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Abbreviations 

 

B-Picture – Bidirectionally predictive-coded Picture. 

 

BDM – Block distortion measure. 

 

BMA – Block motion algorithm. 

 

BME – Block motion estimation. 

 

CSP – Cross Shaped Pattern. 

 

IEEE – Institute of Electrical and Electronics Engineers. 

 

I-Picture – Intra-coded Picture. 

 

ISO – International Organization for Standardization. 

 

ITU-R – International Telecommunications Union. 

 

LCSP – Large Cross Shaped Pattern. 

 

LDSP – Large Diamond Shaped Pattern. 

 

MB – Macroblock. 

 

MAD – Mean Absolute Difference. 

 

M-code – MATLAB code. 

 

MPEG – Motion Picture Experts Group. 

 

MSE – Mean Square Error. 

 

PSNR – Peak-Signal-to-Noise-Ratio. 

 

P-Picture – Predictive-coded Picture. 

 

SAD – Sum of Absolute Differences. 

 

SCSP – Small Cross Shaped Pattern. 

 

SDSP – Small Diamond Shaped Pattern. 
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Abstract 
 

Block matching is the most computationally demanding aspect of the video encoding 

process. In many applications real-time video encoding is desired and therefore it is 

important that the encoding is fast. Also where handheld devices such as a PDA or 

mobile phone are concerned a less computationally intensive algorithm means a 

simpler processor can be used which saves on hardware costs and also extends battery 

life. An optimised algorithm also allows these devices to be used in low bandwidth 

wireless networks. The challenge is to decrease the computational load on the system 

without compromising the quality of the video stream too much, thus enabling easier 

and less expensive implementations of real-time encoding. 
 

This thesis appraises some of the principal Block Search Algorithms used in Video 

compression today. This work follows on from the work of Aroh Barjatya who 

implemented 7 common Block Search Algorithms to predict P-frames in MATLAB. 

Three further hybrid DS algorithms are implemented in MATLAB. Additional code is 

added to produce plots of the main metrics and to calculate some statistics such as 

Average Searching Points, Average PSNR and the Speed Improvement Ratio with 

respect to the Diamond Search and the Exhaustive Search. 
 

For a comparative analysis with previous studies 3 standard industry test sequences 

are used. The first sequence, Miss America is a typical videoconferencing scene with 

limited object motion and a stationary background. The second sequence, Flower 

Garden consists mainly of stationary objects, but with a fast camera panning motion. 

The third sequence, Football contains large local object motion. The performance of 

the 3 implemented algorithms were assessed by the aforementioned statistics. 
 

Simulation results showed that the NCDS was the fastest algorithm amongst the 3 

hybrid DS algorithms simulated. A speedup ranging from 10% for the complex 

motion sequence Flower Garden to nearly 54% for the low motion video 

conferencing sequence Miss America was recorded. 
 

All 3 algorithms performed very competitively in terms of PSNR compared to the DS 

even though they use a lower number of search points on average. It was shown that 

the NCDS has marginally worse PSNR performance than the DS compared to the 

other 2 algorithms – the highest being a drop in PSNR of 0.680dB for the Flower 

Garden sequence. However, the speed improvements for NCDS are quite substantial 

and thus would justify its use over the DS. The results from the implementation 

concurred with the literature therefore validating the implementation. 
 

The implementation was used as a guide in nominating a ‘robust’ Block Search 

Algorithm. When the DS, CDS, SCDS and the NCDS were compared with ARPS it 

was shown that ARPS generally gave both higher PSNR and higher search speed for 

all 3 sequences. The reason for the good performance of ARPS is that it quickly 

directs the search into the local region of the global minimum by calculating the 

Predicted Motion Vector. The minimum error from a rood pattern of nodes is found 

and then a final refined search calculates the motion vector. 
 

Simulation results showed that ARPS was the best algorithm amongst the 10 

algorithms simulated from the point of view of speed (lowest number of search points 

used per macroblock) and video quality (PSNR). For real-time encoding of video the 

best fast block motion algorithm to advise is ARPS. 
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1.0 Introduction 

A video sequence consists of a series of frames viewed at a sufficiently fast frame rate to give 

the illusion of motion. Video generally contains a lot of data which places a large demand on 

video systems for both storage and transmission of digital video. For example, uncompressed 

CCIR601 active digital video requires a bandwidth in excess of 158Mbps – over 300 times the 

capacity of a 512kbps ADSL connection and only just over one hour recording on a 80GB 

hard disk (Chapman and Chapman, 2004). These demands have lead to a large body of 

research in the area of video compression, particularly motion estimation (Barjatya, 2004). 

Block-based motion estimation algorithms have seen widespread use in many codecs due to 

their effectiveness and simplicity of implementation (Tham et al, 1998). They have been used 

in MPEG-1, MPEG-2, H.261, H.262 and more recently in MPEG-4 and H.264 (Wiegand et al, 

2003). A frame is selected as a reference frame and subsequent frames are predicted from the 

reference. An encoder will output a series of motion vectors and a difference image for each 

original uncompressed frame. At the decoder the original frame is reconstructed from the 

summation of the motion compensated image (produced from its motion vectors and 

corresponding reference frame) and the motion compensated difference image. Much less data 

is required to code the motion vectors and the motion compensated difference image than is 

needed to code the original image and so compression is achieved. 

The main focus of this work is on the analysis of current fast block search algorithms 

for motion estimation with a conclusion of ‘best-practice’ when nominating a Block Search 

Algorithm. The optimal algorithm will have a low computational cost whilst not degrading the 

quality of the encoded video. 

 

 

Encoder    

 
Reference frame 

 
Current frame 

 
Motion 

Estimation 

→ 

 

Matrix of Motion Vectors 

+ 

Difference image 

 

Decoder    

 
Motion Compensated 

Frame (with Motion 

Vectors overlaid) 

 

 
Motion compensated 

difference image 

 

Σ 

→ 

 
Reconstructed image 

 

Fig. 1.1 Encoding and Decoding of a video sequence and the role of Motion Vectors. 

The Flower Garden sequence involves a pan from left to right, a motion vector points to the 

best match macroblock in the reference frame, hence the predominance of motion vectors 

pointing to the left. Source: Girod, (2008). 
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1.1 Fast Motion Estimation Algorithms 

Block matching is the most computationally demanding aspect of the video encoding process. 

In many applications real-time video encoding is desired and therefore it is important that the 

encoding is fast. Also where handheld devices are concerned a less computationally intensive 

block matching algorithm means a simpler processor can be used saving hardware costs and 

extending battery life (Dahlstrand, 2001). An optimised algorithm also allows these devices to 

be used in low bandwidth wireless networks. 
 

As can be seen from table 1.1 which shows the number of operations per second required for a 

real-time implementation of a video encoder (Cheung, 1998) the motion estimation operation 

is by far the largest component of video encoding. It requires 608 million operations per 

second or 63% of the computational load. This is a considerable problem when trying to 

achieve real-time coding of video streams. The challenge is to decrease the motion estimation 

load on the system without compromising the quality of the video stream too much, thus 

enabling easier and less expensive implementations of real-time coding. 

 

Additionally the more accurate the motion vector prediction the smaller the motion 

compensated difference image and hence the better the compression efficiency. This reduces 

the overall bandwidth requirements (such as in IP Video systems) but more importantly it can 

significantly reduce the amount of storage required for recording the video, often one of the 

most expensive items in a system (Keepence, 2008). 

 

Table 1.1: MOPS requirement for real-time implementation for H.261 compression 

Operation MOPS 

RGB to YCbCr 27 

Motion estimation (25 searches in a region) 608 

Inter/Intraframe coding 40 

Loop filtering 55 

Pixel prediction 18 

2-D DCT 60 

Quantization, zig-zag scanning 44 

Entropy coding 17 

Frame reconstruction 99 

Total 968 

Source: Cheung, (1998). 

 

 

1.2 Achieving Motion Estimation 

In a sequence of frames, the current frame is predicted from a previous frame known as a 

reference frame. The current frame is divided into non overlapping macroblocks, typically 16 

pixels x 16 pixels in size. This choice of size is a good trade-off between accuracy and 

computational cost. However, motion estimation techniques may choose different block sizes, 

and may vary the size of the blocks within a given frame. 
 

Each macroblock in the current frame is compared to a macroblock in the reference frame 

using some cost function, and the best matching macroblock is selected. The search is 

conducted within a predetermined search window defined by the search parameter p. 

Typically p is set to ±7 pixels. A vector denoting the displacement of the macroblock in the 

reference frame with respect to the macroblock in the current frame, is determined. This 

vector is known as the motion vector. 
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Fig. 1.2 How the Motion Vector is found in the Reference frame. 

Block-matching motion estimation algorithms find the motion vector of the current block by 

finding the best-matching displaced block in the reference frame. For example, (c) and (d) 

show the 137th frame and the 138th frame of the foreman sequence. The current frame (138) 

is divided into non-overlapping blocks as shown in (d). The motion vector for the current 

block of the current frame - shown in (f) in green - is found by locating the best-matching 

displaced block within the corresponding search window in the range [-p, p] - shown in (e) in 

blue - in the previous frame (137). The displacement vector which produces the minimal 

matching-error via a cost function is the motion vector – shown above as a red arrow. 

Source: Chen, (1998). 

 

p 

p 
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1.3 Cost Function 

The matching of one macroblock with another is based on the output of a cost function also 

referred to as a block distortion measure (BDM). The macroblock that results in the least cost 

is the one that matches the current block the closest. There are various cost functions, of which 

the most popular and less computationally expensive is: 
 

The Mean Absolute Difference (MAD) given by equation (i). 

    
 

Another cost function is the Mean Squared Error (MSE) given by equation (ii). 

   
 

where N is the size of the macrobock, Cij and Rij are the pixels being compared in the current 

macroblock and the reference macroblock, respectively. 
 

Ghanbari (1990) states that the use of mean absolute error rather than the more complex mean 

square error as the distortion measure, results in slightly better entropy performance (almost 

0.8% lower prediction error). 
 

For each cost function, a comparison is made pixel by pixel using the luma value only 

(Richardson, 2002). These errors are summed over the macroblock and if this error is less than 

the previous error, the location of the macroblock in the reference picture is saved. Once all 

macroblocks in the search window have been examined, the motion vector is determined 

based on the macroblock with the lowest error measure. 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

Fig. 1.3 A Cost Function being applied at a number of locations within the search window. 

(a) shows the current block of the current frame in green (b) shows different displaced blocks 

in the reference frame including the corresponding location of the current block in green (c) 

shows the corresponding residuals (matching errors). The displacement (upper-right) that finds 

the best-matching block (marked in red) is the motion vector. 

Source: Chen, (1998). 
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1.4 Rate Distortion Performance-PSNR 

Peak-Signal-to-Noise-Ratio (PSNR) given by equation (iii) characterizes the quality of the 

motion compensated image (created by using motion vectors and the macroblocks from the 

reference frame) compared to the original image: 
 

   
 

The higher the value of PSNR, the smaller will be the error residual giving a more improved 

video quality (Nie and Ma, 2002). This metric is used as a quality indicator when comparing 

various block match algorithms. 

 

 

1.5 Monotonic Error Surface 

The idea behind many fast block search algorithms is that the error surface due to motion in 

every macroblock is unimodal. A unimodal surface is a bowl shaped surface such that the 

weights generated by the cost function increase monotonically from the global minimum. 

Some of the earlier algorithms rely on this assumption for their search strategies and therefore 

that the local minimum is actually the global minimum. Since this unimodal assumption is 

sometimes not valid, these algorithms are susceptible to being trapped at local minima, and as 

a result, do not achieve the same rate distortion performance as the full search. 

However, these algorithms drastically reduce the number of search positions over the full 

search strategy. For software implementations, this results in a substantial reduction in the 

computational load and so the implemental benefit is worth the loss in compression efficiency 

for many applications (Booth, 2003). 

 

     
Fig. 1.4 Examples of Matching Error Surfaces. 

(a) Unimodal error surface with a global minimum error point. (b) Non-unimodal error surface 

with multiple local minimum error points. 

Source: Yao Nie and Kai-Kuang Ma (2002). 



-6- 

2.0 Literature Review 

 

The Block-Matching technique for Motion Estimation was originally described by Jain and 

Jain (1981). It was easy to implement and thus widely adopted. Each image frame was divided 

into a fixed number of (usually) square blocks. For each block in the frame, a search is made 

in the reference frame over an area of the image that allows for the maximum translation that 

the coder can use. The search is for the best matching macroblock that gives the least 

prediction error - usually mean absolute difference (MAD) which is the easiest to compute. 

 

Typical block sizes are of the order of 16 pixels x 16 pixels, and the maximum displacement 

might be ±64 pixels from a block’s original position. Several search strategies are possible, 

usually using some kind of sampling mechanism, but the most straightforward approach is the 

Exhaustive Search. This is computationally demanding in terms of data throughput, but 

algorithmically simple, and relatively easily implemented. 

 

A good match during the search means that a good prediction can be made, but the 

improvement in prediction must outweigh the cost of transmitting the motion vector. A good 

match requires that the whole macroblock has undergone the same translation, and the 

macroblock should not overlap objects in the image that have different degrees of motion, 

including the background. 

 

The choice of macroblock size to use for motion compensation is always a compromise, 

smaller and more numerous blocks can better represent complex motion than fewer large ones. 

This reduces the work and transmission costs of subsequent correction stages but with greater 

cost for the motion information itself. An appraisal of some of the principal Block Search 

Algorithms used in Video compression today is now presented. 

 

 

2.1 Exhaustive Search (ES) 

The exhaustive search algorithm checks every possible motion vector candidate in a search 

window using a distortion measure and finds the motion vector within that window that 

minimizes the distortion. Although ES finds the best motion vector in a global sense, the large 

number of distortion calculations that it requires adds to the computational cost of a video 

coder and limits the algorithm’s practical implementations. 

 

 The most computationally expensive block matching algorithm of all is the Exhaustive 

Search since it calculates the cost function at each possible location in the search window - 

225 locations (15x15). 

 As a result it finds the best possible match and gives the highest PSNR amongst any block 

matching algorithm. 

 The obvious disadvantage of ES is that the larger the search window gets the more 

computations it requires. 

 



-7- 

 
Fig. 2.1 Exhaustive Search Algorithm. 

Source: Barjatya, 2004. 

 

2.2 Three Step Search (3SS) 

Fast block matching algorithms began to emerge in the early eighties trying to achieve the 

same PSNR as Exhaustive Search but using a lower number of search points to reduce the 

computational complexity. One early fast algorithm was the Three Step Search introduced by 

Koga et al (1981). 

 

 The 1
st
 step of the 3SS begins with the search location at the centre and sets the ‘step size’  

S = 4, instead of the usual search parameter value of 7 for ES. It then searches at eight 

locations +/- S pixels in the x and y direction around location (0,0) as well as the centre 

location. 

 From these nine locations searched it picks the one giving the least cost and makes it the 

new search origin - (4, 0) in the diagram. The 2
nd

 step begins with this origin and with the 

new step size of S = S/2 = 2, and repeats a similar search finding the best match again - at  

(6, -2) in the diagram. This is made the new search origin for the 3
rd

 and final step which will 

have the new step size S = S/2 = 1. 

 The best-match macroblock in the 3
rd

 step is found and this is the best match overall. Its 

location is the motion vector value. The calculated motion vector is then saved for 

transmission. The 3SS gives a flat reduction in computation by a factor of 9 compared to ES 

- since 25 locations in total are checked (9+8+8) as compared to 225 for ES. 
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(0, 0) (4, 0) 

(6, -2) 

(5, -3) 

 
Fig. 2.2 Three Step Search Algorithm procedure. 

Motion Vector is (+5, -3). Source: Barjatya, 2004. 

 

2.3 New Three Step Search (NTSS) 

Li et al, (1994) developed the New Three Step Search (NTSS) to improve on the TSS which 

was good for large motions but was prone to missing small motions (Jing and Chau, 2004). It 

used a centre biased searching scheme like TSS but it had a provision for a half way stop after 

the first or second step - thus reducing computational cost. It was one of the first widely 

accepted fast algorithms and frequently used for implementing earlier standards like MPEG 1 

and H.261 (Barjatya, 2004). 

 

 In the 1
st
 step 16 points are checked in addition to the search origin for lowest weight using 

a cost function. 8 are a distance of S = 4 away (similar to TSS) and the other 8 are at a 

distance S = 1 away from the search origin. If the lowest cost is at the origin then the 

searching is stopped and the motion vector is set as (0, 0). 

 If the lowest weight is at any one of the 8 locations at S = 1, then the origin of the search is 

changed to that point and the weights adjacent to it are checked. Depending on whether the 

origin is located at the middle of a horizontal or vertical axis or a corner a further 3 or 5 

adjacent points are checked. The location that gives the lowest weight is the closest match 

and the motion vector is set to that location. This scenario results in a total of either 20 or 22 

search points being checked for these quasistationary (within a central 2x2 area) 

macroblocks (Tham et al, 1998). 

 Alternatively if the lowest weight after the first step was one of the 8 locations at S = 4, then 

the normal TSS procedure is followed. 

 Hence although this process might need a minimum of 17 (8+9) points to check every 

macroblock (stationary), it also has the worst-case scenario of 33 (8+9+8+8) locations to 

check. 
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Fig. 2.3 New Three Step Search Algorithm procedure. 

Source: Jing and Chau, 2004. Big circles are checking points in the first step of TSS with the 

extra 8 points added in the first step of NTSS. Triangles and squares are second step of NTSS 

showing 3 points and 5 points being checked when least weight in first step is at one of the 8 

neighbours of the window centre. 

 

 

2.4 Simple and Efficient Search (SES) 

Lu and Liou (1997) developed a Simple And Efficient Search Algorithm which improved on 

TSS by halving the number of computations while keeping the same regularity and good 

performance. The algorithm halved the number of computations of the TSS on the basis that 

for a unimodal surface there cannot be two minimums in opposite directions. Thus the 8 point 

fixed pattern search of TSS can be changed to incorporate this and save on computations. The 

algorithm still has three steps like TSS, but with each step having two phases. 

 

 The search area is divided into four quadrants and the algorithm checks three locations A, B 

and C as shown. A is at the origin and B and C are S = 4 locations away from A in 

orthogonal directions. 

 Depending on the MAD calculated at each of the three locations the first phase chooses 

which one of the possible 4 quadrants to search for the second phase. The rules for 

determining which quadrant is searched in the second phase are as follows: 

 

If MAD(A) ≥ MAD(B) and MAD(A) ≥ MAD(C), select (a); 

If MAD(A) ≥ MAD(B) and MAD(A) < MAD(C), select (b); 

If MAD(A) < MAD(B) and MAD(A) < MAD(C), select (c); 

If MAD(A) < MAD(B) and MAD(A) ≥ MAD(C), select (d); 
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Fig. 2.4 Search patterns corresponding to each selected quadrant of the SES. 

(a) to (d) show when an individual quadrant from I to IV is selected. Source: Lu and Liou 

(1997). 

