ‘out-of-the-box’ without parameter tweaking and their performance on text 

classification gave them a significant advantage over existing methods.  

Support Vector Machine text classification, as related to sentiment analysis, is specifically 

addressed by Pang, Lee and Vaithyanathan (2002), who claim that sentiment analysis is a more 

difficult problem than standard document topic classification.  They demonstrate that corpus-

based machine learning models easily out-perform key-word list methods derived from human 

experience. They go on to claim that their SVM method out-performed a maximum entropy 

classifier, and that they increased its degree of advantage by binarizing their vectors to 

effectively remove word frequency information and rely only on binary word presence alone.  

Their further work with bigrams and part-of-speech tagging yielded no improvements in 

classification for any of the SVM, MaxEnt or naïve-Bayes classifiers that formed part of their 

experiments. They conclude with a discussion of some stylistic features of their target texts 

which they suspect may have increased problem difficulty beyond the difficulty of a simple 

topic classification including narrative techniques such as “thwarted expectations” which, they 

postulate, may create specific difficulties for bag-of-words approaches and which may have 

analogies in the related domain of short-texts. 
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Support Vector Machines in the context of sentiment analysis is also the specific focus of 

Mullen and Collier (2004) who augmented standard SVMs with part-of-speech techniques, 

semantic differentiation techniques and syntactic relations. They agree in their findings with 

Joachims (1998), that no variation from baseline SVM configuration was required, stating: 

Several kernel types, kernel parameters, and optimization parameters were investigated, 

but no appreciable and consistent benefits were gained by deviating from the default 

linear kernel with all parameter values set to their default. 

 

2.1.3 Latent Semantic Analysis 

The earliest corpus-based attempts to classify texts relied on ‘surface matching’ using 

frequency based methods such as Term Frequency-Inverse Document Frequency (TF-IDF), 

but these proved unsatisfactory for shorter texts due to the sparseness and brevity of the 

available data.  Seminal work on Latent Semantic Analysis (LSA) conducted by Deerwester, 

Dumais, Furnas, Landauer and Harshman (1990) improved upon basic methods through the 

introduction of a dimensionality reduction step, implemented using Singular Value 

Decomposition, to enhance the relative information content of the vectorised texts. Work has 

continued on LSA in its original form by Landauer, Foltz and Laham (1998), and work has 

been carried out to extend and combine it with other methods such as Adaboost in the work of 

Cai and Hofmann (2003), with good results reported for longer texts, in an information retrieval 

(search) context. 

A conceptual link between LSA, where “hidden semantic redundancies are tracked across 

(semantically homogeneous) documents” and n-grams where features and inter-relationships 

span only a range of a few words, is highlighted by Bellegarda (2000), who goes on to 

recommend a blend of LSA and n-grams as a promising future avenue of research. Bellegarda, 

however, also warns that bag-of-words techniques are insensitive to word order and gives an 

example where the placement of the word “not” in a text leads to a radical change of underlying 

meaning without a corresponding change in the vector representation of the text. This effect 

has obvious implications in the context of sentiment analysis where an error in the 

identification of the negated part of text could lead to a reversal of perceived sentiment. 

Landauer, Laham, Rehder and Schreiner (1997) also discuss the inability of LSA to use word 

ordering, but conclude that it is not essential, and give an example of LSA at least matching 
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human performance on an experiment designed to test the ability to assess the quantity and 

quality of knowledge conveyed in short essays.  

Another interesting insight into the underlying conceptual mechanisms of LSA is given by 

Kontostathis and Pottenger (2006) in which they discuss “higher-order term co-occurrence” as 

a mechanism inherent in the Singular Value Decomposition step of LSA: this co-occurrence 

is, at its root, the same mechanism by which the hypernym and hyponym text enhancements 

using wordnet, discussed below, hope to make use of in order to find and match underlying 

concepts embedded within the target texts and thereby allow establishment of  relatedness to 

determine class.  Kontostathis and Pottenger go on to observe, in the same article, that LSA is 

computationally very expensive, and that there is an extra parameter tuning step to be 

undertaken to determine the optimal truncation value for each dataset (see section 4.3 below).  

They suggest that future work might focus upon the search for “an algorithm for approximating 

LSI”, and their subsequent discussion gives rise to some doubt as to the suitability of LSA for 

use in production systems due to these concerns. 

 

2.2. Short Texts and Text Enhancement 

A variety of different techniques have been proposed to enhance or enrich short texts by the 

addition of extra features designed to make matching, clustering and classification easier. Some 

of these rely on the exploitation of external taxonomies, typically Wikipedia or Probase, 

whereas others use semantic nets such as Wordnet. Others, such as Keller, Lapata and 

Ourioupina (2002) attempt to leverage the implicit information held by search engines through 

the development of similarity measures based on the frequency of term co-occurrences returned 

by search engines. Song, Ye, Du, Huang and Bie (2014) present a survey of short text 

classification, first giving an overview of the special conditions which attach to short text as a 

problem, and then outlining all the major avenues of current research.  They divide approaches 

into three broad families – semantic approaches, including LSA, semi-supervised classical 

methods (e.g. SVM, naïve-Bayes) and ensemble methods, which can combine from the other 

two families. 

Work was presented by Bollegala, Matsuo and Ishizuka (2007) which incorporated semantic 

information extracted from web-based search engines and this was contrasted with the same 

operation using Wordnet: the authors point out that, typically, a static resource such as Wordnet 

will fail to produce good results when trying to judge similarity in the presence of 
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colloquialisms. Hu, Sun, Zhang and Chua (2009) combine Wordnet feature enhancement with 

supplementation from the Wikipedia taxonomy using Wordnet for texts containing few non-

stop-words and Wikipedia for texts containing many non-stop-words.  

This use of an explicit external taxonomy such as Wordnet can be contrasted with much work 

which makes use of the implicit taxonomy inherent in the organisation and content of reference 

sources such as Wikipedia and Probase as in the work of Banerjee, Ramanathan, and Gupta 

(2007) where the titles of Wikipedia articles containing terms of interest were used as features 

to supplement the sparse text data, or in the work of Wang, Wang, Li, and Wen (2014) in which 

they coined the term ‘bag-of-concepts’ to stress the semantic aspect of the additional features 

that they had mined from the probabilistic semantic network Probase.  Wikipedia is once again 

the favoured external source of ‘world knowledge’ in Gabrilovich and Markovitch (2006) in 

which they state, “pruning the inverted index (concept selection) is vital in eliminating noise”, 

but, unfortunately, they provide no further detail on their ‘ablation’ process. Gabrilovich and 

Markovitch go on to claim double digit improvements over the then state-of-the-art methods 

on ‘certain datasets’. A later paper by the same authors, Gabrilovich and Markovitch (2007), 

uses concepts mined from Wikipedia as the dimensions of a high dimensional concept space, 

and maps documents into this space as weighted vectors, which are then to compute semantic 

relatedness. They go on to contrast this technique, which they call Explicit Semantic Analysis, 

ESA, against latent semantic analysis, LSA, emphasising that the concepts in ESA are human 

generated concepts rather that statistical co-occurrences. 

Genc, Sakamoto and Nickerson (2011) compared three disparate techniques to demonstrate the 

utility of Wikipedia as an implicit taxonomic source. In a manner similar to, but subtly different 

from, Gabrilovich and Markovitch (2007) they use the target text to mine relevant Wikipedia 

pages, and then calculate the distances between Wikipedia pages using a simple shortest path 

graph traversal metric to assign distances between target texts.  Their second technique is to 

simply measure the String Edit Distance between texts using the Levenshtein metric.  Their 

final design uses Latent Semantic Analysis coupled with a cosine distance metric. Their results 

suggest that the Wikipedia method out-performed both SED and LSA on most sets, and was 

inferior on none of the tested datasets. 

In a change of tactic, Genc, Mason and Nickerson (2013), again using Wikipedia, have taken 

a different approach to concept extraction by using a sliding n-gram window centred on a target 

word within a text, and by using the explicit categorisation provided by Wikipedia category 
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containers which they have pre-classified into four super categories to provide meta-tags used 

to filter matching concepts. 

Work by Agirre, Alfonseca, Hall, Kravalova, Pasca and Soroa (2009) has further extended the 

frequency-and-semantics based approach with the addition of syntactic context, achieved 

through the use of a variable window of text around key words enabling searching for a context 

specific word match, effectively implementing a sophisticated variable n-gram. 

Departing from the common themes above, Sun (2012) takes a refreshingly contrarian direction 

to the main approaches outlined above, and trims short texts even further in an attempt to retain 

only key words.  Trimming is accomplished using familiar term-frequency / inverse-document-

frequency methods coupled with a novel ‘clarity’ measure, and is followed with a classification 

implemented through a Lucene search to find similar documents from a corpus: the classes of 

the returned documents are used as the class for document under classification. Sun reports that 

results match MaxEnt classifiers. 

Sriram, Fuhry, Demir, Ferhatosmanoglu and Demirbas (2010) observe that: 

When external features from the world knowledge is [sic] used to enhance the feature 

set, complex algorithms are required to carefully prune overzealous features. These 

approaches eliminate the problem of data sparseness but create a new problem of the 

curse of dimensionality. 

Rather than tackle those problems head-on, they exploit the available data relating to the 

authors of the short texts (tweets) to enhance the feature set of each method. Another paper 

taking a slightly different approach to the problem is Zelikovitz and Hirsh (2000) in which a 

second-order similarity relationship is used as a bridge: target texts are compared to a large 

unlabelled corpus of background knowledge, and matched corpus documents are then 

compared to labelled data.  Despite this apparently distant relationship, Zelikovitz and Hirsh 

claim to have significantly reduced error rates although they do concede that the background 

corpus selection is critical to success, and that the combinatorial nature of the search may lead 

to efficiency and scaling problems. 

A trend in the short text enhancement literature becomes apparent over time: early work 

concentrated on well-structured external resources such as Wordnet but, with time, the 

favoured approach became the less well-structured Wikipedia-type model. Several authors 

comment that Wikipedia’s relatively wider domain provides better ‘world knowledge’ and can 
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therefore more effectively measure context and concept than can the relatively narrow-focus 

of Wordnet.   Gabrilovich and Markovitch (2007) also place emphasis on the ‘real knowledge’ 

aspect of Wikipedia and explicitly prefer it to the latent nature of statistically derived concepts 

as used in Latent Semantic Analysis. 

 

2.3. ANOVA and Robust Statistics 

Simplystatistics.org6 has referred to R.A. Fisher as ‘the most influential scientist ever’ in part 

due to his contribution of the workhorse statistical method of ANOVA, which is used to test 

for statistical differences between means.  The ANOVA method makes some assumptions 

about the underlying structure of data and, although it has been often found to be robust with 

respect to violations of these assumptions, for example in Feir-Walsh and Toothaker (1974), 

more robust variations have been developed.  One such family of robust methods, Wilcox 

Robust Statistics (WRS), has been developed by Wilcox and has not only been discussed in 

Wilcox and Keselman (2003), but has also been made available as a package for the R statistical 

environment7. Wilcox and Keselman state that: 

Conventional methods generally offer at most a small advantage in statistical power 

over modern methods when standard assumptions are approximately true. This is 

because modern methods are designed to perform nearly as well under these 

circumstances. 

With this assurance in mind, Wilcox’s trimmed means methods have been used for all AVOVA 

related tests in this work. 

Other non-parametric tests of relevance to the current work are the Jonckheere-Terpstra test 

for trend detection, described by Jonckheere (1954) and Spearman’s Rank Order Co-efficient, 

suitable for detecting correlation between two ranked sets, as described by Zar (1972).  

 

2.4. Gaps 

Although frequent reference is made to the difficulty of classifying short text, as for example 

in Song, Ye, Du, Huang and Bie (2014), all bar one of the reviewed articles omit any reference 

                                                 

6 https://simplystatistics.org/2012/03/07/r-a-fisher-is-the-most-influential-scientist-ever/ 
7 https://cran.r-project.org/web/packages/WRS2/index.html 
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to the quantitative impact of the shortness of the text or any definition of how short a text must 

be to be considered ‘short’. Yuan, Cong and Thalmann (2012) in their paper, which is 

concerned, primarily, with contrasting various smoothing methods as applied to naïve-Bayes, 

conclude only that classifiers perform more poorly with single word texts than with multi-word 

texts.   
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3. DESIGN / METHODOLOGY 

This chapter will discuss the underlying design of the experiments used in this study, including 

the statistical treatments of experimental results. 

The fundamental design of the experiment centres on measuring classification performance on 

enhanced variants of messages of known specific lengths when selecting messages into classes 

having either positive or negative sentiment.   

The differences, if any, in classification performance across message lengths and between 

enhancement methods, as measured by the F1 score for accuracy of classification, will be 

analysed to determine if message length or enhancement has any statistically valid impact on 

classification performance, and so answer the research questions posed in section 1.3 above: 

• “Does classification performance for any of the included text enhancement methods 

change as texts decrease in length?” 

• “If classification performance varies, as texts decrease in length, for two or more of the 

included text enhancement methods, do those performance variations differ between 

enhancement methods?” 

