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Remarks on quadratic bundles related to Hermitian

symmetric spaces

Tihomir Valchev

School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
72 Tsarigradsko chaussèe, 1784 Sofia, Bulgaria

E-mail: Tihomir.Valchev@dit.ie

Abstract. We consider quadratic bundles related to Hermitian symmetric spaces of the type
SU(m+n)/S(U(m)×U(n)). We discuss the spectral properties of scattering operator, develop
the direct scattering problem associated with it and stress on the effect of reduction on these.
By applying a modification of Zakharov-Shabat’s dressing procedure we demonstrate how one
can obtain reflectionless potentials. That way one is able to generate soliton solutions to the
nonlinear evolution equations belonging to the integrable hierarchy associated with quadratic
bundles under study.

1. Introduction
Derivative nonlinear Schrödinger equation (DNLS)

iqt + qxx + i(|q|2q)x = 0 (1)

is one of classical S-integrable nonlinear evolution equations (NLEE). It occurs in plasma physics
to describe the propagation of nonlinear Alfvén waves with circular polarization [18, 19].

The zero curvature representation [L,A] = 0 of DNLS was discovered by Kaup and Newell
[12] who picked up L and A in the form:

L(λ) = i∂x + λQ(x, t)− λ2σ3, (2)

A(λ) = i∂t +
3∑

k=1

Ak(x, t)λ
k − 2λ4σ3, (3)

where λ ∈ C is a spectral parameter and

Q(x, t) =

(
0 q(x, t)

q∗(x, t) 0

)
, σ3 =

(
1 0
0 −1

)
.

DNLS is deeply connected to 2-dimensional Thirring model [13, 15] and the Gerdjikov-Ivanov
equation [5, 6], both related to certain reductions of quadratic bundle L operator of generic
form:

L(λ) = i∂x + U0(x, t) + λU1(x, t)− λ2σ3 (4)



for U1(x, t) being an off-diagonal 2×2 matrix and U0(x, t) being a traceless 2×2 matrix otherwise
arbitrary.

Derivation and study of multicomponent generalizations of classical scalar integrable
equations is a trend of current interest [7, 8, 11] in theory of integrable systems. It was pioneered
by Manakov [14] who studied 2-component counterpart of nonlinear Schrödinger equation to
later become known as Manakov system. A. Fordy et al. developed that idea and established
a geometric relation between linear and quadratic bundles and Hermitian symmetric spaces
[1, 2, 3]. In [2] multicomponent versions of DNLS like the following one:

iqt + qxx +
2mi

n+m

(
qq†q

)
x
= 0 (5)

for q being a smooth n ×m matrix-valued function, were derived. Equation (5) is related to
symmetric space of the type SU(m + n)/S(U(m) × U(n)) which is to say the operator L has
the same form as (2) but now Q is a block (m+ n)× (m+ n) matrix of the form

Q(x, t) =

(
0 qT (x, t)

q∗(x, t) 0

)
and σ3 is replaced by matrix J = diag ( n

m11m,−11n) where 11m is the m ×m unit matrix. Like
the scalar DNLS (5) is a Hamiltonian system [2, 20] with Hamiltonian given by

H =

∫ ∞

−∞
dx tr

(
iq†qx −

m

n+m
(q†q)2

)
,

provided the Poisson bracket is defined as

{F,G} =

∫ ∞

−∞
d y tr

(
δF

δQ
∂y
δG

δQ

)
for F and G being functionals of the potential Q.

All afore-mentioned facts make a deeper study of quadratic bundles associated with symmetric
spaces very important. Our purpose here is to shed some light on certain basic properties of
equation (5) and the corresponding Lax pair. In doing so we shall partially extend some results
already published in [20]. The report is structured as follows. Second section is preliminary
in its nature. We discuss some basic properties of the scattering operator L and the linear
problem Lψ = 0 related to the nonlinear evolution equation (5) to be used further in text. In
next section we show how one can modify Zakharov-Shabat’s dressing method for the case of
quadratic bundles. This allows one to generate special types of solutions in an algebraic manner.
Last section contains summary of our results and some additional remarks.