 

 Some additional points are then selected depending on the quadrant chosen and the second 

phase finds the location with the lowest weight and sets it as the new origin. The step size is 

changed to S = 2 - similar to the TSS - and the process is repeated until S = 1 is reached. 

The location with the lowest weight is the motion vector. 

 

Although SES saves a lot on computation as compared to TSS, it was not widely accepted for 

two reasons (Barjatya, 2004). 

Firstly, in reality the error surfaces are not strictly unimodal and hence the PSNR achieved by 

SES is poor compared to TSS. 

Secondly, the Four Step Search, published the year before offered low computational cost 

compared to TSS and gave significantly better PSNR. 

 

 
Fig. 2.5 Simple and Efficient Search Algorithm procedure. 

Motion Vector is (+3, +7). Source: Barjatya, 2004. 
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2.5 Four Step Search (4SS) 

Po and Ma (1996) introduced the four-step search (4SS) algorithm using a centre-biased 

checking point pattern with a halfway-stop technique. This meant that the algorithm could 

have 2, 3 or 4 search steps and thus the total number of checking points could vary from 17 

(9+8) for best-case to 27 (9+5+5+8) for worst case such as when estimating large movement 

(Po and Ma, 1996). Po and Ma showed that 4SS performed better than the popular TSS in 

terms of motion compensation errors (albeit with two block matches more in the worst-case) 

and had similar performance to the NTSS. In addition, the 4SS also reduced the worst-case 

computational requirement by 6 block matches from 33 for N3SS to 27 search points and the 

average computational requirement from 21 to 19 search points giving it an edge over N3SS. 

 

The 4SS algorithm (Po and Ma, 1996) is summarized as follows: 

 Step 1: A minimum block distortion measure (BDM) point is found from a pattern of 9 

checking points in a 55 window (i.e. S = 2) as shown in Fig. 2.6a. If the minimum BDM 

point is found to be at the centre of the search window, the search jumps to Step 4; 

otherwise if it is at one of the other 8 points this is made the new origin and the search 

moves on to Step 2. 

 

 Step 2: The search window size is maintained at 55. However, the search pattern will 

depend on the position of the previous minimum BDM point. 

a) If the previous minimum BDM point is located at the corner of the 

previous search window, 5 additional checking points as shown in Fig. 

2.6b are used. 

b) If the previous minimum BDM point is located at the middle of a 

horizontal or vertical axis of the previous search window, 3 additional 

checking points as shown in Fig. 2.6c are used. 

 

If the minimum BDM point is found to be at the centre of the search window at this step, the 

search jumps to Step 4; otherwise the search moves on to Step 3. 

 

 Step 3: The searching pattern strategy is the same as in Step 2, but finally it will go to Step 

4. 

 

 Step 4: The search window is reduced to 33 (i.e. S = 1) as shown in Fig. 2.6d and the 

direction of the overall motion vector is considered as the minimum BDM point among 

these final 9 searching points. 

 

An advantage of 4SS is that the intermediate steps may be skipped and then jumped to the 

final step with a 33 window if at any time the minimum BDM point is located at the centre of 

the search window. Based on this 4SS pattern, the whole 1515 displacement window can be 

covered even though only the small 55 and 33 search windows are used. 
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Fig. 2.6 Search Patterns used in the Four Step Search Algorithm. 

Source: Barjatya, 2004. 

 

 

 
Fig. 2.7 Four Step Search Algorithm procedure. 

Motion Vector is (+3, -7), 25 checking points used. Source: Po and Ma (1996). 
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2.6 Diamond Search (DS) 

Tham et al (1998) introduced a Novel Unrestricted Centre-Biased Diamond Search Algorithm 

(UCBDS) - more commonly referred to as the Diamond Search Algorithm (DS). They 

reported it had a best case search of only 13 (9+4) search points and an average of 15.5 block 

matches - making it consistently faster than any of the previous suboptimal (non exhaustive) 

block-matching techniques. 

 

The UCBDS algorithm (Tham et al, 1998) is summarized as follows: 

 

  The algorithm uses two different types of search pattern: a Large Diamond Search Pattern 

(LDSP) as shown in Fig. 2.8a and a Small Diamond Search Pattern (SDSP) as shown in Fig. 

2.8d. 

 The first step uses a LDSP. A minimum block distortion measure (BDM) point is found at 

one of 9 checking points in a 55 window (i.e. S = 2) as shown in Fig. 2.8a. 

1. If the minimum BDM point is at one of the four vertices then this point is made the centre 

of a new LDSP and 5 new candidate points are evaluated as shown in Fig. 2.8b. 

2. If the minimum BDM point is at one of the other four points along a face then this point is 

made the centre of a new LDSP and 3 new candidate points are evaluated as shown in Fig. 

2.8c. 

 

These 2 scenarios are repeated without limit - all the time using LDSP - until the minimum 

BDM point is found to be at the centre of the search window. 

 

3. If the minimum BDM point is found to be at the centre of the search window, the search 

changes to a SDSP with 4 more internal candidate points being evaluated as shown in Fig. 

2.8d. The candidate point with the minimum BDM is chosen as the motion vector. 

 

Tham et al (1998) concluded from their results that UCBDS was more efficient, effective, and 

robust when compared to the existing FS, TSS, NTSS, and FSS due to the following reasons: 

• Efficiency—UCBDS is highly centre biased, and it has a very compact diamond search point 

configuration. This allowed a minimum of only 13 candidate search points per macroblock - 

resulting in a speed improvement of up to 31% over the FSS. 

• Effectiveness—UCBDS has the freedom to search for the true motion vector due to its 

unrestricted search strategy. This indirectly reduces the chances of being trapped at a local 

minimum and leads to lower motion compensation errors. 

• Robustness—As UCBDS is unrestricted and does not have a predetermined number of 

search steps, it is flexible enough to work well for any search range/window size. 
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Fig. 2.8 Search Patterns used in the Diamond Search Algorithm. 

(a) Original diamond search-point configuration. (b) Next step along a diamond’s vertex. (c) 

Next step along a diamond’s face. (d) Final step with a shrunk (small) diamond.  Source: 

Tham et al (1998). 
 

 
Fig. 2.9 Diamond Block Matching Algorithm procedure. 

Motion Vector is (+7, -2), five LDSPs are needed in this example followed by a final SDSP. 

There are 28 (9+5+5+3+2+4) block evaluations in total. Note: any candidate points that extend 

beyond the search window of w = ±7 are ignored. 

Source: Tham et al (1998). 
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2.7 Adaptive Rood Pattern Search (ARPS) 

Nie and Ma (2002) outlined a number of flaws with the diamond search (DS) which was the 

best BMA at that time. They argued that when the size of the fixed search DS pattern does not 

match the magnitude of the actual motion, over search or under search will occur leading to 

certain search deficiency and inaccuracy: 

1. For example, in DS, LDSP will be too large for searching a small motion vector with a 

length less than 2 pixels away from the search centre, thus causing unnecessary searches 

(i.e. over search). 

2. On the other hand, in the case of large and complex motion (e.g. the Foreman sequence), 

the characteristic of centre-biased motion vector distribution is very weak, and the 

unimodal error surface assumption is no longer valid [see Fig. 1.2 (b)]. A LDSP could be 

too small for searching a large motion vector (i.e. under search) and leads to either a long 

search path (causing unnecessary intermediate searches) or being trapped into a local 

minimum matching error point (yielding large residuals and degrading video quality). 

 

These observations led them to develop an adaptive rood search pattern (Nie and Ma, 2002). 

The algorithm is summarized as follows: 

 

 The motion vectors of the macroblocks in the neighbourhood of the current block are well 

correlated with the motion vector of the current block and are thus reliable for prediction. 

Nie and Ma, (2002) decided to use the motion vector of the macroblock directly to its left as 

a starting point, calling it the Predicted motion vector. This will be available as scanning is 

done in raster order. This step will direct the search into the local region of the global 

minimum. 

 The predicted motion vector in Fig. 2.10 points to (+2, -1). This point is checked using a 

cost function as well as a rood pattern of locations. The rood pattern has a step size of S = 

Max (|X|, |Y|) where X and Y are the x-coordinate and y-coordinate of the predicted motion 

vector. For all macroblocks in the first column of the frame (where there is no macroblock 

directly to the left) the rood pattern step size is fixed at 2 pixels. 

 The point that has the least weight becomes the origin for subsequent search steps to 

essentially perform a refined local search. The assumption of unimodal error surface formed 

in this area is valid, hence a fixed, compact, unrestricted and small search pattern such as 

SDSP is used. 

 The SDSP is repeated until the least weighted point is found to be at the centre of the SDSP. 

 A further small improvement in the algorithm can be to check for Zero Motion 

Prejudgment. If the least weighted point is already at the centre of the rood pattern the 

search is stopped half way. 

 

The main advantage of this algorithm over DS is that if the predicted motion vector is 

(0, 0), it does not waste computational time in doing LDSP, it rather directly starts using 

SDSP. Additionally, if the predicted motion vector is far away from the centre, ARPS again 

saves on computations compared to DS by directly jumping to that vicinity and using SDSP 

whereas DS takes its time doing LDSP. 

Care has to be taken during the unrestricted SDSP step not to repeat computations at 

points that were checked earlier. A checkmatrix is utilised: 0 representing locations not yet 

checked and 1 representing those that have been checked. In addition when the predicted 

motion vector turns out to match one of the rood pattern locations double computations have 

also to be avoided e.g. if the Predicted Motion Vector below was (+2, 0). 
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Fig. 2.10 Adaptive Rood Search Pattern. 

The initial stage calculates the Predicted Motion Vector as (+2, -1) which directs the search 

into the local region of the global minimum, the minimum error from a rood pattern of nodes 

(step size S = Max( |2|, |-1|) = 2) is found and then the final stage performs a fixed search to 

calculate the motion vector. 

Source: Yao Nie and Kai-Kuang Ma (2002). 

 

 



-17- 

2.8 Hexagon Based Search Pattern (HEXBS) 

Zhu et al (2002) proposed the hexagon based search pattern (HEXBS) as an alternative to the 

diamond search pattern. They noted that the DS was sensitive to motion vectors in different 

directions – since its eight checking points have different distances from the centre point the 

advancing speed for the DS per step is 2 pels horizontally and vertically but only 2  pels 

diagonally. They stated that ideally a circle-shaped search pattern with a uniform distribution 

of a minimum number of search points was more desirable to achieve the fastest search speed 

uniformly. This search pattern should have a minimum number of search points distributed 

uniformly where each search point is used equally with maximum efficiency and where the 

redundancy among search points should be removed maximally. As a result, they devised the 

hexagon based search pattern (HEXBS) which has a more circle-approximated pattern. The 

pattern consists of six endpoints with the two horizontal points being 2 pels from the centre 

and the remaining four points 5  pels from the centre - thus the six endpoints are 

approximately uniformly distributed. Their analysis showed a speed improvement rate of as 

high as over 80% for locating some motion vectors in certain scenarios. Generally, the larger 

the motion vector, the more search points the HEXBS algorithm saved compared to DS. This 

was explained by the HEXBS algorithm only needing to evaluate 3 new checking points for 

each new search step compared with 3 or 5 in the Diamond Search. 
 

 
Fig. 2.11 Search Patterns used in the HEXBS algorithm. 

(a) large HEXBS pattern with the LDSP overlaid for comparison (b) small HEXBS pattern 

with the SDSP overlaid for comparison.    Source: Zhu et al (2002). 

 

 

The HEXBS algorithm (Zhu et al, 2002) is summarized as follows: 

 

Step 1: (Starting) The large hexagon with seven checking points is centred at (0, 0), the centre 

of a predefined search window in the motion field. If the minimum BDM point is found to be 

at the centre of the hexagon, proceed to Step 3; otherwise, proceed to Step 2. 

Step 2: (Searching) With the minimum BDM point in the previous search step as the centre, a 

new large hexagon is formed. Three new candidate points are checked, and the minimum 

BDM point is again identified. If the minimum BDM point is still the centre point of the 

newly formed hexagon, then go to Step 3; otherwise, repeat this step continuously. 

Step 3: (Ending) Switch the search pattern from the large to the small size of the hexagon. 

The four points covered by the small hexagon are evaluated to compare with the current 

minimum BDM point. The new minimum BDM point is the final solution of the motion 

vector. 
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Fig. 2.12 Hexagon Based Search Pattern Procedure. 

HEXBS pattern search path example locating the motion vector (+4,-4). Note: a small HEXBS 

pattern is applied in the final step after the best candidate search point at step 3 remains the 

best at step 4. In total, 20 (7+3+3+3+4) search points are evaluated in five steps. 

Source: Zhu et al (2002). 
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2.9 Cross Diamond Search (CDS) 

Cheung and Po (2002b) proposed the CDS algorithm which used a cross-search pattern as the 

initial step and large/small diamond search (DS) patterns in the subsequent steps. In their 

analysis of 6 real-world sequences they found that over 80% of the motion vectors were 

located within a 5x5 search grid. In addition they described the cross-centre-biased (CCB) 

motion vector distribution - locations where there was a high probability of the motion vector 

being found. This formed the basis of for their algorithm and their selection of the 9 highly 

probable candidate points located horizontally and vertically at the centre of a 5x5 search grid. 

The algorithm employed 2 halfway-stop techniques which meant small motion vectors were 

found with fewer search points than the DS algorithm while maintaining similar or even better 

search quality. The first step stop involved a search of only 9 search points compared to 13 for 

DS (9+4) while the second step stop required only 11 search points compared to a best case 

search of 16 for DS (9+3+4). Cheung and Po (2002b) reported a speedup of up to 40% over 

DS in some cases. They also reported that CDS was more robust and provided faster searching 

speed and smaller distortions than other popular fast block-matching algorithms of the time. 
 

 
Fig. 2.13 Search patterns used in the Cross Diamond Search algorithm. 

(a) CSP (b) LDSP and SDSP.  Source: Cheung and Po (2002b). 
 
 

The CDS algorithm Cheung and Po (2002b) is summarized as follows: 

 Step 1: (Starting) A minimum BDM is found from the nine search points of the CSP 

located at the centre of the search window. If the minimum BDM point occurs at the centre 

of the CSP, the search stops. This is called the first-step-stop as shown in Fig. 2.14(a). 

Otherwise, go to Step 2. 

 Step 2: (Half-diamond Searching) Two additional search points of the central LDSP 

closest to the current minimum of the central CSP are checked, i.e. two of the four 

candidate points located at (±1, ±1). If the minimum BDM found in step 1 is located at the 

middle wing of the CSP, i.e. (±1, 0) or (0, ±1), and the new minimum BDM found in this 

step still coincides with this point, then the search stops. This is called the second-step stop, 

e.g. Fig. 2.14(b). Otherwise, go to Step 3. 

 Step 3: (Searching) A new LDSP is formed by repositioning the minimum BDM found in 

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the 

centre of this newly formed LDSP, then go to Step 4; otherwise, this step is repeated again. 

 Step 4: (Ending) With the minimum BDM point in the previous step as the centre, a new 

SDSP is formed. The location of the minimum BDM point found for this step is the motion 

vector. 
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Fig. 2.14 Cross Diamond Block Matching Algorithm procedure. 

Examples show each candidate point marked with its corresponding step number. The 

minimum BDM point at the end of each step is shown filled. (a) First-step-stop with MV(0,0). 

(b) Second-step-stop with MV(-1, 0). (c) An Unrestricted search path with MV(-5, +2) and (d) 

MV(+2, -4), respectively. In (d), the best-matched point at step 6 coincides with that at steps 5 

and 4. In total, 27 (9+2+4+3+5+4) search points are evaluated. For comparison a DS overlay 

is shown – this would have found the motion vector by evaluating only 24 (9+3+3+5+4) 

search points.  Source: Cheung and Po (2002b). 



-21- 

2.10 Small Cross Diamond Search (SCDS) 

Cheung and Po (2002a) introduced the SCDS in the same year that they introduced CDS 

(Cheung and Po, 2002b). It differed by having a smaller cross pattern in the initial step - using 

5 points instead of 9. The algorithm also employed 2 halfway-stop techniques which meant 

small motion vectors were found using fewer search points than with the DS algorithm. The 

first step stop involved a search of only 5 search points compared to 13 for DS (9+4) while the 

third step stop required only 11 (5+4+2) search points compared to a best case search of 16 for 

DS (9+3+4). An unrestricted large diamond search (DS) pattern was employed in the 

subsequent steps followed by a final small diamond search. Cheung and Po (2002a) reported a 

speedup of up to 146% over DS for the Akiyo QCIF video conference sequence. 

 

 
Fig. 2.15 Search patterns used in the Small Cross Diamond Search algorithm. 

(a) LCSP and SCSP (b) LDSP and SDSP.   Source: Cheung and Po (2002a). 

 

 

The SCDS algorithm Cheung and Po (2002a) is summarized as follows: 

 Step 1: (Starting) A minimum BDM is found from the five search points of the SCSP 

located at the centre of the search window. If the minimum BDM point occurs at the centre 

of the SCSP, the search stops. This is called the first-step-stop as shown in Fig. 2.16(a). 

Otherwise, go to Step 2. 

 Step 2: (Large Cross Searching) The four outermost search points of the central LCSP are 

checked, i.e. the four candidate points located at (0, ±2) and (±2, 0). This step guides the 

possible correct direction for the subsequent steps. Then go to Step 3. 

 Step 3: (Half-Diamond Searching) Two additional search points of the central LDSP 

closest to the current minimum of the central LCSP are checked, i.e. two of the four 

candidate points located at (±1, ±1). If the minimum BDM found in step 1 is located at the 

middle wing of the CSP, i.e. (±1, 0) or (0, ±1), and the new minimum BDM found in this 

step still coincides with this point, then the search stops. This is called the third-step stop, 

e.g. Fig. 2.16(b). Otherwise, go to Step 4. 

 Step 4: (Searching) A new LDSP is formed by repositioning the minimum BDM found in 

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the 

centre of this newly formed LDSP, then go to Step 5; otherwise, this step is repeated again. 

 Step 5: (Ending) With the minimum BDM point in the previous step as the centre, a new 

SDSP is formed. The location of the minimum BDM point found for this step is the motion 

vector. 
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Fig. 2.16 Small Cross Diamond Block Matching Algorithm procedure. 

Examples show each candidate point marked with its corresponding step number. The 

minimum BDM point at the end of each step is shown filled. 

(a) First-step-stop with MV(0, 0). (b) Third-step-stop with MV(-1, 0). (c) An Unrestricted 

search path with MV(+4, -1). In (c), the best-matched point at step 6 coincides with that at 

steps 5 and 4.   Source: Cheung and Po (2002a). 
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2.11 New Cross Diamond Search (NCDS) 

Lam et al (2003) introduced the NCDS which like SCDS the previous year (Cheung and Po, 

2002a) used a 5 point small cross shape pattern (SCSP) as the initial step. The 5 point pattern 

is repeated in the second step if needed which makes the algorithm more efficient than both 

the previous SCDS or CDS and thus making a saving on the number of search points for 

stationary or quasi-stationary blocks. The algorithm also employed 2 halfway-stop techniques 

which meant small motion vectors were found with fewer search points than the DS algorithm. 

