
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Other Resources School of Multidisciplinary Technologies

2008

An Investigation of Block Searching Algorithms for Video Frame An Investigation of Block Searching Algorithms for Video Frame

Codecs Codecs

Jerome Casey
Technological University Dublin, jerome.casey@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/schmuldistoth

 Part of the Other Engineering Commons

Recommended Citation Recommended Citation
Casey, J.: An Investigation of Block Searching Algorithms for Video Frame Codecs. Master's Dissertation.
Dublin, Dublin Institute of Technology, 2008

This Dissertation is brought to you for free and open
access by the School of Multidisciplinary Technologies at
ARROW@TU Dublin. It has been accepted for inclusion in
Other Resources by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact yvonne.desmond@tudublin.ie,
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/schmuldistoth
https://arrow.tudublin.ie/schmuldist
https://arrow.tudublin.ie/schmuldistoth?utm_source=arrow.tudublin.ie%2Fschmuldistoth%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=arrow.tudublin.ie%2Fschmuldistoth%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

An Investigation of Block Searching Algorithms

for Video Frame Codecs

by

Jerome Casey

A dissertation submitted in partial fulfilment of the requirements for the DIT’s

Master of Science Degree in Applied Computing for Technologists,

Faculty of Engineering, DIT, Bolton Street.

Supervisor: Anselm Griffin

I certify that this dissertation, which I now submit for examination for the award of

MSc. in Applied Computing for Technologists, is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

This dissertation has not been submitted in whole or in part for an award in any other

Institute or University.

The Institute has permission to keep, to lend or to copy this dissertation in whole or in

part, on condition that any use of the material of the dissertation be duly

acknowledged.

Signature: Date: 5 December 2008

 Candidate

-i-

Abbreviations

B-Picture – Bidirectionally predictive-coded Picture.

BDM – Block distortion measure.

BMA – Block motion algorithm.

BME – Block motion estimation.

CSP – Cross Shaped Pattern.

IEEE – Institute of Electrical and Electronics Engineers.

I-Picture – Intra-coded Picture.

ISO – International Organization for Standardization.

ITU-R – International Telecommunications Union.

LCSP – Large Cross Shaped Pattern.

LDSP – Large Diamond Shaped Pattern.

MB – Macroblock.

MAD – Mean Absolute Difference.

M-code – MATLAB code.

MPEG – Motion Picture Experts Group.

MSE – Mean Square Error.

PSNR – Peak-Signal-to-Noise-Ratio.

P-Picture – Predictive-coded Picture.

SAD – Sum of Absolute Differences.

SCSP – Small Cross Shaped Pattern.

SDSP – Small Diamond Shaped Pattern.

