Metadata, citation and similar papers at core.ac.uk

Provided by Arrow@dit

D E BI_IN Technological University Dublin
e ARROW @TU Dublin

Conference papers School of Mathematics

2013

On Multicomponent Derivative Nonlinear Schrodinger Equation
Related to Symmetric Spaces

Tihomir Valchev
Technological University Dublin, Tihomir.Valchev@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschmatcon

b Part of the Partial Differential Equations Commons

Recommended Citation

Valchey, T. : On Multicomponent Derivative Nonlinear Schrodinger Equation Related to Symmetric Spaces,
proceedings of the XIV-th International Conference "Geometry, Integrability and Quantization", "St.
Constantin and Elena", Varna, Bulgaria, June 8-13, 2012.

This Conference Paper is brought to you for free and
open access by the School of Mathematics at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact yvonne.desmond@tudublin.ie,
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN



https://core.ac.uk/display/301311444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatcon
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatcon?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Thirteenth International Conference on
Geometry, Integrability and Quantization
June 3-8, 2011, Varna, Bulgaria

Ivailo M. Mladenov, Andrei Ludu

and Akira Yoshioka, Editors

Avangard Prima, Sofia 2012, pp 1-12

ON MULTICOMPONENT DERIVATIVE NONLINEAR
SCHRODINGER EQUATION RELATED TO SYMMETRIC
SPACES

TIHOMIR I. VALCHEV

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Abstract. We study derivative nonlinear Schrédinger equations edldd
symmetric spaces of the typelll . We discuss the spectral properties of the
corresponding Lax operator and develop the direct scatfgaroblem con-
nected to it. By applying an appropriately chosen dressaatpf we derive
soliton solutions to the nonlinear equation. We find thegrdés of motion
by using the method of diagonalization of Lax pair.

1. Introduction

A classical example of a nonlinear evolution equation integrable by means of th
inverse scattering transform is provided by derivative nonlinear&lihger equa-
tion (DNSE)

igs + Qo + i(|q‘QQ)m =0, (11)
where functiony : R? — C is infinitely smooth. DNSE occurs in plasma physics
to describe the propagation of nonlinear Alfvén waves with circular palton
[16,17]. Equation (1.1) is equivalent to compatibility conditidn A] = 0 for L
and A chosen in the form [13]:

L) := 10, + \Q(z,t) — Vo3

' 3 i A (1.2)
AN =10+ ) Ap(z, )AF — 2Xas,
k=1

where) € C is a spectral parameter and

Q) = (q*(g,t) Q(:ﬁ)’t) ) 3 = <(1) _01 >
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The former Lax operator depends quadraticallyzcend this is why it is said that
DNSE is connected to a quadratic bundle.

Since the time the integrability of DNSE was discovered many attempts to gener-
alize it have been made. One possible direction is to consider a quadratile bun
of a general form [7], namely:

1
L) := 105 + Uo(z,t) + Sa1p1os + AU (2, £) — Mo, (1.3)
where
0 qo,1(,1)
U t) = ’ .
071(% ) <p0,1(a:,t) 0

A certain reduction of the nonlinear evolution equation related to (1.3) isdiye
the celebrated Gerdjikov-lvanov equation:

. 2 % 1 4
ig; + Gua + 1 Q;v+2|Q‘ q=0.

Another trend of current interest [8, 9, 12] in theory of integrableeys was
pioneered by A. Fordy et al. [1, 3,4] who related Lax pairs to diffelégrmitian
symmetric spaces in a very natural geometric way. In [3] Fordy managestit@d
relatively simple multicomponent versions of DNSE like the following one:

. 2i N
i9¢ + oo + n—;l ((a"a") a), =0, (1.4)

whereq : R? — C" is an infinitely smooth function. Our aim here is to study
certain basic properties of equation (1.4) and its Lax pair.