The first step stop involved a search of only 5 search points compared to 13 for DS (9+4) 

while the second step stop required only 8 (5+3) search points compared to a best case search 

of 16 for DS (9+3+4). An unrestricted large diamond search (DS) pattern was employed in the 

subsequent steps followed by a final small diamond search. Lam et al (2003) reported a 

speedup of up to 58% over DS for the Claire CIF video conference sequence. 

 

 
Fig. 2.17 Search patterns used in the New Cross Diamond Search algorithm. 

(a) LCSP and SCSP (b) LDSP and SDSP.   Source: Cheung and Po (2002a). 

 

 

The NCDS algorithm Lam et al (2003) is summarized as follows: 

 Step 1: (Starting) – Small Cross Shape Pattern (SCSP) A minimum BDM is found from 

the five search points of the SCSP located at the centre of the search window. If the 

minimum BDM point occurs at the centre of the SCSP, the search stops. This is called the 

first-step-stop as shown in Fig. 2.18(a). Otherwise, go to Step 2. 

 Step 2: (SCSP) With the vertex (minimum BDM point) from the first SCSP as the centre, a 

new SCSP is formed. If the minimum BDM point occurs at the centre of this SCSP, the 

search stops. This is called the second-step-stop as shown in Fig. 2.18(b). Otherwise, go to 

Step 3. 

 Step 3: Guiding Large Cross Shape Pattern (LCSP) The three unchecked outermost 

search points of the central LCSP are checked. This step is trying to guide the possible 

correct direction for the subsequent steps. Go to Step 4. 

 Step 4: (Searching) A new LDSP is formed by repositioning the minimum BDM found in 

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the 

centre of this newly formed LDSP, then go to Step 5; otherwise, this step is repeated again. 

 Step 5: (Ending) With the minimum BDM point in the previous step as the centre, a new 

SDSP is formed. The location of the minimum BDM point found for this step is the motion 

vector. 

 

Note: Around this time another New Cross Diamond Search algorithm was also developed by 

Jia and Zhang (2004). 
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Fig. 2.18 New Cross Diamond Block Matching Algorithm procedure. 

Examples show each candidate point marked with its corresponding step number. The 

minimum BDM point at the final step is shown filled. 

(a) First-step-stop with MV(0,0). (b) Second-step-stop with MV(+1, 0). (c) and (d) An 

Unrestricted search path with MV(-1, -1) and MV(+4, +1) respectively. In (c), the best-

matched point at step 5 coincides with that at steps 4 and 2.   Source: Lam et al (2003). 
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3.0 Implementation of Algorithms 

 

3.1 Video Sequences used for Analysis 

Motion vectors are typically estimated from the luma component only (Richardson, 2002). 

The frames to be input into the various algorithms are stored in Sun Rasterfile format (.ras) 

which is an uncompressed greyscale format. The standard video sequences used for algorithm 

analysis are saved as CIF (Common Intermediate Format) or QCIF (Quarter CIF format) 

which in some sources are stored in the .yuv file format. These were then converted to usable 

images which are used as input by the various block search algorithms. In the conversion the 

Cb and Cr components are suppressed while the Y (luma) component is retained. The 

MATLAB code used is given in Appendix D. 

 

A variety of sequences were chosen as described by Tham et al (1998): 

1. The first sequence “Miss America” is a typical videoconferencing scene with limited 

object motion and a stationary background. 

2. The second sequence “Flower Garden” consists mainly of stationary objects, but with 

a fast camera panning motion. 

3. The third sequence “Football” contains large local object motion. 

 

Using the study of Barjatya (2004) as a basis, motion vectors will be predicted for 30 frames 

using a distance of 2 between the current frame and the reference frame. Thus only the first 32 

frames of each sequence need to be examined. 

 

 

Table 3.1: Video Sequences used for Analysis 

Frame Format (Frame Size, Number of Frames) Sequences 

CIF (352 x 288, 32 frames) Flower Garden 

SIF (352 x 240, 32 frames) Football 

QCIF (176 x 144, 32 frames) Miss America ‡ 

Sources: CIPR, (2008) and VTRG ‡, (2008). 

 

 

 
Miss America ‡ 

 
Flower Garden 

 
Football 

Fig. 3.1 Stills of the Video Sequences Analysed. 

Sources: CIPR, (2008) and VTRG ‡, (2008). 
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3.2 Algorithms to be Implemented 

The Diamond Search algorithm (DS) proved to be the best block matching algorithm for many 

years after it was introduced in 1998 (Barjatya, 2004). Towards the end of 2002 some hybrid 

DS algorithms began to appear. Cheung and Po (2002b) introduced Cross Diamond Search 

(CDS) and Small Cross Diamond Search (SCDS) (2002a) and Lam et al (2003) introduced 

New Cross Diamond Search (NCDS). All improved on the performance of Diamond Search 

(DS) by modifying the starting search pattern from Large Diamond Search Pattern (LDSP) to 

the Cross Search Pattern (CSP) originated by Ghanbari (1990). The three algorithms differed 

with respect to the number of points being used out of the CSP as shown in Fig. 3.2. CDS uses 

all 9 points whereas SCDS and NCDS use only the inner 5 points to start and then expand 

their search. In addition they improved on DS by providing half-way stops for stationary or 

quasi-stationary sequences, thus helping to reduce the number of points searched. After 

applying the initial cross search pattern these CSP based variants follow the normal DS 

procedure - that of an unrestricted LDSP followed by a final Small Diamond Search Pattern 

(SDSP). 

 

In his 2004 study, Barjatya referenced these three CSP algorithms but did not provide an 

implementation. He stated that they improved on DS and that of the three, NCDS came closest 

to the performance of ARPS - which was the best performing of the 7 algorithms studied. 

 

 
Fig. 3.2 The Cross Search Pattern used by CDS, SCDS, and NCDS. 

CDS uses all 9 points, SCDS and NCDS use only the inner 5 points. 

Source: Barjatya, (2004). 
 

 

3.3 Thesis Aims 

The aims of this thesis are to: 

1. provide a detailed description of the many block search algorithms available today. 

2. code an implementation in MATLAB for the 3 hybrid DS algorithms. 

3. validate the results obtained from the implementation against results from the 

literature. 

4. quantify the performance of the 3 algorithms against the Diamond Search algorithm. 

5. quantify the performance of the 3 algorithms against the ARPS algorithm and 

6. make a recommendation of ‘best-practice’ when nominating a Block Search 

Algorithm. 
 

 

3.4 Coding the Algorithms 

As an initial stage in coding all 3 algorithms their flowcharts are drawn and presented below. 

Their MATLAB implementation is presented in Appendix C. 
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Fig. 3.3 Flowchart for the Cross Diamond Search Algorithm. 
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Fig. 3.4 Flowchart for the Small Cross Diamond Search Algorithm. 
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Fig. 3.5 Flowchart for the New Cross Diamond Search Algorithm. 
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3.5 Program Execution 

motionsEstAnalysis.m – the main script to execute all algorithms is run in the MATLAB 

command window. Initially 2 frames of a particular video sequence are loaded into the 

workspace – the first is the reference frame and the second is the frame to be predicted 

(encoded). The first block match algorithm is called. The block distortion measure (BDM) 

used is the mean absolute difference (MAD). The macroblock size is set at 16 pixels x 16 

pixels and the maximum displacement in the search area is ±7 pixels in both the horizontal 

and the vertical directions. A frame difference of 2 was used in calculating predicted frames. 
 

The algorithm function called returns the motion vector matrix for the predicted frame – one 

motion vector for every macroblock in the frame. 

The average number of points searched to calculate each motion vector within the predicted 

frame is also returned. 
 

The motion vector matrix is then input into the motionComp.m function which creates the 

motion compensated image from each motion vector and its corresponding macroblock in the 

reference frame. 
 

The PSNR of the motion compensated image with respect to the original frame is then 

calculated and recorded by calling the imgPSNR.m function – one value for each predicted 

frame. 
 

The next algorithm is then called and the process repeats for a complete analysis of 10 

algorithms. The process then loads the next frame to be encoded along with its reference 

frame, runs all 10 algorithms again, and then loops until 30 frames in total are predicted. 
 

The main script also contains code to produce 2 comparative plots of the main metrics for all 

10 algorithms – Search points per macroblock Vs Frame Number and PSNR Vs Frame 

Number. The code saves these to disk in jpeg format. In addition the main script outputs some 

statistics for each algorithm such as Average Searching Points, Average PSNR and Speed 

Improvement Ratio. The latter was used for the 3 implemented algorithms to quantify their 

performance compared to the Diamond Search and the Exhaustive Search. 
 

For the analysis of another video sequence the main script is updated to point to its location 

and is then run again. 
 

 
Fig. 3.6 MATLAB environment showing the main script running for the Football sequence. 
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4.0 Analysis of the Implemented Block Search Algorithms 

 

4.1 Experimental Results 

The simulation is performed on 3 sequences with different degrees and types of motion-

content. The CDS, SCDS and NCDS were compared against 7 other algorithms using the 

following test criteria: 

 

1) Average points searched – the average number of search points used to find the motion 

vector as shown in Table 4.1 

2) the average Peak-Signal-to-Noise-Ratio (PSNR) as shown in Table 4.2 

3) the average Speed Improvement Ratio (SIR) with respect to the DS and the ES as shown 

in Tables 4.3 and 4.4 

4) the difference in average PSNR compared to the DS as shown in Table 4.5 

 

 

Table 4.1: Average Points Searched for selected Fast BMAs over 3 sequences 

Sequence ES TSS NTSS 4SS SES DS CDS SCDS NCDS ARPS 

flower 
CIF (352x288) 

210.317 23.813 24.570 19.989 15.930 18.303 18.413 17.176 16.530 9.562 

football 
SIF (352x240) 

202.049 23.095 22.799 19.355 15.842 18.527 17.385 16.071 15.401 11.014 

Ms America 
QCIF (176x144) 

195.963 22.503 16.241 15.594 16.575 12.427 9.260 6.380 5.778 5.645 

 

Table 4.2: Average PSNR (dB) for selected Fast BMAs over 3 sequences 

Sequence ES TSS NTSS 4SS SES DS CDS SCDS NCDS ARPS 

flower 24.373 23.819 24.145 23.379 23.561 23.329 23.130 22.885 22.649 24.295 

football 20.307 20.128 20.101 19.949 19.630 19.886 19.830 19.778 19.757 19.898 

Ms America 39.378 39.354 39.377 39.360 39.153 39.375 39.324 39.317 39.323 39.332 

 

Table 4.3: Average Speed Improvement Ratio (%) over ES for 3 sequences 

Sequence CDS SCDS NCDS ARPS 

flower 91.245 91.834 92.140 95.454 
football 91.396 92.046 92.378 94.549 
Ms America 95.275 96.744 97.052 97.119 

 

Table 4.4: Average Speed Improvement Ratio (%) over DS for 3 sequences 

Sequence CDS SCDS NCDS ARPS 

flower -0.601 6.158 9.682 47.757 
football 6.165 13.256 16.874 40.549 
Ms America 25.487 48.663 53.508 54.574 

 

Table 4.5: Difference in Average PSNR (dB) over DS for 3 sequences 

Sequence CDS SCDS NCDS ARPS 

flower 0.199 0.444 0.680 -0.966‡ 
football 0.0558 0.1086 0.1294 -0.0119 ‡ 
Ms America 0.0514 0.0581 0.0516 0.0433  

‡ a negative value indicates a PSNR greater than the DS value was achieved. 
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Initial observations of Table 4.1 show that in many cases the actual number of search points is 

lower than the theoretical estimation e.g. 225 for Exhaustive Search theoretically versus ~ 200 

experimentally. This is due to truncation of the search window at picture boundaries and 

truncation of searching patterns at window boundaries which end up saving many search 

points practically (Cheung and Po, 2002b). 

 

Fig. 4.1 and Fig. 4.2 show a frame-by-frame comparison of search point number per block and 

PSNR respectively for the different algorithms applied to the Football sequence. Fig. 4.1 

shows a curve that fluctuates quite intensely for all 3 hybrid DS algorithms representing the 

high motion content of the sequence. There appear to be spikes of more intense motion around 

frames 7, 17 and 24 representing a transition from small to large motion and then back to 

small motion. It is noted that the number of search points fluctuate much more sharply for the 

3 hybrid DS algorithms and the DS than for the ARPS algorithm. 
 

Fig. 4.3 and Fig. 4.4 plot a frame-by-frame comparison of search point number per block and 

PSNR respectively for the different algorithms applied to the Flower Garden sequence. Fig. 

4.3 shows that the average number of search points per macroblock with NCDS < SCDS < 

CDS. There is a deviation from the expected improvement of CDS over DS – the CDS in fact 

takes more search points than the DS for most of the frames predicted – this may be due to a 

number of factors which are discussed below. Fig. 4.4 also demonstrates that this sequence 

displays the largest degradation of video quality for any of the algorithms compared to the 

Exhaustive search. 
 

Fig. 4.5 and Fig. 4.6 plot a frame-by-frame comparison of search point number per block and 

PSNR respectively for the different algorithms applied to the Miss America sequence. Fig. 4.5 

shows that the average number of search points per macroblock with NCDS < SCDS < CDS < 

DS. Also this is the only sequence of the three examined where NCDS comes close to 

matching ARPS for performance. Fig. 4.6 also demonstrates that there is almost no 

degradation of video quality for any of the algorithms compared to the Exhaustive search. 
 

The Exhaustive Search is not graphed since it has the largest number of search points 

requiring ~200 searches per macroblock for each sequence. Although PSNR performance of 

4SS, DS, and ARPS is relatively the same, ARPS takes a factor of 2 less computations in 

some sequences and hence is the best of the fast block matching algorithms studied. 
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Fig. 4.1 Search points per macroblock for selected Fast BMAs applied to Football. 

 

 

 

 
Fig. 4.2 PSNR performance for selected Fast BMAs applied to Football. 
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Fig. 4.3 Search points per macroblock for selected Fast BMAs applied to Flower garden. 

 

 

 

 
Fig. 4.4 PSNR performance for selected Fast BMAs applied to Flower garden. 



-35- 

 
Fig. 4.5 Search points per macroblock for selected Fast BMAs applied to Miss America. 

 

 

 

 
Fig. 4.6 PSNR performance for selected Fast BMAs applied to Miss America. 
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4.2 Validation of the Implementation 

Jia and Zhang (2004) tested the Miss America sequence (CIF, 150 frames) and the Football 

sequence (SIF, 125 frames) for various algorithms including the ES, NTSS, DS and the CDS. 

They did not test the Flower Garden sequence. 

 

For the Miss America sequence they reported 17.314 search points for the DS algorithm and 

12.419 for the CDS while for the Football sequence the corresponding figures were 17.376 

search points for the DS algorithm and 15.634 for the CDS. These results agree closely with 

our implementation for the Football sequence of 18.527 search points for the DS algorithm 

and 17.385 for the CDS – however they did use more frames at 125. 

Their results vary slightly from our implementation for the Miss America sequence of 12.427 

search points for the DS algorithm and 9.260 for the CDS – however they did use the larger 

CIF resolution so a larger number of search points would be expected. 

 

Their PSNR for the DS and the CDS were 37.097dB and 37.305dB respectively for the Miss 

America sequence, while the Football sequence obtained a PSNR of 21.892dB and 21.803dB 

respectively. These values compare very favourably with our results. 

 

Lam et al (2003) – who introduced the NCDS – tested the DS, CDS, SCDS and the NCDS for 

each of the 3 sequences we employed: the Miss America sequence (CIF, 80 frames), the 

Flower Garden sequence (SIF, 80 frames) and the Football sequence (SIF, 80 frames). 

 

For the Miss America sequence Lam et al (2003) reported 16.36 search points for the DS 

algorithm, 11.75 for the CDS, 10.75 for the SCDS and 8.7745 for the NCDS. 

 

As stated previously a smaller resolution for the Miss America sequence was used resulting in 

fewer search points for each algorithm – the large drop in search points from the DS to the 

CDS is also reproduced in our results. 

 

For the Flower Garden sequence the corresponding figures were 16.84 search points for the 

DS algorithm, 15.09 for the CDS, 14.87 for the SCDS and 13.4562 for the NCDS. 

 

We also used the larger CIF resolution for this sequence so our number of search points would 

be expected to be higher. The rate of decrease in the number of search points is lower than for 

the slower Miss America sequence and this is reproduced in our results as in Lam et al (2003). 

The 3 hybrid algorithms work best for low motion video conferencing sequences – indeed the 

values for the CDS that we obtained are actually higher than DS. This may be due to the 

complexity of the frames selected. 

 

The sequence of frames we used contains both rotational motion (a windmill) as well as the 

translational motion to do with the panning from left to right. The difficulty in making a 

comparison here with the findings of Lam et al (2003) is that only a portion of the available 

115 frames (CIPR, 2008) are being used. Lam et al (2003) used 80 frames but the trend in 

their results may point to the fact that they used frames with translational motion only. Our 30 

frame sequence has both, making it more complex and requiring more search points than 

translational motion alone. 

 

For the Football sequence Lam et al (2003) reported 13.67 search points for the DS algorithm, 

10.96 for the CDS, 8.24 for the SCDS and 7.9022 for the NCDS. 
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These values are a great deal lower than in our implementation – however Lam et al (2003) 

did use 80 frames. Again the difficulty in making a comparison here with the findings of Lam 

et al (2003) is that only a portion of the available 125 frames (CIPR, 2008) are being used. 

 

Lam et al (2003) used the MSE to ascertain the effect on video quality instead of the PSNR 

measure and so no comparison could be made for distortion. 

 

In conclusion, considering the various resolutions used, the number of frames used and 

variation in the complexity of the motion depending on which frames of a sequence were 

selected to be tested, this implementation effectively reproduces the findings of Jia and Zhang 

(2004) and Lam et al (2003). 

 

 

4.3 Performance of the 3 Hybrid DS Algorithms versus DS 

Table 4.4 shows that the CDS is nearly 26% faster than the DS for the Miss America sequence, 

slightly slower than the DS for the Flower Garden sequence (though this deviation is 

explained below) and 6% faster than the DS for the Football sequence. 

 

Both the SCDS and the NCDS improve further on the DS. Table 4.4 shows that the SCDS is 

nearly 49% faster than the DS for the Miss America sequence, the NCDS is almost 54% faster; 

the SCDS is 6% faster than the DS for the Flower Garden sequence, the NCDS is nearly 10% 

faster; the SCDS is 13% faster than the DS for the Football sequence, the NCDS is nearly 

17% faster. 

 

For the Miss America sequence with motion vectors limited within a small region around  

(0, 0), the 3 hybrid DS algorithms achieve a considerable speed improvement over the DS. 

They reduce computations significantly over the DS particularly for low bit-rate video 

applications with 1) gentle or no motion, such as background information and 2) small motion. 

Both types of motion estimation are accomplished by the first and second-step stop 

respectively. 