-ii-

Table of Contents

ABSTRACT .. IV

1.0 INTRODUCTION.. 1

1.1 FAST MOTION ESTIMATION ALGORITHMS ... 2

1.2 ACHIEVING MOTION ESTIMATION... 2

1.3 COST FUNCTION ... 4

1.4 RATE DISTORTION PERFORMANCE-PSNR... 5

1.5 MONOTONIC ERROR SURFACE .. 5

2.0 LITERATURE REVIEW .. 6

2.1 EXHAUSTIVE SEARCH (ES) ... 6

2.2 THREE STEP SEARCH (3SS) .. 7

2.3 NEW THREE STEP SEARCH (NTSS) .. 8

2.4 SIMPLE AND EFFICIENT SEARCH (SES) ... 9

2.5 FOUR STEP SEARCH (4SS) .. 11

2.6 DIAMOND SEARCH (DS) ... 13

2.7 ADAPTIVE ROOD PATTERN SEARCH (ARPS) .. 15

2.8 HEXAGON BASED SEARCH PATTERN (HEXBS) .. 17

2.9 CROSS DIAMOND SEARCH (CDS) ... 19

2.10 SMALL CROSS DIAMOND SEARCH (SCDS) ... 21

2.11 NEW CROSS DIAMOND SEARCH (NCDS) .. 23

3.0 IMPLEMENTATION OF ALGORITHMS .. 25

3.1 VIDEO SEQUENCES USED FOR ANALYSIS ... 25

3.2 ALGORITHMS TO BE IMPLEMENTED ... 26

3.3 THESIS AIMS .. 26

3.4 CODING THE ALGORITHMS ... 26

3.5 PROGRAM EXECUTION.. 30

4.0 ANALYSIS OF THE IMPLEMENTED BLOCK SEARCH ALGORITHMS ... 31

4.1 EXPERIMENTAL RESULTS ... 31

4.2 VALIDATION OF THE IMPLEMENTATION .. 36

4.3 PERFORMANCE OF THE 3 HYBRID DS ALGORITHMS VERSUS DS .. 37

4.4 PERFORMANCE OF THE 3 HYBRID DS ALGORITHMS AND THE DS VERSUS ARPS ... 39

4.5 CHOOSING A BLOCK MOTION ALGORITHM ... 40

5.0 CONCLUSIONS & FUTURE WORK ... 41

REFERENCES... 42

APPENDIX A: GLOSSARY OF TERMS ... 46

APPENDIX B: M-CODE BY AROH BARJATYA... 47

APPENDIX C: CORRECTIONS TO BARJATYA CODE BY JEROME CASEY ... 80

APPENDIX D: M-CODE BY JEROME CASEY ... 82

APPENDIX E: M-CODE TO CONVERT CIF & QCIF FILES.. 104

List of Tables

TABLE 1.1: MOPS REQUIREMENT FOR REAL-TIME IMPLEMENTATION FOR H.261 COMPRESSION 2

TABLE 3.1: VIDEO SEQUENCES USED FOR ANALYSIS .. 25

TABLE 4.1: AVERAGE POINTS SEARCHED FOR SELECTED FAST BMAS OVER 3 SEQUENCES 31

TABLE 4.2: AVERAGE PSNR (DB) FOR SELECTED FAST BMAS OVER 3 SEQUENCES ... 31

TABLE 4.3: AVERAGE SPEED IMPROVEMENT RATIO (%) OVER ES FOR 3 SEQUENCES 31

TABLE 4.4: AVERAGE SPEED IMPROVEMENT RATIO (%) OVER DS FOR 3 SEQUENCES 31

TABLE 4.5: DIFFERENCE IN AVERAGE PSNR (DB) OVER DS FOR 3 SEQUENCES .. 31

TABLE B.1: M FILES USED BY BARJATYA AND THEIR ROLE ... 47

TABLE D.1: M-FILES USED BY CASEY AND THEIR ROLE .. 82

-iii-

List of Figures

FIG. 1.1 ENCODING AND DECODING OF A VIDEO SEQUENCE AND THE ROLE OF MOTION VECTORS. 1

FIG. 1.2 HOW THE MOTION VECTOR IS FOUND IN THE REFERENCE FRAME. ... 3

FIG. 1.3 A COST FUNCTION BEING APPLIED AT A NUMBER OF LOCATIONS WITHIN THE SEARCH

WINDOW. ... 4

FIG. 1.4 EXAMPLES OF MATCHING ERROR SURFACES. .. 5

FIG. 2.1 EXHAUSTIVE SEARCH ALGORITHM. ... 7

FIG. 2.2 THREE STEP SEARCH ALGORITHM PROCEDURE. ... 8

FIG. 2.3 NEW THREE STEP SEARCH ALGORITHM PROCEDURE. .. 9

FIG. 2.4 SEARCH PATTERNS CORRESPONDING TO EACH SELECTED QUADRANT OF THE SES. 10

FIG. 2.5 SIMPLE AND EFFICIENT SEARCH ALGORITHM PROCEDURE. .. 10

FIG. 2.6 SEARCH PATTERNS USED IN THE FOUR STEP SEARCH ALGORITHM. .. 12

FIG. 2.7 FOUR STEP SEARCH ALGORITHM PROCEDURE. ... 12

FIG. 2.8 SEARCH PATTERNS USED IN THE DIAMOND SEARCH ALGORITHM. .. 14

FIG. 2.9 DIAMOND BLOCK MATCHING ALGORITHM PROCEDURE. .. 14

FIG. 2.10 ADAPTIVE ROOD SEARCH PATTERN. .. 16

FIG. 2.11 SEARCH PATTERNS USED IN THE HEXBS ALGORITHM. .. 17

FIG. 2.12 HEXAGON BASED SEARCH PATTERN PROCEDURE. ... 18

FIG. 2.13 SEARCH PATTERNS USED IN THE CROSS DIAMOND SEARCH ALGORITHM. 19

FIG. 2.14 CROSS DIAMOND BLOCK MATCHING ALGORITHM PROCEDURE. .. 20

FIG. 2.15 SEARCH PATTERNS USED IN THE SMALL CROSS DIAMOND SEARCH ALGORITHM. 21

FIG. 2.16 SMALL CROSS DIAMOND BLOCK MATCHING ALGORITHM PROCEDURE. ... 22

FIG. 2.17 SEARCH PATTERNS USED IN THE NEW CROSS DIAMOND SEARCH ALGORITHM. 23

FIG. 2.18 NEW CROSS DIAMOND BLOCK MATCHING ALGORITHM PROCEDURE. .. 24

FIG. 3.1 STILLS OF THE VIDEO SEQUENCES ANALYSED. .. 25

FIG. 3.2 THE CROSS SEARCH PATTERN USED BY CDS, SCDS, AND NCDS. .. 26

FIG. 3.3 FLOWCHART FOR THE CROSS DIAMOND SEARCH ALGORITHM. .. 27

FIG. 3.4 FLOWCHART FOR THE SMALL CROSS DIAMOND SEARCH ALGORITHM. ... 28

FIG. 3.5 FLOWCHART FOR THE NEW CROSS DIAMOND SEARCH ALGORITHM. ... 29

FIG. 3.6 MATLAB ENVIRONMENT SHOWING THE MAIN SCRIPT RUNNING FOR THE FOOTBALL

SEQUENCE. .. 30

FIG. 4.1 SEARCH POINTS PER MACROBLOCK FOR SELECTED FAST BMAS APPLIED TO FOOTBALL. 33

FIG. 4.2 PSNR PERFORMANCE FOR SELECTED FAST BMAS APPLIED TO FOOTBALL. 33

FIG. 4.3 SEARCH POINTS PER MACROBLOCK FOR SELECTED FAST BMAS APPLIED TO FLOWER GARDEN.