2. Quadratic bundles and Hermitian symmetric spaces
Let us consider the Lax pair:

L(λ) = i∂x + λQ(x, t)− λ2J, (6)

A(λ) = i∂t +
2N∑
k=1

λkAk(x, t), (7)

where Q(x, t), J and Ak(x, t), k = 1, . . . 2N are (m+ n)× (m+ n) traceless Hermitian matrices.
Moreover, L and A are subject to additional Z2 reduction [16, 17]

CL(−λ)C = L(λ), CA(−λ)C = A(λ), C = diag (11m,−11n). (8)



The constant matrix C defines an action of Cartan’s involution connected with symmetric space
SU(m + n)/S(U(m) × U(n)) in the Lie algebra sl(m + n), see [10] for more details. That way
the Lax pair (6), (7) is related toa space of the type A.III. Cartan’s involution induces a Z2

grading in sl(m+ n) as follows:

sl(m+ n) = sl0(m+ n) + sl1(m+ n), (9)

where
slσ(m+ n) = {X ∈ sl(m+ n)| CXC = (−1)σX}, σ = 0, 1

are eigensubspaces of the adjoint action of C. Due to reduction condition(8) the potential Q
has the block structure:

Q(x, t) =

(
0 qT (x, t)

q∗(x, t) 0

)
,

where q(x, t) is a n×m rectangular matrix and J is picked up in the form

J = diag (n1, n2, . . . , nm,−11n),

m∑
k=1

nk = n. (10)

From now on we shall assume that q is an infinitely smooth function to obey boundary conditions

lim
x→±∞

q(x, t) = 0.

Let us now consider auxiliary linear problem

L(λ)ψ(x, t, λ) = i∂xψ + λ(Q− λJ)ψ = 0. (11)

The function ψ is viewed as a fundamental set of solutions hence ψ(x, t, λ) is a unimodular
matrix. Since L and A commute we have as well

Aψ = i∂tψ +

2N∑
k=1

λkAkψ = ψf. (12)

Quantity

f(λ) = lim
x→±∞

2N∑
k=1

λkAk(x, t)

is called dispersion law of NLEE and it carries all essential characteristics of NLEE.
A special case of solutions to (11) are Jost solutions defined as follows:

lim
x→±∞

ψ±(x, t, λ)e
iλ2Jx = 11, λ2 ∈ R. (13)

Due to the special choice of the right handside of (12) the definition of the Jost solutions is
correct. The transition matrix

T (t, λ) = ψ̂+(x, t, λ)ψ−(x, t, λ), ψ̂ ≡ ψ−1

between the Jost solutions is called scattering matrix. It can be proven that the scattering
matrix evolves with time according to:

i∂tT + [f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.



The Jost solutions are defined for λ lying on real and imaginary axis. To see this one introduces
functions ξ± = ψ± exp(iλ2Jx) to satisfy modified linear equation

i∂xξ± + λQξ± − λ2[J, ξ±] = 0. (14)

Equivalently ξ± can be viewed as solutions to the following integral equations of Voltera type

ξ±(x, λ) = 11 + iλ

∫ x

±∞
e−iλ2J(x−y)Q(y)ξ±(y, λ)e

iλ2J(x−y)d y. (15)

By analysing it one can see that analytic continuation outside the real and imaginary axis is
possible for the first and the last columns of ξ± only. Quite similarly to sl(2) case [5] starting
from the Jost solutions one is able to construct another set of solutions to have such analytic
properties. Namely, the following theorem holds true:

Theorem 1 There exists a pair of solutions χ+ and χ− analytic for Imλ2 > 0 (i.e. in the first
and third quadrant in λ-plane and Imλ2 < 0 (in the second and the forth quadrants). They can
be constructed from the Jost solutions as follows:

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ).

where the matrices S±(λ), T±(λ) and D±(λ) are

S+(λ) =

(
11m sT+(λ)
0 11n

)
, T+(λ) =

(
11m tT+(λ)
0 11n

)
,

S−(λ) =

(
11m 0T

s−(λ) 11n

)
, T−(λ) =

(
11m 0T

t−(λ) 11n

)
,

D+(λ) =

(
d+m(λ) 0T

0 d+n (λ)

)
, D−(λ) =

(
d−m(λ) 0T

0 d−n (λ)

)
.

The latter are involved in generalised LDU decomposition

T (λ) = T∓(λ)D±(λ)Ŝ±(λ)) (16)

of the scattering matrix1.

The reductions imposed on our Lax operators give rise to certain symmetry conditions on
the Jost solutions, the scattering matrix and fundamental analytic solutions [16, 17], as follows:

ψ̂†
±(x, λ

∗) = ψ±(x, λ), T̂ †(λ∗) = T (λ), (17)

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ), (18)[
χ+(x, λ∗)

]†
= χ̂−(x, λ), Cχ±(x,−λ)C = χ±(x, λ). (19)

As a simple consequence of their construction the fundamental analytic solutions χ+ and χ−

are interrelated through:
χ+(x, λ) = χ−(x, λ)G(λ) (20)

for some function G(λ) = Ŝ−(λ)S+(λ). This means that they can be viewed as solutions
to a local Riemann-Hilbert problem [9, 21] with boundary given by real and imaginary axis

1 The decomposition (16) is called generalised since all factors have a block structure which respects the splitting
(9), that is d±n (λ) are n× n matrices for example while s±(λ) are n×m matrices.



in λ-plane. To be more precise solutions to a local Riemann-Hilbert problem are functions
η± = χ± exp(iλ2Jx) which satisfy (14). The latter pair of solutions can be expanded [9]

η±(x, λ) = η±0 (x) +
η±1 (x)

λ
+
η±2 (x)

λ2
+ . . . (21)

Substituting the asymptotic expansion (21) into (14) leads to the following sequence of recurrence
relations

λ2 [J, η±0 (x)] = 0, (22)

λ Q(x)η±0 (x)− [J, η±1 (x)] = 0, (23)

λ0 i∂xη
±
0 (x) +Q(x)η±1 (x)− [J, η±2 (x)] = 0, (24)

. . . . . .

It is seen from (22) that η±0 ∈ sl0(m + n) and it depends on x due to the second term in (24).
All this tells us that the Riemann-Hilbert problem is not canonically normalized.

One application of the fundamental analytic solutions is in spectral theory of the scattering
operator L(λ) [20]. The resolvent of L(λ) is defined by

L(λ) ◦R(λ) = 11,

where ◦ means composition of linear operators. R(λ) is an integral operator of the form

(R(λ)F ) (x, t) =

∫ ∞

−∞
R(x, y, t, λ)F (y) d y

for F : R → Cn being a continuous function. The following theorem holds true:

Theorem 2 The kernel R(x, y, t, λ) is expressed through the fundamental analytic solutions as
follows:

R(x, y, λ) =

{
iχ+(x, λ)Θ+(x− y)χ̂+(y, λ), Imλ2 > 0

−iχ−(x, λ)Θ−(x− y)χ̂−(y, λ), Imλ2 < 0
(25)

where Θ± are matrix-valued functions given by

Θ±(x− y) = θ(±(y − x))P − θ(±(x− y)) (11− P )

and

P =

(
11m 0
0 0

)
being a constant projector. The kernel R is a meromorphic function in C with a finite number
of poles to form the discrete spectrum of the scattering operator L.