 

For the Flower Garden sequence with medium motion, there is in fact a lower average SIR for 

the CDS over the DS as shown in Table 4.4. Figure 4.7 shows an overlay of motion vectors for 

the predicted picture. Some of the true motion vectors as calculated by the Exhaustive Search 

(Zhu et al, 2002) can be as large as (-5, 0) to (-7, 0) which are at the limits of the search 

window. As mentioned above the sequence of frames we used contains both rotational motion 

(a windmill) as well as the translational motion to do with the panning from left to right. This 

makes the sequence more complex and would require more search points than for translational 

motion alone. This could explain why there are a larger number of points searched for the 

CDS than for the DS and hence why there is a decrease in the SIR for the CDS compared to 

the DS. Cheung and Po (2002b) state that although both first-step-stop and second-step-stop 

halfway techniques employed in the CDS algorithm can optimize the highly probable CCB 

characteristics, the DS algorithm does in fact seem to be more efficient beyond the central 3x3 

cross-shaped region. Figure 4.8 shows that when a motion vector occurs outside the central  

3x3 cross-shaped region the CDS algorithm actually uses more search points. This suggests 

strongly that the CDS is only advantageous for slow moving videoconferencing sequences. 
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Fig. 4.7 The Flower Garden sequence with its Motion Vectors overlaid. 

The Flower Garden sequence involves a pan from left to right, a motion vector points to the 

best match macroblock in the reference frame, hence the predominance of motion vectors 

pointing to the left. Source: Girod, (2008). 
 

 
Fig. 4.8 Maximum number of search points saved / used by the CDS compared to the DS. 

The search points saved are denoted as +ve while those used as –ve for the corresponding 

motion vector location. Outside of the central 3x3 region the DS begins to outperform the 

CDS. For example to find the MV(+2, -4) the CDS will require 3 more search points than the 

DS. This was previously demonstrated for the CDS procedure in chapter 2. 

Source: Cheung and Po (2002b). 
 

 

For the Football sequence, as shown by Table 4.4, each of the 3 hybrid DS algorithms are 

shown to be faster than the DS. The camera is stationary in this sequence and the object 

movement is due to the players arriving within the shot. Thus there are areas of the pitch with 

zero or no motion which would benefit from the halfway stops of the 3 hybrid DS algorithms. 

The larger the motion in a video sequence, the smaller the speed improvement rate of the 3 

hybrid algorithms over the DS or the other fast algorithms will be – this can be seen when 

contrasted with the slower moving Miss America sequence. This again demonstrates that the 

CDS, the SCDS and the NCDS are better choices than the DS for slow moving 

videoconferencing sequences. 
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Comparing the performance of the 3 hybrid algorithms with each other in Table 4.1 we see 

that in terms of average number of search points used NCDS < SCDS < CDS < DS. For larger 

motions all 3 hybrid algorithms take 11 points to reach the unrestricted LDSP – CDS uses 9 

initial points, plus 2 from HDSP; SCDS uses 5 initial points, 4 for LCSP and 2 from HDSP 

and NCDS uses 5 initial points, 3 for its second SCSP and 3 for LCSP. Thus the saving must 

occur within its halfway stops. The CDS performs poorer than the SCDS or the NCDS for low 

motion sequences or for sequences with local areas of low motion since it uses more points in 

reaching its halfway stops. 
 

In general in using fewer search points a fast block match algorithm trades off block distortion 

for higher search speed (Tham et al, 1998). From Table 4.2 it can be observed that all 3 

algorithms perform very competitively in terms of PSNR compared to the DS even though 

they lower the average number of search points. For a better comparison of the trade off 

between PSNR and search speed, Tables 4.4 and 4.5 give the percentage SIR over the DS and 

the Difference in Average PSNR for the 3 sequences. It can be seen that the NCDS has 

marginally worse PSNR performance than the DS compared to the other 2 techniques – the 

highest being a drop in PSNR of 0.680dB for the Flower Garden sequence. However, the 

speed improvements with the NCDS are quite substantial – up to 53% for the low motion 

sequence Miss America and thus justifies its use over the DS. 
 

Table 4.5 shows that the CDS, the SCDS and the NCDS have a marginally lower PSNR than 

the DS – the highest being 0.680dB for the Flower Garden sequence. They consistently 

perform better than the DS algorithm with respect to speed, in particular for the low motion 

video conferencing sequence. 
 

In conclusion, the CDS, the SCDS and the NCDS had a higher search speed than the DS for 

all 3 sequences with only a minimal loss in PSNR. From experimental results shown in Table 

4.1, the NCDS takes the smallest average number of search points per block among the 3 

hybrid cross diamond algorithms or the DS for each of the three test sequences. The NCDS is 

thus the fastest of the 3 hybrid cross diamond algorithms. 
 
 

4.4 Performance of the 3 Hybrid DS Algorithms and the DS versus ARPS 

Table 4.4 shows that ARPS is nearly 55% faster than the DS for the Miss America sequence, 

48% faster than the DS for the Flower Garden sequence and nearly 41% faster than the DS for 

the Football sequence. ARPS is also significantly faster than the CDS, the SCDS and the 

NCDS for the Flower Garden sequence and the Football sequence and only the NCDS comes 

close to matching its speed for the Miss America sequence. 
 

Table 4.5 shows that ARPS has a marginally lower PSNR than the DS by 0.0433dB for the 

Miss America sequence, but a higher PSNR than the DS by 0.966dB for the Flower Garden 

sequence and 0.0119dB higher than the DS for the Football sequence. It consistently performs 

better than the 3 hybrid DS algorithms with respect to PSNR. 
 

Generally ARPS gave both higher PSNR and higher search speed than the DS, the CDS, the 

SCDS and the NCDS for all 3 sequences. The reason for the good performance of ARPS is 

that it quickly directs the search into the local region of the global minimum by calculating the 

Predicted Motion Vector, the minimum error from the rood pattern of nodes is found and then 

a final refined search calculates the motion vector. 
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4.5 Choosing a Block Motion Algorithm 

Since with real-time encoding of video one may not always know the type of motion that will 

enter the encoder, the best fast block motion algorithm of the 10 algorithms studied is ARPS 

from the point of view of speed (lowest number of search points used per macroblock) and 

video quality (PSNR). 
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5.0 Conclusions & Future Work 
 

Conclusions 

A detailed description of the many block search algorithms available today was provided. An 

implementation for the 3 hybrid DS algorithms was coded in MATLAB. Three test sequences 

were examined. 
 

Based on the cross-centre biased motion vector distribution of real world video sequences, the 

3 hybrid DS algorithms were shown to improve on the DS algorithm by altering the starting 

pattern and providing a number of halfway stops. Simulation results showed that the NCDS 

was the fastest algorithm amongst the 3 hybrid DS algorithms simulated. A speedup ranging 

from 10% for the complex motion sequence Flower Garden to nearly 54% for the low motion 

video conference sequence Miss America was recorded. 
 

All 3 algorithms performed very competitively in terms of PSNR compared to the DS even 

though they lower the average number of search points. It was shown that the NCDS has 

marginally worse PSNR performance than the DS compared to the other 2 algorithms – the 

highest being a drop in PSNR of 0.680dB for the Flower Garden sequence. However, the 

speed improvements for the NCDS are quite substantial and would thus justify its use over the 

DS. The results from the implementation concurred with the literature, therefore validating the 

implementation. 
 

The implementation was used as a guide in nominating a ‘robust’ Block Search Algorithm. 

When the DS, CDS, SCDS or NCDS were compared with ARPS it was shown that ARPS 

generally gave both higher PSNR and higher search speed for all 3 sequences. The reason for 

the good performance of ARPS is that it quickly directs the search into the local region of the 

global minimum by calculating the Predicted Motion Vector, the minimum error from the 

rood pattern of nodes is found and then a final refined search calculates the motion vector. 
 

Simulation results showed that ARPS was the best algorithm amongst the 10 algorithms 

simulated from the point of view of speed (lowest number of search points used per 

macroblock) and video quality (PSNR). For real-time encoding of video the best fast block 

motion algorithm to advise is ARPS. 
 

Future Work 

Future work could look at some other recent block search algorithms such as Kite Cross 

Diamond Search (Lam et al, 2004), Enhanced Hexagonal Search (Zhu et al, 2004) and Cross 

Diamond Hexagonal Search (Cheung and Po, 2005) – and provide implementations. 
 

Another interesting area for analysis would be an investigation of the useful potential 

applications of Motion vectors – such as motion detection, object tracking, and even potential 

alternative encoding methods. A computational benefit is that an MPEG file does not need to 

be decoded to analyze its motion vectors. 
 

Another area of investigation could be the analysis of flexible block sizes in motion estimation 

(Yu, 2004 and Servias et al, 2005). Traditional codecs commonly process frames at the 

macroblock level (16 pixels by 16 pixels). H.264, however can process on segments within a 

macroblock, ranging in size from the commonly used 16x16 to as small as 4x4, which helps to 

code complex motion in areas of high detail. The existing MATLAB code could be 

redeveloped to perform its processing on a variety of block sizes within a frame – benefiting 

scenes with complicated motion and thus providing higher quality in lower data rates. The 

existing code could also perhaps be developed to use both past and future frames in the motion 

estimation process as is the case with standard codecs. 
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Appendix A: Glossary of Terms 

 

 

Chrominance – This is the colour information for the pixel. In many applications, the 

luminance and chrominance are combined and displayed as RGB (red, green, blue) format 

rather than YUV (luminance and two chrominance components). RGB, YUV and others are 

known as colour spaces. 

 

CIF (Common Intermediate Format) – a set of standard video formats used in 

videoconferencing, defined by their resolution 352x288. The original CIF is also known as 

Full CIF (FCIF). 

 

Current Frame – The frame that is being predicted using blocks from a reference frame. A set 

of motion vectors results from the prediction. 

 

Error Measure – The measure of how different one macroblock is to another. Some examples 

are Mean Absolute Error and Mean Square Error. 

 

Luminance – This is the black and white content of the image or how light or dark a pixel is. 

 

Macroblock – A group of 16x16 contiguous pixels within an image. 

 

Motion Vector – A pair of numbers (a vector) representing the displacement between a 

macroblock in the current frame and a macroblock in the reference frame. 

 

Motion estimation – the process done by the coder to find the motion vector pointing to the 

best prediction macroblock in a reference frame or field. Compression redundancy between 

adjacent frames can be exploited where a frame is selected as a reference and subsequent 

frames are predicted from the reference using motion estimation. The motion estimation 

process analyzes previous or future frames to identify blocks that have not changed, and 

motion vectors are stored in place of blocks. The process of video compression using motion 

estimation is also known as interframe coding. 

 

QCIF (Quarter CIF) – a video format defined by a resolution 176x144. 

 

Reference Frame – The frame that is used to make a prediction of another frame. The other 

frame may be a future or a previous frame. 

 

Search Window – The area of the reference frame that is searched when motion estimation is 

performed. This is defined by the search parameter w which is typically set = ±7 pixels from 

the current macroblock position. 
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Appendix B: M-Code by Aroh Barjatya 

 

Barjatya’s project consisted of a project report and MATLAB source code as part of 

coursework for a Digital Image Processing Class at Utah State University. The caltrain test 

images, scripts and paper can be found at his homepage http://cc.usu.edu/~arohb and also on 

the Mathworks file exchange site at http://www.mathworks.com/mathlabcentral. 

 

Approximately 1,700 lines of code were originally written by Aroh Barjatya. In all 7 block 

search algorithms were coded. Each algorithm calculates a matrix of motion vectors for each 

frame. The average number of locations searched per motion vector is recorded for each frame 

of the test sequence. The motion vectors are input into a motion compensated image creator 

script which reconstructs the image. The quality of the reconstructed image can be ascertained 

by comparing it with the original image and outputting the PSNR metric. 

 

The following m files are his original work: 

 

Table B.1: M files used by Barjatya and their role 

 M-file Name Description 

1. motionsEstAnalysis.m Main Script to execute all Algorithms 

2. motionEstES.m Exhaustive Search 

3. motionEstTSS.m Three Step Search Algorithm 

4. motionEstNTSS.m New Three Step Search Algorithm 

5. motionEstSESTSS.m Simple And Efficient Search Algorithm 

6. motionEst4SS.m Four Step Search Algorithm 

7. motionEstDS.m Diamond Search Algorithm 

8. motionEstARPS.m Adaptive Rood Pattern Search Algorithm 

9. costFuncMAD.m Mean Absolute Difference Function 

10. minCost.m Identifies minimum cost macroblock 

11. motionComp.m Computes the motion compensated image 

using the given motion vectors 

12. imgPSNR.m finds the PSNR of the motion 

compensated image w.r.t. original image 

 

 

The MATLAB code used is shown below: 

http://cc.usu.edu/~arohb
http://www.mathworks.com/mathlabcentral
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1. motionEstAnalysis.m Script to execute all Algorithms 

% This script uses all the Motion Estimation algorithms written for the 
% final project and save their results. 
% The algorithms being used are Exhaustive Search, Three Step Search, New 
% Three Step Search, Simple and Efficient Search, Four Step Search, Diamond 
% Search, and Adaptive Rood Pattern Search. 
% 
 
close all 
clear all 
  
% the directory and files will be saved based on the image name 
% Thus we just change the sequence / image name and the whole analysis is 
% done for that particular sequence 
  
imageName = 'caltrain'; 
mbSize = 16; 
p = 7; 
  
for i = 0:30 
  
    imgINumber = i; 
    imgPNumber = i+2; 
  
    if imgINumber < 10 
        imgIFile = sprintf('./%s/gray/%s00%d.ras',imageName, imageName, imgINumber); 
    elseif imgINumber < 100 
        imgIFile = sprintf('./%s/gray/%s0%d.ras',imageName, imageName, imgINumber); 
    end 
  
    if imgPNumber < 10 
        imgPFile = sprintf('./%s/gray/%s00%d.ras',imageName, imageName, imgPNumber); 
    elseif imgPNumber < 100 
        imgPFile = sprintf('./%s/gray/%s0%d.ras',imageName, imageName, imgPNumber); 
    end 
  
    imgI = double(imread(imgIFile)); 
    imgP = double(imread(imgPFile)); 
    imgI = imgI(:,1:352); 
    imgP = imgP(:,1:352); 

 
        % Exhaustive Search 
    [motionVect, computations] = motionEstES(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    ESpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    EScomputations(i+1) = computations; 
  
    % Three Step Search 
    [motionVect,computations ] = motionEstTSS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    TSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    TSScomputations(i+1) = computations; 
  
    % Simple and Efficient Three Step Search 
    [motionVect, computations] = motionEstSESTSS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    SESTSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    SESTSScomputations(i+1) = computations; 
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    % New Three Step Search 
    [motionVect,computations ] = motionEstNTSS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    NTSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    NTSScomputations(i+1) = computations; 
  
    % Four Step Search 
    [motionVect, computations] = motionEst4SS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    SS4psnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    SS4computations(i+1) = computations; 
  
    % Diamond Search 
    [motionVect, computations] = motionEstDS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    DSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    DScomputations(i+1) = computations; 
     
    % Adaptive Rood Pattern Search 
    [motionVect, computations] = motionEstARPS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    ARPSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);  
    ARPScomputations(i+1) = computations; 
  
  
end 
  
save dsplots2 DSpsnr DScomputations ESpsnr EScomputations TSSpsnr ... 
      TSScomputations SS4psnr SS4computations NTSSpsnr NTSScomputations ... 
       SESTSSpsnr SESTSScomputations ARPSpsnr ARPScomputations 
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2. motionEstES.m  Exhaustive Search Algorithm 

% Computes motion vectors using exhaustive search method 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   EScomputations: The average number of points searched for a macroblock 
 
function [motionVect, EScomputations] = motionEstES(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(2*p + 1, 2*p +1) * 65537; 
  
computations = 0; 
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the exhaustive search starts here 
        % we will evaluate cost for  (2p + 1) blocks vertically 
        % and (2p + 1) blocks horizontaly 
        % m is row(vertical) index 
        % n is col(horizontal) index 
        % this means we are scanning in raster order 
         
        for m = -p : p         
            for n = -p : p 
                refBlkVer = i + m;   % row/Vert co-ordinate for ref block 
                refBlkHor = j + n;   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                        || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                    continue; 
                end 
                costs(m+p+1,n+p+1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                     imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                computations = computations + 1; 
                 
            end 
        end 
         
        % Now we find the vector where the cost is minimum 
        % and store it ... this is what will be passed back. 
         
        [dx, dy, min] = minCost(costs); % finds which macroblock in imgI gave us min Cost 
        vectors(1,mbCount) = dy-p-1;    % row co-ordinate for the vector 
        vectors(2,mbCount) = dx-p-1;    % col co-ordinate for the vector 
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        mbCount = mbCount + 1; 
        costs = ones(2*p + 1, 2*p +1) * 65537; 
    end 
end 
  
motionVect = vectors; 
EScomputations = computations/(mbCount - 1); 
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3. motionEstTSS.m  Three Step Search Algorithm 

% Computes motion vectors using Three Step Search method 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   TSScomputations: The average number of points searched for a macroblock 
 
function [motionVect, TSScomputations] = motionEstTSS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(3, 3) * 65537; 
  
computations = 0; 
  
% we now take effectively log to the base 2 of p 
% this will give us the number of steps required 
  
L = floor(log10(p+1)/log10(2));    
stepMax = 2^(L-1); 
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the three step search starts 
        % we will evaluate 9 elements at every step 
        % read the literature to find out what the pattern is 
        % my variables have been named aptly to reflect their significance 
  
        x = j; 
        y = i; 
         
        % In order to avoid calculating the center point of the search 
        % again and again we always store the value for it from teh 
        % previous run. For the first iteration we store this value outside 
        % the for loop, but for subsequent iterations we store the cost at 
        % the point where we are going to shift our root. 
         
        costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
         
        computations = computations + 1; 
        stepSize = stepMax;                
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        while(stepSize >= 1)   
  
            % m is row(vertical) index 
            % n is col(horizontal) index 
            % this means we are scanning in raster order 
            for m = -stepSize : stepSize : stepSize         
                for n = -stepSize : stepSize : stepSize 
                    refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                    refBlkHor = x + n;   % col/Horizontal co-ordinate 
                    if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                        || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                        continue; 
                    end 
 
                    costRow = m/stepSize + 2; 
                    costCol = n/stepSize + 2; 
                    if (costRow == 2 && costCol == 2) 
                        continue 
                    end 
                    costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                        imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                     
                    computations = computations + 1; 
                end 
            end 
         
            % Now we find the vector where the cost is minimum 
            % and store it ... this is what will be passed back. 
         