 .. 34

FIG. 4.4 PSNR PERFORMANCE FOR SELECTED FAST BMAS APPLIED TO FLOWER GARDEN. 34

FIG. 4.5 SEARCH POINTS PER MACROBLOCK FOR SELECTED FAST BMAS APPLIED TO MISS AMERICA. ... 35

FIG. 4.6 PSNR PERFORMANCE FOR SELECTED FAST BMAS APPLIED TO MISS AMERICA. 35

FIG. 4.7 THE FLOWER GARDEN SEQUENCE WITH ITS MOTION VECTORS OVERLAID. 38

FIG. 4.8 MAXIMUM NUMBER OF SEARCH POINTS SAVED / USED BY THE CDS COMPARED TO THE DS. 38

-iv-

Abstract

Block matching is the most computationally demanding aspect of the video encoding

process. In many applications real-time video encoding is desired and therefore it is

important that the encoding is fast. Also where handheld devices such as a PDA or

mobile phone are concerned a less computationally intensive algorithm means a

simpler processor can be used which saves on hardware costs and also extends battery

life. An optimised algorithm also allows these devices to be used in low bandwidth

wireless networks. The challenge is to decrease the computational load on the system

without compromising the quality of the video stream too much, thus enabling easier

and less expensive implementations of real-time encoding.

This thesis appraises some of the principal Block Search Algorithms used in Video

compression today. This work follows on from the work of Aroh Barjatya who

implemented 7 common Block Search Algorithms to predict P-frames in MATLAB.

Three further hybrid DS algorithms are implemented in MATLAB. Additional code is

added to produce plots of the main metrics and to calculate some statistics such as

Average Searching Points, Average PSNR and the Speed Improvement Ratio with

respect to the Diamond Search and the Exhaustive Search.

For a comparative analysis with previous studies 3 standard industry test sequences

are used. The first sequence, Miss America is a typical videoconferencing scene with

limited object motion and a stationary background. The second sequence, Flower

Garden consists mainly of stationary objects, but with a fast camera panning motion.

The third sequence, Football contains large local object motion. The performance of

the 3 implemented algorithms were assessed by the aforementioned statistics.

Simulation results showed that the NCDS was the fastest algorithm amongst the 3

hybrid DS algorithms simulated. A speedup ranging from 10% for the complex

motion sequence Flower Garden to nearly 54% for the low motion video

conferencing sequence Miss America was recorded.

All 3 algorithms performed very competitively in terms of PSNR compared to the DS

even though they use a lower number of search points on average. It was shown that

the NCDS has marginally worse PSNR performance than the DS compared to the

other 2 algorithms – the highest being a drop in PSNR of 0.680dB for the Flower

Garden sequence. However, the speed improvements for NCDS are quite substantial

and thus would justify its use over the DS. The results from the implementation

concurred with the literature therefore validating the implementation.

The implementation was used as a guide in nominating a ‘robust’ Block Search

Algorithm. When the DS, CDS, SCDS and the NCDS were compared with ARPS it

was shown that ARPS generally gave both higher PSNR and higher search speed for

all 3 sequences. The reason for the good performance of ARPS is that it quickly

directs the search into the local region of the global minimum by calculating the

Predicted Motion Vector. The minimum error from a rood pattern of nodes is found

and then a final refined search calculates the motion vector.

Simulation results showed that ARPS was the best algorithm amongst the 10

algorithms simulated from the point of view of speed (lowest number of search points

used per macroblock) and video quality (PSNR). For real-time encoding of video the

best fast block motion algorithm to advise is ARPS.

-1-

1.0 Introduction

A video sequence consists of a series of frames viewed at a sufficiently fast frame rate to give

the illusion of motion. Video generally contains a lot of data which places a large demand on

video systems for both storage and transmission of digital video. For example, uncompressed

CCIR601 active digital video requires a bandwidth in excess of 158Mbps – over 300 times the

capacity of a 512kbps ADSL connection and only just over one hour recording on a 80GB

hard disk (Chapman and Chapman, 2004). These demands have lead to a large body of

research in the area of video compression, particularly motion estimation (Barjatya, 2004).