The proof of theorem 2 is quite similar to that one in the case of linear bundles this is why
we shall skip it. The reader can find a detailed exposition of the proof in [4, 9]. As a direct
consequence of theorem 2 one derives:

Corollary 1 The spectrum of the scattering operator L comprises a continuous part and a
discrete part. The continuous part of the spectrum is determined by requirement

Imλ2J = 0, (26)

i.e. it coincides with the real and the imaginary axis in the spectral λ-plane. The discrete
spectrum belongs to orbits of the reduction group Z2×Z2, i.e. all discrete eigenvalues go together
in quadruplets {±µk,±µ∗k}rk=1.



As in linear bundle case the fundamental analytic solutions allow one to construct nonlinear
Fourier transform to map the potential Q onto spectral data. For that purpose one introduces
the so-called adjoint solutions (or squared solutions)

E±
ij(x, λ) =

(
χ±(x, λ)Eijχ̂

±(x, λ)
)⊥
,

which satisfy the adjoint representation of the linear problem (11):

i∂xE
±
ij + λ

[
Q− λJ,E±

ij

]
= 0, (27)

where (Eij)rs = δirδjs are Weyl generators of the Lie algebra sl(m+ n) and ⊥ stands for taking
the block off-diagonal part of matrix.

3. Dressing Method and Special Solutions
This section is dedicated to an effective way of finding particular solutions of NLEE whose
scattering problem is (11). The method we shall discuss here is dressing Zakharov-Shabat’s
method [21, 22]. Conceptually the dressing method is an indirect way of integration, i.e. it
generates a solution to a given NLEE starting from a known one by substantially using auxiliary
problem associated with it. Let ψ0 be a fundamental solution to problem

L0ψ0 = i∂xψ0 + λ(Q0 − λJ)ψ0 = 0, (28)

where

Q0(x) =

(
0 qT

0 (x)
q∗
0(x) 0

)
(29)

for some known n×m matrix q0 satisfying (5). Next we apply a gauge transform ψ0 → ψ1 = gψ0

such that the auxiliary linear system remains covariant, i.e. we have

L1ψ1 = i∂xψ1 + λ(Q1 − λJ)ψ1 = 0, (30)

where Q1 has the form (29) but for some other n×m matrix q1 to be found. Then the dressing
factor g satisfies:

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0. (31)

Similarly, by comparing linear problems:

A0(λ)ψ0 = i∂tψ0 +

2N∑
k=1

λkA
(0)
k ψ0 = ψ0f(λ), (32)

A1(λ)ψ1 = i∂tψ1 +
2N∑
k=1

λkA
(1)
k ψ1 = ψ1f(λ) (33)

one derives another p.d.e. for the dressing factor

i∂tg +
2N∑
k=1

λkA
(1)
k g − g

2N∑
k=1

λkA
(0)
k = 0. (34)

Due to constraints (17)–(19) the dressing factor must obey the following symmetry conditions:

ĝ†(x, t, λ∗) = g(x, t, λ), (35)

Cg(x, t,−λ)C−1 = g(x, t, λ). (36)



The gauge transform acts on all fundamental solution including the Jost solutions. To ensure
that the dressed Jost solutions have proper asymptotics (30) should be modified into:

ψ0,± → ψ1,± = gψ0,± ĝ± , g± := lim
x→±∞

g . (37)

Hence the scattering matrix and the fundamental analytic solutions transform into:

T0 → T1 = g+ T0 ĝ−, (38)

χ±
0 → χ±

1 = gχ±
0 ĝ−. (39)

Relations (39) and (25) lead to the conclusion that the resolvent kernel transform as:

R1(x, y, t, λ) = g(x, t, λ)R0(x, y, t, λ)ĝ(y, t, λ). (40)

If g does not depend on λ then it follows straight from (31) and (34) that it is constant. To
have non-trivial dressing we assume that g depends on the spectral parameter. At this point we
recall that χ±

