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Abstract  

Heat shock protein 90 is an emerging target for oncology therapeutics. Inhibitors of this 

molecular chaperone, which is responsible for the maintenance of a number of 

oncogenic proteins, have shown promise in clinical trials and represent a new and 

exciting area in the treatment of cancer. Heat shock protein 90 inhibitors have huge 

structural diversity, and here we present the identification of inhibitors based on β-

lactam and imine templates. β-Lactam 5 and imines 12 and 18 exhibit binding to heat 

shock protein 90-α with IC50 values of 5.6 μM, 14.5 μM and 22.1 μM respectively. The 

binding affinity displayed by these compounds positions them as lead compounds for the 

design of future inhibitors of heat shock protein 90 based on the β-lactam and imine 

templates.  
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Abbreviations 

17-AAG 17-Allylamino-17-demethoxygeldanamycin 

17-DMAG 17-Dimethylaminoethylamino-17-demethoxygeldanamycin 

DMF  Dimethylformamide 

DMSO  Dimethylsulfoxide 

GA  Geldanamycin 

HIF  Hypoxia-inducable factor 

HRMS             High Resolution Molecular Ion Determination 

Hsp90  Heat shock protein 90 

HTMA  Hexamethylenetetramine (hexamine) 

IR             Infra Red 

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 



 

 

NMR               Nuclear Magnetic Resonance 

PBS  Phosphate buffered saline 

TBDMS Tertbutyldimethylchlorosilane 

TMCS  Trimethylchlorosilane 

TLC  Thin layer chromatography 

Introduction 

Heat shock protein 90 (Hsp90) is a molecular chaperone that accounts for 1-2% of total 

cellular protein under non-stressed conditions1. Chaperones are a class of proteins that 

prevent improper associations and assist in the correct folding and maturation of other 

cellular proteins collectively termed clients. Hsp90 has a diverse ‘clientele’ of proteins, 

many of which are signal transducers that have roles in cellular proliferation and 

survival pathways2. A significant number of these proteins are oncogenic in nature and 

include the protein kinases ERBB2 and BRAF together with mutant p53 and steroid 

hormone receptors (estrogen and androgen)2, 3. Tumour cells express higher levels of 

Hsp90 than normal cells and may be more dependent on Hsp902, 3. Hsp90 in tumour 

cells is present in a highly active complexed state, has a high ATPase activity and 

demonstrates a high affinity for inhibitors such as geldanamycin, the first Hsp90 

inhibitor identified5. Geldanamycin (1a, figure 1), and a related derivative, 17-

allylaminogeldanamycin (17-AAG, 1b), were found to exhibit a 100-fold higher binding 

affinity for Hsp90 derived from tumour cells over Hsp90 from normal cells5.  Hsp90 is 

an attractive target for cancer therapy as inhibition of this target leads to simultaneous 

depletion of client proteins which have been identified as hallmarks of cancer, e.g. 

tyrosine kinases which mediate uncontrolled proliferation, telomerase associated with  

immortalisation, AKT protein kinases linked to impaired apoptosis, HIF1α involved in 

angiogenesis and matrix metalloproteinase 2 expressed in  invasion/metastasis1, 2. The 

ability of Hsp90 inhibition to affect many oncogenic signalling cascades simultaneously 

through inhibition of a single target is highly desirable and unique2.  There appear to be 

specific roles in cancer progression for Hsp90 in different cellular locations (e.g. on cell 

surface, nucleus, secreted)6.  

 



 

 

Hsp90 consists of three flexibly linked domains. The N-terminal domain contains an 

ATP-binding site, a middle domain regulates the ATPase activity of the N-terminal 

domain and binds client proteins and the C-terminal contains the dimerization domain7. 

The N-terminal domain contains an unusual adenine-nucleotide-binding pocket known 

as the Bergerat fold1. An ATPase cycle is central to the chaperoning activity of Hsp90. 

In 1997 the first co-crystal structure of geldanamycin bound to Hsp90 revealed that it 

bound to the N-terminal of the chaperone8 in a folded conformation with a similar 

topology to the natural nucleotide ATP9. Geldanamycin competes with ATP, leading to 

diminished ATPase activity and prevents dissociation of client proteins from the Hsp90 

complex2, 9. Radicicol (2, figure 1) is a 14-membered macrolide that was first isolated 

from culture broth of Monosporium bonorden in 1953 as an antifungal antibiotic and 

also binds at the N-terminal ATPase domain of Hsp909-1213. Although radicicol has 

higher affinity for full-length homodimeric Hsp90 than geldanamycin, it has not 

progressed as far in terms of drug development. In vitro it mediates the characteristic 

response to Hsp90 inhibition – depletion of client proteins and upregulation of heat 

shock proteins2. However, it has no antitumour activity in vivo as it is inactivated by 1,6-

Michael addition with thiol-derived nucleophiles12. 

Many small molecule inhibitors of Hsp90 have been reported12. High-throughput 

screening of a chemical library of 60,000 compounds identified the pyrazole based 

structure 3a (figure 1) as a Hsp90 inhibitor9, 10, 12, 14. This compound causes depletion of 

Hsp90 client proteins, induction of Hsp70, upregulation of heat shock proteins, growth 

arrest and apoptosis in cancer cells, although in vivo activity and toxicity have yet to be 

reported2, 10. The resorcinol ring mimics the substitution on the aromatic ring of radicicol 

(2, figure 1). Extensive structure-activity relationships have been determined for the 

pyrazole based Hsp90 ligands9, 15, 16: Other Hsp90 small-molecule inhibitors include 

many purine-based analogues including 3c17 and indazole 4 as the first reported 

compound to target both Hsp90 and tubulin (figure 1)18. At the end of 2010, thirteen 

Hsp90 inhibitors were reported to be in clinical trials, including 17-AAG and a related 

derivative, 17-DMAG (1c, figure 1)19, 20. Additional Hsp90 inhibitors for which 

structures have been disclosed and which are not reported in 2010 reviews19, 21 include 

Debio 0932 (formerly CUDC-305)22, AT1338723 and KW-247824. The strongest clinical 

evidence at present supporting the therapeutic potential of Hsp90 inhibitors is for 17-

AAG in combination with trastuzumab, where 21 – 25% regressions in HER2 positive 



 

 

breast tumours were observed with combination therapy, even if patients had failed 

trastuzumab therapy19. Other positive results have been noted in patients with multiple 

myeloma and metastatic melanoma19.  

The β-lactam ring scaffold has been previously investigated as a template for 

antibiotics25, cholesterol absorption inhibitors26 selective estrogen receptor modulators18 

and antiproliferative tubulin-binding combretastatin A-4 analogues27, 28. The pyrazole 

scaffold is a small nitrogen-containing heterocyclic core, similar to the β-lactam nucleus, 

and interest arose in developing a small molecule Hsp90 inhibitor with a β-lactam 

scaffold. We report the synthesis and biochemical evaluation of a β-lactam based Hsp90 

inhibitor 5 and related compounds, which was designed to contain  similarly substituted 

aryl rings positioned at C-4 and N-1 to the aryl substituents at C-3 and C-4 of pyrazole 

3a (figures 1 and 2). This would determine if the β-lactam scaffold was capable of acting 

as a template for providing the necessary interactions with the Hsp90 ATP-binding site. 

Initial molecular modelling and docking studies had indicated that compound 5 could act 

as a potential ligand for the Hsp90 ATP binding site (see molecular modelling section). 

The proposed compounds would add to the rapidly expanding field of small molecule 

Hsp90 inhibitors with potential applications in the area of HSP90 based therapeutics and 

provide further insights into the structural motifs that can be accommodated in the 

Hsp90 ATP-binding site.  

Chemistry 

The 4-ethylresorcinol and 4-chlororesorcinol moieties are two of the most commonly 

seen ring systems in a broad range of Hsp90 inhibitors, including radicicol (2) and 

pyrazole 3a10, 12, 29. In order to design β-lactams containing these aryl substitution 

patterns, the synthesis of appropriate aldehydes as precursors for the required imines 

was first carried out. It was also necessary to protect both hydroxyl groups of the 

resorcinol molecule prior to the β-lactam forming reactions. 4-Ethylresorcinol and 4-

chlororesorcinol are commercially available. The formylation of 4-ethylresorcinol (6b) 

was achieved using a Vilsmeier-Haack reaction, utilising N,N-dimethylformamide and 

phosphorus oxychloride (scheme 1)30. The formylated product 7b was obtained from 6b 

in yields of up to 36%. 1H NMR analysis shows an additional chemical shift at δ 9.91 

ppm attributable to the aldehyde proton, there is disappearance of one aromatic signal 

and the remaining two aromatic protons appear as singlets at δ 6.39 and δ 7.34 ppm. IR 



 

 

spectroscopy analysis shows absorption at ν 1645.8 cm-1 due to the carbonyl group.  The 

Vilsmeier-Haack reaction using phosphorous oxychloride and anhydrous 

dimethylformamide was unsuccessful for the formylation of 4-chlororesorcinol.  The 

Duff reaction31-33, using hexamethylenetetramine (hexamine) in acidic solution at room 

temperature did not result in formylation, whilst heating at 100˚C led to formylation at 

both the 2 and 6 positions of 4-chlororesorcinol (6c) to afford 7c.  