 

3.1. Sub-setting Data by Text Length 

The original data set will be split into distinct message-length subsets, each subset containing 

5000 tweets, all of exactly the same length when measured in characters, and having an even 

balance between tweets pre-categorised as having either positive or negative sentiment. There 

will be twelve length categories in total.  The length categories, as measured by the total number 

of characters in the original message will be: 138 characters, 110 characters, 80 characters, 50 

characters, 45 characters, 40 characters, 35 characters, 30 characters, 25 characters, 20 

characters, 15 characters and a final set of tweets of length <= 10 characters. 

The original experimental design called for only five length categories, of lengths 138 

characters, 110 characters, 80 characters, 50 characters and 20 characters. However, early 

exploratory work, outlined in Chapter 4 below, suggested that a closer spacing of lengths would 

be advantageous. 
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3.2. Text-enhancement Data Preparation  

Each tweet message in each of the length-determined subsets will be pre-treated with nine text 

enhancement techniques to produce a total of ten variants of each message, including the 

original message. 

Broadly speaking, three approaches to enhancement will be used: basic, Wordnet-based and 

Wikipedia-based. A brief summary of each of the three approaches is given below: more detail 

on the exact nature of the enhancements will be included in the following chapter, and a full 

example of the results of all of the enhancements of a single tweet, taken from the Sentiment140 

corpus, is presented in appendix 8.3. 

3.2.1 Basic Enhancements 

Basic enhancements consist of operations such as the removal of stop words, punctuation and 

twitter hashtags, the lemmatization of the text - the replacement of words with their simplest 

root form, and the creation of bigrams – strings comprised of consecutive word pairs occurring 

in the original text. (Bigrams are a specific 2-word instance of the more general n-gram concept 

which comprises strings of n consecutive words in a text). 

3.2.2 Wordnet  

Wordnet (Miller, 1995) is a semantically focused English language dictionary.  It bears a 

resemblance to an extended thesaurus but, importantly from the perspective of this work, it 

contains not only synonyms, but also hypernyms, which are words representing related but less 

specific concepts than the searched word, and hyponyms, which are words representing related 

but more specific concepts than the searched word. Wordnet also provides some part-of-speech 

functionality. This project will make use of wordnet by appending the results of synonym, 

hypernym and hyponym searches to the cleaned & lemmatized version of the original tweet. 

3.2.3 Wikipedia / DBpedia 

DBpedia8 is a static, structured, database derived from information contained in the online 

encyclopaedia Wikipedia. Importantly, from the perspective of this project, DBpedia provides 

a web-based interface which returns, in XML format, the Wikipedia taxonomic metadata for 

the most relevant Wikipedia pages when a given word or bigram is searched.  This metadata 

includes page titles, Wikipedia categories and Wikipedia classes.  These metadata each have a 

‘label’ which is a text descriptor, possibly containing multiple words, of the page title, category 

                                                 

8 http://wiki.dbpedia.org/ 
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or class.  For example, labels contained in the DBpedia metadata for the word ‘dog’ include 

‘animal’ and ‘mammal’.   Wikipedia enhancements will be made by means of appending these 

metadata labels to the cleaned & lemmatized version of the original tweet. Appendix 8.2 

presents, by way of example, the full DBpedia XML output for the single word “sound”.  

It may be noted that these three approaches to enhancement may be categorised into one of two 

classes: loosely speaking, the basic enhancements do not supplement the text with any external 

data if we discount the substitution of a word with its own lemma, whereas the Wordnet and 

Wikipedia/DBpedia approaches rely primarily on the addition of external data, which, it is 

implicitly hoped, is in some way conceptually linked to the words in the original text, thereby 

‘amplifying’ the underlying meaning of the text. 

3.3. Final Data Structure 

Following the division by length of the original data, and the generation of enhanced message 

variants, the experimental data will consist of 120 separate data sets, each containing 2500 

messages pre-classified as having positive sentiment and 2500 messages pre-classified as 

having negative sentiment.  This can be conceptualised as shown by Figure 3-1 below, where 

each cell represents a data set of 5000 messages. 
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3.4. Classification – Model & Test 

Each of the 120 data sets will be used to repeatedly build and test classification models. This 

will be repeated 100 times for each of the 120 data sets.  For each run of the modelling step the 

data will be randomly split into 90% training data, used to train a single model, and 10% test 

data used to test the classification performance of that model; this method is known as repeated 

random sub-sampling validation or Monte Carlo cross-validation (Xu & Liang, 2001). The F1 

Score (weighted average of precision and recall) for each model will be recorded. This will 

result in 100 F1 Scores for each of the 120 data sets shown above.  The graphical conception 

of this matrix of results can be seen in Figure 3-2 below, where the independent variable is 

plotted as text length and the dependent variable is the F1 score. Each data point represents the 

mean of the 100 F1 scores for each data set.  

 

Figure 3-2   Sample Graph of Result Matrix for a Single Classifier 
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As discussed in the introduction to this work, the purpose of using multiple classifiers is to 

assess the general applicability of any findings rather than to formally assess the performance 

of the classifiers themselves, and so a detailed comparison of those classifiers’ performance 

will not form a major part of this work. 

 

3.5. Evaluation 

Evaluation of the results for each of the classifiers will first be carried out using a 2-way 

independent analysis of variance, to determine whether statistical differences with respect to 

text length or enhancement are present.   

2-way analysis of variance testing will be followed by application of 1-way analysis of variance 

for each of the enhancement method data sets and the non-parametric Jonckheere-Terpstra test 

for trend detection will be applied individually to each of the enhancement method data sets. 

If significant differences in F1 Score are present with respect to text length, this will justify the 

rejection of Hypothesis 1: The performance of short-text classification enhancement methods, 

as measured by weighted average accuracy (F1 Score), will not change as target text length 

decreases. 

The 2-way ANOVA test also includes an evaluation of the interaction effect between variables.  

This may be thought of as asking the question “Does the enhancement method have a 

significant effect on the way in which F1 Score changes with length?”. If the interaction should 

prove to be significant this will justify the rejection of Hypothesis 2: The changes in 

performance of different short-text classification enhancement methods as target text length 

decreases, measured by weighted average accuracy (F1 Score), will not differ between 

enhancement methods. 

 In addition to the statistical testing of the hypotheses, 1-way analysis of variance testing and 

trend testing will be followed by application of post-hoc measures to assign both text-lengths 

and enhancement methods into significantly separate groupings with respect to classifier 

performance for all three classifiers in order to provide some descriptive results on the relative 

performance of enhancements and the characteristic behaviour of the classifiers as text length 

decreases. 
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3.6. Summary 

The average performance of three classification methods will be tested on short texts of twelve 

different lengths, having 10 different enhancements applied to the texts before classification. 

The results of these tests will be statistically analysed to ascertain whether performance differs 

between applied enhancement methods or whether performance differs as text-length 

decreases.  The next chapter will discuss the implementation and results of these experiments 

and chapter 6 will cover the statistical analysis of the results and the conclusions which may 

be drawn from that analysis which can be used to address the research question “As target text 

length decreases, do the changes in performance of different short-text classification methods, 

as measured by average class accuracy, differ between methods?” 
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4. IMPLEMENTATION / RESULTS 

Chapter 4 will cover the implementation of the experimental design including data acquisition, 

data preparation, enhancement of tweet texts and classification steps.  Chapter 4 will also 

present the results of experiments in both graphical and tabular form.  

All required code for acquisition and enhancement of the data was written in Python 2.79, 

making extensive use of Python’s NLTK10 package, v3.2.2, for natural language processing 

functionality.  The base classifiers used were those provided by Python’s scikit-learn11 

package, v 0.18.1, and the version of Wordnet used was v3.0, which came bundled with NLTK. 

The code for the implementation of the Latent Semantic Analysis, the code for Wordnet 

enhancement and the code for Wikipedia enhancement were purpose built for this project in 

Python 2.7. 

4.1. Data Acquisition and Inspection  

The Sentiment140 tweet corpus was downloaded from http://help.sentiment140.com/home. 

The corpus consisted of 1.6 million tweets; 800,000 are pre-classified as having positive 

sentiment and 800,000 are pre-classified as having negative sentiment. 

The large number of total available tweets allowed the selection of large, length specific, sub 

sets, each containing 5000 tweets. Figure 4-1 illustrates that at least 5000 tweets are available 

for all message lengths of, or in excess of, 15 characters. 

 

Figure 4-1   Histogram of Text Lengths in Sentiment140 Corpus 

                                                 

9 https://www.python.org/download/releases/2.7/ 
10 http://www.nltk.org/ 
11 http://scikit-learn.org/stable/ 
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From this total set, length-based subsets of 5000 tweets were randomly drawn (50% positive, 

50% negative).  The character lengths of the tweets in the respective subsets were exactly 

138,110, 80, 50, 45, 40, 35, 30, 25, 20, 15 and a final set of tweets of length <= 10 characters. 

It was notable, and convenient, that much basic data cleaning had already been carried out by 

the Sentiment140 project.  The data did not contain unprintable control characters in the length 

ranges of interest.  One consequence of this pre-cleaning was that the emoticon artefacts, for 

example “:)”, had been stripped from tweets of the maximum length of 140 characters, leaving 

their actual length at 138 characters.  For this reason, 138 characters was the maximum Tweet 

length for which a dataset of 5000 characters was available. 

 

An example tweet from the corpus is shown below in Table 4-1. 

Table 4-1   Example Tweet Anatomy 

1. Sentiment 2. Tweet ID 3. Datetime 4. Twitter Specific 5. Author 6. Text Body 

0 1467811592 
Mon Apr 06 
22:20:03 NO_QUERY mybirch Need a hug  

 

Fields 2, 3, 4 and 5 of the datasets were discarded retaining only field 6, the text of the tweet, 

and field 1, which contained the sentiment assigned to the text by the Sentiment140 project, 

negative sentiment encoded as a 0, positive sentiment encoded as a 4.  The coding for positive 

sentiment was changed to a 1 for all positive tweets in the data, as some of the used classifier 

implementations expect input binary class information to be encoded as either 0 or 1. 

 

The words for each tweet in the length specific subsets were counted and averaged.  These 

results are presented in Table 4-2 below.  Interestingly, mean word length decreases gradually 

as text length increases. 
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Table 4-2   Mean and Standard Deviation of Word Counts by Text Length 

 

Text Length 
Mean Word 
Length 

StdDev of 
Word Length 

10 7.38 2.6 

15 6.34 2.7 

20 6.29 1.9 

25 6.36 2.0 

30 6.17 1.8 

35 6.07 1.5 

40 6.04 1.4 

45 5.97 1.3 

50 5.95 1.3 

80 5.78 1.1 

110 5.68 0.9 

138 5.61 2.1 

Overall 6.14 1.9 

 

4.2. Data Preparation 

The length specific data sets, containing the original tweet message bodies were enhanced by 

the methods outlined below, each enhancement adding a new attribute by concatenating the 

enriched features with the ‘Lemmatised’ data set as described below.  

After enrichment, the text features available for analysis were: 

• Original – the original text of the tweet as extracted from the Sentiment140 dataset. 

• Cleaned – the original text having punctuation and stop words removed, and twitter 

specific strings (e.g. hashtags, URLs) replaced with standard tokens. Cleaning is 

intended to enhance through the removal of features which do not contribute to 

classification accuracy and words that are either so common or so infrequent that they 

are useless as class discriminators. 

• Lemmatised – the cleaned set (above) lemmatised using the NLTK python library. 

Lemmatization is intended to enhance by increasing the statistical similarity of words 

having the same root, through substitution of words with their root-words (lemmas).  

• Bigrams – enhanced by appending all bigrams from the lemmatised tweet back to the 

lemmatized tweet. Bigrams provide a degree of context to a classifier – frequent pair 
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occurrences become features in their own right so increasing the specificity of surface 

matching. 

• Synonyms – enhanced by appending all available wordnet synonyms for each word in 

the lemmatised tweet to the lemmatized tweet. The addition of synonym is intended to 

act as a rudimentary method of ‘concept mining’ by increasing the chances of a match 

between tweets sharing synonyms (common concepts), but without common words. 

• Hypernyms – enhanced by appending all available wordnet hypernyms for each word 

in the lemmatised tweet back to the lemmatized tweet. Intended to act in a similar way 

to synonyms but with the ability to match tweets with greater concept specificity. 

• Hyponyms – enhanced by appending all available wordnet hyponyms for each word in 

the lemmatised tweet back to the lemmatized tweet. Intended to act in a similar way to 

synonyms but with the ability to match tweets with greater concept generality. 

• Wiki Words – enhanced by appending all available words in all the ‘labels’ contained 

in the top five Wikipedia hits for each word in the lemmatised text back to the 

lemmatised text. Designed to be an explicit match of common concepts (taxonomic 

classes and categories) which occur in the returned Wikipedia metadata. 

• Wiki Phrases – enhanced by appending all available ‘labels’, each treated as an 

indivisible string (n-gram), from the top five Wikipedia hits for each word in the 

lemmatised text back to the lemmatised text. Designed to be an explicit match of 

common concepts (taxonomic classes and categories) which occur in the returned 

Wikipedia metadata, but with greater contextual power during the classification stage 

due to the specificity of the n-gram rather than the previous, more general, bag of words 

approach. 