Block-based motion estimation algorithms have seen widespread use in many codecs due to

their effectiveness and simplicity of implementation (Tham et al, 1998). They have been used

in MPEG-1, MPEG-2, H.261, H.262 and more recently in MPEG-4 and H.264 (Wiegand et al,

2003). A frame is selected as a reference frame and subsequent frames are predicted from the

reference. An encoder will output a series of motion vectors and a difference image for each

original uncompressed frame. At the decoder the original frame is reconstructed from the

summation of the motion compensated image (produced from its motion vectors and

corresponding reference frame) and the motion compensated difference image. Much less data

is required to code the motion vectors and the motion compensated difference image than is

needed to code the original image and so compression is achieved.

The main focus of this work is on the analysis of current fast block search algorithms

for motion estimation with a conclusion of ‘best-practice’ when nominating a Block Search

Algorithm. The optimal algorithm will have a low computational cost whilst not degrading the

quality of the encoded video.

Encoder

Reference frame

Current frame

Motion

Estimation

→

Matrix of Motion Vectors

+

Difference image

Decoder

Motion Compensated

Frame (with Motion

Vectors overlaid)

Motion compensated

difference image

Σ

→

Reconstructed image

Fig. 1.1 Encoding and Decoding of a video sequence and the role of Motion Vectors.

The Flower Garden sequence involves a pan from left to right, a motion vector points to the

best match macroblock in the reference frame, hence the predominance of motion vectors

pointing to the left. Source: Girod, (2008).

-2-

1.1 Fast Motion Estimation Algorithms

Block matching is the most computationally demanding aspect of the video encoding process.

In many applications real-time video encoding is desired and therefore it is important that the

encoding is fast. Also where handheld devices are concerned a less computationally intensive

block matching algorithm means a simpler processor can be used saving hardware costs and

extending battery life (Dahlstrand, 2001). An optimised algorithm also allows these devices to

be used in low bandwidth wireless networks.

As can be seen from table 1.1 which shows the number of operations per second required for a

real-time implementation of a video encoder (Cheung, 1998) the motion estimation operation

is by far the largest component of video encoding. It requires 608 million operations per

second or 63% of the computational load. This is a considerable problem when trying to

achieve real-time coding of video streams. The challenge is to decrease the motion estimation

load on the system without compromising the quality of the video stream too much, thus

enabling easier and less expensive implementations of real-time coding.

Additionally the more accurate the motion vector prediction the smaller the motion

compensated difference image and hence the better the compression efficiency. This reduces

the overall bandwidth requirements (such as in IP Video systems) but more importantly it can

significantly reduce the amount of storage required for recording the video, often one of the

most expensive items in a system (Keepence, 2008).

Table 1.1: MOPS requirement for real-time implementation for H.261 compression

Operation MOPS

RGB to YCbCr 27

Motion estimation (25 searches in a region) 608

Inter/Intraframe coding 40

Loop filtering 55

Pixel prediction 18

2-D DCT 60

Quantization, zig-zag scanning 44

Entropy coding 17

Frame reconstruction 99

Total 968

Source: Cheung, (1998).

1.2 Achieving Motion Estimation

In a sequence of frames, the current frame is predicted from a previous frame known as a

reference frame. The current frame is divided into non overlapping macroblocks, typically 16

pixels x 16 pixels in size. This choice of size is a good trade-off between accuracy and

computational cost. However, motion estimation techniques may choose different block sizes,

and may vary the size of the blocks within a given frame.

Each macroblock in the current frame is compared to a macroblock in the reference frame

using some cost function, and the best matching macroblock is selected. The search is

conducted within a predetermined search window defined by the search parameter p.

Typically p is set to ±7 pixels. A vector denoting the displacement of the macroblock in the

reference frame with respect to the macroblock in the current frame, is determined. This

vector is known as the motion vector.

-3-

Fig. 1.2 How the Motion Vector is found in the Reference frame.

Block-matching motion estimation algorithms find the motion vector of the current block by

finding the best-matching displaced block in the reference frame. For example, (c) and (d)

show the 137th frame and the 138th frame of the foreman sequence. The current frame (138)

is divided into non-overlapping blocks as shown in (d). The motion vector for the current

block of the current frame - shown in (f) in green - is found by locating the best-matching

displaced block within the corresponding search window in the range [-p, p] - shown in (e) in

blue - in the previous frame (137). The displacement vector which produces the minimal

matching-error via a cost function is the motion vector – shown above as a red arrow.

Source: Chen, (1998).

p

p

-4-

1.3 Cost Function

The matching of one macroblock with another is based on the output of a cost function also

referred to as a block distortion measure (BDM). The macroblock that results in the least cost

is the one that matches the current block the closest. There are various cost functions, of which

the most popular and less computationally expensive is:

The Mean Absolute Difference (MAD) given by equation (i).

Another cost function is the Mean Squared Error (MSE) given by equation (ii).

where N is the size of the macrobock, Cij and Rij are the pixels being compared in the current

macroblock and the reference macroblock, respectively.