Benzyl protection of the resorcinol phenolic groups was achieved using benzyl bromide 

and potassium hydroxide to give the desired product (scheme 1). The phenolic groups of 

commercially available 2,4-dihydroxybenzaldehyde (7a) were protected by this method 

to prepare 8a (scheme 1). The dibenzylprotected product 8b was obtained in 90% yield 

from 5-ethyl-2,4-dihydroxybenzaldehyde 7b. Use of the TBDMS group was also 

investigated. This protecting group did not remain intact during Vilsmeier-Haack 

formylation. Silylation of aldehyde 7b was attempted, resulting in protection of only one 

of the phenolic groups. This is thought to be due to intramolecular H-bonding between 

the aldehyde and phenolic groups on adjacent positions of the aromatic ring.  

Hsp90 imine precursors 9 – 18 were obtained by condensation of the appropriately 

substituted aldehydes and amines (scheme 1). Yields for all products were over 85% 

with the exception of 18 (59%). The characteristic signal at approximately δ 8.70 – 8.85 

ppm in the 1H NMR spectra attributable to the imine proton was observed for all 

products.  

The initial Hsp90-targeting β-lactams chosen for synthesis are unsubstituted at the 3-

position of the azetidinone ring (compounds 19-25). The Reformatsky reaction using 

microwave technology was employed to synthesise these compounds in low yields, by 

reaction of imines 9-18 with ethyl bromoacetate (scheme 2). All intermediate 

compounds 19 – 25 showed IR absorptions at approximately ν 1740 cm-1 confirming 

formation of the azetidin-2-one.  The synthesis of an alternative structural example, 

compound 26, was achieved containing a phenyl substituent at the 3-position of the β-

lactam ring, as we wished to investigate the effect of the introduction of a larger 

substituent at the C-3 position. This analogue was obtained with exclusively trans 

geometry as evidenced by the coupling constant of 2.0 Hz between the protons at 

positions 3 and 4 of the β-lactam ring. 



 

 

Benzyl protecting groups were removed from compounds 21 – 26 subsequent to the 

Reformatsky reaction by hydrogenation over a palladium catalyst leaving the β-lactam 

ring intact to form six different final products 5 and 27 – 31 (scheme 3). The 

substitutions on the N-1 aryl ring reflect the aryl substitution pattern observed for 

pyrazole analogues with the greatest Hsp90 activity previously reported in literature14, 18, 

34. As discussed previously, the lead β-lactam compound 5 mimics the substitution 

pattern of the pyrazole 3. A number of analogues were designed to investigate the 

influence of the two hydroxyl groups and the ethyl group of the resorcinol ring on the 

activity of the compounds. β-Lactam 27 lacks an ethyl group, and compounds 19 and 20 

substitute methoxy groups for the hydroxyls. Pyrazoles with either a 4-methoxyphenyl 

ring34  or methylenedioxane14 ring in place of the benzodioxane ring has been shown to 

have improved activity and the corresponding β-lactam analogues 28 and 29 were also 

synthesised. Finally, β-lactam containing the trimethoxyphenyl ring found in the dual-

acting inhibitor 4 was also prepared.  

  



 

 

Biochemical Evaluation 

The Hsp90 binding affinity of the series of Hsp90-targeting β-lactams 5, 27-31 was first 

evaluated using a fluorescent displacement assay (table 2) and Hsp90 recombinant 

human protein35. All compounds were assessed for their ability to compete with 

geldanamycin for Hsp90 binding. Two imines, 12 and 18, were also screened for activity 

as they possess the necessary pharmacophore for binding to Hsp90. Of the series of β-

lactams evaluated, azetidinone 5 was the only compound to show a significant effect in 

the Hsp90α binding assay with an IC50 value of 5.63 μM. A dose-response curve for the 

binding interaction of 5 with Hsp90 and using 17-AAG as a positive control is shown in 

figure 7. The other seven analogues showed disappointing activity with IC50 values 

greater than 200 μM. Low activity was expected for β-lactams 19, 20 and 27 as they 

were synthesised to explore the SAR of the resorcinol ring. Analogues 19 and 20 replace 

the hydroxy groups of 5 with methoxy groups, and this substitution leads to marked 

decrease of Hsp90 binding ability. This is consistent with literature reports that the 

hydroxyl groups of the resorcinol ring are essential for hydrogen bonding interactions 

with the Hsp90 protein9, 15.  Analogue 27, with the hydroxyl groups of 5 intact but 

without the ethyl group, shows decreased activity compared to 5, indicating that the 

ethyl group of 5 is also crucial for to Hsp90 binding activity. This pattern of activity was 

seen for radicicol and analogues, where analogues that lack the chloro substituent of 

radicicol at this position have substantially lower affinity for Hsp9011. The lack of 

binding affinity was not anticipated for β-lactam 29, in which the benzodioxane ring of 5 

is replaced with a 3,4-methylenedioxyphenyl moiety. This substitution leads to an over 

40-fold reduction in activity. Similar substitution has been made in a purine series of 

compounds and did not result in decreased activity14. Imines 12 and 18 exhibited IC50 

values of 14.49 μM and 22.08 μM respectively in the Hsp90 binding assay. A dose-

response curve for 12 is shown alongside that of azetidinone 5 and 17-AAG in figure 7. 

These are the first reported imines with Hsp90 binding activity.   

The antiproliferative activity of Hsp90 binding compounds has been evaluated in 

various cell lines including HCT116 colon cells16, 34, 36, MCF-7 breast cancer cells37-41, 

SKBr3 breast cancer cells37, 40, 42, 43 and BT474 breast cancer cells44. In the present work 

the antiproliferative effects of the imines and azetidinones synthesised was evaluated in 

human MCF-7 breast cancer cells (table 2). The most potent antiproliferative compound 

was dihydroxy analogue 27 with an IC50 value of 23.50 μM  in MCF-7 cells. The only β-



 

 

lactam that significantly inhibited Hsp90, 5, displayed an IC50 value of 48.22 μM in 

MCF-cells. The two imines that showed inhibition of Hsp90, 12 and 18, did not show 

antiproliferative activity in MCF-7 cells at concentrations up to 100 μM. The lack of 

correlation between the binding affinity of these compounds for Hsp90 and their 

antiproliferative activity warrants future evaluation of these compounds in a cell line 

such as the K562 chronic myelogenous leukaemia (CML), as a client protein Bcr-Abl is 

readily degraded in response to Hsp90 inhibition50. In addition, the ability of these 

compounds 5 and 18 to induce proteosomal degradation of Hsp90 client proteins such as 

ERα will be investigated.  

Molecular modelling  

Molecular modelling studies on the Hsp90-binding β-lactams were carried out to explore 

potential binding interactions with the ATP-binding site of Hsp90. In addition, the 

synthetic imine precursors to β-lactam preparation were examined as they possess the 

necessary pharamacophore required for binding to the Hsp90 protein. Existing X-ray co-

crystal structures of the Hsp90 ATP-binding site with ADP45, geldanamycin (1a)8, 

radicicol (2)46, 17-DMAG (1c)47 and small-molecule Hsp90 inhibitors pyrazole 3a, 3b14, 

34 and purine 3c17 (Figure 1) provide insight into the requirements for binding to Hsp90 

(Table 1). The binding pocket is of mixed hydrophobic and polar character, with 

approximately half of the 17 amino acids lining its interior being hydrophobic, a quarter 

polar and a quarter charged. Mutation of the Asp93 residue to asparagine abolishes 

Hsp90 function in vivo46. As the binding pocket becomes increasingly hydrophobic 

towards the bottom, Asp93 is the only charged residue in the deepest part of the binding 

pocket, along with one polar residue (Thr 184)8. Asp93 is conserved in all known Hsp90 

homologs from 35 species8. These interactions are considered critical for binding of 

small molecule Hsp90 inhibitors. 

Molecular docking studies show that β-lactam 5 (figure 1) is predicted to interact with 

the ATP-binding site of Hsp90 in a similar manner to both radicicol and the pyrazole 

class of small molecule inhibitors14, 46. In this context the experimental binding activity 

observed for compound 5 can be rationalised. Flexible alignment of 5 with pyrazole 3a 

reveals a large degree of overlap between the resorcinol and benzodioxan rings but a 

slight offset of the nitrogen heterocycle itself (figure 2). When docked in the ATP-

binding site of Hsp90, β-lactam 5 is seen to be orientated with the ethylresorcinol ring 



 

 

extended towards the bottom of the ATP-binding pocket, and the benzodioxane ring 

pointed towards the top of the pocket and into solvent (figure 3). This is a similar 

binding conformation to radicicol and could be expected from the similar substitution 

pattern on the aromatic rings of the two compounds. The crucial interaction at the 

bottom of the binding pocket between a phenolic group on the β-lactam with Asp93 is 

present (figure 3).  Interactions with Phe138 and Thr184 are also seen for 5, mimicking 

key interactions of the endogenous adenine base and also the natural product ligands 

geldanamycin and radicicol. Nearing the top of the binding cavity, hydrophobic 

interactions with Lys58 are present amongst others. A 2D representation of these 

interactions is illustrated (figure 4)48. The relevant amino acid interactions shown for β-

lactam 5 which are common with those reported for the Hsp90 ligands are listed in table 

149, together with a summary analysis of relevant amino acid interactions identified in 

the co-crystal structures of the following Hsp90 ligands: ATP, Geldanamycin (1a), 17-

DMAG (1c), pyrazoles 3a and 3b and purine 3c. Interactions with Asp93 and Phe138 

are common to all eight ligands as shown in table 1 and can be considered to be 

necessary for binding to Hsp90. β-Lactam compounds without the resorcinol hydroxyl 

groups, such as methoxy-containing derivatives 19 and 20, are not predicted to interact 

with Asp93 and this is likely to account for the lack of binding affinity observed in the 

in vitro assay.    