• Wiki Bigrams - enhanced by appending all available ‘labels’, each treated as an 

indivisible string (n-gram), from the top five Wikipedia hits for each bigram in the 

lemmatised text back to the lemmatised text. Designed to be an explicit match of 

common concepts (taxonomic classes and categories) which occur in the returned 

Wikipedia metadata, but with greater contextual power during both the classification 

stage due to the specificity of the n-gram, and the enhancement phase, due to the 

specificity of the input bigram, than either of the previous, more general approaches. 

An illustrative example of the results of all of the various enhancements of one single tweet, 

“@projectkpaz sounds good”, is given in appendix 8.3. 
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4.3. Trial Modelling 

Prior to full modelling and classification execution, some pilot work was undertaken to check 

the basic health and functionality of the code and data. This resulted in two major changes. The 

first was a change to the default setting for the LSA classifier’s retained vectors parameter: the 

value of 500 retained vectors in the LSA dimensionality reduction step was chosen after some 

preliminary experimentation which suggested that retaining any more than 500 vectors yielded 

diminishing returns in terms of classifier performance, while retaining fewer than 500 vectors 

resulted in a noticeable fall-off in performance.  This judgement was made on visual inspection 

of the plot in Figure 4-2 below, rather than on any formal statistical analysis. This is in line 

with the stated strategy in section 1.4 above: the purpose of this project is not to formally 

optimise the classifiers. 

 

Figure 4-2   Relationship between LSA Retained Vectors and Classifier Performance 

 

The second change was to augment the initial group of 5 length specific datasets (138, 110, 80, 

50, 20 characters) after trial plots indicated that there were rapid changes in the accuracy of 

classification between the 50-character set and the 20-character set.  As this is exactly the 

response that the experiment was designed to capture, further data sets at character length 

intervals of five characters were created and added to the experiment, as were sets of 15 

characters and <= 10 characters, in order to improve resolution in the area of interest. The final 

length categories were 138, 110, 80, 50, 45, 40, 35, 30, 25, 20, 15 and <=10 characters.  
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4.4. Modelling and Classification 

Following adjustments informed by trial modelling each of the ten types of processed tweet 

was classified by the following methods: 

• Naïve-Bayes using the built-in routines from the scikit-learn python library. 

• Support Vector Machine (SVM) using the built-in routines from the scikit-learn python 

library. 

• Latent semantic analysis, keeping only the top 500 vectors during the dimensionality 

reduction step, using the built-in routines from the scikit-learn python library followed 

by Support Vector Machine (SVM) using the built-in routines from the scikit-learn 

python library. 

Each classification was repeated 100 times, with the data set being randomly shuffled between 

repeats. Each classification run used Monte Carlo cross-validation, randomly splitting the set 

90% into training data used to train the supervised learning model and 10% into test data used 

to assess the classification performance of that model.  After each classification run, model 

performance was measured using the F1 Score from the classification of the test data and the 

score recorded. The F1 Score is calculated as the weighted average of precision and recall 

measures. The F1 Score results for each combination of classifier, enhancement method and 

tweet length were averaged (mean of 100 runs). 

The averaged F1 Scores for each combination of classifier, enhancement method and tweet 

length are presented below in tabular and graphic format. 
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4.5. Results for Naïve-Bayes Classification 

The mean F1 Scores, taken from 100 separate modelling runs, for each combination of 

enhancement and text length are shown in Table 4-3 below. 

Table 4-3    Classification Performance (F1 Score) Results - Naïve Bayes 

F1 Score Enhancement  
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10 0.795 0.801 0.769 0.776 0.799 0.861 0.796 0.789 0.795 0.775 0.796 

15 0.864 0.854 0.804 0.804 0.853 0.894 0.830 0.826 0.829 0.798 0.836 

20 0.900 0.892 0.825 0.825 0.891 0.913 0.846 0.869 0.845 0.815 0.862 

25 0.904 0.896 0.819 0.808 0.894 0.906 0.826 0.881 0.842 0.814 0.859 

30 0.918 0.889 0.810 0.796 0.886 0.904 0.827 0.871 0.826 0.800 0.853 

35 0.924 0.892 0.793 0.777 0.891 0.905 0.813 0.874 0.814 0.791 0.848 

40 0.936 0.895 0.782 0.765 0.893 0.908 0.805 0.874 0.806 0.786 0.845 

45 0.938 0.895 0.772 0.758 0.894 0.906 0.797 0.871 0.805 0.778 0.841 

50 0.941 0.893 0.766 0.739 0.891 0.908 0.796 0.860 0.799 0.771 0.836 

80 0.959 0.905 0.756 0.713 0.903 0.915 0.786 0.862 0.802 0.761 0.836 

110 0.960 0.906 0.756 0.712 0.904 0.918 0.785 0.849 0.798 0.770 0.836 

138 0.960 0.912 0.769 0.704 0.910 0.921 0.788 0.844 0.799 0.753 0.836 

     Total 
11.00 10.63 9.42 9.18 10.61 10.86 9.70 10.27 9.76 9.41 10.08 

 

Casual inspection does not reveal an immediately apparent trend.  The data in columns 

represents the performance of the classifier on each particular enhancement, and the ‘Total’ 

number at the bottom of each column is the sum of all F1-Scores for that column. 

That sum of all F1 Scores for a given enhancement may be thought of as a crude measure of 

the area-under-the-curve for the performance of that enhancement, and the figure at bottom 

right is the mean of those areas, and as such may be taken as a very crude measure of overall 

performance of the particular classifier.  In both cases a greater area implies better performance. 

These F1 Score data are represented graphically in Figure 4-3 below, where some trends are 

becoming apparent. 
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Figure 4-3   Classification Performance (F1 Score) Results - Naïve Bayes 

The graphical plot in Figure 4-3 above illustrates some notable features.   

There appears to be an area of relatively stable F1 score performance with respect to text 

lengths between 80 and 138 characters, for all enhancements.  

All enhancements exhibit a steep fall-off in performance for text lengths below 20 characters. 

Recalling the distinction made in section 3.2 between additive and non-additive enhancements, 

it may be noted that all the non-additive enhancements (original, lemmatized, cleaned and 

bigrams) show a weak tendency for performance to increase with text length, while the additive 

enhancements seems to show a fall in performance as length increases from 20 to 80 characters. 

Table 4-4, below, shows the standard deviations associated with the 100 F1 scores for each 

enhancement-length combination.  In very general terms, variance appears to be relatively low. 
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 Table 4-4   Standard Deviations of F1 Score Results - Naïve Bayes 

StdDev of F1 Enhancement 
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10 0.0031 0.0033 0.0034 0.0063 0.0036 0.0034 0.0035 0.0032 0.0036 0.0035 

15 0.0025 0.0025 0.0028 0.0029 0.0025 0.0026 0.0028 0.0038 0.0029 0.0031 

20 0.0055 0.0024 0.0029 0.0033 0.0024 0.0025 0.0029 0.0043 0.0031 0.0032 

25 0.0022 0.0025 0.0028 0.0037 0.0025 0.0035 0.0026 0.0029 0.0024 0.0035 

30 0.0033 0.0028 0.0033 0.0038 0.0027 0.0027 0.0027 0.0029 0.0029 0.0035 

35 0.0022 0.0027 0.0033 0.0032 0.0029 0.0030 0.0033 0.0031 0.0031 0.0027 

40 0.0028 0.0026 0.0036 0.0035 0.0027 0.0026 0.0030 0.0031 0.0033 0.0035 

45 0.0023 0.0026 0.0037 0.0033 0.0027 0.0025 0.0035 0.0029 0.0033 0.0032 

50 0.0024 0.0027 0.0043 0.0038 0.0028 0.0032 0.0037 0.0036 0.0032 0.0035 

80 0.0023 0.0031 0.0039 0.0035 0.0026 0.0030 0.0032 0.0032 0.0031 0.0044 

110 0.0023 0.0029 0.0038 0.0041 0.0029 0.0033 0.0033 0.0037 0.0035 0.0037 

138 0.0022 0.0027 0.0039 0.0042 0.0028 0.0029 0.0040 0.0035 0.0038 0.0048 

 

Using data from tables Table 4-3 and Table 4-4 the standard deviation can be expressed as a 

percentage of the underlying mean F1 score for each combination of enhancement and text 

length, and Figure 4-4 shows a plot of this measure across enhancements and text lengths.  It 

can be seen that, for all points, the standard deviations are less than 1% of the underlying mean 

value. 
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Figure 4-4   Standard Deviations as % of F1 Score - Naïve-Bayes 

 

Figure 4-5, below, replots this same data on a rescaled vertical axis in order to facilitate a visual 

comparison between this data and the data from the SVM and LSA classifiers which are 

presented in figures Figure 4-7 and Figure 4-9, respectively, later in this section.  
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Figure 4-5   Standard Deviations as % of F1 Score - Naïve-Bayes - Expanded Scale 
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4.6. Results for Support Vector Machine Classification 

 

The mean F1 Scores, taken from 100 separate modelling runs, for each combination of 

enhancement and text length are shown below. 

Table 4-5   Classification Performance (F1 Score) Results – Support Vector Machine 

F1 Score Enhancement  

Te
xt

 L
en

gt
h

 

B
ig

ra
m

s 

cl
ea

n
 

H
yp

er
n

ym
s 

H
yp

o
n

ym
s 

Le
m

m
at

is
ed

 

o
ri

gi
n

al
 

Sy
n

o
n

ym
s 

W
ik

i B
ig

ra
m

s 

W
ik

i p
h

ra
se

s 

W
ik

i w
o

rd
s 

M
ea

n
 

10 0.677 0.796 0.762 0.716 0.794 0.800 0.776 0.666 0.734 0.715 0.744 

15 0.810 0.851 0.835 0.817 0.848 0.883 0.843 0.786 0.816 0.777 0.827 

20 0.871 0.899 0.857 0.838 0.898 0.908 0.871 0.849 0.833 0.786 0.861 

25 0.884 0.899 0.844 0.819 0.898 0.912 0.861 0.855 0.825 0.773 0.857 

30 0.893 0.899 0.831 0.800 0.895 0.911 0.853 0.848 0.802 0.751 0.848 

35 0.906 0.900 0.823 0.793 0.897 0.915 0.845 0.852 0.797 0.744 0.847 

40 0.922 0.902 0.814 0.778 0.899 0.917 0.840 0.854 0.779 0.715 0.842 

45 0.925 0.900 0.809 0.772 0.899 0.918 0.835 0.857 0.783 0.716 0.841 

50 0.930 0.898 0.799 0.754 0.897 0.917 0.825 0.848 0.774 0.704 0.835 

80 0.958 0.902 0.781 0.741 0.898 0.919 0.816 0.847 0.742 0.688 0.829 

110 0.960 0.902 0.768 0.728 0.895 0.920 0.804 0.829 0.701 0.640 0.815 

138 0.959 0.897 0.765 0.712 0.892 0.916 0.798 0.830 0.688 0.628 0.808 

       Total 
10.696 10.645 9.690 9.266 10.611 10.836 9.967 9.920 9.274 8.636 9.954 

 

Again, casual inspection does not reveal an immediately apparent trend.  The data in columns 

represents the performance of the classifier on each particular enhancement, and the ‘Total’ 

number at the bottom of each column is the sum of all F1-Scores for that column. 

As mentioned above, that sum of all F1 Scores for a given enhancement may be thought of as 

a crude measure of the area-under-the-curve for the performance of that enhancement, and the 

figure at bottom right is the mean of those areas, and as such may be taken as a very crude 

measure of overall performance of the particular classifier.  In both cases a greater area implies 

better performance. 

These F1 Score data are represented graphically in Figure 4-6 below, where some trends are 

becoming apparent. 
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Figure 4-6   Classification Performance (F1 Score) Results - Support Vector Machine 

The graphical plot in Figure 4-6 above bears a strong similarity to Figure 4-3, the corresponding 

plot for naïve-Bayes, and illustrates some notable features.   

Recalling the distinction made in section 3.2 between additive and non-additive enhancements, 

it may be noted that the additive enhancements seems to show a fall in performance as length 

increases from 20 to 138 characters. 

There appears to be an area of relatively stable F1 score performance with respect to text 

lengths between 80 and 138 characters, for non-additive enhancements.  

All enhancements exhibit a steep fall-off in performance for text lengths below 20 characters. 