            [dx, dy, min] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
             
            % shift the root for search window to new minima point 
  
            x = x + (dx-2)*stepSize; 
            y = y + (dy-2)*stepSize; 
             
            % Arohs thought: At this point we can check and see if the 
            % shifted co-ordinates are exactly the same as the root 
            % co-ordinates of the last step, then we check them against a 
            % preset threshold, and ifthe cost is less then that, than we 
            % can exit from teh loop right here. This way we can save more 
            % computations. However, as this is not implemented in the 
            % paper I am modeling, I am not incorporating this test.  
            % May be later...as my own addition to the algorithm 
             
            stepSize = stepSize / 2; 
            costs(2,2) = costs(dy,dx); 
             
        end 
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(3,3) * 65537; 
    end 
end 
  
motionVect = vectors; 
TSScomputations = computations/(mbCount - 1); 
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4. motionEstNTSS.m  New Three Step Search Algorithm 

% Computes motion vectors using *NEW* Three Step Search method 
% 
% Based on the paper by R. Li, b. Zeng, and M. L. Liou 
% IEEE Trans. on Circuits and Systems for Video Technology 
% Volume 4, Number 4, August 1994 :  Pages 438:442 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   NTSScomputations: The average number of points searched for a macroblock 
 
function [motionVect, NTSScomputations] = motionEstNTSS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(3, 3) * 65537; 
  
% we now take effectively log to the base 2 of p 
% this will give us the number of steps required 
  
L = floor(log10(p+1)/log10(2));    
stepMax = 2^(L-1); 
  
computations = 0; 
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the NEW three step search starts 
  
         
        x = j; 
        y = i; 
         
        % In order to avoid calculating the center point of the search 
        % again and again we always store the value for it from the 
        % previous run. For the first iteration we store this value outside 
        % the for loop, but for subsequent iterations we store the cost at 
        % the point where we are going to shift our root. 
        % 
        % For the NTSS, we find the minimum first in the far away points 
        % we then find the minimum for the close up points 
        % we then compare the minimums and which ever is the lowest is where 
        % we shift our root of search. If the minimum is the center of the 
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        % current window then we stop the search. If its one of the 
        % immediate close to the center then we will do the second step 
        % stop. And if its in the far away points, then we go doing about 
        % the normal TSS approach 
        %  
        % more details in the code below or read the paper/literature 
         
        costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
        stepSize = stepMax;  
        computations = computations + 1; 
  
        % This is the calculation of the outer 8 points 
        % m is row(vertical) index 
        % n is col(horizontal) index 
        % this means we are scanning in raster order 
        for m = -stepSize : stepSize : stepSize         
            for n = -stepSize : stepSize : stepSize 
                refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                refBlkHor = x + n;   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                     || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                     continue; 
                end 
  
                costRow = m/stepSize + 2; 
                costCol = n/stepSize + 2; 
                if (costRow == 2 && costCol == 2) 
                    continue 
                end 
                costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                    imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
        end 
         
        % Now we find the vector where the cost is minimum 
        % and store it ...  
         
        [dx, dy, min1] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
               
        % Find the exact co-ordinates of this point 
  
        x1 = x + (dx-2)*stepSize; 
        y1 = y + (dy-2)*stepSize; 
             
        % Now find the costs at 8 points right next to the center point 
        % (x,y) still points to the center 
         
        stepSize = 1; 
        for m = -stepSize : stepSize : stepSize         
            for n = -stepSize : stepSize : stepSize 
                refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                refBlkHor = x + n;   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                     || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                     continue; 
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                end 
  
                costRow = m/stepSize + 2; 
                costCol = n/stepSize + 2; 
                if (costRow == 2 && costCol == 2) 
                    continue 
                end 
                costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                    imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
        end 
         
        % now find the minimum amongst this 
         
        [dx, dy, min2] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
               
        % Find the exact co-ordinates of this point 
  
        x2 = x + (dx-2)*stepSize; 
        y2 = y + (dy-2)*stepSize; 
         
        % the only place x1 == x2 and y1 == y2 will take place will be the 
        % center of the search region 
         
        if (x1 == x2 && y1 == y2) 
            % then x and y still remain pointing to j and i; 
            NTSSFlag = -1; % this flag will take us out of any more computations  
        elseif (min2 <= min1) 
            x = x2; 
            y = y2; 
            NTSSFlag = 1; % this flag signifies we are going to go into NTSS mode 
        else 
            x = x1; 
            y = y1; 
            NTSSFlag = 0; % This value of flag says, we go into normal TSS 
        end 
         
         
        if (NTSSFlag == 1) 
            % Now in order to make sure that we dont calcylate the same 
            % points again which were in the initial center window we take 
            % care as follows 
             
            costs = ones(3,3) * 65537; 
            costs(2,2) = min2; 
            stepSize = 1; 
            for m = -stepSize : stepSize : stepSize         
                for n = -stepSize : stepSize : stepSize 
                    refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                    refBlkHor = x + n;   % col/Horizontal co-ordinate 
                    if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                           || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                        continue; 
                    end 
                     
                    if ( (refBlkVer >= i - 1  && refBlkVer <= i + 1) ... 
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                            && (refBlkHor >= j - 1  && refBlkHor <= j + 1) ) 
                        continue; 
                    end 
                     
                    costRow = m/stepSize + 2; 
                    costCol = n/stepSize + 2; 
                    if (costRow == 2 && costCol == 2) 
                        continue 
                    end 
                    costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                         imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                    computations = computations + 1; 
                end 
            end 
                 
            % now find the minimum amongst this 
         
            [dx, dy, min2] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
            % Find the exact co-ordinates of this point and stop 
  
            x = x + (dx-2)*stepSize; 
            y = y + (dy-2)*stepSize;             
             
        elseif (NTSSFlag == 0) 
            % this is when we are going about doing normal TSS business 
            costs = ones(3,3) * 65537; 
            costs(2,2) = min1; 
            stepSize = stepMax / 2; 
            while(stepSize >= 1)   
                for m = -stepSize : stepSize : stepSize         
                    for n = -stepSize : stepSize : stepSize 
                        refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + n;   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                            continue; 
                        end 
  
                        costRow = m/stepSize + 2; 
                        costCol = n/stepSize + 2; 
                        if (costRow == 2 && costCol == 2) 
                            continue 
                        end 
                        costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                        computations = computations + 1; 
                     
                    end 
                end 
         
                % Now we find the vector where the cost is minimum 
                % and store it ... this is what will be passed back. 
         
                [dx, dy, min] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
             
                % shift the root for search window to new minima point 
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                x = x + (dx-2)*stepSize; 
                y = y + (dy-2)*stepSize; 
             
                stepSize = stepSize / 2; 
                costs(2,2) = costs(dy,dx); 
             
            end 
        end 
  
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(3,3) * 65537; 
    end 
end 
  
motionVect = vectors; 
NTSScomputations = computations/(mbCount - 1); 
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5. motionEstSESTSS.m Simple And Efficient Search Algorithm 

% Computes motion vectors using Simple and Efficient TSS method 
% 
% Based on the paper by Jianhua Lu and Ming L. Liou 
% IEEE Trans. on Circuits and Systems for Video Technology 
% Volume 7, Number 2, April 1997 :  Pages 429:433 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   SESTSScomputations: The average number of points searched for a macroblock 
% 
% Written by Aroh Barjatya 
  
  
function [motionVect, SESTSScomputations] = motionEstSESTSS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
  
  
% we now take effectively log to the base 2 of p 
% this will give us the number of steps required 
  
L = floor(log10(p+1)/log10(2));   
stepMax =  2^(L-1); 
costs = ones(1,6)*65537; 
  
computations = 0; 
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the Simple and Efficient three step search starts here 
        % 
        % each step is divided into two phases 
        % in the first phase we evaluate the cost in two ortogonal 
        % directions at a distance of stepSize away 
        % based on a certain relationship between the three points costs 
        % we select the remaining TSS points in the second phase 
        % At the end of the second phase, which ever point has the least 
        % cost becomes the root for the next step. 
        % Please read the paper to find out more detailed information 
  
        stepSize = stepMax; 
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        x = j; 
        y = i; 
        while (stepSize >= 1) 
            refBlkVerPointA = y; 
            refBlkHorPointA = x; 
             
            refBlkVerPointB = y; 
            refBlkHorPointB = x + stepSize; 
             
            refBlkVerPointC = y + stepSize; 
            refBlkHorPointC = x; 
             
            if ( refBlkVerPointA < 1 || refBlkVerPointA+mbSize-1 > row ... 
                    || refBlkHorPointA < 1 || refBlkHorPointA+mbSize-1 > col) 
                % do nothing % 
                 
            else 
                costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                              imgI(refBlkVerPointA:refBlkVerPointA+mbSize-1, ... 
                                 refBlkHorPointA:refBlkHorPointA+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
             
            if ( refBlkVerPointB < 1 || refBlkVerPointB+mbSize-1 > row ... 
                    || refBlkHorPointB < 1 || refBlkHorPointB+mbSize-1 > col) 
                % do nothing % 
                 
            else 
                costs(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                        imgI(refBlkVerPointB:refBlkVerPointB+mbSize-1, ... 
                            refBlkHorPointB:refBlkHorPointB+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
                        
  
            if ( refBlkVerPointC < 1 || refBlkVerPointC+mbSize-1 > row ... 
                    || refBlkHorPointC < 1 || refBlkHorPointC+mbSize-1 > col) 
                % do nothing % 
                 
            else 
                costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                        imgI(refBlkVerPointC:refBlkVerPointC+mbSize-1, ... 
                            refBlkHorPointC:refBlkHorPointC+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
                         
  
                         
            if (costs(1) >= costs(2) && costs(1) >= costs(3)) 
                quadrant = 4; 
            elseif (costs(1) >= costs(2) && costs(1) < costs(3)) 
                quadrant = 1; 
            elseif (costs(1) < costs(2) && costs(1) < costs(3)) 
                quadrant = 2; 
            elseif (costs(1) < costs(2) && costs(1) >= costs(3)) 
                quadrant = 3; 
            end 
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            switch quadrant 
                case 1 
                    refBlkVerPointD = y - stepSize; 
                    refBlkHorPointD = x; 
                     
                    refBlkVerPointE = y - stepSize; 
                    refBlkHorPointE = x + stepSize; 
                     
                    if ( refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ... 
                            || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                     
                    if ( refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ... 
                            || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                     
                          
                case 2 
                    refBlkVerPointD = y - stepSize; 
                    refBlkHorPointD = x; 
                     
                    refBlkVerPointE = y - stepSize; 
                    refBlkHorPointE = x - stepSize; 
                     
                    refBlkVerPointF = y; 
                    refBlkHorPointF = x - stepSize; 
                     
             
                    if ( refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ... 
                            || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                     
                    if ( refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ... 
                            || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col) 
                        % do nothing % 
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                    else 
                        costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointE:refBlkVerPointE+mbSize-1, ... 
                                        refBlkHorPointE:refBlkHorPointE+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                     
                    if ( refBlkVerPointF < 1 || refBlkVerPointF+mbSize-1 > row ... 
                            || refBlkHorPointF < 1 || refBlkHorPointF+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointF:refBlkVerPointF+mbSize-1, ... 
                                        refBlkHorPointF:refBlkHorPointF+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
  
                    
                case 3 
                    refBlkVerPointD = y; 
                    refBlkHorPointD = x - stepSize; 
                     
                    refBlkVerPointE = y - stepSize; 
                    refBlkHorPointE = x - stepSize; 
                     
                    if ( refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ... 
                            || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                     
                    if ( refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ... 
                            || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col) 
                        % do nothing % 
                         
                    else 
                        costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
  
                     
                 case 4 
                    refBlkVerPointD = y + stepSize; 
                    refBlkHorPointD = x + stepSize; 
                     
                    if ( refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ... 
                            || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col) 
                        % do nothing % 
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                    else 
                        costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ... 
                                        refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                otherwise 
                     
  
            end 
  
             
            % Now we find the vector where the cost is minimum 
            % and store it ... this is what will be passed back. 
            % we use the matlab function min() in this case and not the one  
            % that is written by author: minCosts() 
                     
             
            [cost, dxy] = min(costs);      % finds which macroblock in imgI gave us min Cost 
             
            switch dxy 
                 case 1 
                     % x = x; y = y;   
                 case 2 
                     x = refBlkHorPointB;  
                     y = refBlkVerPointB; 
                 case 3 
                     x = refBlkHorPointC; 
                     y = refBlkVerPointC;  
                 case 4 
                     x = refBlkHorPointD; 
                     y = refBlkVerPointD;  
                 case 5 
                     x = refBlkHorPointE; 
                     y = refBlkVerPointE; 
                 case 6 
                     x = refBlkHorPointF; 
                     y = refBlkVerPointF; 
                      
             end 
         
            costs = ones(1,6) * 65537  ; 
            stepSize = stepSize / 2; 
             
        end 
         
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
    end 
end 
  
motionVect = vectors; 
SESTSScomputations = computations/(mbCount - 1); 
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6. motionEst4SS.m  Four Step Search Algorithm 

% Computes motion vectors using Four Step Search method 
% 
% Based on the paper by Lai-Man Po, and Wing-Chung Ma 
% IEEE Trans. on Circuits and Systems for Video Technology 
% Volume 6, Number 3, June 1996 :  Pages 313:317 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   SS4computations: The average number of points searched for a macroblock 
 
function [motionVect, SS4Computations] = motionEst4SS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(3, 3) * 65537; 
  
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
computations = 0; 
  
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the 4 step search starts 
        % we are scanning in raster order 
         
        x = j; 
        y = i; 
         
        costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
        computations = computations + 1; 
         
        % This is the calculation of the 9 points 
        % As this is the first stage, we evaluate all 9 points 
        for m = -2 : 2 : 2         
            for n = -2 : 2 : 2 
                refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                refBlkHor = x + n;   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                     || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                     continue; 
                end 
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                costRow = m/2 + 2; 
                costCol = n/2 + 2; 
                if (costRow == 2 && costCol == 2) 
                    continue 
                end 
                costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                    imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                computations = computations + 1; 
  
            end 
        end 
         
        % Now we find the vector where the cost is minimum 
        % and store it ...  
         
        [dx, dy, cost] = minCost(costs);      % finds which macroblock in imgI gave us min Cost 
             
               
        
        % The flag_4ss is set to 1 when the minimum 
        % is at the center of the search area            
         
        if (dx == 2 && dy == 2) 
            flag_4ss = 1; 
        else 
            flag_4ss = 0; 
            xLast = x; 
            yLast = y; 
            x = x + (dx-2)*2; 
            y = y + (dy-2)*2; 
        end 
  
        costs = ones(3,3) * 65537; 
        costs(2,2) = cost; 
         
        stage = 1; 
        while (flag_4ss == 0 && stage <=2) 
            for m = -2 : 2 : 2         
                for n = -2 : 2 : 2 
                    refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                    refBlkHor = x + n;   % col/Horizontal co-ordinate 
                    if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                        || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                        continue; 
                    end 
  
                    if (refBlkHor >= xLast - 2 && refBlkHor <= xLast + 2 ... 
                           && refBlkVer >= yLast - 2 && refBlkVer <= yLast + 2 ) 
                        continue; 
                    end 
                     
                    costRow = m/2 + 2; 
                    costCol = n/2 + 2; 
                    if (costRow == 2 && costCol == 2) 
                        continue 
                    end 
                            
                    costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
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                                            imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                              refBlkHor:refBlkHor+mbSize-1), mbSize); 
                    computations = computations + 1; 
                                               
                end 
            end 
                 
            [dx, dy, cost] = minCost(costs); 
             
             
            if (dx == 2 && dy == 2) 
                flag_4ss = 1; 
            else 
                flag_4ss = 0; 
                xLast = x; 
                yLast = y; 
                x = x + (dx-2)*2; 
                y = y + (dy-2)*2; 
            end 
             
            costs = ones(3,3) * 65537; 
            costs(2,2) = cost; 
            stage = stage + 1; 
            
             
        end  % while loop ends here 
         
         
        % we now enter the final stage 
         
        for m = -1 : 1 : 1         
            for n = -1 : 1 : 1 
                refBlkVer = y + m;   % row/Vert co-ordinate for ref block 
                refBlkHor = x + n;   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                     || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                     continue; 
                end 
  
                costRow = m + 2; 
                costCol = n + 2; 
                if (costRow == 2 && costCol == 2) 
                    continue 
                end 
                costs(costRow, costCol ) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
        end 
         
        % Now we find the vector where the cost is minimum 
        % and store it ...  
         
        [dx, dy, cost] = minCost(costs); 
         
        x = x + dx - 2; 
        y = y + dy - 2; 
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        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(3,3) * 65537; 
         
    end 
end 
     
motionVect = vectors; 
SS4Computations = computations/(mbCount - 1); 
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7. motionEstDS.m  Diamond Search Algorithm 

% Computes motion vectors using Diamond Search method 
% 
% Based on the paper by Shan Zhu, and Kai-Kuang Ma 
% IEEE Trans. on Image Processing 
% Volume 9, Number 2, February 2000 :  Pages 287:290 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   DScomputations: The average number of points searched for a macroblock 
% 
% Written by Aroh Barjatya 
  
  
function [motionVect, DScomputations] = motionEstDS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(1, 9) * 65537; 
 
% we now take effectively log to the base 2 of p 
% this will give us the number of steps required 
  
L = floor(log10(p+1)/log10(2));    
  
  
% The index points for Large Diamond search pattern 
LDSP(1,:) = [ 0 -2]; 
LDSP(2,:) = [-1 -1];  
LDSP(3,:) = [ 1 -1]; 
LDSP(4,:) = [-2  0]; 
LDSP(5,:) = [ 0  0]; 
LDSP(6,:) = [ 2  0]; 
LDSP(7,:) = [-1  1]; 
LDSP(8,:) = [ 1  1]; 
LDSP(9,:) = [ 0  2]; 
  
% The index points for Small Diamond search pattern 
SDSP(1,:) = [ 0 -1]; 
SDSP(2,:) = [-1  0]; 
SDSP(3,:) = [ 0  0]; 
SDSP(4,:) = [ 1  0]; 
SDSP(5,:) = [ 0  1]; 
  
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
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computations = 0; 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the Diamond search starts 
        % we are scanning in raster order 
         
        x = j; 
        y = i; 
         
        costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
        computations = computations + 1; 
         
        % This is the first search so we evaluate all the 9 points in LDSP 
        for k = 1:9 
            refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                continue; 
            end 
  
            if (k == 5) 
                continue 
            end 
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations = computations + 1; 
        end 
         
        [cost, point] = min(costs); 
         
         
        % The SDSPFlag is set to 1 when the minimum 
        % is at the center of the diamond            
         
        if (point == 5) 
            SDSPFlag = 1; 
        else 
            SDSPFlag = 0; 
            if ( abs(LDSP(point,1)) == abs(LDSP(point,2)) ) 
                cornerFlag = 0; 
            else 
                cornerFlag = 1; % the x and y co-ordinates not equal on corners 
            end 
            xLast = x; 
            yLast = y; 
            x = x + LDSP(point, 1); 
            y = y + LDSP(point, 2); 
            costs = ones(1,9) * 65537; 
            costs(5) = cost; 
        end 
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        while (SDSPFlag == 0) 
            if (cornerFlag == 1) 
                for k = 1:9 
                    refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
                    refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
                    if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                        || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                        continue; 
                    end 
  
                    if (k == 5) 
                        continue 
                    end 
             
                    if ( refBlkHor >= xLast - 1  && refBlkHor <= xLast + 1 ... 
                            && refBlkVer >= yLast - 1  && refBlkVer <= yLast + 1 ) 
                        continue; 
                    elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                        continue; 
                    else 
                        costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                        computations = computations + 1; 
                    end 
                end 
                 
            else 
                switch point 
                    case 2 
                        refBlkVer = y + LDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                        else  
                           costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                                    
                        refBlkVer = y + LDSP(2,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(2,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                        else 
                          