Imine 12, the synthetic precursor to β-lactam 5 was also docked in the ATP-binding site 

on the N-terminal of Hsp90 as it also contains the required pharmacophore for Hsp90 

binding (figures 5 and 6). The molecule is predicted to adopt a similar orientation to 

radicicol, with the two hydroxyl groups and the ethyl group penetrating deep into the 

pocket and interacting with Asp93 and a conserved water molecule. The dioxane ring 

points towards the top of the binding pocket and binding is reinforced by strong 

hydrogen bonding interactions with Lys58 and Asn106 (figures 5 and 6). Interactions 

with Met98, Phe138, Lys58, Asp102, Ala55 and Ser52 are also predicted for the imine. 

These interactions are present for geldanamycin and other Hsp90 ligands (table 1) and 

are identified as a common requirement of Hsp90 activity in a number of co-crystallised 

structures.  On the basis of this molecular docking study, the binding activity observed 

for the imine 12 can be rationalised and may be useful in the design of further 

structurally varied small molecule Hsp90 inhibitors.  

 



 

 

Conclusion 

The first reported β-lactam and imine inhibitors of Hsp90 are described. β-Lactam 

compound 5 was designed to contain  similarly substituted aryl rings positioned at C-4 

and N-1 to the aryl substituents at C-3 and C-4  of pyrazole 3, a known Hsp90 inhibitor 

as we wished to determine if the β-lactam scaffold was capable of acting as a template 

for providing the necessary interactions with the Hsp90 ATP-binding site. β-Lactam 5 

displayed significant inhibition of Hsp90 with an IC50 of 5.63 μM and a moderate IC50 

value of 48.22 μM in an antiproliferative assay using MCF-7 human breast cancer cells. 

Two imines, 12 and 18 (synthetic precursors of the β-lactams 5 and 29 respectively), 

were identified as having the required pharmacophore for Hsp90 binding and were also 

evaluated for Hsp90 binding activity. They displayed promising results with low 

micromolar inhibition of Hsp90α. The Hsp90 binding results obtained for this series of 

β-lactams did not result is a clear structure-activity correlation with aromatic ring 

substitution present in these compounds. Future SAR work will aim to further improve 

the antiproliferative activity. Molecular modelling studies were used to rationalise the 

proposed binding interactions for both β-lactam compound 5 and imine 12 in the ATP 

binding site of Hsp90 and could lead to the design of more potent Hsp90 ligands. The 

identification of two novel templates for Hsp90 inhibitor design was successful. 

 

  



 

 

Experimental section 

Experimental note 

All reagents were commercially available and were used without further purification 

unless otherwise indicated. IR spectra were recorded as thin films on NaCl plates or as 

KBr discs on a Perkin-Elmer Paragon 100 FT-IR spectrometer. 1H and 13C NMR spectra 

were obtained on a Bruker Avance DPX 400 instrument at 20oC, 400.13MHz for 1H 

spectra, 100.61MHz for 13C spectra, in CDCl3, DMSO-d6 or CD3OD (internal standard 

tetramethylsilane) by Dr. John O’Brien and Dr. Manuel Ruether in the School of 

Chemistry, Trinity College Dublin.  Low resolution mass spectra were run on a Hewlett-

Packard 5973 MSD GC–MS system in an electron impact mode, while high resolution 

accurate mass determinations for all final target compounds were obtained on a 

Micromass Time of Flight mass spectrometer (TOF) equipped with electrospray 

ionisation (ES) interface operated in the positive ion mode at the High Resolution Mass 

Spectrometry Laboratory by Dr. Martin Feeney in the School of Chemistry, Trinity 

College Dublin. Thin layer chromatography was performed using Merck Silica gel 60 

TLC aluminium sheets with fluorescent indicator visualizing with UV light at 254nm. 

Flash chromatography was carried out using standard silica gel 60 (230-400 mesh) 

obtained from Merck. All products isolated were homogenous on TLC. Analytical high-

performance liquid chromatography (HPLC) to determine the purity of the final 

compounds was performed using a Waters 2487 Dual Wavelength Absorbance detector, 

a Waters 1525 binary HPLC pump, a Waters In-Line Degasser AF and a Waters 717plus 

Autosampler. The column used was a Varian Pursuit XRs C18 reverse phase 150 x 

4.6mm chromatography column. Samples were detected using a wavelength of 254 nm. 

All samples were analysed using a mobile phase consisting of acetonitrile (70%): water 

(30%) over 10 min and a flow rate of 1 mL/min.  

Procedure for Vilsmeir-Haack formylation of 4-ethylresorcinol 

5-Ethyl-2,4-dihydroxybenzaldehyde (7b). Dimethylformamide (38.2 mmol) and 

phosphorous oxychloride (43.1 mmol) were mixed at 0˚C and stirred for 15 minutes 

before addition of 4-ethylbenzene-1,3-diol 6b (14.5 mmol) dissolved in 

dimethylformamide (10 mL). The mixture was heated to 80˚C for eight hours. The 

reaction was quenched by the slow and careful addition of saturated aqueous sodium 

bicarbonate solution (150 mL) and was stirred overnight. The solution was extracted 



 

 

with CH2Cl2 (50 mL three times) and the combined organic layers were dried over 

Na2SO4. The pure product was isolated by flash column chromatography over silica gel 

(eluent: hexane:ethyl acetate gradient) and isolated as a white powder (yield 36.0%); 

Mp: 132ºC (lit. mp: 130-131ºC51); IR (KBr) νmax: 1645.83 (-C=O), 3193.79 (broad, -

OH) cm-1; 1H NMR (400 MHz, DMSO-d6) δ 1.12 (t, 3H, CH3), 2.49 (q, 2H, CH2), 6.39 

(s, 1H, ArH), 7.34 (s, 1H, ArH), 9.91 (s, 1H, CHO); 13C NMR (400 MHz, DMSO-d6) δ 

13.92 (CH3), 21.76 (CH2), 101.79, 114.80, 122.98, 130.63, 161.44, 163.08 (ArC), 

190.78 (C=O); HRMS: C9H10O3 requires 167.0708; found 167.0711; Elemental analysis: 

Found: C, 64.99; H, 6.07; C9H10O3 requires C, 65.05; H, 6.07% 

 

5-Chloro-2,4-dihydroxyisophthalaldehyde (7c). To 4-chlorobenzene-1,3-diol (3 

mmol) in trifluoroacetic acid (40 mL) was added HTMA (30 mmol, 10 equiv.).   The 

mixture was heated to 100ºC for 30 minutes after which it was left to cool to room 

temperature.   Water (60 mL) was carefully added followed by sodium bicarbonate (with 

vigorous stirring) until neutralised.   Dichloromethane (100 mL) was added and the 

mixture was stirred for 2 hours at room temperature.   The layers were separated, the 

aqueous layer was extracted with dichloromethane:methanol (9:1, 100 mL) and the 

combined organic fractions were dried with anhydrous Na2SO4 and the solvent was 

removed in vacuo. The product was isolated as a white solid in 56.2% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.29 (s, 1H, ArH), 7.79 (s, 1H, ArH), 9.73 (s, 1H, CHO), 10.41 (s, 

1H, CHO), 12.42 (s, 1H, OH), 13.26 (s, 1H, OH); 13C NMR (400 MHz, CDCl3) δ 

109.45, 113.15, 139.96, 164.44, 164.87 (ArC), 192.79 (C=O), 193.34 (C=O). 

 

General procedure for dibenzyl protection of resorcinol derivatives. Benzyl bromide 

(0.11 mol) was added to a mixture of resorcinol derivative (0.045 mol) and potassium 

carbonate (0.11 mol) in acetonitrile (200 mL).  The mixture was heated at reflux for 5 

hours and stirred overnight at room temperature. The mixture was filtered and the solid 

filter cake was washed with CH2Cl2 (200 mL). The combined organic fractions were 

evaporated in vacuo to leave the product. The crude product was triturated with hexane 

and filtered to give the pure product.  