Table 4-6, below, shows the standard deviations associated with the 100 F1 scores for each 

enhancement-length combination.  In very general terms variances appear to be higher than the 

corresponding naïve-Bayes variances. 
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Table 4-6   Standard Deviations of F1 Score Results - Support Vector Machine 

StdDev of F1 Enhancement 
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10 0.0055 0.0060 0.0288 0.0252 0.0061 0.0093 0.0292 0.0074 0.0397 0.0350 

15 0.0101 0.0075 0.0097 0.0127 0.0092 0.0169 0.0093 0.0108 0.0234 0.0332 

20 0.0045 0.0052 0.0063 0.0094 0.0079 0.0039 0.0063 0.0046 0.0242 0.0344 

25 0.0054 0.0072 0.0071 0.0113 0.0078 0.0039 0.0070 0.0067 0.0294 0.0453 

30 0.0060 0.0052 0.0108 0.0111 0.0095 0.0034 0.0074 0.0107 0.0388 0.0371 

35 0.0074 0.0080 0.0097 0.0122 0.0111 0.0040 0.0079 0.0098 0.0398 0.0426 

40 0.0064 0.0071 0.0117 0.0139 0.0174 0.0041 0.0101 0.0112 0.0657 0.0759 

45 0.0059 0.0094 0.0133 0.0158 0.0095 0.0033 0.0102 0.0144 0.0514 0.0679 

50 0.0057 0.0102 0.0143 0.0159 0.0069 0.0035 0.0120 0.0148 0.0504 0.0713 

80 0.0034 0.0098 0.0204 0.0179 0.0105 0.0051 0.0178 0.0184 0.0909 0.0805 

110 0.0026 0.0082 0.0288 0.0218 0.0092 0.0046 0.0164 0.0275 0.1339 0.1171 

138 0.0026 0.0115 0.0287 0.0278 0.0133 0.0059 0.0205 0.0226 0.1452 0.1200 

 

Using data from tables Table 4-5 and Table 4-6 the standard deviation can be expressed as a 

percentage of the underlying mean F1 score for each combination of enhancement and text 

length, and Figure 4-7 shows a plot of this measure across enhancements and text lengths.  It 

can be seen that this plot shows some striking differences in comparison with Figure 4-5, the 

corresponding naïve-Bayes plot. 
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Figure 4-7   Standard Deviations as % of F1 Score - SVM 

Overall, standard deviations, as a percentage of underlying mean, are higher than for naïve-

Bayes.  There is an upward trend as text length increases, in general, but the most salient feature 

is the very high variance for the Wiki Words and Wiki Phrases enhancements where the 

standard deviations typically exceed 5% of underlying mean, and peak at >20% at longer text 

lengths.    

Bigrams
clean

Hypernyms
Hyponyms

Lemmatised
original

Synonyms
Wiki Bigrams

Wiki phrases
Wiki words

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

10 15 20 25 30 35 40 45 50 80 110 138

En
h

an
ce

m
en

t

St
an

d
ar

d
 D

ev
ia

ti
o

n
 a

s 
%

 o
f 

F1
Sc

o
re

Text Length (chars)

Standard Deviations as % of F1 Score - SVM

0.0%-5.0% 5.0%-10.0% 10.0%-15.0% 15.0%-20.0% 20.0%-25.0%



37 

 

4.7. Results for Latent Semantic Analysis / SVM Classification 

The mean F1 Scores, taken from 100 separate modelling runs, for each combination of 

enhancement and text length are shown below. 

Table 4-7   Classification Performance (F1 Score) Results – Latent Semantic Analysis 

F1 Score Enhancement  
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10 0.647 0.644 0.697 0.648 0.644 0.651 0.693 0.645 0.665 0.662 0.660 

15 0.743 0.749 0.749 0.720 0.751 0.733 0.766 0.745 0.740 0.728 0.742 

20 0.808 0.805 0.804 0.780 0.811 0.808 0.807 0.804 0.797 0.787 0.801 

25 0.801 0.799 0.787 0.770 0.798 0.806 0.801 0.796 0.791 0.782 0.793 

30 0.783 0.779 0.764 0.746 0.782 0.784 0.787 0.775 0.770 0.755 0.773 

35 0.775 0.775 0.756 0.737 0.773 0.776 0.770 0.766 0.755 0.754 0.764 

40 0.772 0.764 0.745 0.724 0.768 0.774 0.770 0.756 0.760 0.750 0.758 

45 0.775 0.769 0.733 0.721 0.771 0.768 0.761 0.761 0.746 0.737 0.754 

50 0.762 0.759 0.726 0.694 0.761 0.763 0.753 0.753 0.738 0.731 0.744 

80 0.753 0.747 0.693 0.667 0.746 0.752 0.728 0.729 0.714 0.713 0.724 

110 0.718 0.719 0.689 0.650 0.714 0.721 0.710 0.695 0.692 0.694 0.700 

138 0.709 0.708 0.685 0.624 0.704 0.703 0.702 0.688 0.678 0.671 0.687 

      Total 
9.047 9.017 8.828 8.479 9.024 9.038 9.048 8.914 8.845 8.764 8.900 

 

Once again, casual inspection does not reveal an immediately apparent trend.  The data in 

columns represents the performance of the classifier on each particular enhancement, and the 

‘Total’ number at the bottom of each column is the sum of all F1-Scores for that column. 

Again, that sum of all F1 Scores for a given enhancement may be thought of as a crude measure 

of the area-under-the-curve for the performance of that enhancement, and the figure at bottom 

right is the mean of those areas, and as such may be taken as a very crude measure of overall 

performance of the particular classifier.  In both cases a greater area implies better performance. 

These F1 Score data are represented graphically in Figure 4-8 below, where some trends are 

becoming apparent. 
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Figure 4-8   Classification Performance (F1 Score) Results - Latent Semantic Analysis 

The graphical plot in Figure 4-8 above bears only some similarity to Figure 4-3 and Figure 4-6, 

the corresponding plots for naïve-Bayes and SVM, and illustrates some notable features.   

Recalling the distinction made in section 3.2 between additive and non-additive enhancements, 

it may now be noted that no distinct differences are apparent as performance decreases as length 

increases from 20 to 138 characters. 

There appears to be no area of relatively stable F1 score performance with respect to text 

lengths between 80 and 138 characters, in contrast with the naïve-Bayes and SVM classifiers.  

Again, all enhancements exhibit a steep fall-off in performance for text lengths below 20 

characters. 

In general terms, F1 scores are lower than for naïve-Bayes or SVM classifiers. 

Table 4-8, below, shows the standard deviations associated with the 100 F1 scores for each 

enhancement-length combination.  In very general terms, variances appear to be higher than 

the corresponding naïve-Bayes variances, but to have lower peak values that the support vector 

models. 
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Table 4-8   Standard Deviations of F1 Score Results - Latent Semantic Analysis 

StdDev of F1 Enhancement 
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10 0.0215 0.0247 0.0214 0.0252 0.0213 0.0213 0.0210 0.0236 0.0137 0.0166 

15 0.0311 0.0291 0.0281 0.0262 0.0246 0.0320 0.0302 0.0209 0.0182 0.0260 

20 0.0119 0.0137 0.0098 0.0127 0.0121 0.0144 0.0132 0.0140 0.0106 0.0123 

25 0.0119 0.0172 0.0131 0.0123 0.0143 0.0111 0.0109 0.0132 0.0101 0.0107 

30 0.0176 0.0188 0.0193 0.0185 0.0196 0.0185 0.0131 0.0158 0.0145 0.0179 

35 0.0191 0.0215 0.0191 0.0150 0.0228 0.0228 0.0140 0.0221 0.0188 0.0154 

40 0.0171 0.0266 0.0223 0.0225 0.0216 0.0189 0.0140 0.0258 0.0189 0.0200 

45 0.0172 0.0237 0.0215 0.0158 0.0220 0.0254 0.0166 0.0198 0.0224 0.0255 

50 0.0276 0.0283 0.0288 0.0223 0.0285 0.0262 0.0233 0.0245 0.0261 0.0266 

80 0.0332 0.0305 0.0477 0.0301 0.0305 0.0260 0.0265 0.0373 0.0343 0.0240 

110 0.0318 0.0283 0.0478 0.0398 0.0366 0.0332 0.0402 0.0391 0.0395 0.0421 

138 0.0412 0.0343 0.0377 0.0549 0.0362 0.0460 0.0326 0.0482 0.0453 0.0499 

 

Using data from Table 4-7 and Table 4-8 the standard deviation can be expressed as a 

percentage of the underlying mean F1 score for each combination of enhancement and text 

length, and Figure 4-9 shows a plot of this measure across enhancements and text lengths.  It 

can be seen that this plot shows some striking differences to Figure 4-5, the corresponding 

naïve-Bayes plot, and to Figure 4-7, the corresponding SVM plot. 
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Figure 4-9   Standard Deviations as % of F1 Score - LSA 

Overall, standard deviations, as a percentage of underlying mean, are higher than for naïve-

Bayes.  There is a noticeable overall upward trend as text length increases, in general, but no 

marked trend between enhancements as was seen in the corresponding SVM plot.    
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4.8. Comparisons of Enhancements and Classifiers 

Although performance comparisons between enhancements and between classifiers is not a 

primary goal of this work, some informal conclusions may be inferred from the data already 

collected. 

Gathering together the ‘Total’ rows from Table 4-3, Table 4-5 and Table 4-7, a summary table 

of the crude ‘area-under-the-curve’ data is presented below.  

 

Table 4-9   Areas under the Performance Curve for Enhancements and Classifiers 

 Enhancement 

Classifier 
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NB 11.000 10.632 9.421 9.176 10.610 10.859 9.695 10.271 9.761 9.411 

SVM 10.696 10.645 9.690 9.266 10.611 10.836 9.967 9.920 9.274 8.636 

LSA 9.047 9.017 8.828 8.479 9.024 9.038 9.048 8.914 8.845 8.764 

 

By sorting and plotting the data from Table 4-9, Figure 4-10 can be created. 

 

Figure 4-10   Areas under the Performance Curve for Enhancements and Classifiers 
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Figure 4-10 presents the dimensionless (arbitrary) ‘area under the performance curve’ measures 

for all classifier-enhancement combinations, sorted in descending order of performance from 

left to right. 

Immediately apparent is the relatively poor performance of the LSA classifier. 

Recalling, once again, the distinction made in section 3.2 between additive and non-additive 

enhancements, it may be noted that, of the top eight combinations, all use non-additive 

enhancements and that, discounting LSA results, no additive enhancement out-performs any 

non-additive enhancement, suggesting that the additive enhancements (Wordnet, Wikipedia) 

are under-performing the simpler, non-additive, enhancements. 

At the risk over over-simplifying a complex issue with a single unsophisticated measure, but 

in the interest of completeness, Table 4-10, below, presents the sum of the areas under all the 

enhancement performance curves for each classifier.  This may be tentatively interpreted as a 

measure of overall F1 score classification performance across all text lengths and all 

enhancements for each classifier. 

Table 4-10   Total Area Under All Curves by Classifier 

Classifier 
Total Area under all 

curves 

Naïve-Bayes 100.8 

SVM 99.5 

LSA 89.0 

 

It can be seen that naïve-Bayes seems to very slightly out-perform the support vector classifier, 

and the LSA method seems to lag the others in terms of performance. Given the discussion in 

section  2.1.1, this performance for naïve-Bayes should not be considered particularly 

surprising. 

4.9. Summary 

The average performance of three classification methods was tested on short texts of twelve 

different lengths, having 10 different enhancements applied to the texts before classification. 

Tabular and graphical results of the F1 Score of these classification operations were presented 

along with results on the variance of the various methods and their relative overall performance. 

Chapter 5 will analyse these results from a statistical perspective.  
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5. EVALUATION / ANALYSIS 

This chapter will discuss statistical testing of the results presented in Chapter 4 and draw 

quantitative conclusions on the specific hypotheses set out in Section 1.3 above. 

All required code for analysis of the results data was written in R 3.3.3 (Another Canoe - release 

date 06/03/2017). Required R packages will be detailed below. All statistical tests associated 

with the project were conducted at a confidence level of 95% unless otherwise stated. 

5.1. Homogeneity of Variance 

The three result sets, one for each classifier, were first tested for homogeneity of variance using 

Levene’s test as implemented by the General Linear Model in R.  A p-value of less than 0.05 

indicates that there is insufficient homogeneity of variance (at a 95% confidence) to ensure 

validity from the standard form of ANOVA testing. 

Figure 5-1   Levene's Test for Homogeneity of Variance on Naïve Bayes F1-Score 

Levene's Test for Homogeneity of Variance (center = median) 

         Df F value    Pr(>F)     

group   119  7.2771 < 2.2e-16 *** 

      11880                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Figure 5-2   Levene's Test for Homogeneity of Variance on SVM F1-Score 

Levene's Test for Homogeneity of Variance (center = median) 

         Df F value    Pr(>F)     

group   119  30.047 < 2.2e-16 *** 

      11880                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Figure 5-3   Levene's Test for Homogeneity of Variance on LSA F1-Score 

Levene's Test for Homogeneity of Variance (center = median) 

         Df F value    Pr(>F)     

group   119  11.592 < 2.2e-16 *** 

      11880                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

In all three cases, Levene’s test indicated that the heterogeneity of variance was sufficient to 

require more robust analysis that that available from standard ANOVA.  The robust method 

chosen was a trimmed-means procedure described by Wilcox (Wilcox & Keselman, 2003) and 

implemented in the R package WRS2. 



44 

 

5.2. Robust 2-Way ANOVA 

Results of Wilcox’s robust trimmed means 2-way independent ANOVA for all three classifiers 

are shown below. 