The report is organised as follows. Second section is preliminary in itsenaie
discuss some basic properties of the scattering opefasmd the linear problem

L+ = 0 related to the nonlinear evolution equation (1.4) to be used further in text.
Next two sections contain our main results. In sectiove apply dressing method

to quadratic bundles in order to generate special types of solutions.rtlayber,

we demonstrate how one can obtain the multisoliton solutions of DNSE. Sdction
is dedicated to the foundations of Hamiltonian formalism. We derive the integrals
of motion and introduce a Poisson bracket. For that purpose we make ase o
method proposed by Drinfel’d and Sokolov [2]. In sectidbmve summarize our
results and make some additional remarks.

2. Quadratic Bundles Related to Hermitian Symmetric Spaces

In this section we are going to expose very briefly the scattering theotlddrax
operatorL related to DNSE (1.4). For this to be done we are going to follow some
well-known ideas in soliton theory, see [10, 18] for detailed explanations.
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Equation (1.4) represents compatibility condition of the following Lax opesator

L(\) = i0, + AQ(z,t) — N\2J (2.1)
4

AN =10+ Y M A (x,t), (2.2)
k=1

where A\ € C is spectral parameter. All coefficients above are assumed to be
Hermitian traceles$n + 1) x (n + 1) matrices. This requirement can also be
viewed [14, 15] a®.» reduction condition

LI =Ly, AT = A0 (2.3)
imposed on a generit — A pair. Above we have introduced the auxiliary notation

L)Y = —id1p + Mp(Q — \J). Apart of (2.3) the Lax operatots and A is a
subject to the followingZ, reduction:

CL(—\)C = L(\), CA(—-\)C = A(N) (2.9)
whereC = diag(1,—1...,—1). Due to the form ofC the potentialy) has the
block structure: T(e.4)

o 0 q (z,t
A= gy T 0" @5)

while the constant matrix is block diagonal.

The matrixC represents action of Cartan’s involutive automorphism to define sym-
metric spaceSU (n + 1)/S(U(1) x U(n)) which is a special case &f.I1II type
symmetric space according to Cartan’s classification, see [11] for mdadsde
Cartan’s involution induces?; grading in the corresponding Lie algebit&an+1)

(as well as its real compact forsa(n + 1)) as follows:

slin+ 1) =s"n+1) +sl'(n+ 1),
where
slf(n+1):={X €sl(n+1)|CXC! = (-1)°X}.
Itis easy to see th&} as well as4, and A3 belong tos!* (n+1) while J, Ay and A,
belong tosl(n + 1). The subspace’(n + 1) consists of all block diagonal trace-
less matrices. For the sake of convenience we picl up diag(n, —1,...,—1).
Thussl®(n + 1) coincides with the centralizer of.

In order to get definite results one must impose certain additional boucdary
ditions onq. We are going to restrict ourselves with the simplest case of zero
boundary conditions, i.e. we have:

lim q(z,t) =0. (2.6)

r—+oo

For such boundary conditions the continuous part of the spectrumfiis up
the real and the imaginary axis in the complexplane. Indeed, the continuous
spectrum off. is a locus of points il determined where the exponesb (i\2Jx)



4 T. Valchev

oscillates [5, 10] or equivalently conditidm A2 = 0 holds trué. On the other
hand due to reductions (2.3) and (2.4) the discrete eigenvaluegef correlated
2, namely they go in quadruplds i, 5}, k= 1,...,n.

In order for one to formulate direct scattering theory it is necessary nieider
auxilary linear problem:

L(N)Y(x,t,\) =0. (2.7)
The functiony is viewed as a fundamental set of solutions to (2.7) called funda-

mental solution for short, i.e) takes values in the Lie grolflU(n + 1). SinceL
and A commute any fundamental solutignsatisfies

A(A)¢($7t7A) = ¢($vt7 )‘)f()‘) (28)
as well. The quantity
4
f\) = zgrillmZAkAk(x,t) = —(n+ 1)\ (2.9)
k=1

is called dispersion law. The dispersion law labels the nonlinear evolutiatiequ
within the integrable hierarchyand thus it is a fundamental feature of integrable
equations.

Next one introduces Jost solutions through the following equality:

: iX2Jx
xgrirlm Yz, t,Ne =1

The Jost solutions are defined only on continuous spectrui,of, that is the real
and imaginery axes in the-plane.