 

 

2,4-Bisbenzyloxybenzaldehyde (8a) was prepared from 2,4-dihydroxybenzaldehyde 7a 

and isolated as a white solid (98.0% yield); Mp: 85ºC (lit. mp: 85 - 86ºC41); IR (KBr) 

νmax: 1677.88 cm-1 (-C=O); 1H NMR (400 MHz, DMSO-d6) δ 5.23 (s, 2H, CH2), 5.29 (s, 

2H, CH2), 6.76 (d, 1H, J=8.8 Hz, ArH), 6.93 (s, 1H, ArH), 7.36 – 7.68 (m, 10H, ArH), 

7.70 (d, 1H, J= 8.8 Hz, ArH), 10.25 (s, 1H, CHO); 13C NMR (100 MHz, DMSO-d6) δ 

70.34 (CH2), 70.38 (CH2), 100.93, 108.15, 119.11, 128.03, 128.47, 128.63, 129.01, 

129.04, 130.37, 136.67, 136.84, 162.87, 165.44 (ArC), 187.77 (C=O); HRMS: 

C21H18O3Na requires 341.1154; found: 341.1155 (M++Na); Elemental analysis: Found: 

C, 78.89; H, 5.73; C21H18O3 requires C, 79.22; H, 5.70% 

2,4-Bisbenzyloxy-5-ethylbenzaldehyde (8b) was prepared from 5-ethyl-2,4-

dihydroxybenzaldehyde (7b) according to the procedure above. The product was 

obtained as a white powder (yield 89.5%); Mp: 123ºC; IR (KBr) νmax: 1663.00 cm-1 (-

C=O); 1H NMR (400 MHz, DMSO-d6) δ 1.12 (t, 3H, CH3), 2.54 (q, 2H, CH2), 5.28 (s, 

2H, CH2), 5.30 (s, 2H, CH2), 7.00 (s, 1H, ArH), 7.35 – 7.51 (m, 11H, ArH), 10.24 (s, 

1H, CHO); 13C NMR (100 MHz, DMSO-d6) δ 13.90 (CH3), 22.05 (CH2), 69.86 (CH2), 

70.21 (CH2), 98.33, 117.76, 125.06, 127.50, 127.55, 127.68, 128.06, 128.59, 128.63, 

128.69, 129.29, 136.45, 161.34, 162.56 (ArC), 187.26 (C=O); HRMS: C23H22O3Na 

requires 369.1467; found: 369.1465 (M++Na); Elemental analysis: Found: C, 79.74; H, 

6.40; C23H22O3 requires C, 78.83; H, 6.31% 

General method for imine preparation 

The appropriate amine (10 mmol) was heated at reflux with the appropriate aldehyde (10 

mmol) in ethanol (50 mL) for 3 hours. The reaction mixture was cooled and then the 

solvent evaporated in vacuo. The resulting solid product was recrystallised from ethanol. 

(2,3-Dihydrobenzo[1,4]dioxin-6-yl)(2,4-dimethoxybenzylidene)amine (9) was 

prepared from 2,3-dihydrobenzo[1,4]dioxin-6-ylamine and 2,4-dimethoxybenzaldehyde 

and isolated as a brown oil in 76.8% yield and was used in the subsequent reaction 

without further purification; IR (KBr) νmax: 1609.48 cm-1 (-N=C-); HRMS: C17H18NO4 

requires 300.1236; found 300.1239; (M++H) 

 

(2,3-Dihydrobenzo[1,4]dioxin-6-yl)(2,5-dimethoxybenzylidene)amine (10) was 

prepared from 2,3-dihydrobenzo[1,4]dioxin-6-ylamine and 2,5-dimethoxybenzaldehyde 



 

 

as a yellow solid in 25.0% yield; Mp: 69ºC; IR (KBr) νmax: 1621.25 cm-1 (-N=C-); 1H 

NMR (400 MHz, DMSO-d6) δ 3.77 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.26 (s, 4H, 

OCH2CH2O), 6.78 – 6.90 (m, 3H, ArH), 7.10 (s, 2H, ArH), 7.49 (s, 1H, ArH), 8.78 (s, 

1H, CH=N); 13C NMR (100 MHz, DMSO-d6) δ 55.93 (OCH3), 57.74 (OCH3), 64.52 

(CH2), 64.55 (CH2), 110.01, 110.36, 114.04, 114.75, 117.85, 119.67, 124.88, 142.50, 

144.06, 145.90 (ArC), 153.64 (C=N), 154.14, 154.21 (ArC); HRMS: C17H18NO4 

requires 300.123; found 300.1235, (M++H); Elemental analysis: Found: C, 68.17; H, 

5.72; N, 4.74; C17H17NO4 requires C, 68.21; H, 5.72; N, 4.68% 

4-[(2,3-Dihydrobenzo[1,4]dioxin-6-ylimino)methyl]benzene-1,3-diol (11) was 

prepared from 2,3-dihydrobenzo[1,4]dioxin-6-ylamine and 2,4-dihydroxybenzaldehyde 

as an orange solid in 95.4% yield; Mp: 144ºC; IR (KBr) νmax: 1625.03 cm-1 (-N=C-); 1H 

NMR (400 MHz, DMSO-d6) δ 4.27 (s, 4H, OCH2CH2O), 6.28 (s, 1H, ArH), 6.40 (m, 

1H, ArH), 6.85 – 6.95 (m, 3H, ArH), 7.40 (s, 1H, ArH), 8.75 (s, 1H, CH=N), 10.22 

(broad s, 1H, OH), 13.62 (broad s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) δ 64.54 

(CH2), 64.58 (CH2), 102.81, 108.17, 109.56, 112.53, 115.10, 117.94, 134.67, 142.08, 

142.61, 144.26 (ArC), 161.63 (C=N), 162.57, 163.27 (ArC); HRMS: C15H12NO4 

requires 270.0766; found 270.0776 (M++H); Elemental analysis: Found: C, 66.14; H, 

4.84; N, 5.24; C15H13NO4 requires C, 66.41; H, 4.83; N, 5.16% 

4-[(2,3-Dihydrobenzo[1,4]dioxin-6-ylimino)methyl]-6-ethylbenzene-1,3-diol (12) 

was prepared from 5-ethyl-2,4-dihydroxybenzaldehyde (7b) and 2,3-

dihydrobenzo[b][1,4]dioxin-6-amine as orange powder in 87.0% yield; Mp: 181ºC; IR 

(KBr) νmax: 1628.34 cm-1, 1611.89 cm-1 (-N=C-), 3439.61 cm-1 (broad, OH); 1H NMR 

(400 MHz, DMSO-d6) δ 1.13 (t, 3H, CH3), 2.46 – 2.51 (m, 2H, CH2), 4.25 (s, 4H, 

OCH2CH2O), 6.34 (s, 1H, ArH), 6.84 – 6.92 (m, 3H, ArH), 7.26 (s, 1H, ArH), 8.71 (s, 

1H, CH=N), 10.14 (broad s, 1H, OH), 13.35 (broad s, 1H, OH); 13C NMR (100 MHz, 

DMSO-d6) δ 14.20 (CH3), 21.90 (CH2), 64.07 (OCH2CH2O), 64.12 (OCH2CH2O), 

102.03, 109.02, 111.72, 114.56, 117.46, 121.97, 132.61, 141.87, 142.04, 143.79 (ArC), 

159.85 (C=N), 160.81, 161.17 (ArC); HRMS: C17H18NO4 requires 300.1236; found 

300.1237 (M++H); Elemental analysis: Found: C, 67.85; H, 5.85; N, 4.50; C17H17NO4 

requires C, 68.21; H, 5.72; N, 4.68% 

(2,4-Bisbenzyloxybenzylidene)(2,3-dihydrobenzo[1,4]dioxin-6-yl)amine (13) was 

prepared from 2,3-dihydrobenzo[1,4]dioxin-6-ylamine and 2,4-



 

 

bisbenzyloxybenzaldehyde (8a) as a yellow powder in 90.5% yield; Mp: 144ºC; IR 

(KBr) νmax: 1608.90 cm-1 (-N=C-); 1H NMR (400 MHz, CDCl3) δ 4.29 (s, 4H, 

OCH2CH2O), 5.12 – 5.14 (s, 4H, 2xCH2), 6.63 (d, 1H, J=2.04 Hz, ArH), 6.68 – 6.71 (dd, 

1H, ArH), 6.78 – 6.82 (m, 2H, ArH), 6.88 (d, 1H, J=8.56 Hz, ArH), 7.36 – 7.44 (m, 

10H, ArH), 8.15 (d, 1H, J=8.52 Hz, ArH), 8.87 (s, 1H, CH=N); 13C NMR (100 MHz, 

CDCl3) δ 63.91 (CH2), 63.98 (CH2), 69.77 (CH2), 70.01 (CH2), 99.85, 106.52, 109.29, 

114.28, 116.94, 126.90, 127.14, 127.67, 127.76, 127.87, 128.24, 128.28, 128.32, 128.50, 

135.91, 141.30, 143.18 (ArC), 154.03 (C=N), 159.47, 162.18 (ArC); HRMS: C29H26NO4 

requires 452.1862; found 452.1865 (M++H); Elemental analysis: Found: C, 76.89; H, 