                           costs(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
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                           computations = computations + 1; 
                        end 
                         
                        refBlkVer = y + LDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                        else 
                          
                           costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                      
                    case 3 
                        refBlkVer = y + LDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                        else 
                          
                           costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                                    
                        refBlkVer = y + LDSP(3,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(3,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                        else 
                             
                           costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                         
                        refBlkVer = y + LDSP(6,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(6,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
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                            % do nothing, outside search window 
                        else 
                              
                           costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                         
                         
                    case 7 
                        refBlkVer = y + LDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                                    
                        refBlkVer = y + LDSP(7,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(7,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(7) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                         
                        refBlkVer = y + LDSP(9,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(9,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(9) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
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                    case 8 
                        refBlkVer = y + LDSP(6,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(6,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                                    
                        refBlkVer = y + LDSP(8,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(8,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(8) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                         
                        refBlkVer = y + LDSP(9,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = x + LDSP(9,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                           % do nothing, outside image boundary 
                        elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                            % do nothing, outside search window 
                             
                        else  
                           costs(9) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                        end 
                    otherwise 
                end 
            end 
             
            [cost, point] = min(costs); 
            
            if (point == 5) 
                SDSPFlag = 1; 
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            else 
                SDSPFlag = 0; 
                if ( abs(LDSP(point,1)) == abs(LDSP(point,2)) ) 
                    cornerFlag = 0; 
                else 
                    cornerFlag = 1; 
                end 
                xLast = x; 
                yLast = y; 
                x = x + LDSP(point, 1); 
                y = y + LDSP(point, 2); 
                costs = ones(1,9) * 65537; 
                costs(5) = cost; 
            end 
             
        end  % while loop ends here 
         
        % we now enter the SDSP calculation domain 
        costs = ones(1,5) * 65537; 
        costs(3) = cost; 
         
        for k = 1:5 
            refBlkVer = y + SDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                  || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                continue; % do nothing, outside image boundary 
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;   % do nothing, outside search window 
            end 
  
            if (k == 3) 
                continue 
            end 
             
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                              imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                  refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations = computations + 1; 
                    
        end 
          
        [cost, point] = min(costs); 
         
        x = x + SDSP(point, 1); 
        y = y + SDSP(point, 2); 
         
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(1,9) * 65537; 
         
    end 
end 
     
motionVect = vectors; 
DScomputations = computations/(mbCount - 1); 
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8. motionEstARPS.m Adaptive Rood Pattern Search Algorithm 

% Computes motion vectors using Adaptive Rood Pattern Search method 
% 
% Based on the paper by Yao Nie, and Kai-Kuang Ma 
% IEEE Trans. on Image Processing 
% Volume 11 Number 12, December 2002 :  Pages 1442:1448 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter  (read literature to find what this means) 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   ARPScomputations: The average number of points searched for a macroblock 
% 
% Written by Aroh Barjatya 
  
  
function [motionVect, ARPScomputations] = motionEstARPS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(1, 6) * 65537; 
  
  
% The index points for Small Diamond search pattern 
SDSP(1,:) = [ 0 -1]; 
SDSP(2,:) = [-1  0]; 
SDSP(3,:) = [ 0  0]; 
SDSP(4,:) = [ 1  0]; 
SDSP(5,:) = [ 0  1]; 
  
% We will be storing the positions of points where the checking has been 
% already done in a matrix that is initialised to zero. As one point is 
% checked, we set the corresponding element in the matrix to one.  
  
checkMatrix = zeros(2*p+1,2*p+1); 
  
computations = 0; 
  
% we start off from the top left of the image 
% we will walk in steps of mbSize 
% mbCount will keep track of how many blocks we have evaluated 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
         
        % the Adapive Rood Pattern search starts 
        % we are scanning in raster order 
         
        x = j; 
        y = i; 
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        costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
         
        checkMatrix(p+1,p+1) = 1; 
        computations =  computations + 1;  
        % if we are in the left most column then we have to make sure that 
        % we just do the LDSP with stepSize = 2 
        if (j-1 < 1) 
            stepSize = 2; 
            maxIndex = 5; 
        else  
            stepSize = max(abs(vectors(1,mbCount-1)), abs(vectors(2,mbCount-1))); 
  
            % now we have to make sure that if the point due to motion 
            % vector is one of the LDSP points then we dont calculate it 
            % again 
            if ( (abs(vectors(1,mbCount-1)) == stepSize && vectors(2,mbCount-1) == 0) ... 
                 || (abs(vectors(2,mbCount-1)) == stepSize && vectors(1,mbCount-1) == 0)) ... 
                  
                maxIndex = 5; % we just have to check at the rood pattern 5 points 
                 
            else 
                maxIndex = 6; % we have to check 6 points 
                LDSP(6,:) = [ vectors(2, mbCount-1)  vectors(1, mbCount-1)]; 
            end 
        end 
         
        % The index points for first and only Large Diamond search pattern 
         
        LDSP(1,:) = [ 0 -stepSize]; 
        LDSP(2,:) = [-stepSize 0];  
        LDSP(3,:) = [ 0  0]; 
        LDSP(4,:) = [stepSize  0]; 
        LDSP(5,:) = [ 0  stepSize]; 
         
         
        % do the LDSP 
         
         
        for k = 1:maxIndex 
            refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
              
                continue; % outside image boundary 
            end 
  
            if (k == 3 || stepSize == 0) 
                continue; % center point already calculated 
            end 
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(LDSP(k,2) + p+1, LDSP(k,1) + p+1) = 1; 
             
        end 
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        [cost, point] = min(costs); 
         
        % The doneFlag is set to 1 when the minimum 
        % is at the center of the diamond            
  
        x = x + LDSP(point, 1); 
        y = y + LDSP(point, 2); 
        costs = ones(1,5) * 65537; 
        costs(3) = cost; 
  
        doneFlag = 0;    
        while (doneFlag == 0) 
            for k = 1:5 
                refBlkVer = y + SDSP(k,2);   % row/Vert co-ordinate for ref block 
                refBlkHor = x + SDSP(k,1);   % col/Horizontal co-ordinate 
                if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                      || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                      continue; 
                end 
  
                if (k == 3) 
                    continue 
                elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                        continue; 
                elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1) 
                    continue 
                end 
             
                costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                             imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                 refBlkHor:refBlkHor+mbSize-1), mbSize); 
                checkMatrix(y-i+SDSP(k,2)+p+1, x-j+SDSP(k,1)+p+1) = 1; 
                computations =  computations + 1; 
   
            end 
             
            [cost, point] = min(costs); 
            
            if (point == 3) 
                doneFlag = 1; 
            else 
                x = x + SDSP(point, 1); 
                y = y + SDSP(point, 2); 
                costs = ones(1,5) * 65537; 
                costs(3) = cost; 
            end 
             
        end  % while loop ends here 
         
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(1,6) * 65537; 
         
        checkMatrix = zeros(2*p+1,2*p+1); 
    end 
end 
     
motionVect = vectors; 
ARPScomputations = computations/(mbCount-1) ;  



-78- 

9. costFuncMAD.m  Mean Absolute Difference Function 

% Computes the Mean Absolute Difference (MAD) for the given two blocks 
% Input 
%       currentBlk : The block for which we are finding the MAD 
%       refBlk : the block w.r.t. which the MAD is being computed 
%       n : the side of the two square blocks 
% 
% Output 
%       cost : The MAD for the two blocks 
% 
% Written by Aroh Barjatya 
  
  
function cost = costFuncMAD(currentBlk,refBlk, n) 
  
  
err = 0; 
for i = 1:n 
    for j = 1:n 
        err = err + abs((currentBlk(i,j) - refBlk(i,j))); 
    end 
end 
cost = err / (n*n); 

 

10. minCost.m  Locates Minimum Cost Macroblock 

% Finds the indices of the cell that holds the minimum cost 
% Input 

%   costs : The matrix that contains the estimation costs for a macroblock 
% 

% Output 
%   dx : the motion vector component in columns 
%   dy : the motion vector component in rows 
% 
% Written by Aroh Barjatya 
  
function [dx, dy, min] = minCost(costs) 
  
[row, col] = size(costs); 
  
% we check whether the current 
% value of costs is less then the already present value in min. If its 
% indeed smaller then we swap the min value with the current one and note 
% the indices. 
  
min = 65537; 
  
for i = 1:row 
    for j = 1:col 
        if (costs(i,j) < min) 
            min = costs(i,j); 
            dx = j; dy = i; 
        end 
    end 
end 
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11. motionComp.m  Motion Compensated Image Creator 

% Computes motion compensated image using the given motion vectors 
% Input 

%   imgI : The reference image  
%   motionVect : The motion vectors 
%   mbSize : Size of the macroblock 

% Ouput 
%   imgComp : The motion compensated image 
% 

% Written by Aroh Barjatya 
  

function imgComp = motionComp(imgI, motionVect, mbSize) 
  

[row col] = size(imgI); 
  

% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will read the motion vector 
% and put that macroblock from reference image in the compensated image 
  

mbCount = 1; 
for i = 1:mbSize:row-mbSize+1 
    for j = 1:mbSize:col-mbSize+1 
         

        % dy is row(vertical) index 
        % dx is col(horizontal) index 
        % this means we are scanning in order 
         

        dy = motionVect(1,mbCount); 
        dx = motionVect(2,mbCount); 
        refBlkVer = i + dy; 
        refBlkHor = j + dx; 
        imageComp(i:i+mbSize-1,j:j+mbSize-1) = imgI(refBlkVer:refBlkVer+mbSize-1, 
refBlkHor:refBlkHor+mbSize-1); 
     

        mbCount = mbCount + 1; 
    end 
end 
  
imgComp = imageComp; 

 

12. imgPSNR.m  Finds M.C. Image PSNR w.r.t. Reference Image 

% Computes motion compensated image's PSNR 
% Input 

%   imgP : The original image  
%   imgComp : The compensated image 
%   n : the peak value possible of any pixel in the images 

% Ouput 
%   psnr : The motion compensated image's PSNR 
  

function psnr = imgPSNR(imgP, imgComp, n) 
  

[row col] = size(imgP); 
  

err = 0; 
  

for i = 1:row 
    for j = 1:col 
        err = err + (imgP(i,j) - imgComp(i,j))^2; 
    end 
end 

mse = err / (row*col); 
  

psnr = 10*log10(n*n/mse); 
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Appendix C: Corrections to Barjatya code by Jerome Casey 

 

Some corrections to the original implementation by Barjatya have been added by me. 

The following m-files have been updated: 

 

motionEstSESTSS.m recalculates the cost at the central point A at the beginning of the while 

loop when the cost is already available at the end of the previous iteration. This will lead to an 

overestimation in the average number of points searched per macroblock for this algorithm. 

Thus initially calculate the cost of the centre point before entering the while loop as shown. 

 

stepSize = stepMax; 
        x = j; 
        y = i; 
 
       refBlkVerPointA = y; 
       refBlkHorPointA = x; 
 
            if ( refBlkVerPointA < 1 || refBlkVerPointA+mbSize-1 > row ... 
                    || refBlkHorPointA < 1 || refBlkHorPointA+mbSize-1 > col) 
                % do nothing % 
                 
            else 
                costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                              imgI(refBlkVerPointA:refBlkVerPointA+mbSize-1, ... 
                                 refBlkHorPointA:refBlkHorPointA+mbSize-1), mbSize); 
                computations = computations + 1; 
            end 
 
        while (stepSize >= 1) 
             
            refBlkVerPointB = y; 
            refBlkHorPointB = x + stepSize; 
             
            refBlkVerPointC = y + stepSize; 
            refBlkHorPointC = x; 
             
             
            if ( refBlkVerPointB < 1 || refBlkVerPointB+mbSize-1 > row ... 
                    || refBlkHorPointB < 1 || refBlkHorPointB+mbSize-1 > col) 
                % do nothing % 

 

The function also has an error in the location of point E in quadrant 3. 

 

                case 3 
                    refBlkVerPointD = y; 
                    refBlkHorPointD = x - stepSize; 
                     
                    refBlkVerPointE = y + stepSize; 
                    refBlkHorPointE = x - stepSize; 

 

The code also orders the 4 quadrants differently to the original paper of Lu and Liou (1997) 

but is consistent in this. This is purely semantics and will not affect the PSNR or Average 

number of search points so the code does not need to be changed. 
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The minimum cost calculated at the end of an iteration should be stored for the next iteration. 

In the existing code it is recalculated again. In addition when a motion vector is found the cost 

matrix should be reset for the next motion vector iteration. 

 

            costs = ones(1,6) * 65537  ; 
            stepSize = stepSize / 2; 
            costs (1) = cost ; 
        end 
         
        vectors(1,mbCount) = y - i;    % row co-ordinate for the vector 
        vectors(2,mbCount) = x - j;    % col co-ordinate for the vector             
        mbCount = mbCount + 1; 
        costs = ones(1,6) * 65537  ; 
    end 
end 

 

 

costFuncMAD.m is speeded up by vectorizing the for-loops within the M-file code. This 

optimises the function as well as the overall program execution since the function is called 

frequently. 

 

err = sum(sum(abs(currentBlk - refBlk))); 

 

 

imgPSNR.m is speeded up by vectorizing the for-loops within the M-file code. 

 

err = (sum(sum(imgP - imgComp)))^2; 
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Appendix D: M-Code by Jerome Casey 

 

The implementation added by me contains approximately 1,100 additional lines of code. 

 

 

The following m files have been added: 

 

Table D.1: M-files used by Casey and their role 

 M-file Name Description 

1. motionEstCDS.m Cross Diamond Search Algorithm 

2. motionEstSCDS.m Small Cross Diamond Search Algorithm 

3. motionEstNCDS.m New Cross Diamond Search Algorithm 

4. plots.m Produces frame-wise plots of Average Searching 

Points and Average PSNR 

5. stats.m Calculates Average Searching Points, Average 

PSNR, Speed Improvement Ratio and the PSNR 

difference (w.r.t. Diamond Search) for the 

sequence overall. 

 

 

motionsEstAnalysis.m - the main script - has also been updated to call the 3 additional 

algorithms and save the results to a .mat file. 

 
  % 8 Cross Diamond Search 

    [motionVect, computations] = motionEstCDS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    CDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    CDScomputations(i+1) = computations; 
     
  % 9 Small Cross Diamond Search 

    [motionVect, computations] = motionEstSCDS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    SCDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    SCDScomputations(i+1) = computations; 
     
  % 10 New Cross Diamond Search 

    [motionVect, computations] = motionEstNCDS(imgP,imgI,mbSize,p); 
    imgComp = motionComp(imgI, motionVect, mbSize); 
    NCDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255); 
    NCDScomputations(i+1) = computations; 
 end 
save dsplots2 DSpsnr DScomputations ESpsnr EScomputations TSSpsnr ... 
      TSScomputations SS4psnr SS4computations NTSSpsnr NTSScomputations ... 
       SESTSSpsnr SESTSScomputations ARPSpsnr ARPScomputations ... 
CDSpsnr CDScomputations SDSpsnr SDScomputations NCDSpsnr NCDScomputations 

 

 

The additional MATLAB code used in this work is shown below: 
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1. motionEstCDS.m  Cross Diamond Search Algorithm 

% Computes motion vectors using the Cross Diamond Search method 
% 
% Based on the paper by Chun-Ho Cheung and Lai-Man Po.  
% IEEE Transactions on Circuits and Systems for Video Technology 
% (Dec. 2002b)   Volume 12, Issue 12, pp. 1168–1177. 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   CDScomputations: The average number of points searched for a macroblock 
% 
% Written by Jerome Casey 
  
  
function [motionVect, CDScomputations] = motionEstCDS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(1, 9) * 65537;  % 9 point cost matrix for the Cross Shaped pattern 
  
% The index points for the Cross Shape pattern 
CSP(1,:) = [ 0 -2]; 
CSP(2,:) = [ 0 -1]; 
CSP(3,:) = [-2  0]; 
CSP(4,:) = [-1  0]; 
CSP(5,:) = [ 0  0]; 
CSP(6,:) = [ 1  0]; 
CSP(7,:) = [ 2  0]; 
CSP(8,:) = [ 0  1]; 
CSP(9,:) = [ 0  2]; 
  
% we start off from the top left of the image and walk in steps of mbSize 
% for every macroblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
% We will be storing the positions of points where the checking has been 
% already done in a matrix that is initialised to 0. As a point is 
% checked the corresponding element in the matrix to set to 1.  
  
checkMatrix = zeros(2*p+1,2*p+1); 
computations = 0; 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
              
        x = j; 
        y = i; 
        xStart = j; % needed in step 2 if 2 of 4 points of a central-half LDSP 
        yStart = i; % need to be calculated  
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        % apply the CSP and find the minimum BDM of the 9 points. 
        % If the minimum BDM is at the centre then the search stops (first step stop). 
        % If it is at another point then store the location and value of the min BDM. 
        % and continue to the next step 
                 
        MVfoundFlag = 0;    % MVfoundFlag is set to 1 when Motion Vector is found 
        SDSPFlag = 0;       % SDSPFlag is set to 1 when a SDSP needs to be executed     
         
        % ********** Step 1 Uses a CSP to find a min BDM from 9 points************************************ 
        for k = 1:9 
            refBlkVer = y + CSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + CSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(CSP(k,2) + p+1,CSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz 
            end      
        end 
         
         [cost, point] = min(costs); 
         if (point == 5) 
            MVfoundFlag = 1;             % first step stop 
         else 
            xCSP = x + CSP(point, 1);    % shift centre to min BDM location for next step 
            yCSP = y + CSP(point, 2); 
            minCostCSP = cost;           % retain the cost for comparison with the min BDM from step 2 
         end 
         
         % points 2,4,6,8 are located at the middle wing of the CSP i.e.(±1,0) or (0,±1) if the min BDM 
%occurs at any 
         % of these 4 points and is still the overall min BDM by step 2 then we have a Second step stop 
  
         if (mod(point,2)==0)   % remainder after division by 2 is zero for even numbers 
            MiddleWingFlag = 1;  
         else 
            MiddleWingFlag = 0; 
         end 
          
         % ********** Step 2  A Half Diamond Search Pattern is applied************************************** 
         
         if (MVfoundFlag == 0) 
              
         % The index points for the Half Diamond Search pattern (±1,±1) 
         HDSP(1,:) = [-1 -1]; 
         HDSP(2,:) = [1  -1]; 
         HDSP(3,:) = [-1  1]; 
         HDSP(4,:) = [ 1  1]; 
          
         HalfDiamondCosts = ones(1,4) * 65537; % initialise a new cost matrix to store costs for the 4 half 
%diamond locations 
  