Ghanbari (1990) states that the use of mean absolute error rather than the more complex mean

square error as the distortion measure, results in slightly better entropy performance (almost

0.8% lower prediction error).

For each cost function, a comparison is made pixel by pixel using the luma value only

(Richardson, 2002). These errors are summed over the macroblock and if this error is less than

the previous error, the location of the macroblock in the reference picture is saved. Once all

macroblocks in the search window have been examined, the motion vector is determined

based on the macroblock with the lowest error measure.

Fig. 1.3 A Cost Function being applied at a number of locations within the search window.

(a) shows the current block of the current frame in green (b) shows different displaced blocks

in the reference frame including the corresponding location of the current block in green (c)

shows the corresponding residuals (matching errors). The displacement (upper-right) that finds

the best-matching block (marked in red) is the motion vector.

Source: Chen, (1998).

-5-

1.4 Rate Distortion Performance-PSNR

Peak-Signal-to-Noise-Ratio (PSNR) given by equation (iii) characterizes the quality of the

motion compensated image (created by using motion vectors and the macroblocks from the

reference frame) compared to the original image:

The higher the value of PSNR, the smaller will be the error residual giving a more improved

video quality (Nie and Ma, 2002). This metric is used as a quality indicator when comparing

various block match algorithms.

1.5 Monotonic Error Surface

The idea behind many fast block search algorithms is that the error surface due to motion in

every macroblock is unimodal. A unimodal surface is a bowl shaped surface such that the

weights generated by the cost function increase monotonically from the global minimum.

Some of the earlier algorithms rely on this assumption for their search strategies and therefore

that the local minimum is actually the global minimum. Since this unimodal assumption is

sometimes not valid, these algorithms are susceptible to being trapped at local minima, and as

a result, do not achieve the same rate distortion performance as the full search.

However, these algorithms drastically reduce the number of search positions over the full

search strategy. For software implementations, this results in a substantial reduction in the

computational load and so the implemental benefit is worth the loss in compression efficiency

for many applications (Booth, 2003).

Fig. 1.4 Examples of Matching Error Surfaces.

(a) Unimodal error surface with a global minimum error point. (b) Non-unimodal error surface

with multiple local minimum error points.

Source: Yao Nie and Kai-Kuang Ma (2002).

-6-

2.0 Literature Review

The Block-Matching technique for Motion Estimation was originally described by Jain and

Jain (1981). It was easy to implement and thus widely adopted. Each image frame was divided

into a fixed number of (usually) square blocks. For each block in the frame, a search is made

in the reference frame over an area of the image that allows for the maximum translation that

the coder can use. The search is for the best matching macroblock that gives the least

prediction error - usually mean absolute difference (MAD) which is the easiest to compute.

Typical block sizes are of the order of 16 pixels x 16 pixels, and the maximum displacement

might be ±64 pixels from a block’s original position. Several search strategies are possible,

usually using some kind of sampling mechanism, but the most straightforward approach is the

Exhaustive Search. This is computationally demanding in terms of data throughput, but

algorithmically simple, and relatively easily implemented.

A good match during the search means that a good prediction can be made, but the

improvement in prediction must outweigh the cost of transmitting the motion vector. A good

match requires that the whole macroblock has undergone the same translation, and the

macroblock should not overlap objects in the image that have different degrees of motion,

including the background.

The choice of macroblock size to use for motion compensation is always a compromise,

smaller and more numerous blocks can better represent complex motion than fewer large ones.

This reduces the work and transmission costs of subsequent correction stages but with greater

cost for the motion information itself. An appraisal of some of the principal Block Search

Algorithms used in Video compression today is now presented.

2.1 Exhaustive Search (ES)

The exhaustive search algorithm checks every possible motion vector candidate in a search

window using a distortion measure and finds the motion vector within that window that

minimizes the distortion. Although ES finds the best motion vector in a global sense, the large

number of distortion calculations that it requires adds to the computational cost of a video

coder and limits the algorithm’s practical implementations.

 The most computationally expensive block matching algorithm of all is the Exhaustive

Search since it calculates the cost function at each possible location in the search window -

225 locations (15x15).

 As a result it finds the best possible match and gives the highest PSNR amongst any block

matching algorithm.

 The obvious disadvantage of ES is that the larger the search window gets the more

computations it requires.

-7-

Fig. 2.1 Exhaustive Search Algorithm.

Source: Barjatya, 2004.

2.2 Three Step Search (3SS)

Fast block matching algorithms began to emerge in the early eighties trying to achieve the

same PSNR as Exhaustive Search but using a lower number of search points to reduce the

computational complexity. One early fast algorithm was the Three Step Search introduced by

Koga et al (1981).

 The 1
st
 step of the 3SS begins with the search location at the centre and sets the ‘step size’

S = 4, instead of the usual search parameter value of 7 for ES. It then searches at eight

locations +/- S pixels in the x and y direction around location (0,0) as well as the centre

location.