Any two fundamental solutions are linearly related. The transition matrix

T(ta)‘) = er(:Cata )\)_17#(37,75, )‘) (2.10)

between the Jost solutions is called scattering matrix. Its time evolution is driven
by the dispersion law as follows:

10, T+ [f(N), T] =0 = T(t,\) =N, 2)e N (2.11)

Equation (2.11) represents a linearization of the nonlinear equation cowlsder-
ation. This crucial fact underlies the interpretation of the inverse scajterathod
as a nonlinear Fourier transform [10, 18].

1Strictly speaking the spectrum éfis complementary to the domain of its resolvent. More detailed
analysis [5, 10] shows that this is equivalent to satisfaction of abovéionea condition

2Al eigenvalues of. must belong to a certain discrete orbit of the reduction gy Z. [10, 14,

15].

3The integrable hierarchy consists of all equations to share the samepeaatar L. So they are
distinguished by the form of second operator
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QO Q

QO O

Figure 1. Domains of analyticity.

Similarly to the scalar DNSE [6, 13] the Jost solutions to (2.7) can be usedto co
struct in a purely algorithmic way another pair of solutigns(z, ) andy ™ (x, \)
that are analytic in domain@* andQ~ (see Fig.1). The explicit formulae read:

X5 (2, 0) = ¥ (2, )ST(N) = vy (2, T (N)DF(N).

ST (X\) andT*(\) are upper block triangular matrices, (\) andT~ (\) are lower
block triangular matrices, whil®* (\) are block diagonal. All these appear in the
generalized Gauss decomposition

T(\) =TTA)D=N)(SF(N) ™!
of the scattering matri¥'. It is seen that
X (@, A) = x (2, N)G(N) A e RUIR
for some sewing functioty(\) = (S~ (\))~1S*T()\). Thus the fundamental solu-
tionsx ™ (z, ) andx~ (x, \) solve a local Riemann-Hilbert problem defined on the

continuous spectrum df. The reductions (2.3) and (2.4) impose certain symme-
try conditions on the Jost solutions, the scattering matrix and fundamentgiiana
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solutions. Here is a list of these:
[l X)) = e [rion)] T =1 (2.12)
Ctpi(z,—N)C = ¢i(x,))  CT(=N)C=T()) (2.13)
@A) = @A) @ -AC =y (@) (2.14)

3. Dressing method and special solutions

In this section we are going to present an algorithm to obtain particular saution
to DNSE. This algorithm is based on Zakharov-Shabat dressing te@fig119]
adapted for quadratic bundles. This very effective method allows oneriteedn

an algebraic manner the soliton solutions to DNSE.

3.1. Dressing method

We shall sketch here very briefly the concept of the dressing method.(DM)s

an indirect method for integration, i.e. it uses a known (simple) solution toemgiv
equation to produce another (more complicated) one. For this to be donest tak
into account the existence of Lax representation.

Let ¢y be a fundamental solution to

Lotho = i0x1p0 + M Qo — AJ)tpg = 0. (3.1)
where (@)
B 0 qolx >
Qo(x) ( q8($) 0
for some vectoqg = (q(l), ..., qy) assumed to be a known solution to the nonlinear

equation. Then we construct another function(xz, \) := g(z, \)o(z, A) by
"dressing" the initial solutionyy. Assuming that); satisfies the linear problem

Liypy = i0,901 + MQ1 — AJ)1 = 0 (3.2)
defined for some potential

Qi) :=< y qlé@)

qi(z)
to be found. Comparing (3.1) and (3.2) we see that the dressing fasttisfies:
10,9+ AQ1 9 — AgQo — N°[J, g] = 0. (3.3)

The Zs reductions (2.12)—(2.14) imply that fulfills a similar set of symmetry
conditions, namely:

(o @.x)] " = gl ) -
g

Cyg(z,—\)C =
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The simplest nontrivial choice fgrto meet these requirements reads:

AB(z)  ACB(z)C N
WO— ) T aO ) Ru#0, Su#0 (3.5

From (3.3) it follows that); andQ) are interrelated through:
Q1 = AQuA' + [J, B — CBCJAT, (3.6)

gz, \) =1+

where .
A=1+ —(B+ CBC).
7]
Thus we have expresséd in terms of the seed solutiapy and the residué. In

order to findB one analyzes the identityy~! = 1. After calculating the residue
at A = p we obtain algebraic relation

uBT wCBiC > B
(e —p*) (et pr)
B(x,t) must be a degenerate matfiXherefore there exist rectangular+1) x k

matricesX (z) andF (z) to fulfill B = XF”. Then (3.7) is reduced to an algebraic
equation forX that can be solved easily to give:

FTp*  FTCF* \
x="1 ( - c) F*. (3.8)

(3.7)

B+

AN e N R
The factorE’ can be found from differential equation (3.3). Detailed analysis shows
that it is expressed through:

FT(x) = Fy [o(z, w] ™, (3.9)
whereu)y is any fundamental solution to (3.1) defined at a vicinity:@&nd Iy is a
constant matrix.

What remains is to recover the time evolution. For this to be done one must con-
sider equation

2N 2N
0+ > AFAVg — g3 N AP =0 (3.10)
k=1 k=1

that follows from the second linear problem (2.8). Skipping all details veeqmt
the final result: the matri¥} evolves with time according to

105 — Fg f(u) = 0.

Thus we are able to propose a simple rule to derive the time dependenge of
namely:

FI — FleVft, (3.11)

4f B is invertible then from (3.7) we see that it is proportionafltpthat is we have trivial dressing.
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3.2. Soliton solutions
The simplest class of solutions are solitons. To detigsliton solution we set
Qo=0 = 1/)0(1’, t, )\) = e—i)\QJz.

We shall resrict ourselves here with the case whetk B = 1. Then the reflec-
tionless potential acquires the form:

' n+1 . —ioy(x) J0i(z)
i : psin(2p)e” 1 Me

x) = () =2i(n+1 -
a ( ) (Ql)lj( ) ( ) ps e—2ip EZIQI e20p(x)
005 (@) 461 (2) pi(5;—51—2¢0)
e—2i¢ 4 Z;;l 020p(x)

((5]-[ — 2isin(2¢p) (3.12)

where we have used the notation:
0p(r) = (n+1)p*sin(20)x — &, p=2,....,n+1
op(z) = (n+1)cos2p)a+ 61— —¢ = pexplip)
Sop = In|Fy1/Foyl 01 = arg Fo1 0p = arg Fop.
In order to obtain the-soliton solution we need to recover the time dependence

in (3.12). For that purpose one should use (3.11) and take into acit@arior the
DNSE f(A\) = —(n + 1)A*J. As a result one gets the following correspondence:

€o.p = op — 2(n + 1)p* sin(4p)t

A A (3.13)
91 — 01+ 2np” cos(4dp)t, 0, — 6, — 2p” cos(4p)t.

It is clear that one is able to apply the dressing procedure td-gwiton solu-
tion and thus constructs Z&soliton solution and so on. This way one obtains a
sequence of exact solutions. There exists another approach iingehe multi-
soliton solutions however. It consists in using a multiple pole dressing fattioe o

form:
By(z,t) CBk({L',t)C>
x,t,\) =1+ —|— ,
al ; Lk ( A — g A+ pg

where ally;, do not lie on the continuous spectrum bf Then the multisoliton
solution is obtained through the following formula:
Q=) _[J,Br — CByCJAT, (3.14)
k=1

where

1
=1+ Y —(By+ CBC).
iy Mk
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To find the residue®3;, = XkF,;f one follows basically the same steps as in the
two poles case. The matricés are determined by the value of some bare solution
at the corresponding po}e;:

Fl (x,t) = Flolvo(e, t, )]~
while X, can be found by solving the linear system:
Fy = zm: K (XZFZTF’Z — CXIW> . (3.15)
= M My — Mg Mt g
Finally the time dependence is recovered through the rule:
Fly — Flge /)t (3.16)

to generalize (3.11) in a very natural way.

4. Integrals of Motion

In this section we develop some basics of the Hamiltonian formulation of DNSE
related to symmetric spaces. Firstly we are going to describe (localaind t)
conserved densities by deriving a general recursive formula torgientem. In
order to do this we shall use the method of diagonalization of Lax pair pegjpos
by Drinfel'd and Sokolov [2].