         % Of the 4 candidate points in HDSP, just check the 2 points closest to the current min CSP 
%BDM i.e. point 
                switch point 
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                    case {1 2} 
                        refBlkVer = yStart + HDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                            % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(2,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(2,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                        
                    case {3 4}                        
                        refBlkVer = yStart + HDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(3,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(3,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
  
                    case {6 7}                        
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                        refBlkVer = yStart + HDSP(2,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(2,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                      
                    case {8 9}                        
                        refBlkVer = yStart + HDSP(3,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(3,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                     
                    otherwise 
                end % end switch  
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        [minHalfDiamondcost, HalfDiamondpoint] = min(HalfDiamondCosts); 
         
        xHDSP = xStart + HDSP(HalfDiamondpoint, 1);    % min BDM location is at one of the 4 points of 
%the HDSP 
        yHDSP = yStart + HDSP(HalfDiamondpoint, 2);    % record co-ords of min BDM HDSP point 
            
    % decide overall min BDM from 2 costs  
    % 1.minCostCSP at (xCSP,yCSP)   or    2.HalfDiamondcost at (xHDSP,yHDSP) 
        OverallMinCost = ones(1, 2) * 65537;  % 2 point cost matrix 
  
        OverallMinCost(1)= minCostCSP; 
        OverallMinCost(2)= minHalfDiamondcost; 
         
        [mincost, location] = min(OverallMinCost); 
             
    % if the overall min BDM is at the middle wing of the CSP i.e.(±1,0) or (0,±1) then we have a Second 
%step stop 
         if (location == 1) 
            if (MiddleWingFlag == 1) 
                MVfoundFlag = 1;      % Second step stop 
            end    
           x = xCSP; 
           y = yCSP; 
         else 
           x = xHDSP; 
           y = yHDSP; 
         end 
          
         if (MVfoundFlag == 0) 
           costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search if MV 
%not found 
           costs(5) = mincost;        % retain the cost so as not to calculate it again  
         end 
          
        end % end if from start of step 2 
          
        % ******Step 3 An unrestricted Large Diamond Search Pattern is applied until the Min BDM 
%occurs at the centre** 
        while (MVfoundFlag == 0 &&  SDSPFlag == 0) 
             
        % The index points for Large Diamond search pattern 
        LDSP(1,:) = [ 0 -2]; 
        LDSP(2,:) = [-1 -1];  
        LDSP(3,:) = [ 1 -1]; 
        LDSP(4,:) = [-2  0]; 
        LDSP(5,:) = [ 0  0]; 
        LDSP(6,:) = [ 2  0]; 
        LDSP(7,:) = [-1  1]; 
        LDSP(8,:) = [ 1  1]; 
        LDSP(9,:) = [ 0  2]; 
        
         for k = 1:9 
            refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 



-88- 

            end 
  
            if (k == 5) 
                continue;   % since centre point has already been calculated  
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;       % since outside of search window 
            elseif (checkMatrix(y-i+LDSP(k,2)+p+1,x-j+LDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+LDSP(k,2)+ p+1,x-j+LDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
            end       
         end % end for 
         
         [cost, point] = min(costs); 
         if (point == 5)            % The SDSPFlag is set to 1 when the minimum 
            SDSPFlag = 1;           % cost occurs at the centre of the diamond  
         else 
            x = x + LDSP(point, 1); % shift centre to min BDM location for next step 
            y = y + LDSP(point, 2); 
            costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop 
            costs(5) = cost;        % retain the cost so as not to calculate it again 
         end 
        end %end while 
            
   %****** Step 4  A final Small Diamond Search Pattern is applied********* 
        if (SDSPFlag == 1) 
             
         % The index points for the Small Diamond search pattern 
         SDSP(1,:) = [ 0 -1]; 
         SDSP(2,:) = [-1  0]; 
         SDSP(3,:) = [ 0  0]; 
         SDSP(4,:) = [ 1  0]; 
         SDSP(5,:) = [ 0  1]; 
                
         costs = ones(1,5) * 65537; 
         costs(3) = cost;            % value of cost comes from final LDSP loop 
         
          for k = 1:5 
            refBlkVer = y + SDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                  || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                continue;   % do nothing, outside image boundary 
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;   % do nothing, outside search window 
            end 
  
            if (k == 3) 
                continue;   % since centre point has already been calculated 
            elseif (checkMatrix(y-i+SDSP(k,2)+p+1,x-j+SDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
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                  imgI(refBlkVer:refBlkVer+mbSize-1,refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+SDSP(k,2)+ p+1,x-j+SDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
            end                       
          end %end for 
           
          [cost, point] = min(costs); 
          x = x + SDSP(point, 1); 
          y = y + SDSP(point, 2); 
        end %end if from start of step 4  
    
        vectors(1,mbCount) = y - i;   % row co-ordinate for the motion vector 
        vectors(2,mbCount) = x - j;   % col co-ordinate for the motion vector             
        mbCount = mbCount + 1; 
        costs = ones(1, 9) * 65537;   % reset cost matrix for next MV search i.e. 9 point Cross Shaped 
%pattern 
        checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search         
    end  %end for j 
end %end for i 
  
motionVect = vectors; 
CDScomputations = computations/(mbCount - 1); 
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2. motionEstSCDS.m Small Cross Diamond Search Algorithm 

% Computes motion vectors using the Small Cross Diamond Search method 
% 
% Based on the paper by Chun-Ho Cheung and Lai-Man Po.  
% IEEE 2002 International Conference on Image Processing Proceedings 
% (Sept. 2002a)   Volume 1, pp. 681–684. 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   SCDScomputations: The average number of points searched for a macroblock 
% 
% Written by Jerome Casey 
  
  
function [motionVect, SCDScomputations] = motionEstSCDS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(1, 5) * 65537;  % 5 point cost matrix for Small Cross Shaped pattern 
  
% The index points for the Small Cross Shaped pattern 
SCSP(1,:) = [ 0 -1]; 
SCSP(2,:) = [-1  0]; 
SCSP(3,:) = [ 0  0]; 
SCSP(4,:) = [ 1  0]; 
SCSP(5,:) = [ 0  1]; 
  
% we start off from the top left of the image and walk in steps of mbSize 
% for every macroblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
% We will be storing the positions of points where the checking has been 
% already done in a matrix that is initialised to 0. As a point is 
% checked the corresponding element in the matrix to set to 1.  
  
checkMatrix = zeros(2*p+1,2*p+1); 
computations = 0; 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
              
        x = j; 
        y = i; 
        xStart = j; % needed if BDM of outer 4 points of a LCSP and 2 of 4 points of 
        yStart = i; % a central-half LDSP need to be calculated in step 3 
               
        % In order to avoid re-calculating the centre point of the search 
        % we always store the value for it from the previous run. 
        % For the first iteration of the While loop we store this value outside 
        % the loop, but for subsequent iterations we store the cost at 
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        % the point where we are going to shift our root. 
        % 
        % For the SCDS we apply the Small CSP and find the minimum BDM of the 5 points. 
        % If the minimum BDM is at the centre the search stops (first step stop). 
        % If it is at one of the other 4 points, store the location and value of min BDM. 
        % and continue to next step 
                 
        MVfoundFlag = 0;    % MVfoundFlag is set to 1 when Motion Vector is found 
        SDSPFlag = 0;       % SDSPFlag is set to 1 when a SDSP needs to be executed     
         
        % **********Step 1 Uses a SCSP to find a min BDM from 5 points************************************ 
        for k = 1:5 
            refBlkVer = y + SCSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SCSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(SCSP(k,2) + p+1,SCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz 
            end      
        end 
         
         [cost, point] = min(costs); 
         if (point == 3) 
            MVfoundFlag = 1;            % first step stop 
         else 
            xSCSP = x + SCSP(point, 1); % shift centre to min BDM location for next step 
            ySCSP = y + SCSP(point, 2); 
            minCostSCSP = cost;         % retain the cost so as not to calculate it again 
         end 
          
        % **********Step 2 (Guiding Step) Uses a LCSP to find a min BDM from the 4 outer 
%points*********** 
        % this will guide the Half Diamond search pattern of step 3 
         
        if (MVfoundFlag == 0) 
             
         % The index points for the Large Cross Shape pattern 
         LCSP(1,:) = [ 0 -2]; 
         LCSP(2,:) = [-2  0]; 
         LCSP(3,:) = [ 0  0]; 
         LCSP(4,:) = [ 2  0]; 
         LCSP(5,:) = [ 0  2]; 
          
         OuterCosts = ones(1,5) * 65537; % intialise a new cost matrix to store costs for the 4 outer points 
  
         % original centre located at (xStart,yStart) - could also have used (j,i)here as well 
         
         for k = 1:5 
            refBlkVer = yStart + LCSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = xStart + LCSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            end 
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         % no need to add code referring to p parameter just yet as search is still within the search 
%window 
         % but it will be needed for the unrestricted LDSP search 
         
            if (k == 3)     % since this is the original centre point (xStart,yStart) and has already been 
%calculated  
                continue;   % in step 1 above  
            else    
            OuterCosts(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(LCSP(k,2) + p+1,LCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz 
            end      
         end % end for 
         
         [Outercost, Outerpoint] = min(OuterCosts); 
          
         xLCSP = xStart + LCSP(Outerpoint, 1);    % min BDM location is at one of the 4 outer points of 
%the LCSP 
         yLCSP = yStart + LCSP(Outerpoint, 2);    % record co-ords of min BDM LCSP point 
                
        %**********Step 3  A Half Diamond Search Pattern is applied************************************** 
  
         % The index points for the Half Diamond Search pattern 
         HDSP(1,:) = [-1 -1]; 
         HDSP(2,:) = [1  -1]; 
         HDSP(3,:) = [-1  1]; 
         HDSP(4,:) = [ 1  1]; 
          
         HalfDiamondCosts = ones(1,4) * 65537; % initialise a new cost matrix to store costs for the 4 half 
%diamond locations 
  
         % Of the 4 candidate points in HDSP, just check the 2 points closest to the min LCSP BDM i.e. 
%Outerpoint 
                switch Outerpoint 
                    case 1 
                        refBlkVer = yStart + HDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                            % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(2,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(2,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
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                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                        
                    case 2                        
                        refBlkVer = yStart + HDSP(1,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(1,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(3,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(3,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
  
                    case 4                        
                        refBlkVer = yStart + HDSP(2,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(2,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
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                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                      
                    case 5                        
                        refBlkVer = yStart + HDSP(3,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(3,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                                    
                        refBlkVer = yStart + HDSP(4,2);   % row/Vert co-ordinate for ref block 
                        refBlkHor = xStart + HDSP(4,1);   % col/Horizontal co-ordinate 
                        if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                            || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                             % do nothing, outside image boundary 
                        else  
                           HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                       imgI(refBlkVer:refBlkVer+mbSize-1, ... 
                                          refBlkHor:refBlkHor+mbSize-1), mbSize); 
                           computations = computations + 1; 
                           checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
                        end 
                     
                    otherwise 
                end % end switch  
                    
        [minHalfDiamondcost, HalfDiamondpoint] = min(HalfDiamondCosts); 
         
        xHDSP = xStart + HDSP(HalfDiamondpoint, 1);    % min BDM location is at one of the 4 points of 
%the HDSP 
        yHDSP = yStart + HDSP(HalfDiamondpoint, 2);    % record co-ords of min BDM HDSP point 
            
    %  decide overall min BDM from 3 costs  
    %  1.minCostSCSP at (xSCSP,ySCSP) 2.Outercost at (xLCSP,yLCSP) and 3.HalfDiamondcost at  
% (xHDSP,yHDSP) 
        OverallMinCost = ones(1, 3) * 65537;  % 3 point cost matrix 
  
        OverallMinCost(1)= minCostSCSP; 
        OverallMinCost(2)= Outercost; 
        OverallMinCost(3)= minHalfDiamondcost; 
         
        [mincost, location] = min(OverallMinCost); 
         if (location == 1) 
            MVfoundFlag = 1;       % Third step stop 
            x = xSCSP; 
            y = ySCSP; 
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         elseif(location == 2) 
            x = xLCSP; 
            y = yLCSP;    
         else 
            x = xHDSP; 
            y = yHDSP; 
         end 
          
         if (MVfoundFlag == 0) 
           costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search if MV 
%not found 
           costs(5) = mincost;        % retain the cost so as not to calculate it again  
         end 
          
        end % end if from start of step 2 
          
        %****** Step 4 An unrestricted Large Diamond Search Pattern is applied until the Min BDM 
%occurs at the centre** 
        while (MVfoundFlag == 0 &&  SDSPFlag == 0) 
             
        % The index points for the Large Diamond search pattern 
        LDSP(1,:) = [ 0 -2]; 
        LDSP(2,:) = [-1 -1];  
        LDSP(3,:) = [ 1 -1]; 
        LDSP(4,:) = [-2  0]; 
        LDSP(5,:) = [ 0  0]; 
        LDSP(6,:) = [ 2  0]; 
        LDSP(7,:) = [-1  1]; 
        LDSP(8,:) = [ 1  1]; 
        LDSP(9,:) = [ 0  2]; 
        
         for k = 1:9 
            refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            end 
  
            if (k == 5) 
                continue;   % since centre point has already been calculated  
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;       % since outside of search window 
            elseif (checkMatrix(y-i+LDSP(k,2)+p+1 , x-j+LDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+LDSP(k,2) + p+1,x-j+LDSP(k,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
            end       
         end % end for 
         
         [cost, point] = min(costs); 
         if (point == 5)            % The SDSPFlag is set to 1 when the minimum 
            SDSPFlag = 1;           % cost occurs at the centre of the diamond  
         else 
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            x = x + LDSP(point, 1); % shift centre to min BDM location for next step 
            y = y + LDSP(point, 2); 
            costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop 
            costs(5) = cost;        % retain the cost so as not to calculate it again 
         end 
         
        end %end while from start of step 4 
            
   % ****** Step 5  A final Small Diamond Search Pattern is applied********* 
        if (SDSPFlag == 1) 
             
        % The index points for the Small Diamond search pattern 
        SDSP(1,:) = [ 0 -1]; 
        SDSP(2,:) = [-1  0]; 
        SDSP(3,:) = [ 0  0]; 
        SDSP(4,:) = [ 1  0]; 
        SDSP(5,:) = [ 0  1]; 
                
        costs = ones(1,5) * 65537; 
        costs(3) = cost;            % value of cost comes from final LDSP loop 
         
          for k = 1:5 
            refBlkVer = y + SDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                  || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                continue;   % do nothing, outside image boundary 
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;   % do nothing, outside search window 
            end 
  
            if (k == 3) 
                continue;   % since centre point has already been calculated 
            elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+SDSP(k,2) + p+1,x-j+SDSP(k,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 

            end                       
          end %end for 
           
          [cost, point] = min(costs); 
          x = x + SDSP(point, 1); 
          y = y + SDSP(point, 2); 
        end %end if from start of step 5 
    
        vectors(1,mbCount) = y - i;   % row co-ordinate for the motion vector 
        vectors(2,mbCount) = x - j;   % col co-ordinate for the motion vector             
        mbCount = mbCount + 1; 
        costs = ones(1, 5) * 65537;   % reset cost matrix for next MV search i.e. 5 point Small Cross 
%Shaped pattern 
        checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search         
    end  %end for j 
end %end for i 
  
motionVect = vectors; 
SCDScomputations = computations/(mbCount - 1); 
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3. motionEstNCDS.m New Cross Diamond Search Algorithm 

% Computes motion vectors using the New Cross Diamond Search method 
% 
% Based on the paper by Chi-Wai Lam, Lai-Man Po and Chun Ho Cheung  
% IEEE International Conference on Neural Networks & Signal Processing 
% (Dec. 2003)   Volume 2, pp. 1262–1265. 
% 
% Input 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter 
% 
% Ouput 
%   motionVect : the motion vectors for each integral macroblock in imgP 
%   NCDScomputations: The average number of points searched for a macroblock 
% 
% Written by Jerome Casey 
  
  
function [motionVect, NCDScomputations] = motionEstNCDS(imgP, imgI, mbSize, p) 
  
[row col] = size(imgI); 
  
vectors = zeros(2,row*col/mbSize^2); 
costs = ones(1, 5) * 65537;  % 5 point cost matrix for Small Cross Shaped pattern 
  
  
% The index points for the Small Cross Shaped pattern 
SCSP(1,:) = [ 0 -1]; 
SCSP(2,:) = [-1  0]; 
SCSP(3,:) = [ 0  0]; 
SCSP(4,:) = [ 1  0]; 
SCSP(5,:) = [ 0  1]; 
  
% we start off from the top left of the image and walk in steps of mbSize 
% for every macroblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of it 
  
% We will be storing the positions of points where the checking has been 
% already done in a matrix that is initialised to 0. As a point is 
% checked the corresponding element in the matrix to set to 1.  
  
checkMatrix = zeros(2*p+1,2*p+1); 
computations = 0; 
  
mbCount = 1; 
for i = 1 : mbSize : row-mbSize+1 
    for j = 1 : mbSize : col-mbSize+1 
              
        x = j; 
        y = i; 
        xStart = j; % needed if BDM of outer 3 points 
        yStart = i; % of a LCSP needs to be calculated in step 3 
               
        % In order to avoid re-calculating the centre point of the search 
        % we always store the value for it from the previous run. 
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        % For the first iteration of the While loop we store this value outside 
        % the loop, but for subsequent iterations we store the cost at 
        % the point where we are going to shift our root. 
        % 
        % For the NCDS we apply the Small CSP and find the minimum BDM of the 5 points. 
        % If the minimum BDM is at the centre the search stops (first step stop). 
        % If it is at one of the other 4 points, make that the centre for a 2nd Small CSP 
        % If the minimum BDM is at the centre at this step the search stops (second step stop). 
        % If it is at one of the other 4 points, record the location and 
        % continue to next While loop 
         
        costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                                    imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize); 
        checkMatrix(p+1,p+1) = 1; 
        computations = computations + 1; 
         
        MVfoundFlag = 0;    % MVfoundFlag is set to 1 when Motion Vector is found 
        SDSPFlag = 0;       % SDSPFlag is set to 1 when a SDSP needs to be executed 
        step = 1;           % about to start step 1      
         
        % ***********Step(s) 1/2 Uses a SCSP to find a min BDM from 5 points*********** 
  
        while (MVfoundFlag == 0 && step <= 2) 
         for k = 1:5 
            refBlkVer = y + SCSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SCSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            end 
  
            if (k == 3) 
                continue;   % since centre point has already been calculated  
            elseif (checkMatrix(y-i+SCSP(k,2)+p+1 , x-j+SCSP(k,1)+p+1) == 1)% y-i=0 and x-j=0 in step 1 
                continue;   % needed since step 2 will have some points where checking has already been 
%done 
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+SCSP(k,2) + p+1,x-j+SCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
            end      
         end % end for 
         