Table 5-1   Results of Robust 2-way ANOVA testing on Naïve Bayes Classification 

 Test Value p-Value 

Enhancement 2642891.7 0.001 

Length 200056.2 0.001 

Interaction 518945.2 0.001 

p-values < 0.05 are significant 

 

The p-values for the 2-way ANOVA for naïve-Bayes classification indicate that significant 

differences in F1 Score occur both between text lengths and between enhancement methods.  

The interaction between text length and enhancement is also significant.  

These results indicate that, (at 95% confidence): 

1) taken across all lengths, performance is significantly influenced by enhancement. 

Neither hypothesis was contingent on this relationship. 

2) taken across all enhancements, performance is significantly influenced by text length.  

On its own, this finding cannot be used to reject hypothesis1 because enhancements 

have not been individually tested.  

3) the change of performance with respect to length is statistically different between 

enhancements. This finding is sufficient to reject hypothesis 2 for the naïve-Bayes 

classifier. 

 

Table 5-2   Results of Robust 2-way ANOVA testing on SVM Classification 

 Test Value p-Value 

Enhancement 119850.24 0.001 

Length 25036.01 0.001 

Interaction 121528.29 0.001 

p-values < 0.05 are significant 
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The p-values for the 2-way ANOVA for Support Vector Machine classification indicate that 

significant differences in F1 Score occur both between text lengths and between enhancement 

methods.  The interaction between text length and enhancement is also significant.  

These results indicate that, (at 95% confidence): 

1) taken across all lengths, performance is significantly influenced by enhancement. 

Neither hypothesis was contingent on this relationship. 

2) taken across all enhancements, performance is significantly influenced by text length.  

On its own, this finding cannot be used to reject hypothesis1 because enhancements 

have not been individually tested.  

3) the change of performance with respect to length is statistically different between 

enhancements. This finding is sufficient to reject hypothesis 2 for the Support Vector 

Machine classifier. 

 

Table 5-3   Results of Robust 2-way ANOVA testing on LSA Classification 

 Test Value p-Value 

Enhancement 4254.151 0.001 

Length 48572.718 0.001 

Interaction 2413.403 0.001 

p-values < 0.05 are significant 

 

The p-values for the 2-way ANOVA for Latent Semantic Analysis / SVM classification 

indicate that significant differences in F1 Score occur both between text lengths and between 

enhancement methods.  The interaction between text length and enhancement is also 

significant.  

These results indicate that, (at 95% confidence): 

1) taken across all lengths, performance is significantly influenced by enhancement. 

Neither hypothesis was contingent on this relationship. 

2) taken across all enhancements, performance is significantly influenced by text length.  

On its own, this finding cannot be used to reject hypothesis1 because enhancements 

have not been individually tested.  
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3) the change of performance with respect to length is statistically different between 

enhancements. This finding is sufficient to reject hypothesis 2 for the Latent Semantic 

Analysis classifier. 

 

5.3. Robust 1-Way ANOVA and Trend Testing 

Following 2-Way ANOVA, the individual result sets for combinations of classifier and 

enhancement were tested using Wilcox’s robust 1-Way ANOVA (based on Levene’s test 

results showing an insufficient homogeneity of variance) and Jonckheere-Terpstra’s 2-tailed 

test for the presence of a trend using text length as the independent variable (Jonckheere, 1954).   

In all combinations of classifier and enhancement significant differences in F1 Score with 

changes in text-length were detected by the 1-Way ANOVA. 

In all combinations of classifier and enhancement significant trends in F1 Score with changing 

text-length were detected by Jonckheere-Terpstra’s 2-tailed test. 

Both of these results indicate that for all classifiers and for all enhancements the text length has 

a significant effect, at the 95% confidence level, on the classification performance, and these 

individual results indicate that, as hinted at by the 2-way ANOVA test, hypothesis 1 may be 

rejected for all enhancement – classifier combinations. 

Tabular data for the 1-way analyses are presented in Table 5-4 below. (All p-values less than 

0.05 are considered to be significant at the 95% confidence level.)  
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Table 5-4    Results of Individual 1-way ANOVA and Jonckheere-Terpstra Tests 

  p-value 

Classifier Enhancement Levene Robust 1-way Anova Jonckheere-Terpstra 

NB Lemmatised 1.027E-03 0.0000 < 2.2e-16 

NB Synonyms 8.927E-04 0.0000 < 2.2e-16 

NB Hypernyms 2.646E-04 0.0000 < 2.2e-16 

NB Wiki words 3.625E-05 0.0000 < 2.2e-16 

NB clean 6.261E-02 0.0000 < 2.2e-16 

NB Bigrams < 2.2e-16 0.0000 < 2.2e-16 

NB Wiki phrases 1.904E-02 0.0000 < 2.2e-16 

NB Wiki Bigrams 4.718E-03 0.0000 3.846E-09 

NB original 3.165E-02 0.0000 < 2.2e-16 

NB Hyponyms < 2.2e-16 0.0000 < 2.2e-16 

SVM Lemmatised 6.075E-03 0.0000 < 2.2e-16 

SVM Synonyms < 2.2e-16 0.0000 < 2.2e-16 

SVM Hypernyms < 2.2e-16 0.0000 < 2.2e-16 

SVM Wiki words < 2.2e-16 0.0000 < 2.2e-16 

SVM clean 6.918E-06 0.0000 < 2.2e-16 

SVM Bigrams < 2.2e-16 0.0000 < 2.2e-16 

SVM Wiki phrases < 2.2e-16 0.0000 < 2.2e-16 

SVM Wiki Bigrams < 2.2e-16 0.0000 < 2.2e-16 

SVM original < 2.2e-16 0.0000 < 2.2e-16 

SVM Hyponyms < 2.2e-16 0.0000 < 2.2e-16 

LSA Lemmatised 2.537E-12 0.0000 < 2.2e-16 

LSA Synonyms < 2.2e-16 0.0000 < 2.2e-16 

LSA Hypernyms < 2.2e-16 0.0000 < 2.2e-16 

LSA Wiki words < 2.2e-16 0.0000 < 2.2e-16 

LSA clean 2.977E-08 0.0000 < 2.2e-16 

LSA Bigrams < 2.2e-16 0.0000 < 2.2e-16 

LSA Wiki phrases < 2.2e-16 0.0000 < 2.2e-16 

LSA Wiki Bigrams < 2.2e-16 0.0000 < 2.2e-16 

LSA original < 2.2e-16 0.0000 < 2.2e-16 

LSA Hyponyms < 2.2e-16 0.0000 < 2.2e-16 

 

  



48 

 

5.4. Post-Hoc Group Testing 

Analysis of Variance testing constitutes what is known as an ‘omnibus’ test.  Omnibus tests 

can discern that some significant difference exists between at least two of the categories or 

groups under inspection, but it is unable to specify which data points differ from which. 

In order to differentiate between individual data points or, to look at things from a slightly 

different perspective, in order to group indistinguishable points together, post hoc testing is 

required. 

Post-hoc tests are not included in the WRS2 R package used to conduct the earlier ANOVA 

testing, but they are available through the R package ‘Psych’ developed by Revele (Revele, 

2015).  The post-hoc procedures in the Psych package were used to group both message lengths 

and enhancements for all  classifiers at a confidence level of 95%. Results are presented below. 

The post-hoc grouping step assigns items to groups based on their mutual indistinguishability. 

For example, if observation 1 is not significantly different than observation 2 at the selected 

confidence level, then 1 and 2 will be assigned to the same group. However, if a third 

observation, 3, is significantly different from observation 1, but not significantly different from 

observation 2 then a new group will be formed containing observations 2 and 3.  In this example 

observation 2 has membership of both groups, but observations 1 and 3 are each members of 

only a single, non-mutual group respectively. The tests for statistical differences, used in post-

hoc group testing, are adjusted to take account of ‘family-wise error’ accumulation, which 

precludes the use of a repeated t-test, in much the same way as ANOVA avoids the same 

problem. 

Table 5-5    Post-hoc Groupings of Enhancements for Naïve-Bayes Classification 

Enhancement Group a b c d e f g h i 

Bigrams a a         

Clean b  b        

Hypernyms c   c       

Hyponyms d    d      

Lemmatised b  b        

Original e     e     

Synonyms f      f    

WikiBigrams g       g   

WikiPhrases f      f    

WikiWords c   c       



49 

 

 

From the post-hoc groupings given above, it can be seen that, statistically, there is no clear 

difference (at 95% confidence) between the F1 Score performance of the Clean and 

Lemmatized enhancements (Group b).  This is also true of the wordnet Synonyms and the Wiki 

Phrases enhancements (Group f) and of the wordnet Hypernyms and the WikiWords 

enhancements (Group c).  This mirrors what might be understood, informally and graphically, 

from Figure 4-3 in which all three of these pairings show a close correspondence.   

 

  

Table 5-6   Post-hoc Groupings of Text Lengths for Naïve-Bayes Classification 

Length Group a b c d e f g h i 

10 a a         

15 b  b        

20 c   c       

25 c   c       

30 d    d      

35 e     e     

40 ef     e f    

45 fg      f g   

50 bg  b     g   

80 bg  b     g   

110 bg  b     g   

138 bg  b     g   

 

Once again echoing what may be intuitively observed on Figure 4-3, the post-hoc groupings 

for the text lengths indicate that no significant changes occur as text lengths decrease from 138 

characters to 45 or 50 characters but, as the length further decreases, statistically significant 

changes in F1 Score performance become apparent. 
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Table 5-7   Post-hoc Groupings of Enhancements for SVM Classification 

Enhancement Group a b c d e f g h i 

Bigrams a a         

Clean b  b        

Hypernyms c   c       

Hyponyms d    d      

Lemmatised e     e     

Original a a         

Synonyms f      f    

WikiBigrams g       g   

WikiPhrases h        h  

WikiWords i         i 

 

Once again, post-hoc groupings indicate that significant differences exist between most 

enhancement methods but the Bigrams and Original methods (Group a) remain 

indistinguishable.  

  

Table 5-8   Post-hoc Groupings of Text Lengths for SVM Classification 

Length Group a b c d e f g h i 

10 a a         

15 b  b        

20 c   c       

25 d    d      

30 e     e     

35 e     e     

40 e     e     

45 e     e     

50 f      f    

80 f      f    

110 b  b        

138 b  b        

 

Post-hoc grouping indications for SVM text lengths broadly follow the naïve-Bayes groupings, 

showing slight differences in performance at longer text length, but sudden decline in 

performance is delayed until approximately 30-character message length is reached. 
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Table 5-9   Post-hoc Groupings of Enhancements for LSA / SVM Classification 

Enhancement Group a b c d e f g h i 

Bigrams a a         

Clean a a         

Hypernyms b  b        

Hyponyms c   c       

Lemmatised a a         

Original a a         

Synonyms d    d      

WikiBigrams d    d      

WikiPhrases b  b        

WikiWords b  b        

 

Once again, post-hoc testing agrees with what may be visually ascertained from Figure 4-5. 

Although significant differences do appear between sets of enhancements, the differentiation 

is not as marked as with naïve-Bayes or SVM.  This result must be taken in the context of a 

weaker F1 Score performance overall, and it may be thought of as a case of ‘all enhancements 

performing poorly’. 

  

Table 5-10   Post-hoc Groupings of Text Lengths for LSA / SVM Classification 

Length 

Group a b c d e f g h i j k 

10 a a           

15 b  b          

20 c   c         

25 d    d        

30 e     e       

35 f      f      

40 g       g     

45 h        h    

50 b  b          

80 i         i   

110 j          j  

138 k           k 
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Post-hoc text-length grouping for LSA shows a marked differentiation between lengths. What 

is not readily apparent from the post hoc analysis, but which is very obvious on the graphical 

output in Figure 4-5, is that there is a pronounced decline in performance for all enhancements 

as text length increases beyond 20 characters. 

 

5.5. Summary of Analysis and Evaluation 

ANOVA and post-hoc testing of the results broadly confirms what might be expected after a 

visual inspection of the graphical presentation of the results data from Chapter 4. 

Statistically significant results from both 2-way and 1-way robust ANOVA testing presented 

in Table 5-1, Table 5-2, Table 5-3 and Table 5-4 indicate that the performance of classifiers do 

indeed change as text length decreases (at 95% confidence) and provide sufficient evidence to 

reject, for all enhancements and classifiers,  Null Hypothesis 1: The performance of short-text 

classification enhancement methods, as measured by weighted average accuracy (F1 Score), 

will not change as target text length decreases. 

Statistically significant results in the interaction between enhancement method and text length 

in the 2-way robust ANOVA testing presented in Table 5-1, Table 5-2 and Table 5-3 indicate 

that the length related change in classification performance is related to the enhancement 

method in use and provide sufficient evidence to reject, for all enhancements and classifiers, 

Null Hypothesis 2: The changes in performance of different short-text classification 

enhancement methods as target text length decreases, measured by weighted average accuracy 

(F1 Score), will not differ between enhancement methods. 

The research question “Do the changes in performance of different short-text classification 

methods, as measured by weighted average accuracy (F1 Score), differ between text 

enhancement methods and classifiers as target text length decreases?” may now be answered: 

The performance changes in all classifiers differ between all enhancement methods as target 

text length decreases. 