Let us consider the following general flow Lax pair:

L(\) = 10, + AQ(z,t) — N\2J (4.1)
2N

AQN) =10+ Ap(, )AF (4.2)
k=1

After applying a gauge transform

Pz, t,\) =1+ i pk(;’ t), pr €slt(n+1) (4.3)
k=1
one can put thé.- A pair into diagonal form:
L = iP_lL’P:i@x—)\QJ+>\L,1+LO+%4_... (4.4)
. X Ay
A =7 A?:15t+z)\ﬂ—k+ﬂo+7+--- (4.5)

k=1
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that is all coefficients above are elementsB{n + 1). Since the zero curvature
representation is invariant under gauge transforms we have:

k
Ok — OpAr + Y _[L1, Ari] = 0. (4.6)
!
From (4.6) it is seen that the matrix elemégi, );; or equivalently the trace of the
n x n block of £; represent local densities of integrals of motion. To find these
densities one substitutes (4.3) into (4.4) and then compares coefficitenits tief
same powers of. As a result one obtains the following set of recurrence relations:

At Lg—-—pmJ=Q—Jp1, 4.7)
A Lo+ pilog —pod = Qp1 — Jpo, (4.8)
k41

AR L+ ZplLk—l =ippa + Qprs1 — [J,Pra2], k=1,2,... (4.9)
=1
After projecting the first two recurrence relations into a block diagondl @ffx
block diagonal part we deduce that:

_ 1 0 qTf
L4 =0 p=ad;'Q= — (_q* qo ) (4.10)
1 —qlq* 0
0o = Qp1 T ( 0 q*qT>’ p2 =0 (4.11)

Thus the first integral density i = q'q. The results just obtained are generalized
in the following theorem to be given here without proof:

Theorem 1. All conserved densitie§;, corresponding to odd indices vanish while
the rest are generated by the following formula:

Lk = Qpr+1, (4.12)
where the matrix coefficiep}, can be found through the recursive formula:
k—2
pr=ad ;! (ipk—Z,x - szﬂk—z—l> 0 (4.13)
=1

Taking into account the statement of the theorem it is easily seen that meednoo
integral density reads:

1
T Tq. — T 4.14
2 =iq'q — ———(q a)”. (4.14)
It represents the Hamiltonian density of the multicomponent DNLS equation if
we choose Poisson bracket as follows:

o ) 5
{F,G} ::/ dy tr (52 56;) (4.15)
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5. Conclusions

The direct scattering problem for quadratic bundle related to Hermitian symmet-
ric spaces of the typA..III has been formulated and discussed. We have suited
the Zakharov-Shabat dressing technique to quadratic bundles relatednhitian
symmetric spaces of the mentioned type. This allowed us to construct analytically
the multisoliton solutions. In particular, the one soliton solution has been written
down explicitly. This result naturally generalizes the classical result hypkéand
Newell [13] for the soliton solution to scalar DNSE. The latter can be derxe
using a dressing factor chosen in the form:

B AosBos
+ .
(A=p)  pA+p)
We have described the integrals of motion for the DNSE (1.4) by derivirgna g
eral recursion formula. In order to do this we have applied the method gf dia
onalization of Lax pair. As a simple illustration we have calculated the first two
integrals of motion. The latter represents the Hamiltonian of DNSE when the Pois-

son bracket is defined as in (4.15). All this underlies the Hamiltonian formalism
for the corresponding nonlinear equation.

All results presented in this report can be extended in several directiorsily,

one can consider quadratic bundles (2.1) related to other Hermitian symmetric
spaces, saBD.I type symmetric spaces. Since the corresponding DNSE look
more complicated way than (1.4) so the theory of such equations would be more
complicated than i\ .III case.

Another meaningful direction consists in studying complete quadratic byndes
Lax operators in the form:

L(\) =10, + Qo + A\Q1 — N2, (5.1)

where() splits into a diagonal and off-diagonal paf}; is strictly off-diagonal
and J is a diagonal matrix. It is evident that the theory of complete quadratic
bundles gets more complicated than the one related to symmetric spaces.

glx, ) =1+
(z, ) p
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