0 and χ±
1 satisfy Riemann-Hilbert problem with no canonical normalization. This

means that the asymptotic value of the dressing factor as |λ| → ∞ should be a nonvanishing
function of x and t. The simplest possible type is a dressing factor with simple poles only. Due
to constraint (36) we pick up g in the form:

g(x, t, λ) = 11 +

r∑
j=1

λ

µj

(
Bj(x, t)

λ− µj
+

CBj(x, t)C

λ+ µj

)
, Reµj ̸= 0, Imµj ̸= 0. (41)

while according to (35) its inverse reads:

ĝ(x, t, λ) = 11 +
r∑

j=1

λ

µ∗j

(
B†

j (x, t)

λ− µ∗j
+

CB†
j (x, t)C

λ+ µ∗j

)
. (42)

Setting |λ| → ∞ in (31) and taking into account (41) and (42) we get the following interrelation

Q1 = Q0 +

r∑
j=1

[J,Bj −CBjC]A† (43)

between the seed solution Q0 and dressed one. The matrix A(x, t) is the asymptotic value of g
given by:

A = 11 +

r∑
j=1

1

µj
(Bj +CBjC) .

Thus to obtain a new solution one needs to know the residues of g. The latter are found from
identity gĝ = 11. Indeed, after evaluating the residue of gĝ at λ = µk we obtain:

Bk

11 +
∑
j

µk
µ∗j

(
B†

j

µk − µ∗j
+

CB†
jC

µk + µ∗j

) = 0, k = 1, . . . , r. (44)

To ensure that we shall obtain non-trivial result we assume the residues are degenerate matrices,
i.e. we have Bk = XkF

T
k for some rectangular matrices Xk(x, t) and Fk(x, t). The factors Xk

can be found by solving linear system:

F ∗
k =

r∑
j=1

µ∗k
µj

(
Xj

F T
j F

∗
k

µj − µ∗k
−CXj

F T
j CF ∗

k

µj + µ∗k

)
· (45)



On the other hand the matrix factors Fk(x, t) are expressed in terms of fundamental solutions
of the bare linear problem, namely:

F T
k (x, t) = F T

0,k(t)ψ̂0(x, t, µk), (46)

where F T
0,k are constants of integration, i.e. they depend on t only, see [20] for more detailed

explanations. F0,k turn out to be exponential functions on time and one can propose the following
simple rule

F T
k,0 → F T

k,0 e
−if(µk)t, (47)

where f(λ) is the dispersion law of NLEE.
In order to illustrate those general constructions let us consider in more detail the case when

the dressing factor has a single pair of simple poles only (r = 1), i.e. it looks like:

g(x, λ) = 11 +
λB(x)

µ(λ− µ)
+
λCB(x)C

µ(λ+ µ)
, Reµ ̸= 0, Imµ ̸= 0. (48)

Assume now that Q0 = 0. Therefore the bare solution ψ0 is a plane wave:

ψ0(x, t, λ) = e−iλ2Jx (49)

and the T matrix is simply equal to the unit (m + n) × (m + n) matrix. Taking into account
(33) and the fact that the asymptotic values of g as x → ±∞ are block-diagonal matrices we
see that dressed scattering matrix T1 is a block diagonal matrix. This situation generalizes in a
natural way the concept of a reflectionless potential for the sl(2) case.

Now linear system (45) is easily solved for X to give

X =
µ

µ∗

(
F TF ∗

µ− µ∗
− F TCF ∗

µ+ µ∗
C

)−1

F ∗, (50)

where F is expressed in terms the seed solution. We shall restrict ourselves here with the case
when rankB = 1, that is X and F are m+n-vectors. Then after collecting all information from
(50) and (47) and plug it into (43) the reflectionless potential acquires the form:

q1, ji(x) = Q1, ij+m(x) =

m+n∑
k=m+1

2i(ni + 1)ρ sin(2φ)e−iσik(x)e−θik(x)

e−2iφ
∑m

p=1 e
−2θpk(x) +

∑m+n
p=m+1 e

2ξ0,pk
× (51)(

δkj+m − 2i sin(2φ)ei(δj+m−δk−2φ)e2ξ0,j+mk

e−2iφ
∑m

p=1 e
−2θpk(x) +

∑m+n
p=m+1 e

2ξ0,pk

)
,

where

θpk(x) = (np + 1)ρ2 sin(2φ)x− ξ0, pk, ξ0, pk = ln |F0,p/F0,k|, δp = argF0,p

σpk(x) = (np + 1) cos(2φ)x+ δp − δk − φ, µ = ρ exp(iφ).