5.52; N, 2.99; C29H25NO4 requires: C, 77.14; H, 5.58; N, 3.10%  

(2,4-Bisbenzyloxy-5-ethylbenzylidene)(2,3-dihydrobenzo[1,4]dioxin-6-yl)amine (14) 

was prepared from 2,3-dihydrobenzo[1,4]dioxin-6-ylamine and 2,4-bisbenzyloxy-5-

ethylbenzaldehyde (8b) as a yellow powder in 86.9% yield; Mp: 158ºC; IR (KBr) νmax: 

1625.71 cm-1 (-N=C-); 1H NMR (400 MHz, CDCl3) δ 1.23 – 1.27 (t, 3H, CH3), 2.64 – 

2.70 (m, 2H, CH2), 4.30 (s, 4H, OCH2CH2O), 5.14 (s, 4H, 2xCH2), 6.58 (s, 1H, ArH), 

6.82 – 6.86 (m, 2H, ArH), 6.91 (d, 1H, J=8.52 Hz, ArH), 7.13 (s, 1H, ArH), 7.35 – 7.39 

(m, 10H, ArH), 8.50 (s, 1H, CH=N); 13C NMR (100 MHz, CDCl3) δ 13.80 (CH3), 22.18 

(CH2), 63.94 (CH3), 63.97 (CH3), 69.45 (CH3), 99.73, 109.03, 111.89, 113.99, 117.26, 

123.80, 126.71, 127.51, 128.16, 131.27, 136.22, 141.91, 143.49 (ArC), 159.64 (C=N), 

160.19, 161.73 (ArC); HRMS: C31H30NO4 requires 480.2175; found 480.2185 (M++H); 

Elemental analysis: Found: C, 77.36; H, 6.11; N, 2.96; C31H29NO4 requires C, 77.64; H, 

6.10; N, 2.92% 

Benzo[1,3]dioxol-5-yl(2,4-bisbenzyloxy-5-ethylbenzylidene)amine (15) was prepared 

from benzo[1,3]dioxol-5-ylamine and 2,4-bisbenzyloxy-5-ethylbenzaldehyde (8b) as a 

brown powder in 87.8% yield; Mp: 129ºC; IR (KBr) νmax: 1611.89 cm-1 (-N=C-); 1H 

NMR (400 MHz, CDCl3) δ 1.26 (t, 3H, CH3), 2.68 – 2.73 (m, 2H, CH2), 5.11 (s, 4H, 

2xCH2), 5.99 (s, 2H, OCH2O), 6.55 (s, 1H, ArH), 6.81 (s, 1H, ArH), 6.81 – 6.84 (m, 2H, 

ArH), 7.42 – 7.44 (m, 10H, ArH), 7.98 (s, 1H, ArH), 8.85 (s, 1H, CH=N); 13C NMR 

(100 MHz, CDCl3) δ 13.94 (CH3), 22.45 (CH2), 69.54 (CH2), 70.57 (CH2), 97.22, 

100.76 (OCH2O), 101.60, 107.82, 114.27, 117.37, 125.94, 126.60, 126.81, 126.88, 

127.22, 127.56, 127.68, 128.22, 128.27, 136.22, 136.26, 145.02, 147.64 (ArC), 154.21 

(C=N), 157.97, 159.64 (ArC); HRMS: C30H28NO4 requires 466.2018; found 466.2018 



 

 

(M++H); Elemental analysis: Found: C, 76.38; H, 5.83; N, 2.93; C30H27NO4 requires C, 

77.40; H, 5.85; N, 3.01% 

(2,4-Bisbenzyloxy-5-ethylbenzylidene)(3,4,5-trimethoxyphenyl)amine (16) was 

prepared from 3,4,5-trimethoxyaniline and 2,4-bisbenzyloxy-5-ethylbenzaldehyde (8b) 

as pale yellow flakes in 84.5% yield; Mp: 129ºC; IR (KBr) νmax: 1607.16 cm-1 (-N=C-); 

1H NMR (400 MHz, CDCl3) δ 1.25 (t, 3H, CH3), 2.65 – 2.73 (m, 2H, CH2), 3.90 (m, 9H, 

3xOCH3), 5.12 (s, 4H, 2xCH2), 5.96 (s, 1H, ArH), 6.45 – 6.56 (m, 3H, ArH), 7.36 – 7.43 

(m, 11H, ArH), 8.90 (s, 1H, CH=N); 13C NMR (100 MHz, CDCl3) δ 13.90 (CH3), 22.44 

(CH2), 55.46 (OCH3), 55.62 (OCH3), 60.59 (OCH3), 69.58 (CH2), 70.57 (CH2), 92.13, 

97.17, 97.79, 126.61, 126.81, 127.61, 127.72, 127.85, 128.04, 128.24, 128.31, 136.18, 

153.01 (ArC), 155.19 (C=N); HRMS: C32H34NO5 requires 512.2437; found 512.2438 

(M++H); Elemental analysis: Found: C, 74.82; H, 6.44; N, 2.65; C32H33NO5 requires C, 

75.12; H, 6.50; N, 2.74% 

(2,4-Bisbenzyloxy-5-ethylbenzylidene)(4-methoxyphenyl)amine (17) was prepared 

from 4-methoxyphenylamine and 2,4-bisbenzyloxy-5-ethylbenzaldehyde (8b) as a 

yellow powder in 90.5% yield; Mp: 139-140ºC; IR (KBr) νmax: 1609.00 cm-1 (-N=C-); 

1H NMR (400 MHz, CDCl3) δ 1.27 (t, 3H, CH3), 2.68 – 2.74 (q, 2H, CH2), 3.87 (s, 3H, 

OCH3), 5.11 – 5.13 (s, 4H, 2xCH2), 6.55 (s, 1H, ArH), 6.94 (m, 2H, ArH), 7.23 – 7.44 

(m, 13H, ArH), 8.89 (s, 1H, CH=N); 13C NMR (100 MHz, CDCl3) δ 13.93 (CH3), 22.45 

(CH2), 55.05 (OCH3), 69.58 (CH2), 70.60 (CH2), 97.21 113.85, 114.34, 115.98, 121.77, 

126.60, 126.81, 126.88, 127.58, 127.69, 127.75, 127.85, 128.04, 128.23, 128.26, 128.30, 

136.21 (ArC), 153.95 (C=N), 161.12, 162.30 (ArC); HRMS: C30H30NO3 requires 

452.2226; found 452.2217 (M++H); Elemental analysis: Found: C, 79.72; H, 6.47; N, 

3.32; C30H29NO3 requires C, 79.80; H, 6.47; N, 3.10% 

4-((Benzo[d][1,3]dioxol-5-ylimino)methyl)-6-ethylbenzene-1,3-diol (18) was prepared 

from 5-ethyl-2,4-dihydroxybenzaldehyde (7b) and benzo[d][1,3]dioxol-5-amine as a 

green powder in 59.6% yield; Mp: 176ºC; IR (KBr) νmax: 1633.59 cm-1, 1610.87 cm-1 (-

N=C-); 1H NMR (400 MHz, DMSO-d6) δ 1.13 (t, 3H, CH3), 2.45 – 2.51 (m, 2H, CH2), 

6.06 (s, 2H, OCH2O), 6.34 (s, 1H, ArH), 6.83 (d, 1H, J=2.24 Hz, ArH), 6.94 (d, 1H, 

J=8.28 Hz, ArH), 7.08 (d, 1H, J=2 Hz, ArH), 7.25 (s, 1H, ArH), 8.73 (s, 1H, CH=N), 

10.18 (s, 1H, OH), 13.28 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) δ 14.67 (CH3), 

22.35 (CH2), 101.51, 101.89 (CH2), 102.49, 108.91, 112.15, 115.97, 122.46, 133.06, 



 

 

143.32, 146.17, 148.68, 160.33 (ArC), 161.15 (C=N), 161.56 (ArC); HRMS: C16H16NO4 

requires 286.1079; found 286.1075 (M++H);  Elemental analysis: Found: C, 66.52; H, 

5.32; N, 4.94; C16H15NO4 requires C, 67.36; H, 5.30; N, 4.91% 

General method for synthesis of azetidinones 19 - 26 

Zinc powder (0.927g, 15 mmol) was activated using trimethylchlorosilane (0.65 mL, 5 

mmol) in anhydrous benzene (5 mL) by heating for 15 minutes at 40°C and 

subsequently for 2 minutes at 100°C in a microwave. After cooling, the appropriately 

substituted imine (10 mmol) and substituted ethylbromoacetate (12 mmol) were added 

to the reaction vessel and the mixture was refluxed in the microwave for 30 minutes at 

100°C. The reaction mixture was filtered through Celite to remove the zinc catalyst and 

then diluted with dichloromethane (50 mL). This solution was washed with saturated 

ammonium chloride solution (20 mL) and 25% ammonium hydroxide (20 mL), and then 

with dilute HCl (40 mL), followed by water (40 mL). The organic phase was dried over 

anhydrous sodium sulfate and the solvent was removed in vacuo. The pure product was 

isolated by flash column chromatography over silica gel (eluent: hexane: ethyl acetate 

gradient). 