 From these nine locations searched it picks the one giving the least cost and makes it the

new search origin - (4, 0) in the diagram. The 2
nd

 step begins with this origin and with the

new step size of S = S/2 = 2, and repeats a similar search finding the best match again - at

(6, -2) in the diagram. This is made the new search origin for the 3
rd

 and final step which will

have the new step size S = S/2 = 1.

 The best-match macroblock in the 3
rd

 step is found and this is the best match overall. Its

location is the motion vector value. The calculated motion vector is then saved for

transmission. The 3SS gives a flat reduction in computation by a factor of 9 compared to ES

- since 25 locations in total are checked (9+8+8) as compared to 225 for ES.

-8-

(0, 0) (4, 0)

(6, -2)

(5, -3)

Fig. 2.2 Three Step Search Algorithm procedure.

Motion Vector is (+5, -3). Source: Barjatya, 2004.

2.3 New Three Step Search (NTSS)

Li et al, (1994) developed the New Three Step Search (NTSS) to improve on the TSS which

was good for large motions but was prone to missing small motions (Jing and Chau, 2004). It

used a centre biased searching scheme like TSS but it had a provision for a half way stop after

the first or second step - thus reducing computational cost. It was one of the first widely

accepted fast algorithms and frequently used for implementing earlier standards like MPEG 1

and H.261 (Barjatya, 2004).

 In the 1
st
 step 16 points are checked in addition to the search origin for lowest weight using

a cost function. 8 are a distance of S = 4 away (similar to TSS) and the other 8 are at a

distance S = 1 away from the search origin. If the lowest cost is at the origin then the

searching is stopped and the motion vector is set as (0, 0).

 If the lowest weight is at any one of the 8 locations at S = 1, then the origin of the search is

changed to that point and the weights adjacent to it are checked. Depending on whether the

origin is located at the middle of a horizontal or vertical axis or a corner a further 3 or 5

adjacent points are checked. The location that gives the lowest weight is the closest match

and the motion vector is set to that location. This scenario results in a total of either 20 or 22

search points being checked for these quasistationary (within a central 2x2 area)

macroblocks (Tham et al, 1998).

 Alternatively if the lowest weight after the first step was one of the 8 locations at S = 4, then

the normal TSS procedure is followed.

 Hence although this process might need a minimum of 17 (8+9) points to check every

macroblock (stationary), it also has the worst-case scenario of 33 (8+9+8+8) locations to

check.

-9-

Fig. 2.3 New Three Step Search Algorithm procedure.

Source: Jing and Chau, 2004. Big circles are checking points in the first step of TSS with the

extra 8 points added in the first step of NTSS. Triangles and squares are second step of NTSS

showing 3 points and 5 points being checked when least weight in first step is at one of the 8

neighbours of the window centre.

2.4 Simple and Efficient Search (SES)

Lu and Liou (1997) developed a Simple And Efficient Search Algorithm which improved on

TSS by halving the number of computations while keeping the same regularity and good

performance. The algorithm halved the number of computations of the TSS on the basis that

for a unimodal surface there cannot be two minimums in opposite directions. Thus the 8 point

fixed pattern search of TSS can be changed to incorporate this and save on computations. The

algorithm still has three steps like TSS, but with each step having two phases.

 The search area is divided into four quadrants and the algorithm checks three locations A, B

and C as shown. A is at the origin and B and C are S = 4 locations away from A in

orthogonal directions.

 Depending on the MAD calculated at each of the three locations the first phase chooses

which one of the possible 4 quadrants to search for the second phase. The rules for

determining which quadrant is searched in the second phase are as follows:

If MAD(A) ≥ MAD(B) and MAD(A) ≥ MAD(C), select (a);

If MAD(A) ≥ MAD(B) and MAD(A) < MAD(C), select (b);

If MAD(A) < MAD(B) and MAD(A) < MAD(C), select (c);

If MAD(A) < MAD(B) and MAD(A) ≥ MAD(C), select (d);

-10-

Fig. 2.4 Search patterns corresponding to each selected quadrant of the SES.

(a) to (d) show when an individual quadrant from I to IV is selected. Source: Lu and Liou

(1997).

 Some additional points are then selected depending on the quadrant chosen and the second

phase finds the location with the lowest weight and sets it as the new origin. The step size is

changed to S = 2 - similar to the TSS - and the process is repeated until S = 1 is reached.

The location with the lowest weight is the motion vector.

Although SES saves a lot on computation as compared to TSS, it was not widely accepted for

two reasons (Barjatya, 2004).

Firstly, in reality the error surfaces are not strictly unimodal and hence the PSNR achieved by

SES is poor compared to TSS.

Secondly, the Four Step Search, published the year before offered low computational cost

compared to TSS and gave significantly better PSNR.

Fig. 2.5 Simple and Efficient Search Algorithm procedure.

Motion Vector is (+3, +7). Source: Barjatya, 2004.