In order to obtain the soliton solution for matrix DNLS one needs to recover the t-dependence.
This can be done by using (47) and taking into account that

fMDNLS(λ) = −n+m

m
λ4J ,



which leads to the following rule:

δp → δp +

{
(n+m)n

m2 ρ4 cos(4φ)t, p = 1, . . . ,m,
−n+m

m ρ4 cos(4φ)t, p = m+ 1, . . . ,m+ n,

ξ0, pk →
{
ξ0, pk −

(
n+m
m

)2
ρ4 sin(4φ)t, p = 1, . . . ,m,

ξ0, pk, p = m+ 1, . . . ,m+ n.

The result we have just obtained represents a generalization of Kaup-Newell’s soliton derived in
the case of the scalar DNLS equation [12].

It is clear that one can recursively apply the dressing procedure we demonstrate here, to
build a whole sequence of exact solutions to a NLEE.

4. Conclusions
We have formulated the direct scattering problem for quadratic bundles related to Hermitian
symmetric spaces of the type A.III in terms Jost solutions, scattering matrix, fundamental
analytic solutions etc. We have discussed the spectral properties of the scattering operator L.
In this sense our results generalize those obtained by Gerdjikov et al. in [5, 6] treating the scalar
case as well as author’s in [20] treating spaces of the type SU(n)/S(U(1)× U(n− 1)).

Zakharov-Shabat’s dressing method has been adapted to quadratic bundles of afore-
mentioned type. This allowed us to establish an algebraic procedure for construction of
reflectionless potentials. For this to be done it suffices to use a dressing factor with simple
poles. As a special case we have considered in more detail the simplest case when the dressing
factor has a couple of poles. All reflectionless potentials give rise to multisoliton solutions to
certain NLEEs. For instance, applying simple time recovery procedure we have easily produced
one soliton solutions to the multicomponent DNLS (5). This result naturally generalizes the
classical result by Kaup and Newell [12] for the soliton solution to scalar DNLS. The latter can
be derived by using a dressing factor chosen in the form:

g(x, t, λ) = 11 +
λB(x, t)

µ(λ− µ)
+
λσ3B(x, t)σ3
µ(λ+ µ)

.

The results presented here could be extended in several directions. Firstly, one can search for
solutions of different type, say rational type solutions. One possible way to find rational solutions
consists in using a factor g whose poles lie in the continuous spectrum of L, i.e. µ ∈ iR. In this
”degenerate” case one can obtain the following result for the scalar DNLS:

q(x, t) =
4iµ3(x+ 4µ2t)

[2iµ2(x+ 4µ2t)− 1]2
e−2iµ2(x+2µ2t). (52)

It is seen that it obeys zero boundary conditions as x→ ±∞. As in the case of linear bundles it
is also possible to derive rational solutions but obeying more complicated non-trivial background
conditions.

Another meaningful direction of further developments is to study quadratic bundles associated
with other types Hermitian symmetric spaces or to put it even in a more general setting, bundles
related to homogeneous spaces like the Lax operator given below:

L(λ) = i∂x + U0 + λU1 − λ2J , (53)

where U0 splits into a diagonal and off-diagonal part, U1 is strictly off-diagonal and J is a
diagonal matrix. It is evident that the theory of complete quadratic bundles like this one is
more complicated than in the case we have considered in that report.
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