1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)-4-(2,5-dimethoxyphenyl)azetidin-2-one (19) 

was prepared by reaction of (2,3-dihydrobenzo[1,4]dioxin-6-yl)(2,5-dimethoxy-

benzylidene)amine (10) and ethyl 2-bromoacetate in 13.2% yield as an orange powder; 

melting point: 164ºC; purity: 98.2%; IR (NaCl film) νmax: 1746.30 cm-1 (C=O, β-

lactam); 1H NMR (400 MHz, CDCl3) δ 2.85 – 2.90 (dd, 1H, H3), 3.49 – 3.54 (m, 1H, 

H3), 3.71 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.23 (s, 4H, OCH2CH2O), 5.28 – 5.31 (m, 

1H, H4), 6.76 – 6.88 (m, 6H, ArH); 13C NMR (100 MHz, CDCl3) δ 45.27 (C3, CH2), 

48.41 (C4), 55.27 (OCH3), 55.53 (OCH3), 63.75 (CH2), 63.99 (CH2), 105.74, 109.90, 

111.14, 111.99, 112.81, 116.98, 126.78, 131.60, 139.53, 143.13, 150.75, 153.35 (ArC), 

164.17 (C=O); HRMS: C19H20NO5 requires 342.1341; found 342.1356 (M++H) 

1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)-4-(2,4-dimethoxyphenyl)azetidin-2-one (20) 

was prepared from (2,3-dihydrobenzo[1,4]dioxin-6-yl)(2,4-dimethoxy-

benzylidene)amine (9) and ethyl 2-bromoacetate in 2.0% yield as a yellow oil; purity: 

96.1%; IR (NaCl film) νmax: 1744.56 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, CDCl3) 

δ 2.85 – 2.89 (dd, 1H, H3), 3.45 – 3.50 (m, 1H, H3), 3.81 (s, 3H, OCH3), 3.87 (s, 3H, 

OCH3), 4.21 (s, 4H, OCH2CH2O), 5.23 – 5.25 (m, 1H, H4), 6.44 – 6.50 (m, 2H, ArH), 



 

 

6.75 (d, 1H, J=9.56 Hz, ArH), 6.84 – 6.87 (m, 2H, ArH), 7.13 (d, 1H, J=8.56 Hz, ArH); 

13C NMR (100 MHz, CDCl3) δ 45.28 (C3), 48.40 (C4), 54.94 (OCH3), 55.03 (OCH3), 

63.75 (CH2), 64.00 (CH2), 98.21, 103.96, 105.73, 109.93, 116.93, 117.85, 126.70, 

131.71, 139.43, 143.10, 157.73, 160.27 (ArC), 164.42 (C=O); HRMS: C19H20NO5 

requires 342.1341; found 342.1331 (M++H)  

4-(2,4-Bisbenzyloxyphenyl)-1-(2,3-dihydrobenzo[1,4]dioxin-6-yl)azetidin-2-one (21) 

was prepared from (2,4-bisbenzyloxy-benzylidene)(2,3-dihydrobenzo[1,4]dioxin-6-

yl)amine (13) and ethyl 2-bromoacetate in 17.9% yield as a brown gel; purity: 99.3%; IR 

(NaCl film) νmax: 1745.51 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, CDCl3) δ 2.87 – 

2.92 (dd, 1H, H3), 3.44 – 3.49 (dd, 1H, H3), 4.22 (s, 4H, OCH2CH2O), 5.03 (s, 2H, CH2), 

5.11 (s, 2H, CH2), 5.29 – 5.31 (m, 1H, H4), 6.54 – 6.56 (m, 1H, ArH), 6.67 (s, 1H, ArH), 

6.76 – 6.91 (m, 4H, ArH), 7.29 – 7.47 (m, 10H, ArH); HRMS: C31H27NO5Na requires 

516.1787; found 516.1792 (M++H) 

4-(2,4-Bisbenzyloxy-5-ethylphenyl)-1-(2,3-dihydrobenzo[1,4]dioxin-6-yl)azetidin-2-

one (22) was prepared from (2,4-bisbenzyloxy-5-ethylbenzylidene)(2,3-

dihydrobenzo[1,4]dioxin-6-yl)amine (14) and ethyl 2-bromoacetate in 5.6% yield as a 

brown gel and was deprotected to prepare 5 without further characterisation; HRMS: 

C33H31NO5Na requires 544.2100; found 544.2109 (M++Na) 

4-(2,4-bis(Benzyloxy)-5-ethylphenyl)-1-(4-methoxyphenyl)azetidin-2-one (23) was 

prepared from (2,4-bisbenzyloxy-5-ethylbenzylidene)(4-methoxyphenyl)amine (17) and 

ethyl 2-bromoacetate in 4.5% yield as a yellow solid; purity: 94.1%; IR (NaCl film) 

νmax: 1727.60 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, DMSO-d6) δ 1.02 – 1.06 (t, 

3H, CH3), 2.55 – 2.61 (m, 2H, CH2), 2.88 – 2.92 (dd, 1H, H3), 3.45 (m, 3H, OCH3), 4.36 

– 4.39 (m, 1H, H3), 5.06 – 5.25 (m, 4H, 2xCH2), 5.31 (m, 1H, H4), 6.87 (m, 2H, ArH), 

6.92 (s, 1H, ArH), 7.01 (s, 1H, ArH), 7.13 (m, 2H, ArH), 7.40 – 7.45 (m, 10H, ArH); 13C 

NMR (100 MHz, DMSO-d6) δ 14.70 (CH3), 22.61 (CH2), 45.21 (C3),  48.73 (C4), 

(OCH3), 69.86 (CH2), 70.34 (CH2), 99.33, 114.63, 117.76, 117.90, 124.66, 127.31, 

127.71, 127.96, 128.12, 128.17, 128.79, 128.82, 131.76, 137.29, 137.52, 155.51, 155.58, 

156.83 (ArC), 164.43 (C=O); HRMS: C32H31NO4Na requires 516.2151; found 516.2156 

(M++Na) 

1-Benzo[1,3]dioxol-5-yl-4-(2,4-bisbenzyloxy-5-ethylphenyl)azetidin-2-one (24) was 

prepared from benzo[1,3]dioxol-5-yl-(2,4-bisbenzyloxy-5-ethylbenzylidene)amine (15) 



 

 

and ethyl 2-bromoacetate in 6.2% yield as a brown gel; purity: 87.3%; IR (NaCl film) 

νmax: 1738.89 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, CDCl3) δ 1.13 (t, 3H, CH3), 

2.55 – 2.65 (m, 2H, CH2), 2.92 – 2.96 (dd, 1H, H3), 3.43 – 3.48 (m, 1H, H3), 5.07 (m, 

4H, 2xCH2), 5.30 – 5.32 (m, 1H, H4), 5.93 (s, 2H, OCH2O), 6.60 (s, 1H, ArH), 6.68 (s, 

2H, ArH), 7.03 – 7.07 (m, 2H, ArH), 7.36 – 7.44 (m, 10H, ArH); 13C NMR (100 MHz, 

CDCl3) δ 14.02 (CH3), 22.37 (CH2), 45.23 (C3), 48.64 (C4), 69.75 (CH2), 70.36 (CH2), 

97.82, 99.00, 100.64 (OCH2O), 107.75, 109.01, 125.48, 126.43, 126.62, 126.97, 127.47, 

127.73, 128.17, 128.25, 132.41, 136.27, 136.63, 143.18, 147.32, 154.73, 156.54 (ArC), 

164.41 (C=O); HRMS: C32H29NO5Na requires 530.1943; found 530.1953 (M++Na)  

4-(2,4-Bisbenzyloxy-5-ethylphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (25) 

was prepared from (2,4-bisbenzyloxy-5-ethylbenzylidene)(3,4,5-

trimethoxyphenyl)amine (16) and ethyl 2-bromoacetate in 8.7% yield as a brown oil; 

purity: 98.8%; IR (NaCl film) νmax: 1746.84 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, 

CDCl3) δ 1.14 (t, 3H, CH3), 2.56 – 2.66 (m, 2H, CH2), 3.03 – 3.07 (d, 1H, H3), 3.44 – 

3.50 (dd, 1H, H3), 3.74 (s, 3H, OCH3), 3.89 (s, 6H, 2xOCH3), 5.04 - 5.07 (m, 4H, 

2xCH2), 5.32 – 5.33 (d, 1H, J = 4.48 Hz, H4), 6.59 (d, 3H, J = 11.04 Hz), 7.09 (s, 1H), 

7.38 – 7.42 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 14.14 (CH3), 22.36 (CH2), 44.92 

(C3), 48.74 (C4), 55.52 (OCH3), 60.51 (OCH3), 69.70 (CH2), 70.32 (CH2), 93.96, 97.71, 

117.10, 125.61, 126.60, 126.80, 126.99, 127.50, 127.76, 128.17, 128.25, 133.93, 136.13, 