         [cost, point] = min(costs); 
         if (point == 3) 
            MVfoundFlag = 1;        % first/second step stop 
         else 
            x = x + SCSP(point, 1); % shift centre to min BDM location for next step 
            y = y + SCSP(point, 2); 
            costs = ones(1,5) * 65537; 
            costs(3) = cost;        % retain the cost so as not to calculate it again 
         end 
             
         step = step + 1; 
        end % end while 
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        % ***********Step 3 Uses a LCSP to guide the centre for the following LDSP step*********** 
        % find the minimum BDM between the 3 outer points of the LCSP and the mincost in step 2   
                      
        if (MVfoundFlag == 0) 
             
         % The index points for the Large Cross Shape pattern 
         LCSP(1,:) = [ 0 -2]; 
         LCSP(2,:) = [-2  0]; 
         LCSP(3,:) = [ 0  0]; 
         LCSP(4,:) = [ 2  0]; 
         LCSP(5,:) = [ 0  2]; 
         
         OuterCosts = ones(1,5) * 65537; % intialise a new cost matrix to store costs for the 3 outer points 
         % original centre located at (xStart,yStart) - could also have used (j,i)here as well 
         
         for k = 1:5 
            refBlkVer = yStart + LCSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = xStart + LCSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            end 
             
         % no need to add code referring to p parameter just yet as search is still within the search 
%window 
         % but it will be needed for the unrestricted LDSP search 
         
            if (k == 3)     % since this is the original centre point and has already been calculated  
                continue;   % in any case min cost from step 2 is < cost at the original centre point  
            elseif (checkMatrix(LCSP(k,2)+p+1,LCSP(k,1)+p+1) == 1)% will avoid 1 of the 4 pts already 
%calculated 
                continue;    
            else    
            OuterCosts(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(LCSP(k,2)+ p+1,LCSP(k,1)+p+1) = 1; % row/Vert co-ord first, then col/Horiz 
            end      
         end % end for 
         
         [Outercost, Outerpoint] = min(OuterCosts); 
         
         if (Outercost < cost)                   % compare with min cost from step 2 
            x = xStart + LCSP(Outerpoint, 1);    % min BDM location is at one of the 3 outer points of the 
%LCSP 
            y = yStart + LCSP(Outerpoint, 2);    % shift centre here for the upcoming LDSP 
            mincost = Outercost; 
         else 
             % x,y are already pointing to mincost location from step 2 
            mincost = cost; 
         end 
         costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search 
         costs(5) = mincost;        % retain the cost so as not to calculate it again 
        end % end if from start of step 3 
           
        %****** Step 4 An unrestricted Large Diamond Search Pattern is applied until the Min BDM 
%occurs at the centre** 
        while (MVfoundFlag == 0 &&  SDSPFlag == 0) 
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        % The index points for Large Diamond search pattern 
        LDSP(1,:) = [ 0 -2]; 
        LDSP(2,:) = [-1 -1];  
        LDSP(3,:) = [ 1 -1]; 
        LDSP(4,:) = [-2  0]; 
        LDSP(5,:) = [ 0  0]; 
        LDSP(6,:) = [ 2  0]; 
        LDSP(7,:) = [-1  1]; 
        LDSP(8,:) = [ 1  1]; 
        LDSP(9,:) = [ 0  2]; 
        
         for k = 1:9 
            refBlkVer = y + LDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + LDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)             
                continue;   % since outside image boundary 
            end 
  
            if (k == 5) 
                continue;   % since centre point has already been calculated  
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;       % since outside of search window 
            elseif (checkMatrix(y-i+LDSP(k,2)+p+1 , x-j+LDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+LDSP(k,2)+p+1,x-j+LDSP(k,1)+p+1) = 1; % row/Vert co-ord first, then col/Horiz 
            end       
         end % end for 
         
         [cost, point] = min(costs); 
         if (point == 5)            % The SDSPFlag is set to 1 when the minimum 
            SDSPFlag = 1;           % cost occurs at the centre of the diamond  
         else 
            x = x + LDSP(point, 1); % shift centre to min BDM location for next step 
            y = y + LDSP(point, 2); 
            costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop 
            costs(5) = cost;        % retain the cost so as not to calculate it again 
         end 
         
        end % end while 
            
   % ****** Step 5  A final Small Diamond Search Pattern is applied********* 
        if (SDSPFlag == 1) 
             
         % The index points for the Small Diamond search pattern 
         SDSP(1,:) = [ 0 -1]; 
         SDSP(2,:) = [-1  0]; 
         SDSP(3,:) = [ 0  0]; 
         SDSP(4,:) = [ 1  0]; 
         SDSP(5,:) = [ 0  1]; 
                
         costs = ones(1,5) * 65537; 
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         costs(3) = cost;            % value of cost comes from final LDSP loop 
         
          for k = 1:5 
            refBlkVer = y + SDSP(k,2);   % row/Vert co-ordinate for ref block 
            refBlkHor = x + SDSP(k,1);   % col/Horizontal co-ordinate 
            if ( refBlkVer < 1 || refBlkVer+mbSize-1 > row ... 
                  || refBlkHor < 1 || refBlkHor+mbSize-1 > col) 
                continue;   % do nothing, outside image boundary 
            elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ... 
                            || refBlkVer > i+p) 
                continue;   % do nothing, outside search window 
            end 
  
            if (k == 3) 
                continue;   % since centre point has already been calculated 
            elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1) 
                continue;    
            else    
            costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ... 
                  imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize); 
            computations =  computations + 1; 
            checkMatrix(y-i+SDSP(k,2)+ p+1,x-j+SDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then 
%col/Horiz 
            end                       
          end %end for 
                  
          [cost, point] = min(costs); 
          x = x + SDSP(point, 1); 
          y = y + SDSP(point, 2); 
        end %end if from start of step 5  
    
        vectors(1,mbCount) = y - i;   % row co-ordinate for the motion vector 
        vectors(2,mbCount) = x - j;   % col co-ordinate for the motion vector             
        mbCount = mbCount + 1; 
        costs = ones(1, 5) * 65537;   % reset cost matrix for next MV search i.e. 5 point Small Cross 
%Shaped pattern 
        checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search         
    end 
end 
  
motionVect = vectors; 
NCDScomputations = computations/(mbCount - 1);      
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plots.m - Produces frame-wise plots of Average Searching Points and Average PSNR and 

saves the corresponding images. 
 

%***************Plot Search Points per MacroBlock vs Frame Number**********    
    % Line Style Specifiers: Specifier  Line Style 
    % - Solid line (default) -- Dashed line; 
    % : Dotted line   -. Dash-dot line 
  
    % Specifier and Marker Type 
    % + Plus sign;o Circle;* Asterisk;. Point;x Cross;'square' or s Square; 
    %'diamond' or d Diamond;^ Upward-pointing triangle;v Downward-pointing triangle 
    % > Right-pointing triangle; < Left-pointing triangle 
    %'pentagram' or p Five-pointed star (pentagram) 
    %'hexagram' or h Six-pointed star (hexagram) 
     
    % Color and Specifiers 
    % r Red;g Green;b Blue;c Cyan;m Magenta;y Yellow;k Black;w White 
figure(1) 
    plot (NTSScomputations,'-.b');     
    hold all; 

    grid on; 
    plot (SS4computations,':g'); 
    plot (SESTSScomputations,'-g'); 
    plot (TSScomputations,'-k'); 
    plot (ARPScomputations,'-r'); 
    plot (DScomputations,'-db'); 
    plot (CDScomputations,'-dy'); 
    plot (SCDScomputations,'-dm'); 
    plot (NCDScomputations,'-dc'); 
    
    title([imageName,' sequence    Block Size ',num2str(mbSize),'x',num2str(mbSize),'   Search Parameter p = 
',num2str(p)]); 
    xlabel([imageName,' Frame Number']); 
    ylabel('Search Points per MacroBlock'); 
    
legend({'NTSScomputations','SS4computations','SESTSScomputations','TSScomputations','ARPScomputations','
DScomputations','CDScomputations','SCDScomputations','NCDScomputations'},'FontSize',7); 
  
    hold off; 
    saveas(gcf,[imageName,'NumSearchPtsperMacroBlock.jpg']) 
  
%*****Plot PSNR of the motion compensated image w.r.t. original image vs Frame Number****** 
    figure(2) 
    plot (ESpsnr,'-.r'); 
    hold all; 

    grid on; 
    plot (NTSSpsnr,'-.b'); 
    plot (SS4psnr,':g'); 
    plot (SESTSSpsnr,'-g'); 
    plot (TSSpsnr,'-k'); 
    plot (ARPSpsnr,'-r'); 
    plot (DSpsnr,'-db'); 
    plot (CDSpsnr,'-dy'); 
    plot (SCDSpsnr,'-dm');  
    plot (NCDSpsnr,'-dc'); 
     
    title([imageName,' sequence    Block Size ',num2str(mbSize),'x',num2str(mbSize),'   Search Parameter p = 
',num2str(p)]); 
    xlabel([imageName,' Frame Number']); 
    ylabel('PSNR (dB)'); 
    
legend({'ESpsnr','NTSSpsnr','SS4psnr','SESTSScomputations','TSSpsnr','ARPSpsnr','DSpsnr','CDSpsnr','SCDSps
nr','NCDSpsnr'},'FontSize',7); 
  
    hold off;  
    saveas(gcf,[imageName,' PSNR of the motcomp image w.r.t. original.jpg']) 
     %****************************************************************************** 
 



-103- 

stats.m - code to calculate some statistics such as Average Searching Points, Average PSNR 

Speed Improvement Ratio, and the PSNR difference (w.r.t. Diamond Search) for the sequence 

overall. 
 

 

%**********Stats: Average Searching Points, Average PSNR, Speed Improvement Ratio******** 
%%%% Average Searching Points for selected Fast BMAs %%%% 
ES_Av_Comp = mean(EScomputations)   %1. 
TSS_Av_Comp = mean(TSScomputations)  %2. 
NTSS_Av_Comp = mean(NTSScomputations)  %3. 
SS4_Av_Comp = mean(SS4computations)  %4. 
SESTSS_Av_Comp = mean(SESTSScomputations) %5. 
DS_Av_Comp = mean(DScomputations)   %6. 
CDS_Av_Comp = mean(CDScomputations)  %7. 
SCDS_Av_Comp = mean(SCDScomputations)  %8. 
NCDS_Av_Comp = mean(NCDScomputations)  %9. 
ARPS_Av_Comp = mean(ARPScomputations)  %10. 
 
%%%% Average PSNR for selected Fast BMAs %%%% 
ES_Av_PSNR = mean(ESpsnr)    %1. 
TSS_Av_PSNR = mean(TSSpsnr)   %2. 
NTSS_Av_PSNR = mean(NTSSpsnr)   %3. 
SS4_Av_PSNR = mean(SS4psnr)   %4. 
SESTSS_Av_PSNR = mean(SESTSSpsnr)  %5. 
DS_Av_PSNR = mean(DSpsnr)    %6. 
CDS_Av_PSNR = mean(CDSpsnr)   %7. 
SCDS_Av_PSNR = mean(SCDSpsnr)   %8. 
NCDS_Av_PSNR = mean(NCDSpsnr)   %9. 
ARPS_Av_PSNR = mean(ARPSpsnr)   %10. 
 
%%%% Average Speed Improvement Ratio (%) over ES %%%% 
SirCDS_ES = (ES_Av_Comp - CDS_Av_Comp)*100/ ES_Av_Comp 
SirSCDS_ES = (ES_Av_Comp - SCDS_Av_Comp)*100/ ES_Av_Comp 
SirNCDS_ES = (ES_Av_Comp - NCDS_Av_Comp)*100/ ES_Av_Comp 
SirARPS_ES = (ES_Av_Comp - ARPS_Av_Comp)*100/ ES_Av_Comp 
 
%%%% Average Speed Improvement Ratio (%) over DS %%%% 
SirCDS_DS = (DS_Av_Comp - CDS_Av_Comp)*100/ DS_Av_Comp 
SirSCDS_DS = (DS_Av_Comp - SCDS_Av_Comp)*100/ DS_Av_Comp 
SirNCDS_DS = (DS_Av_Comp - NCDS_Av_Comp)*100/ DS_Av_Comp 
SirARPS_DS = (DS_Av_Comp - ARPS_Av_Comp)*100/ DS_Av_Comp 
 
%%%% Difference in Average PSNR over DS %%%%  
PSNR_Diff_CDS_DS = DS_Av_PSNR - CDS_Av_PSNR 
PSNR_Diff_SCDS_DS = DS_Av_PSNR - SCDS_Av_PSNR 
PSNR_Diff_NCDS_DS = DS_Av_PSNR - NCDS_Av_PSNR 
PSNR_Diff_ARPS_DS = DS_Av_PSNR - ARPS_Av_PSNR 
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Appendix E: M-Code to convert CIF & QCIF files 

 

Some of the standard video sequences used for algorithm analysis are saved as CIF (Common 

Intermediate Format) or QCIF (Quarter CIF format) which are in the .yuv file format. These 

need to be converted to usable images for input to the various block search algorithms. In the 

conversion the Cb and Cr components are suppressed while the Y (luma) component is 

retained. The motion vectors are typically estimated from the luma component only. The 

frames are saved to disk in Sun Rasterfile format (.ras) which is an uncompressed greyscale 

format. These are later called for processing by the motionsEstAnalysis.m main script. The 

MATLAB code used is adapted from Amer (2008) and is as follows: 

 

 

readYUV.m   Conversion of CIF/QCIF Files to Usable Images 

%% This script reads a 4:2:0 yuv video file and converts it into RGB frames 
% The tunable parameters are: 
%   
% * |*filename*|: a string specifying the yuv filename; 
%   
% * |*width*|: specifies the width of the frame; 
%   
% * |*height*|: specifies the height of the frame; 
%   
% * |*num*|: the number of frames to be read; 
%   
% * |*start*|: the number of frame at which we start reading from the file 
%               (assuming the first frame is 0) 
  
clear, close all; 
  
filename = 'mobile_qcif.yuv'; 
width = 352/2; 
height = 288/2; 
num = 32; 
start = 0; 
  
%% First, open the video file for binary reading 
fid=fopen(filename,'r'); 
if (fid < 0)  
    error('File does not exist!'); 
end 
  
%% Pre-allocate temp variables for performance boost 
tmpY = zeros(width, height); % rows then columns 
tmpUV = zeros(width/2, height/2); % 1/4 the number of elements in Y 
frmSize = numel(tmpY) + 2*numel(tmpUV); % frame size equals the total number of elements 
  
  
%% Seek the video file till we reach the starting frame 
fseek(fid, start * frmSize , 'bof'); 
  
%% Define the output YUV components 
Y=cell(num,1); % a vector of arrays, each array corresponds to one frame of Y component 
U=cell(num,1); % a vector of arrays, each array corresponds to one frame of U component 
V=cell(num,1); % a vector of arrays, each array corresponds to one frame of V component 
  
%% Read the binary values from the file into the vectors of frames 
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% The assumption here is that the file format is 4:2:0 
for i=1:num 
    % this automatically reads the 8-bit binary values into the matrix 
    % starting with filling the first column then continues in a column 
    % order. That's why transposing the matrix is necessary. 
  
    tmpY = fread(fid,[width height],'uint8'); % the final dimensions of tmpY are width(rows) x 
height(columns) 
    Y{i} = tmpY'; % transposing and casting to uint8 for imshow() to work correctly 
  
    tmpUV = fread(fid,[width/2 height/2],'uint8'); 
    U{i} = tmpUV'; % transposing and casting to uint8 for imshow() to work correctly 
  
    tmpUV = fread(fid,[width/2 height/2],'uint8'); 
    V{i} = tmpUV'; % transposing and casting to uint8 for imshow() to work correctly 
end 
  
% we're done reading, so close the file 
fclose(fid); 
  
  
%% Perform the YUV-to-RGB transfromation 
%% Define the output RGB cells 
vRGB=cell(num,1); 
  
%% Define the forward (RGB-to-YUV) transformation matrix as for YPrPb 
% (see http://en.wikipedia.org/wiki/YCbCr) 
rgb2yuvT = [0.299 0.587 0.114; -0.168736 -0.331264 0.5; 0.5 -0.418688 -0.081312]; 
  
%% Get the inverse (YUV-to-RGB) transormation matrix 
yuv2rgbT = inv(rgb2yuvT); 
  
%% Pre-allocate the temp variables 
dY = zeros(height, width); 
dU = zeros(height, width); 
dV = zeros(height, width); 
  
% the variable to hold the final rgb values for the frame 
% rgb(:,:,1) will hold the Red component 
% rgb(:,:,2) will hold the Green component 
% rgb(:,:,3) will hold the Blue component 
rgb = zeros(height, width, 3); 
  
%% Iterate through all the frames 
% The calculations will be done using double float numbers. After the 
% transformation is done, the results will be scaled and quantized to 8-bit 
% unsigned format again. 
  
for i=1:num; 
    % Convert the class of Y{i} to double instead of uint8 for better 
    % precision during conversion 
    dY = double(Y{i}); 
  
    % Convert the class of U{i} to double instead of uint8 for better 
    % precision during conversion, and then perform bilinear interpolation 
    %dU = imresize(double(U{i}), 2, 'bilinear');    % i suppress the color component here 
  

 
Source: Girod, (2008) 
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    % Convert the class of U{i} to double instead of uint8 for better 
    % precision during conversion, and then perform bilinear interpolation 
    %dV = imresize(double(V{i}), 2, 'bilinear');    % i suppress the color component here 
     
    % Shift the values of U and V down by 128 since we do not use uint8 anymore 
    dY = dY -16; %dU=dU-128; %dV=dV-128; 
     
    % Perform the transformation 
    rgb(:,:,1) = yuv2rgbT(1,1) * dY + yuv2rgbT(1,2) * dU + yuv2rgbT(1,3) * dV; % Red 
    rgb(:,:,2) = yuv2rgbT(2,1) * dY + yuv2rgbT(2,2) * dU + yuv2rgbT(2,3) * dV; % Green 
    rgb(:,:,3) = yuv2rgbT(3,1) * dY + yuv2rgbT(3,2) * dU + yuv2rgbT(3,3) * dV; % Blue 
     
    % Return to the unit8 class 
    rgb = uint8(rgb); 
     
    % Assign the frame to the vector of frames 
    vRGB{i} = rgb; 
end 
  
  
%% Save the images into ras files, if desired 
% The frames will be saved to ras files if the |*sv*| flag is set to one 
  
% (save the images)-flag 
sv=1; 
  
% desired images filename_prefix (assumed to be the same as the video filename 
fp = filename; 
  
if(sv==1) 
    for j=1:num 
        fname=strcat(fp,'_','frame_',num2str(start+j),'.ras'); 
        imwrite(vRGB{j},fname); % the format is determined to be ras from the filename extension 
    end 
end 
  
  
%% Plot the images, if desired 
% The frames will be plotted in MATLAB if the |*pt*| flag is set to one 
  
% (plot the images)-flag 
pt=0; 
  
if(pt==1) 
    for k=1:num 
        figure, 
        figTitle=strcat('File:', fp,' - ','Frame No.',num2str(start+k)); 
        imshow(vRGB{k}), title(figTitle), 
    end 
end 
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