-11-

2.5 Four Step Search (4SS)

Po and Ma (1996) introduced the four-step search (4SS) algorithm using a centre-biased

checking point pattern with a halfway-stop technique. This meant that the algorithm could

have 2, 3 or 4 search steps and thus the total number of checking points could vary from 17

(9+8) for best-case to 27 (9+5+5+8) for worst case such as when estimating large movement

(Po and Ma, 1996). Po and Ma showed that 4SS performed better than the popular TSS in

terms of motion compensation errors (albeit with two block matches more in the worst-case)

and had similar performance to the NTSS. In addition, the 4SS also reduced the worst-case

computational requirement by 6 block matches from 33 for N3SS to 27 search points and the

average computational requirement from 21 to 19 search points giving it an edge over N3SS.

The 4SS algorithm (Po and Ma, 1996) is summarized as follows:

 Step 1: A minimum block distortion measure (BDM) point is found from a pattern of 9

checking points in a 55 window (i.e. S = 2) as shown in Fig. 2.6a. If the minimum BDM

point is found to be at the centre of the search window, the search jumps to Step 4;

otherwise if it is at one of the other 8 points this is made the new origin and the search

moves on to Step 2.

 Step 2: The search window size is maintained at 55. However, the search pattern will

depend on the position of the previous minimum BDM point.

a) If the previous minimum BDM point is located at the corner of the

previous search window, 5 additional checking points as shown in Fig.

2.6b are used.

b) If the previous minimum BDM point is located at the middle of a

horizontal or vertical axis of the previous search window, 3 additional

checking points as shown in Fig. 2.6c are used.

If the minimum BDM point is found to be at the centre of the search window at this step, the

search jumps to Step 4; otherwise the search moves on to Step 3.

 Step 3: The searching pattern strategy is the same as in Step 2, but finally it will go to Step

4.

 Step 4: The search window is reduced to 33 (i.e. S = 1) as shown in Fig. 2.6d and the

direction of the overall motion vector is considered as the minimum BDM point among

these final 9 searching points.

An advantage of 4SS is that the intermediate steps may be skipped and then jumped to the

final step with a 33 window if at any time the minimum BDM point is located at the centre of

the search window. Based on this 4SS pattern, the whole 1515 displacement window can be

covered even though only the small 55 and 33 search windows are used.

-12-

Fig. 2.6 Search Patterns used in the Four Step Search Algorithm.

Source: Barjatya, 2004.

Fig. 2.7 Four Step Search Algorithm procedure.

Motion Vector is (+3, -7), 25 checking points used. Source: Po and Ma (1996).

-13-

2.6 Diamond Search (DS)

Tham et al (1998) introduced a Novel Unrestricted Centre-Biased Diamond Search Algorithm

(UCBDS) - more commonly referred to as the Diamond Search Algorithm (DS). They

reported it had a best case search of only 13 (9+4) search points and an average of 15.5 block

matches - making it consistently faster than any of the previous suboptimal (non exhaustive)

block-matching techniques.

The UCBDS algorithm (Tham et al, 1998) is summarized as follows:

 The algorithm uses two different types of search pattern: a Large Diamond Search Pattern

(LDSP) as shown in Fig. 2.8a and a Small Diamond Search Pattern (SDSP) as shown in Fig.

2.8d.

 The first step uses a LDSP. A minimum block distortion measure (BDM) point is found at

one of 9 checking points in a 55 window (i.e. S = 2) as shown in Fig. 2.8a.

1. If the minimum BDM point is at one of the four vertices then this point is made the centre

of a new LDSP and 5 new candidate points are evaluated as shown in Fig. 2.8b.

2. If the minimum BDM point is at one of the other four points along a face then this point is

made the centre of a new LDSP and 3 new candidate points are evaluated as shown in Fig.

2.8c.

These 2 scenarios are repeated without limit - all the time using LDSP - until the minimum

BDM point is found to be at the centre of the search window.

3. If the minimum BDM point is found to be at the centre of the search window, the search

changes to a SDSP with 4 more internal candidate points being evaluated as shown in Fig.

2.8d. The candidate point with the minimum BDM is chosen as the motion vector.

Tham et al (1998) concluded from their results that UCBDS was more efficient, effective, and

robust when compared to the existing FS, TSS, NTSS, and FSS due to the following reasons:

• Efficiency—UCBDS is highly centre biased, and it has a very compact diamond search point

configuration. This allowed a minimum of only 13 candidate search points per macroblock -

resulting in a speed improvement of up to 31% over the FSS.

• Effectiveness—UCBDS has the freedom to search for the true motion vector due to its

unrestricted search strategy. This indirectly reduces the chances of being trapped at a local

minimum and leads to lower motion compensation errors.

• Robustness—As UCBDS is unrestricted and does not have a predetermined number of

search steps, it is flexible enough to work well for any search range/window size.

-14-

Fig. 2.8 Search Patterns used in the Diamond Search Algorithm.

(a) Original diamond search-point configuration. (b) Next step along a diamond’s vertex. (c)

Next step along a diamond’s face. (d) Final step with a shrunk (small) diamond. Source:

Tham et al (1998).