The marked differences in the performance of additive and non-additive enhancements 

discussed in section 4.4, and the decline in performance of additive enhancements with 

increasing text length, may indicate that the additive component of these enhancements was 

not sufficiently specific:  the non-specific additions may have effectively added noise rather 

than adding information.  This conjecture may be supported by the observation that the Wiki 
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Phrases enhancement consistently out-performed the Wiki Words enhancement.  These 

enhancements contain exactly the same texts, but in the case of Wiki Phrases the information 

is in the form of n-grams, treated by the classifiers as single units, whereas Wiki Words presents 

the information in the form of single words – an inherently less specific presentation of the 

same information.  This observation may support the intuition that the addition of ‘too many 

words’ may effectively mask, rather than enhance, any signal: an intuition that motivated the 

work of Sun (2012).  Further, since longer texts will generate more additions, any such effect 

might be expected to be more prevalent at longer text lengths, which matches the experimental 

results in which performance was seen to decline with increasing length. 

Examination of appendices 8.2 and 8.3 might lead an observer to question the exact relevance 

or specificity of some of the enhanced texts: for example, the phrase “sound good” generates 

additive enhancements “Epistemology_of_science” and “Headlands of South Africa” amongst 

others. While it is true that potentially useful supplementations do not necessarily have to 

conform to common sense, and therefore may not appear obvious to a human observer, as 

implied by Pang, Lee and Vaithyanathan (2002), they must, in order to serve a useful purpose 

from a classification point of view, be repeatable and discriminatory.  The risk is that such 

vague conceptual links may be so tenuous as to be unrepeatable for similar original messages, 

or so general as to be universally repeatable and therefore of no discriminatory purpose. 

In order to tentatively test the hypothesis that over-supplementation may be detrimental to 

classification accuracy, a count was made of the number of additional, indivisible, words that 

each enhancement had added to each of the sixty thousand tweets (i.e. each n-gram was counted 

as a single word).  Each of these counts was then divided by the word count of the original 

tweet to give the size of the addition expressed as a multiple of the original tweet size, which 

can be thought of as the ‘additive footprint’ of that enhancement on that text. The mean of this 

additive footprint was calculated for each enhancement and word length combination. The 

resulting, mean, ‘additive footprints’ are tabulated below. 
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Table 5-11  Mean Additive Footprints of Enhancements by Text Lengths 

 Enhancement 

Text 
Length 
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10 1.0 0.8 0.8 53.7 19.9 8.0 24.3 8.7 0.1 1.3 

15 1.0 0.7 0.7 58.5 21.4 7.6 21.0 7.7 0.2 1.2 

20 1.0 0.7 0.7 59.7 21.4 7.2 18.8 7.0 0.2 1.5 

25 1.0 0.7 0.7 56.7 20.1 7.2 17.7 6.5 0.2 1.3 

30 1.0 0.7 0.7 55.4 19.8 6.9 18.2 6.7 0.2 1.2 

35 1.0 0.7 0.7 54.7 19.5 6.9 18.0 6.7 0.3 1.2 

40 1.0 0.6 0.6 54.7 19.5 7.0 18.4 6.8 0.3 1.3 

45 1.0 0.6 0.6 53.9 19.2 7.0 18.3 6.8 0.3 1.2 

50 1.0 0.6 0.6 55.1 19.6 7.0 18.8 6.9 0.3 1.2 

80 1.0 0.6 0.6 55.7 19.8 7.0 19.3 7.0 0.3 1.1 

110 1.0 0.6 0.6 53.8 19.2 6.8 18.6 6.7 0.4 1.1 

138 1.0 0.6 0.6 53.1 19.0 6.7 18.3 6.6 0.4 0.9 

Mean 1 0.7 0.7 55.5 19.9 7.1 19.2 7.0 0.3 1.2 

 

From Table 5-11 it can be seen that the additive footprint for a given enhancement is relatively 

stable across the range of text lengths: however, it should be noted that the footprint is a 

proportion, so, for example, if the Synonyms enhancement adds 70 words to a ten-word text 

on average, a twenty-word text would, on average, have 140 words added.   

The relatively constant size of the footprint across text lengths was confirmed by 2-way 

ANOVA testing, which indicates that within an enhancement there is no significant difference 

in footprint due to changing length.  ANOVA results are presented in Figure 5-4. 

Figure 5-4   ANOVA of Additive Footprints 

Anova Table (Type III tests) 

 

Response: footprint 

                      Sum Sq     Df  F value    Pr(>F)     

(Intercept)             4997      1   19.254 1.145e-05 *** 

enhancement         13014025      9 5571.557 < 2.2e-16 *** 

Length                     0     11    0.000         1     

enhancement:Length    371063     99   14.442 < 2.2e-16 *** 

Residuals          157456049 606690                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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This allows the mean footprint to be used representatively of the entire enhancement over the 

range of text lengths. The mean additive footprints can now be assigned a rank, from 1, having 

the least additive impact, to 10, having the most additive impact.  

Table 5-12   Ranked Results for Additive Footprints 

 Enhancement 
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Footprint 1 0.7 0.7 55.5 19.9 7.1 19.2 7.0 0.3 1.2 

Rank 4 2.5 2.5 10 9 7 8 6 1 5 

 

Table 4-9, reproduced below, can also be transformed into a ranked result shown as Table 5-14 

Table 5-13    Reproduction of Table 4-9   Areas under the Performance Curve for 

Enhancements and Classifiers 

 Enhancement 
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NB 11.000 10.632 9.421 9.176 10.610 10.859 9.695 10.271 9.761 9.411 

SVM 10.696 10.645 9.690 9.266 10.611 10.836 9.967 9.920 9.274 8.636 

LSA 9.047 9.017 8.828 8.479 9.024 9.038 9.048 8.914 8.845 8.764 

 

Table 5-14   Ranked Scores for F1 Score Areas under the Performance Curve 

Classifier 
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NB 1 3 8 10 4 2 7 5 6 9 

SVM 2 3 7 9 4 1 5 6 8 10 

LSA 2 5 8 10 4 3 1 6 7 9 
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Combining Table 5-12 and Table 5-14, and then correlation-testing the F1 Score accuracy 

ranks against the additive footprint ranks using Spearman’s rank-order co-efficient and 

calculating the associated z-score (Zar, 1972) gives Table 5-15 

Table 5-15  Correlation of F1 Score Ranks and Additive Footprint Ranks 

Ranks Enhancement   
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NB 1 3 8 10 4 2 7 5 6 9 0.851 2.55 

SVM 2 3 7 9 4 1 5 6 8 10 0.875 2.63 

LSA 2 5 8 10 4 3 1 6 7 9 0.632 1.90 

Additive 
Footprint 1 2.5 6 8 2.5 4 7 5 9 10   

 

The values of Spearman’s test indicate a strong correlation between increasing additive 

footprint and decreasing accuracy as measured by F1 score for the naïve-Bayes and SVM 

classifiers, and a moderate correlation for the LSA classifier.  In all three cases, the one-tailed 

z-score indicates a significant correlation between increasing additive footprint and decreasing 

accuracy at the 95% confidence level. 

This empirical result would suggest that enhancements which over-supplement the original text 

are likely to be counter-productive in terms of accurate classification, and that the greater the 

degree of over-supplementation the greater the negative impact on classification accuracy. 
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6. CONCLUSION  

Chapter 6 will conclude the main body of this work, through the evaluation of the design, 

results and conclusions presented in earlier chapters, and will discuss gaps and opportunities 

for refinements and further work. 

 

6.1. Research Overview 

This research characterised the performance of the classification of short texts, using selected 

text enhancement methods and three separate classifiers, as a function of the short text length. 

The average performance of three well-known classification methods, naïve-Bayes, Support 

Vector Machine and Latent Semantic Analysis (followed by Support Vector Machine) was 

measured for a binary classification task on short texts (tweets) of twelve different lengths, 

having 10 different enhancements applied to the texts before classification. The results of these 

tests were statistically analysed to ascertain whether performance differed between applied 

enhancement methods, whether performance differed as text-length decreased and whether 

there was any interaction between the length and enhancements with respect to classification 

performance. Some qualitative comparisons of text enhancement methods were also 

undertaken. 

 

6.2. Problem Definition 

The research problem was defined by the question: 

“Do the changes in performance of different short-text classification methods, as measured by 

weighted average accuracy (F1 Score), differ between text enhancement methods and 

classifiers as target text length decreases?”. 

And by the two sub-questions: 

“Does classification performance for any of the included text enhancement methods change as 

texts decrease in length?” 

and 
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“If classification performance varies, as texts decrease in length, for two or more of the 

included text enhancement methods, do those performance variations differ between 

enhancement methods?” 

6.2.1 Hypotheses 

The primary purpose of the research was to establish the validity of the following hypotheses:  

Hypothesis 1: 

The performance of short-text classification enhancement methods, as measured by weighted 

average accuracy (F1 Score), will not change as target text length decreases. 

Hypothesis 2: 

The changes in performance of different short-text classification enhancement methods as 

target text length decreases, measured by weighted average accuracy (F1 Score), will not differ 

between enhancement methods. 

Of secondary interest were qualitative comparisons of the relative performance impact of the 

tested text enhancement techniques. 

 

6.3. Design 

From a data-centric point of view, the experimental design was strong due, in large part, to the 

very large size of the Sentiment140 corpus which facilitated the creation of large subsets of 

tweets (5000 tweets per set) of very specific lengths, having an exact balance of sentiment 

(exactly 50% positive and 50% negative). These large, balanced sets provide a firm statistical 

foundation on which the rest of the work was based. 

In hindsight, the inclusion of three separate classifiers added complexity to the project both in 

terms of coding and execution, and in terms of communicating the salient results. On balance, 

this was a necessary evil: one important meta-result produced is that the behaviour of two of 

the three classifiers was similar. The performance character of the LSA classifier was 

surprisingly poor, but that may be accounted for by the observation that the LSA method is 

significantly more complex than the others and has more options available to allow fine-tuning.  

Such fine tuning was beyond the scope of this work: but nevertheless, despite a noticeable 

difference in performance, some features of the LSA classifications held broadly similar trends 

to those observed for SVM and naïve-Bayes methods. This knowledge should allow future 
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work to proceed using only one of the three classifiers; naïve-Bayes is likely the best candidate 

for a single classifier design as it easily implemented and analysed, and shows relatively strong 

performance in terms of both accuracy and variance. 

Indirectly, the inclusion of three classifiers also impacted the completeness of the work.  The 

extra work required by the inclusion of the three classifiers precluded any attempt to conduct 

an in-depth analysis of classifier performance for any of the three – for this reason the issue of 

the poor performance, against expectations, of the LSA classifier was not touched upon. 

In the domain of Twitter, it is conventional to think of message length as measured by character 

count. This makes perfect sense from a telecommunications perspective but, from the 

perspective of this project the experimental work may have been improved if a decision had 

been taken to measure text length in terms of word counts.  The advantages to a word count 

approach are three-fold.  Firstly, all the classifiers in this project, and most classifiers in the 

wider field of natural language processing, operate at ‘word-granularity’ or higher; that is, the 

smallest basic unit for manipulation or analysis is a word rather than a character.  Therefore, 

character length is actually functioning as an imprecise proxy for word count when comparing 

classifiers, and that imprecision introduces an unnecessary degree of uncertainty into the 

results.  Secondly, from the perspective of interpretability of results, people tend to naturally 

think about message lengths in terms of words – for human generated messages, it is more 

natural, and informative, to speak, for example, of a four-word message rather than a twenty-

five character message.  Thirdly, the classification of natural language is very often linked with 

the activity of concept extraction, sometimes implicitly, as in the case of LSA, and sometimes 

explicitly, for example in the work of Gabrilovich and Markovitch (2006) and Wang, Wang, 

Li, and Wen (2014).  Although the exact correspondence between words and concepts is a 

complex and long debated issue in the fields of cognitive science and philosophy, discussed 

for example in Malt, Ameel, Gennari, Imai, Saji, and Majid (2011), it is safe to say that, at least 

sometimes, words relate to concepts whereas standalone characters never do, and so, word 

count may be a more relevant measure than character count for natural language classification. 

 

6.4. Evaluation & Results 

Formal ANOVA testing, at a 95% confidence level, of each of the enhancement methods for 

each of the classifiers, followed by Jonckheere-Terpstra trend testing, indicated that text length 

played a statistically significant role in classification performance for all enhancement-
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classifier combinations.  This result provides enough evidence to reject Hypothesis 1 and 

accept the alternative hypothesis: 

The performance of short-text classification methods, as measured by weighted average 

accuracy (F1 Score), change as target text length decreases. 

2-way ANOVA testing of text length and enhancement method indicated that there was a 

significant statistical interaction between text length and enhancement method influencing 

classifier performance. This result provides enough evidence to reject Hypothesis 2 and accept 

the alternative hypothesis: 

Changes in performance of short-text classification methods, as target text length decreases, 

differ between text enhancement methods. 