136.51, 152.94, 154.83 (ArC), 164.72 (C=O); HRMS: C34H35NO6Na requires 576.2362; 

found 576.2357 (M++Na)  

4-(2,4-Bisbenzyloxy-5-ethylphenyl)-1-(2,3-dihydrobenzo[1,4]dioxin-6-yl)-3-phenyl-

azetidin-2-one (26) was obtained from (2,4-bisbenzyloxy-5-ethylbenzylidene)(2,3-

dihydrobenzo[1,4]dioxin-6-yl)amine (14) and ethyl 2-bromo-2-phenylacetate as an 

orange oil in 3.3% yield; IR (NaCl film) νmax: 1720.90 cm-1 (C=O, β-lactam); 1H NMR 

(400 MHz, CDCl3) δ 1.13 (t, 3H, CH3), 2.58 – 2.63 (m, 2H, CH2), 4.24 (s, 4H, 

OCH2CH2O), 4.29 (d, 1H, J=2 Hz, H3), 5.03 (s, 2H, CH2), 5.08 (s, 2H, CH2), 5.35 (d, 

1H, J=2 Hz, H4), 6.61 (s, 1H, ArH), 6.78 (s, 1H, ArH), 6.98 (m, 1H, ArH), 7.09 (s, 1H, 

ArH), 7.16 (s, 1H, ArH), 7.29 – 7.44 (m, 15H, ArH) 

General procedure for preparation of β-lactams 5 and 27 – 31  

The benzyl-protected compound (2 mmol) was dissolved in ethanol: ethyl acetate (50 

mL; 1:1 mixture) and hydrogenated over 1.2g of 10 % palladium on carbon until the 



 

 

debenzylation was complete on TLC.  The catalyst was filtered, the solvent was 

removed under vacuum and the product was isolated by flash column chromatography 

over silica gel (eluent: hexane: ethyl acetate gradient). 

1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)-4-(5-ethyl-2,4-dihydroxyphenyl)azetidin-2-

one (5) was prepared from 4-(2,4-bisbenzyloxy-5-ethylphenyl)-1-(2,3-

dihydrobenzo[1,4]dioxin-6-yl)azetidin-2-one (22) in 13.2% yield as a brown oil (purity: 

97.4%); IR (NaCl film) νmax: 1701.08 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, 

DMSO-d6) δ 1.02 (t, 3H, CH3), 2.40 (m, 2H, CH2), 2.93 – 2.96 (dd, 1H, H3), 3.37 – 3.41 

(dd, 1H, H3), 4.16 – 4.21 (m, 4H, OCH2CH2O), 5.12 – 5.13 (m, 1H, H4), 6.37 (s, 1H, 

ArH), 6.76 (m, 2H, ArH), 6.87 (s, 1H, ArH), 7.32 (s, 1H, ArH), 9.21 (s, 1H, OH), 9.40 

(s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) δ 14.87 (CH3), 21.07 (CH2), 44.69 (C3), 

49.13 (C4), 64.16 (CH2), 64.53 (CH2), 102.83, 105.42, 109.89, 113.63, 117.51, 121.41, 

127.80, 132.38, 139.64, 143.55, 154.56, 155.77 (ArC), 164.90 (C=O); HRMS: 

C19H18NO5 requires 340.1185; found 340.1187 (M++H)  

1-(2,3-Dihydrobenzo[1,4]dioxin-6-yl)-4-(2,4-dihydroxyphenyl)azetidin-2-one (27) 

was prepared from 4-(2,4-bisbenzyloxyphenyl)-1-(2,3-dihydrobenzo[1,4]dioxin-6-

yl)azetidin-2-one (21) in 17.6% yield as an yellow powder; melting point: 166ºC; purity: 

97.3%; IR (NaCl film) νmax: 1712.93 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, 

DMSO-d6) δ 2.88 – 2.92 (dd, 1H, H3, J=17.08 Hz, J= 12.52 Hz), 3.35 – 3.43 (dd, 1H, 

H3, J=20.56 Hz, J=9.04 Hz), 4.17 (m, 4H, OCH2CH2O), 5.13 – 5.15 (dd, 1H, H4, J=8.04 

Hz, J=2.88 Hz), 6.18 – 6.21 (m, 1H, ArH), 6.30 (m, 1H), 6.70 – 6.76 (m, 3H, ArH), 6.96 

(d, 1H, J=8.56 Hz, ArH), 9.35 (s, 1H, OH), 9.68 (s, 1H, OH); 13C NMR (100 MHz, 

DMSO-d6) δ 44.48 (C3), 48.61 (C4), 63.82 (OCH2CH2O), 64.20 (OCH2CH2O), 102.54, 

105.07, 106.77, 109.52, 113.89, 117.24, 128.06, 131.91, 143.24, 156.46, 158.13 (ArC), 

164.46 (C=O); HRMS: C17H16NO5 requires 314.1028; found 314.1020 (M++H)   

4-(5-Ethyl-2,4-dihydroxyphenyl)-1-(4-methoxyphenyl)azetidin-2-one (28) was 

prepared from 4-(2,4-bisbenzyloxyphenyl)-1-(4-methoxyphenyl)azetidin-2-one (23) as a 

yellow powder in 26.9% yield; purity: 90.4 %; IR (KBr) νmax: 1732.59 cm-1 (C=O, β-

lactam); 1H NMR (400 MHz, DMSO-d6) δ 0.98 (t, 3H, CH3), 2.31- 2.35 (m, 2H, CH2), 

2.89 – 2.94 (m, 1H, H3), 3.36 – 3.41 (m, 1H, H3), 3.67 (s, 3H, OCH3), 5.13 – 5.15 (dd, 

1H, H4), 6.34 (s, 1H, ArH), 6.84 (d, 3H, ArH), 7.16 (d, 2H, ArH), 9.21 (s, 1H, OH), 9.40 

(s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) δ 14.55 (CH3), 22.14 (CH2), 44.48 (C3), 



 

 

48.79 (C4), 55.19 (OCH3), 102.52, 113.46, 114.25, 117.52, 121.00, 127.38, 131.65, 

154.21, 155.08, 155.39 (ArC), 164.42 (C=O); HRMS: C18H19NO4Na requires 336.1212; 

found 336.1207 (M++Na)   

1-Benzo[1,3]dioxol-5-yl-4-(5-ethyl-2,4-dihydroxyphenyl)azetidin-2-one (29) was 

prepared from 1-benzo[1,3]dioxol-5-yl-4-(2,4-bisbenzyloxy-5-ethylphenyl)azetidin-2-

one (24) as a brown powder in 44.6% yield; purity: 100%; IR (NaCl film) νmax: 1720.37 

cm-1 (C=O, β-lactam); 1H NMR (400 MHz, DMSO-d6) δ 1.01 (t, 3H, CH3), 2.34 – 2.40 

(m, 2H, CH2), 2.94 – 2.98 (dd, 1H, H3), 3.37 – 3.43 (dd, 1H, H3), 5.13 – 5.15 (dd, 1H, 

H4), 5.94 – 5.97 (m, 2H, OCH2O), 6.36 (s, 1H, ArH), 6.65 – 6.68 (m, 1H, ArH), 6.84 – 

6.89 (m, 3H, ArH), 9.26 (s, 1H, OH), 9.46 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) 

δ 15.04 (CH3), 22.62 (CH2), 44.78 (C3), 49.63 (C4), 98.77, 101.49 (CH2), 102.98, 

108.87, 109.34, 113.64, 121.57, 128.03, 133.24, 143.34, 147.75, 154.72, 155.96 (ArC), 

165.12 (C=O); HRMS: C18H17NO5Na requires 350.1004; found 350.1010 (M++Na)   

4-(5-Ethyl-2,4-dihydroxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (30) was 

prepared from 4-(2,4-bisbenzyloxy-5-ethylphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-

2-one (25) in 6.2% yield as a white powder; purity: 96.1%; Melting point: 114°C; IR 

(KBr) νmax: 1714.00 cm-1 (C=O, β-lactam); 1H NMR (400 MHz, DMSO-d6) δ 1.03 (t, 

3H, CH3), 2.34 – 2.42 (m, 2H, CH2), 3.10 – 3.14 (dd, 1H, H3), 3.56 (s, 3H, OCH3), 3.65 

(s, 6H, 2xOCH3), 3.75 (s, 1H, H3), 5.15 – 5.18 (m, 1H, H4), 6.37 (s, 1H, ArH), 6.61 (s, 

2H, ArH), 6.98 (s, 1H, ArH), 9.29 (s, 1H, OH), 9.56 (s, 1H, OH); 13C NMR (100 MHz, 

DMSO-d6) δ 14.64 (CH3), 22.11 (CH2), 43.51 (C3), 49.06 (C4), 55.58 (OCH3), 55.65 

(OCH3), 60.08 (OCH3), 93.95, 102.37, 112.87, 121.25, 128.25, 133.21, 134.17, 153.05, 

154.53, 155.64 (ArC), 164.98 (C=O); HRMS: C20H23NO6Na requires 396.1423; found 

396.1417 (M++Na)   