Less formal findings indicate that non-additive enhancement methods out-performed the more 

sophisticated ‘concept mining’ methods based on Wordnet and Wikipedia, and that the naïve-

Bayes classifier out-performed the others, narrowly beating SVM, both in terms of the F1 

accuracy score and in terms of the variance of its results. 

The performance of the additive enhancements was somewhat disappointing, and may, as 

suggested in section 5.5, have been due to a lack of specificity and relevance in the added words 

and phrases.  

 

6.5. Contributions  

The primary contribution of this work is to have provided direct quantitative experimental 

evidence that classification accuracy declines with text length for non-additive text 

enhancements, and that the exact quantitative nature of that decline is dependent upon the 

enhancement or pre-treatment applied to the text and to the classifier in use. 

While quantitative statistical differences do exist between enhancements, the qualitative 

changes in accuracy can be seen to start as text length decreases towards 50 characters for all 

non-additive enhancements, and become very pronounced below 20 characters for all variants 

of a message.  This suggests that in the cases of naïve-Bayes and SVM classifiers, text might 

be usefully, if subjectively, considered ‘short’ at lengths below 80 characters and ‘very short’ 

at lengths of less than 20 characters. 
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It has been demonstrated that the naïve-Bayes classifier, along with simple non-additive text 

enhancements, such as bigram inclusion, provides a strong baseline against which to measure 

the performance of other, more sophisticated, classification mechanisms. 

Some evidence, which may form the starting point for future work, has been provided to 

suggest that additive enhancement methods, without careful control, may overwhelm any 

actual signal present in the text though the addition of noise associated with poorly matched 

textual supplementation. This is circumstantially borne out by the warnings in Gabrilovich and 

Markovitch (2006) and their direct reference to an unspecified ‘ablation’ process to reduce 

noise, and by the ‘pruning’ quote form Sriram, Fuhry, Demir, Ferhatosmanoglu and Demirbas 

(2010) presented in section 2.2, earlier in this document. 

This work has introduced the concept of ‘additive footprint’ to label the proportional increase 

in word count imposed upon a text by a given enhancement, and demonstrated that the additive 

footprint remains relatively constant for a given enhancement over a range of text lengths. 

 

6.6. Future Work & Recommendations 

This work gives rise to several avenues of possible continuation: some specific to this project 

and some of a more general nature. 

In general, it would be useful to explore the exact nature of the text-length response of the 

additive enhancement methods.  Using the data sets from this work, a baseline count of the 

mean number of words added by each enhancement for each text-length could be established.  

This number could be used to create ‘control sets’ of texts that had been enhanced with the 

appropriate number of a) random strings b) random dictionary words.  These sets could then 

be used as a baseline to measure performance of the additive enhancements and to determine 

by exactly what margin the additive methods are better than random message extension. 

Another possible avenue for additive enhancement methods is experimentation with part-of-

speech filtering, either at generation time (e.g. send only adjectives to wordnet for 

supplementation) or at application time (e.g. accept only adjectives as supplemental words) or 

both together (e.g. supplement adjectives only with adjectives, supplement nouns only with 

nouns and so on.)  Such a filtering mechanism could be potentially used to attempt to limit the 

addition of non-relevant words to the original text, complementing the work of Mertiya and 

Singh (2016) or Kamps and Marx (2002). 
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Use of a term-frequency/inverse-document-frequency step during the learning phase of a model 

could be used to generate a dictionary of words, from training data, which may be high potential 

candidate words for supplementation with Wikipedia or Wordnet: supplementing only on high 

potential words may reduce unwanted noise. 

Future work specific to this work might usefully investigate the ‘bump’ in accuracy seen for 

many enhancement-classifier combinations at message lengths of 20 to 25 characters.  Some 

preliminary investigation was carried out to rule out any peculiarity or data artefact that may 

cause this small increase in accuracy, but replacement of the original data sets had no effect.  

Remaining possibilities are that some internal feature of the classification algorithms, common 

to all algorithms, may be responsible or that there may be human-caused effect.  A carefully 

designed experiment, which measures the classification accuracy for originally longer 

messages which have had some words excised before classification, would allow a comparison 

between, for example, texts that were originally 20 characters long, (and retain all of the 

original author-created context and structure), and texts which are 20 characters long after 

having had some fraction of their words artificially and randomly removed, (which would have 

a substantially impaired version of the original  author-created context and structure).  This 

comparison would highlight the effect of author-created context and structure, and if carried 

out over different text lengths, such an experiment may be able to determine whether author-

created context and structure varies with text length: for example, it may (or may not) indicate 

that texts in the 20 to 25-character range have a higher degree of author-created context and 

structure, which might, tentatively, be attributed to an author’s avoidance of ambiguity when 

composing shorter messages. 

The prospect of further work on bigrams, and their extension into n-grams, has initial appeal 

as the bigram enhancement was the strongest of all enhancements tested.  However, n-grams 

are, by their very nature, of limited utility as the text length decreases and the size of the n-

gram increases because, for a message of word length X, there are only (X-n) +1 n-grams 

available. 

The implementation of an ensemble of enhancements, rather than classifiers, either boosted or 

bagged, may prove to be an interesting implementation with which to experiment. 

The final, and perhaps most interesting, unanswered question to be suggested for future work 

relates to the surprisingly poor performance of the LSA classifier.  This classifier was the only 

one that received any tuning during the current project and, in theory, it should deal well with 
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any noise introduced through over-supplementation by additive enhancements. An in-depth 

investigation into the mechanisms underlying this poor performance would be enlightening. 

Pragmatically, the possibility of real-world application of any of the additive enhancements, as 

configured in this project, must be viewed sceptically.  Considerable time and effort is required 

to assemble the enhanced data sets, and processing time for classification is significantly longer 

than for the non-additive enhancements.  Given that there was actually an overall decrease in 

performance for the additive enhancements, they cannot be recommended.   

It must be restated however, that no effort was made in this work to tune either classifiers or 

enhancements, and the possibility most certainly exists that refinements or tuning could result 

in improved performance. If refinements of the additive enhancements could be found that 

would guarantee an increase in classifier performance, even at only some text lengths, then a 

situation-specific decision could be taken as to whether, in any particular circumstances, the 

trade-off between additional preparation and classification time was advantageous in light of 

any potential performance increases.  
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8. APPENDICES 

8.1. Glossary 

analysis of variance: a collection of statistical methods used to analyse differences between 

group means. 

ANOVA: see 'analysis of variance'. 

bag-of-words: the treatment of a text segment as a set of words - ignores word order, semantics 

and grammar, but retains multiplicity. 

bigram: set of two consecutive words from within a text (see also 'n-gram'). 

DBpedia: a structured database of Wikipedia data and metadata (see also 'Wikipedia'). 

dimensionality reduction: the mathematical operation of reducing the number of dimensions 

of a vector space by combining dimensions along which present data is highly correlated. 

emoticon: a short combination of ascii characters chosen to represent a human face.  Often 

used in short texts to convey emotion. 

F1 score: the weighted average of precision and recall (see also 'precision' & 'recall'). 

hypernym: a word whose meaning covers the meanings of more specific words (see also ' 

hyponym'). 

hyponym: a word whose meaning is covered by the meaning of a less specific word (see also 

' hypernym'). 

latent semantic analysis: a natural language processing technique based on term frequency 

coupled with a dimension reduction step. 

latent semantic indexing: see 'latent semantic analysis'. 

lemmatization: the conversion of words to their lemma or 'dictionary form'. 

LSA: see 'latent semantic analysis'. 

LSI:  Latent Semantic Indexing - see 'latent semantic analysis'. 

metadata: data that describes other data, eg classification hierarchies. 

naïve-Bayes: a supervised learning method, often used for classification tasks, based on Bayes 

law and the naïve assumption of independence among predictors. 
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NB: see 'naïve-Bayes'. 

n-gram: set of n consecutive words within a text where n is an integer number (see also 

'bigram'). 

NLTK: Natural Language Toolkit - a python library providing functionality for the analysis of 

natural language. 

omnibus test: test which can discern that some significant statistical difference exists between 

at least two of three or more groups under inspection, but it is unable to specify which groups 

differ from which. 

precision: the ratio of correctly predicted positive outcomes to the total predicted positive 

outcomes. 

python: a general purpose, high level, computer programming language often used in scientific 

applications. 

R: an open source programming language and software environment for statistical computing. 

recall: the ratio of correctly predicted positive outcomes to the actual number of postive 

outcomes. 

supervised learning: machine learning methods which require the provision of a set of correct 

examples (training data) on which the model can be trained prior to testing and eventual 

production use. 

support vector machine: a supervised learning method often used for classification tasks. 

SVM: see 'support vector machine'. 

synonym: words having the same meaning as another. 

taxonomic: relating to taxonomies or naming schemes. 

test data: data provided to a classifier without the associated correct classification information. 

Used to 'test' supervised learning models. 

training data: data and the associated correct classification data provided to a classifier. Used 

to 'train' supervised learning models. 

tweet: short message of no more than 140 characters used on the 'Twitter' network messaging 

application. (see also 'Twitter'). 
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Twitter: social networking and messaging application for the broadcast of short messages 

known as tweets. 

Wikipedia: online encyclopaedia which includes a taxonomy for the classification of included 

articles. 

Wordnet: a large semantically oriented lexical database of English. 
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8.2. DBpedia – Returned XML for the word “sound” 

Results of the query: 

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=%22sound%22 

in XML format. 

<ArrayOfResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://lookup

.dbpedia.org/"> 

<Result> 

<Label>Soundtrack</Label> 

<URI>http://dbpedia.org/resource/Soundtrack</URI> 

<Description> 

A soundtrack can be recorded music accompanying and synchronized to the 

images of a motion picture, book, television program or video game; a 

commercially released soundtrack album of music as featured in the 

soundtrack of a film or TV show; or the physical area of a film that 

contains the synchronized recorded sound. 

</Description> 

<Classes/> 

<Categories> 

<Category> 

<Label>Film and video terminology</Label> 

<URI> 

http://dbpedia.org/resource/Category:Film_and_video_terminology 

</URI> 

</Category> 

<Category> 

<Label>Soundtracks</Label> 

<URI>http://dbpedia.org/resource/Category:Soundtracks</URI> 

</Category> 

</Categories> 

<Templates/> 

<Redirects/> 

<Refcount>3081</Refcount> 

</Result> 

<Result> 

<Label>Synthesizer</Label> 

<URI>http://dbpedia.org/resource/Synthesizer</URI> 

<Description> 

A sound synthesizer (often abbreviated as "synthesizer" or "synth") is an 

electronic instrument capable of producing a wide range of sounds. 

Synthesizers may either imitate other instruments or generate new timbres. 

They can be played (controlled) via a variety of different input devices 

(including keyboards, music sequencers and instrument controllers). 

Synthesizers generate electric signals (waveforms), and can finally be 

converted to sound through the loudspeakers or headphones. 

</Description> 

<Classes/> 

<Categories> 

<Category> 

<Label>Bass (sound)</Label> 

<URI>http://dbpedia.org/resource/Category:Bass_(sound)</URI> 

</Category> 

<Category> 

<Label>Keyboard instruments</Label> 

<URI> 

http://dbpedia.org/resource/Category:Keyboard_instruments 

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=%22sound%22
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</URI> 

</Category> 

<Category> 

<Label>Electronic musical instruments</Label> 

<URI> 

http://dbpedia.org/resource/Category:Electronic_musical_instruments 

</URI> 

</Category> 

<Category> 

<Label>New Wave music</Label> 

<URI> 

http://dbpedia.org/resource/Category:New_Wave_music 

</URI> 

</Category> 

<Category> 

<Label>Hip hop</Label> 

<URI>http://dbpedia.org/resource/Category:Hip_hop</URI> 

</Category> 

<Category> 

<Label>Contrabass instruments</Label> 

<URI> 

http://dbpedia.org/resource/Category:Contrabass_instruments 

</URI> 

</Category> 

<Category> 

<Label>Synthesizers</Label> 

<URI>http://dbpedia.org/resource/Category:Synthesizers</URI> 

</Category> 

</Categories> 

<Templates/> 

<Redirects/> 

<Refcount>2819</Refcount> 

</Result> 

<Result> 

<Label>Motown</Label> 

<URI>http://dbpedia.org/resource/Motown</URI> 

<Description> 

Motown is a record company originally founded by Berry Gordy, Jr. and 

incorporated as Motown Record Corporation in Detroit, Michigan, United 

States, on April 14, 1960. The name, a portmanteau of motor and town, is 

also a nickname for Detroit. Now headquartered in New York City, Motown is 

a subsidiary of The Island Def Jam Music Group, itself a subsidiary of the 

French-owned Vivendi subsidiary, Universal Music Group. 

</Description> 

<Classes> 

<Class> 

<Label>organisation</Label> 

<URI>http://dbpedia.org/ontology/Organisation</URI> 

</Class> 

<Class> 

<Label>organization</Label> 

<URI>http://schema.org/Organization</URI> 

</Class> 

<Class> 

<Label>record label</Label> 

<URI>http://dbpedia.org/ontology/RecordLabel</URI> 

</Class> 

<Class> 

<Label>agent</Label> 

<URI>http://dbpedia.org/ontology/Agent</URI> 

</Class> 
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<Class> 

<Label>owl#Thing</Label> 

<URI>http://www.w3.org/2002/07/owl#Thing</URI> 

</Class> 

<Class> 

<Label>company</Label> 

<URI>http://dbpedia.org/ontology/Company</URI> 

</Class> 

</Classes> 

<Categories> 

<Category> 

<Label>African-American history</Label> 

<URI> 

http://dbpedia.org/resource/Category:African-American_history 

</URI> 

</Category> 

<Category> 

<Label>Soul music record labels</Label> 

<URI> 

http://dbpedia.org/resource/Category:Soul_music_record_labels 

</URI> 

</Category> 

<Category> 

<Label>African-American culture</Label> 

<URI> 

http://dbpedia.org/resource/Category:African-American_culture 

</URI> 

</Category> 

<Category> 

<Label>Motown</Label> 

<URI>http://dbpedia.org/resource/Category:Motown</URI> 

</Category> 

<Category> 

<Label>Vivendi subsidiaries</Label> 

<URI> 

http://dbpedia.org/resource/Category:Vivendi_subsidiaries 

</URI> 

</Category> 

<Category> 

<Label>Record labels established in 1959</Label> 

<URI> 

http://dbpedia.org/resource/Category:Record_labels_established_in_1959 

</URI> 

</Category> 

<Category> 

<Label>Labels distributed by Universal Music Group</Label> 

<URI> 

http://dbpedia.org/resource/Category:Labels_distributed_by_Universal_Music_

Group 

</URI> 

</Category> 

<Category> 

<Label>Pop record labels</Label> 

<URI> 

http://dbpedia.org/resource/Category:Pop_record_labels 

</URI> 

</Category> 

<Category> 

<Label>Music of Detroit, Michigan</Label> 

<URI> 

http://dbpedia.org/resource/Category:Music_of_Detroit,_Michigan 
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</URI> 

</Category> 

<Category> 

<Label>American record labels</Label> 

<URI> 

http://dbpedia.org/resource/Category:American_record_labels 

</URI> 

</Category> 

<Category> 

<Label>History of Detroit, Michigan</Label> 

<URI> 

http://dbpedia.org/resource/Category:History_of_Detroit,_Michigan 

</URI> 

</Category> 

<Category> 

<Label>Rhythm and blues record labels</Label> 

<URI> 

http://dbpedia.org/resource/Category:Rhythm_and_blues_record_labels 

</URI> 

</Category> 

<Category> 

<Label>Record labels established in 2011</Label> 

<URI> 

http://dbpedia.org/resource/Category:Record_labels_established_in_2011 

</URI> 

</Category> 

<Category> 

<Label>Companies based in New York City</Label> 

<URI> 

http://dbpedia.org/resource/Category:Companies_based_in_New_York_City 

</URI> 

</Category> 

</Categories> 

<Templates/> 

<Redirects/> 

<Refcount>2584</Refcount> 

</Result> 

<Result> 

<Label>Sound recording and reproduction</Label> 

<URI> 

http://dbpedia.org/resource/Sound_recording_and_reproduction 

</URI> 

<Description> 

Sound recording and reproduction is an electrical or mechanical inscription 

and re-creation of sound waves, such as spoken voice, singing, instrumental 

music, or sound effects. The two main classes of sound recording technology 

are analog recording and digital recording. 

</Description> 

<Classes/> 

<Categories> 

<Category> 

<Label>Audio engineering</Label> 

<URI> 

http://dbpedia.org/resource/Category:Audio_engineering 

</URI> 

</Category> 

<Category> 

<Label>Media technology</Label> 

<URI> 

http://dbpedia.org/resource/Category:Media_technology 

</URI> 
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</Category> 

<Category> 

<Label>Sound production technology</Label> 

<URI> 

http://dbpedia.org/resource/Category:Sound_production_technology 

</URI> 

</Category> 

<Category> 

<Label>Sound recording</Label> 

<URI> 

http://dbpedia.org/resource/Category:Sound_recording 

</URI> 

</Category> 

</Categories> 

<Templates/> 

<Redirects/> 

<Refcount>2435</Refcount> 

</Result> 

<Result> 

<Label>Sampling (music)</Label> 

<URI>http://dbpedia.org/resource/Sampling_(music)</URI> 

<Description> 

In music, sampling is the act of taking a portion, or sample, of one sound 

recording and reusing it as an instrument or a sound recording in a 

different song or piece. Sampling was originally developed by experimental 

musicians working with musique concrète and electroacoustic music, who 

physically manipulated tape loops or vinyl records on a phonograph. 

</Description> 

<Classes/> 

<Categories> 

<Category> 

<Label>DJing</Label> 

<URI>http://dbpedia.org/resource/Category:DJing</URI> 

</Category> 

<Category> 

<Label>Sampling</Label> 

<URI>http://dbpedia.org/resource/Category:Sampling</URI> 

</Category> 

<Category> 

<Label>Plagiarism controversies</Label> 

<URI> 

http://dbpedia.org/resource/Category:Plagiarism_controversies 

</URI> 

</Category> 

</Categories> 

<Templates/> 

<Redirects/> 

<Refcount>2028</Refcount> 

</Result> 

</ArrayOfResult> 
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8.3. Example enhancements of a single tweet 

The example, below, illustrates the enhancements applied to a single tweet.  The actual text 

passed to the classifier in each case is shown in italic typeface. 

 

8.3.1 Original  

The original text of the tweet as extracted from the Sentiment140 dataset. 

@projectkpaz sounds good  

8.3.2 Cleaned  

The original text having punctuation and stop words removed, and twitter specific strings (e.g. 

hashtags, urls) replaced with standard tokens. 

$mention$ sounds good 

8.3.3 Lemmatised  

The cleaned set (above) lemmatised using the NLTK python library. 

$mention$ sound good 

8.3.4 Bigrams 

Enhanced by appending all bigrams from the lemmatised tweet back to the lemmatized tweet.  

$mention$ sound good sound_good 

8.3.5 Synonyms 

Enhanced by appending all available wordnet synonyms for each word in the lemmatised tweet 

to the lemmatized tweet.  

$mention$ sound good heavy beneficial estimable secure just unspoilt dear strait near 

respectable speech_sound full right goodness go ripe wakeless salutary auditory_sensation 

level-headed expert skillful in_force vocalize fathom legal dependable soundly honorable 

intelligent levelheaded good undecomposed proficient well-grounded safe vocalise phone 

unspoiled upright trade_good sound in_effect audio practiced effective commodity 

reasoned healthy adept profound well honest effectual skilful thoroughly serious voice 

8.3.6 Hypernyms  

Enhanced by appending all available wordnet hypernyms for each word in the lemmatised 

tweet back to the lemmatized tweet. 
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$mention$ sound good artefact occurrence pronounce sensation articulate denote 

body_of_water language_unit linguistic_unit measure seem quality enounce 

sense_impression appear natural_event sound_out sense_experience 

mechanical_phenomenon announce morality channel auditory_communication advantage 

vantage enunciate artifact water esthesis look occurrent cause_to_be_perceived happening 

sound_property quantify aesthesis sense_datum say 

8.3.7 Hyponyms 

Enhanced by appending all available wordnet hyponyms for each word in the lemmatised tweet 

back to the lemmatized tweet.  

$mention$ sound good susurrus boom_out footstep blare zing clop honk clumping glug 

splosh blow trampling fungible kindness drumbeat glide tweet tinkle better benignity thump 

snap whack bombilation clank crash patter song beat burble rataplan muttering bang clang 

clopping whistle chirrup snarl consumer_goods strum reverberate tick dissonate 

desirableness merchandise worldly_good knock din bombilate rustle whish sonant 

shopping plunk ripple cry pealing chorus rub-a-dub commonweal importation throbbing 

whirr bong knell unison gargle fancy_goods worldly_possession vowel sigh twitter welfare 

product euphony whiz chime racket whir click popping clangor basic desirability birr 

benefit resonate pure_tone entrant ticking toll import speak chirk squelch noise worthiness 

wiseness twang bleep grumble summum_bonum step murmur sing exportation chink quack 

graciousness drum bombinate rumble salvage orinasal voiced_sound bombination 

vowel_sound narrow clump ticktock ding splash claxon tone thumping bell beneficence 

orinasal_phone knocking pop echo ultrasound gong thrum drygoods skirl ring paradiddle 

staple gurgle trump middling ting dissonance vibrato sporting_goods prepare tootle dub 

quaver clunking vibrate beep zizz music swoosh tintinnabulation bubble chug pitter-patter 

hum crack mutter wisdom toot tapping virtue jingle consonant ware chatter whirring pierce 

ticktack phoneme tink virtuousness moral_excellence future semivowel export voice 

benignancy vroom murmuring cackel tap ringing rattle resound dripping guggle thunk rap 

slosh common_good drum_roll pink purr thud pat waver optimum ping clunk babble 

trample murmuration boom racketiness soundness clink roll noisiness footfall play 

susurration slush buzz whistling whizz chirp peal make_noise clippety-clop rolling lap 

splat jangle swish clangour saintliness clip-clop twirp drip soft_goods drone click-clack 

swosh mussitation 
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8.3.8 Wiki Words 

Enhanced by appending all available words in all the ‘labels’ contained in the top five 

Wikipedia hits for each word in the lemmatised text back to the lemmatised text.  

$mention$ sound good Soundtrack Film and video terminology Soundtracks Synthesizer 

Bass (sound) Keyboard instruments Electronic musical instruments New Wave music Hip 

hop Contrabass instruments Synthesizers Motown organisation organization record label 

agent owl#Thing company African-American history Soul music record labels African-

American culture Motown Vivendi subsidiaries Record labels established in 1959 Labels 

distributed by Universal Music Group Pop record labels Music of Detroit, Michigan 

American record labels History of Detroit, Michigan Rhythm and blues record labels 

Record labels established in 2011 Companies based in New York City Sound recording and 

reproduction Audio engineering Media technology Sound production technology Sound 

recording Sampling (music) DJing Sampling Plagiarism controversies Health Health 

Health promotion Personal life Good Morning America creative work owl#Thing work 

television show 1970s American television series Daytime Emmy Award for Outstanding 

Talk Show winners American news television series ABC News 1990s American television 

series Live television programs Radio programs on XM Radio 2010s American television 

series American Broadcasting Company network shows 1975 television series debuts 

English-language television series 2000s American television series 1980s American 

television series The Sydney Morning Herald written work newspaper creative work work 

periodical literature owl#Thing Newspapers published in Sydney Publications established 

in 1831 1831 establishments in Australia Cape of Good Hope Maritime history of South 

Africa Headlands of South Africa Headlands of the Western Cape Geography of Cape 

Town Face (professional wrestling) Professional wrestling slang 

 

8.3.9 Wiki Phrases 

Enhanced by appending all available ‘labels’, each treated as an indivisible string (n-gram), 

from the top five Wikipedia hits for each word in the lemmatised text, back to the lemmatised 

text.  

$mention$ sound good Soundtrack Film_and_video_terminology Soundtracks Synthesizer 

Bass_(sound) Keyboard_instruments Electronic_musical_instruments New_Wave_music 

Hip_hop Contrabass_instruments Synthesizers Motown organisation organization 
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record_label agent owl#Thing company African-American_history 

Soul_music_record_labels African-American_culture Motown Vivendi_subsidiaries 

Record_labels_established_in_1959 Labels_distributed_by_Universal_Music_Group 

Pop_record_labels Music_of_Detroit,_Michigan American_record_labels 

History_of_Detroit,_Michigan Rhythm_and_blues_record_labels 

Record_labels_established_in_2011 Companies_based_in_New_York_City 

Sound_recording_and_reproduction Audio_engineering Media_technology 

Sound_production_technology Sound_recording Sampling_(music) DJing Sampling 

Plagiarism_controversies Health Health Health_promotion Personal_life 

Good_Morning_America creative_work owl#Thing work television_show 

1970s_American_television_series 

Daytime_Emmy_Award_for_Outstanding_Talk_Show_winners 

American_news_television_series ABC_News 1990s_American_television_series 

Live_television_programs Radio_programs_on_XM_Radio 

2010s_American_television_series American_Broadcasting_Company_network_shows 

1975_television_series_debuts English-language_television_series 

2000s_American_television_series 1980s_American_television_series 

The_Sydney_Morning_Herald written_work newspaper creative_work work 

periodical_literature owl#Thing Newspapers_published_in_Sydney 

Publications_established_in_1831 1831_establishments_in_Australia 

Cape_of_Good_Hope Maritime_history_of_South_Africa Headlands_of_South_Africa 

Headlands_of_the_Western_Cape Geography_of_Cape_Town 

Face_(professional_wrestling) Professional_wrestling_slang 

 

8.3.10 Wiki Bigrams  

Enhanced by appending all available ‘labels’, each treated as an indivisible string (n-gram), 

from the top five Wikipedia hits for each bigram in the lemmatised text back to the lemmatised 

text. 

$mention$ sound good Verisimilitude Philosophical_problems Epistemology_of_science 

Realism Veracity 
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