1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-4-(5-ethyl-2,4-dihydroxyphenyl)-3-

phenylazetidin-2-one (31) was obtained from 4-(2,4-bisbenzyloxy-5-ethyl-phenyl)-1-

(2,3-dihydrobenzo[1,4]dioxin-6-yl)-3-phenyl-azetidin-2-one (26) as a yellow oil in 

13.9% yield; purity: 99.4%; IR (KBr) νmax: 1716.35 cm-1 (C=O, β-lactam); 1H NMR 

(400 MHz, CDCl3) δ 1.15 (t, 3H, CH3), 2.48 – 2.54 (m, 2H, CH2), 4.20 (s, 4H, 

OCH2CH2O), 4.46 (d, 1H, J=2 Hz, H3), 5.12 (d, 1H, J=2 Hz, H4), 6.28 (s, 1H, ArH), 

6.74 (d, 1H, J=8.52 Hz, ArH), 6.88 (m, 1H, ArH), 6.99 – 7.01 (m, 2H, ArH), 7.29 – 7.37 

(m, 5H, ArH); 13C NMR (100 MHz, DMSO-d6) δ 14.54 (CH3), 22.18 (CH2), 42.23 (C3), 



 

 

52.12 (C4), 63.91 (CH2), 64.17 (CH2), 101.04, 102.46, 103.46, 107.36, 111.48, 111.72, 

116.72, 116.95, 118.17, 118.51, 119.99, 121.98, 126.48, 127.53, 127.69, 127.87, 128.12, 

128.20, 128.23, 128.52, 128.74, 131.76, 135.21, 138.54, 139.57, 141.15, 142.22, 152.84, 

153.08, 153.94, 159.03, 160.15 (ArC), 169.72 (C=O); HRMS: C25H24NO5 requires 

418.1654; found 418.1656 (M++H)  

 

  



 

 

Biochemical Evaluation methods 

Hsp90α fluorescent displacement assay: The assay is adapted from the method 

outlined by Howes18, 35. The components of the Hsp90 assay buffer are as follows: 

HEPES, pH 7.3 (20mM); Potassium chloride (50mM); Magnesium chloride (5mM); 

Na2MoO4 (20nM); 0.01% v/v NP40.  The buffer is made up using distilled water. 

Directly before each use, 1mg bovine gamma globulin (per 10mL) and 3.085mg of DL-

dithiothreitol (per 10mL) are added.  Hsp90α recombinant human protein (Stressgen©) 

was used at a final protein concentration of 75nM and is diluted with assay buffer. 

FITC-geldanamycin (FITC-GA) is the fluorescent ligand used in this displacement assay 

at a final concentration of 5nM.  17-AAG is used as a positive control in the Hsp90 

fluorescent displacement assay (reported IC50 value for binding in Hsp90 is 1.27μM34).  

For the assay, to each well is added: 69 μL buffer, 1 μL ligand, 25 μL receptor and 5 μL 

FITC-GA. The control rows consist of (two of each): buffer (75 μL) + receptor (25 μL); 

buffer (70 μL) + receptor (25 μL) + FITC-GA (5 μL); buffer (95 μL) + FITC-GA (5 μL) 

and vehicle controls as necessary. The assay is read on a fluorescent plate reader using 

excitation of 485/20 nM and emission 535/25 nM with polarisation.  IC50 values were 

calculated using non-linear regression with a sigmoidal dose-response (variable slope) 

curve, using GraphPad Prism52. 

 

Antiproliferative MTT assay: All assays were performed in triplicate for the 

determination of mean values reported. The human breast tumour cell line MCF-7 was 

cultured in Eagles minimum essential medium in a 95%O2/5% CO2 atmosphere with 

10% fetal bovine serum, 2mM L-glutamine and 100 µg/mL penicillin/streptomycin. The 

medium was supplemented with 1% non-essential amino acids. Cells were trypsinised 

and seeded at a density of 2.5 x 104 cells/mL in a 96-well plate and incubated at 37oC, 

95%O2/5% CO2 atmosphere for 24 h. After this time they were treated with 2 µL 

volumes of test compound which had been pre-prepared as stock solutions in ethanol to 

furnish the concentration range of study, 1 nM–200 µM, and re-incubated for a further 

72 h. Control wells contained the equivalent volume of the vehicle ethanol or DMSO 

(1% v/v). The culture medium was then removed and the cells washed with 100µL 

phosphate buffered saline (PBS) and 50 µL MTT (dissolved in PBS) added, to give a 

final concentration of 1 mg/mL MTT. Cells were incubated for 3 hours in darkness at 



 

 

37oC. At this point solubilization was begun through the addition of 200 µL DMSO and 

the cells maintained at room temperature in darkness for 20 min to ensure thorough 

colour diffusion before reading the absorbance. The absorbance value of control cells 

(no added compound) was set to 100 % cell viability and from this graphs of absorbance 

versus cell density per well were prepared to assess cell viability using GraphPad Prism 

software52. 

Molecular modelling methods 

PDB entry 1OSF47 (a co-crystal structure of 17-dimethylaminoethylamino-17-

demethoxygeldanamycin in complex with human Hsp90α) was shown to be the optimal 

X-ray co-crystal structure of 33 reported Hsp90-ligand complexes to use in the docking 

procedure due to correct re-docking of 131 Hsp90 actives as demonstrated previously18. 

Proximal binding site waters were retained in the docking process as they provide key 

interactions in stabilising the ligand in the active site. Addition of hydrogens for the 

receptor and waters was carried out using MOEv2007.09 and optimization using the 

Amber99 force-field ensuring all other atom positions remained fixed. A post-docking 

constraint that all docked poses must have a H-bonding interaction with either Thr184 

and/or Asp93 to be considered successfully docked was employed. Docking was 

performed using the docking algorithm FRED (Fast Rigid Exhaustive Docking53) and 

scored with Chemgauss3. 
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Figure legends 

Figure 1. Hsp90 binding compounds including geldanamycin 1a, 17-AAG 1b, 17-

DMAG 1c, radicicol 2 and proposed β-lactam based inhibitor 5 

Figure 2. Flexible alignment of pyrazole 3a (green) and β-lactam 5 (coloured by atom; 

grey = carbon; red = oxygen; blue = nitrogen) 

Figure 3. Docking of β-lactam 5 in the N-terminal of Hsp90α (PBD code: 1OSF47). 

Residues that are crucial for binding are shown. Colour key: Grey = carbon; red = 

oxygen; blue = nitrogen; hydrogen bonds shown as dashed red lines 

Figure 4. 2D representation of proposed binding interactions of 5 with Hsp90 

Figure 5. Imine 12 in the ATP-binding site of Hsp90 with selected residues for binding 

shown (PDB code: 1OSF47); Colour key: Grey = carbon; red = oxygen; blue = nitrogen; 

hydrogen bonds shown as dashed red lines 

Figure 6. 2D representation of binding interactions of imine 12 with the ATP-binding 

site of Hsp90 

Figure 7. Dose response graph for β-lactam 5, imine 12 and 17-AAG (1b) for binding to 

Hsp90α. 

MCF-7 cells were seeded at a density of 2.5 x 104 cells per well in 96 well plates. The 

plates were left for 24 hours to allow the cells to adhere to the surface of the wells. A 

range of concentrations (0.01 nM-100 µM) of the compound were added in triplicate and 

the cells left for another 72 hours. Control wells contained the equivalent volume of the 

vehicle ethanol (1% v/v). An MTT assay was performed to determine the level of anti-

proliferation. The values represent the mean ± S.E.M (error values) for three 

experiments performed in triplicate.  

 



 

 

Scheme and Table Legends 

Scheme 1: Synthesis of imines 9-18a 

aReagents and conditions: (a) DMF, POCl3, 80°C; (b) C6H5CH2Br, K2CO3, CH3CN; (c) 

HTMA, CF3COOH, 100°C, 30 mins;(d) Ethanol, reflux, 3 hours 

 

Scheme 2: Synthesis of azetidin-2-ones 19-26a 

aReagents and conditions: (a) Zinc, TMCS, anhydrous benzene, microwave 

 

Scheme 3: Synthesis of azetidin-2-ones 5, 27-30a  

aReagents and conditions: (a) H2, Pd/C, Ethanol:Ethyl acetate (1:1)  

 

Table 1. Hsp90 binding interactions for β-lactam 5, imine 12 and selected inhibitors1 

1Table modified from Lauria et al49. 2Residues in brackets correspond to the human 

homologues of yeast sequence for Hsp90. GA=geldanamycin. 

 

Table 2. Antiproliferative and Hsp90-binding effects of β-lactams and imines  

aMCF-7 IC50 values are half maximal concentrations required to inhibit the growth 

stimulation of MCF-7 cells. Values represent the mean ± S.E.M (error values x 10-6) for 

three independent experiments performed in triplicate. bHsp90α values after 24 hours 

using isolated human Hsp90α; 17-AAG is used as a positive control in the Hsp90 

fluorescent displacement assay and the value obtained agrees with the reported IC50 

value for binding of 17-AAG in Hsp90 of 1.27 μM34. 
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