Fig. 2.9 Diamond Block Matching Algorithm procedure.

Motion Vector is (+7, -2), five LDSPs are needed in this example followed by a final SDSP.

There are 28 (9+5+5+3+2+4) block evaluations in total. Note: any candidate points that extend

beyond the search window of w = ±7 are ignored.

Source: Tham et al (1998).

-15-

2.7 Adaptive Rood Pattern Search (ARPS)

Nie and Ma (2002) outlined a number of flaws with the diamond search (DS) which was the

best BMA at that time. They argued that when the size of the fixed search DS pattern does not

match the magnitude of the actual motion, over search or under search will occur leading to

certain search deficiency and inaccuracy:

1. For example, in DS, LDSP will be too large for searching a small motion vector with a

length less than 2 pixels away from the search centre, thus causing unnecessary searches

(i.e. over search).

2. On the other hand, in the case of large and complex motion (e.g. the Foreman sequence),

the characteristic of centre-biased motion vector distribution is very weak, and the

unimodal error surface assumption is no longer valid [see Fig. 1.2 (b)]. A LDSP could be

too small for searching a large motion vector (i.e. under search) and leads to either a long

search path (causing unnecessary intermediate searches) or being trapped into a local

minimum matching error point (yielding large residuals and degrading video quality).

These observations led them to develop an adaptive rood search pattern (Nie and Ma, 2002).

The algorithm is summarized as follows:

 The motion vectors of the macroblocks in the neighbourhood of the current block are well

correlated with the motion vector of the current block and are thus reliable for prediction.

Nie and Ma, (2002) decided to use the motion vector of the macroblock directly to its left as

a starting point, calling it the Predicted motion vector. This will be available as scanning is

done in raster order. This step will direct the search into the local region of the global

minimum.

 The predicted motion vector in Fig. 2.10 points to (+2, -1). This point is checked using a

cost function as well as a rood pattern of locations. The rood pattern has a step size of S =

Max (|X|, |Y|) where X and Y are the x-coordinate and y-coordinate of the predicted motion

vector. For all macroblocks in the first column of the frame (where there is no macroblock

directly to the left) the rood pattern step size is fixed at 2 pixels.

 The point that has the least weight becomes the origin for subsequent search steps to

essentially perform a refined local search. The assumption of unimodal error surface formed

in this area is valid, hence a fixed, compact, unrestricted and small search pattern such as

SDSP is used.

 The SDSP is repeated until the least weighted point is found to be at the centre of the SDSP.

 A further small improvement in the algorithm can be to check for Zero Motion

Prejudgment. If the least weighted point is already at the centre of the rood pattern the

search is stopped half way.

The main advantage of this algorithm over DS is that if the predicted motion vector is

(0, 0), it does not waste computational time in doing LDSP, it rather directly starts using

SDSP. Additionally, if the predicted motion vector is far away from the centre, ARPS again

saves on computations compared to DS by directly jumping to that vicinity and using SDSP

whereas DS takes its time doing LDSP.

Care has to be taken during the unrestricted SDSP step not to repeat computations at

points that were checked earlier. A checkmatrix is utilised: 0 representing locations not yet

checked and 1 representing those that have been checked. In addition when the predicted

motion vector turns out to match one of the rood pattern locations double computations have

also to be avoided e.g. if the Predicted Motion Vector below was (+2, 0).

-16-

Fig. 2.10 Adaptive Rood Search Pattern.

The initial stage calculates the Predicted Motion Vector as (+2, -1) which directs the search

into the local region of the global minimum, the minimum error from a rood pattern of nodes

(step size S = Max(|2|, |-1|) = 2) is found and then the final stage performs a fixed search to

calculate the motion vector.

Source: Yao Nie and Kai-Kuang Ma (2002).

-17-

2.8 Hexagon Based Search Pattern (HEXBS)

Zhu et al (2002) proposed the hexagon based search pattern (HEXBS) as an alternative to the

diamond search pattern. They noted that the DS was sensitive to motion vectors in different

directions – since its eight checking points have different distances from the centre point the

advancing speed for the DS per step is 2 pels horizontally and vertically but only 2 pels

diagonally. They stated that ideally a circle-shaped search pattern with a uniform distribution

of a minimum number of search points was more desirable to achieve the fastest search speed

uniformly. This search pattern should have a minimum number of search points distributed

uniformly where each search point is used equally with maximum efficiency and where the

redundancy among search points should be removed maximally. As a result, they devised the

hexagon based search pattern (HEXBS) which has a more circle-approximated pattern. The

pattern consists of six endpoints with the two horizontal points being 2 pels from the centre

and the remaining four points 5 pels from the centre - thus the six endpoints are

approximately uniformly distributed. Their analysis showed a speed improvement rate of as

high as over 80% for locating some motion vectors in certain scenarios. Generally, the larger

the motion vector, the more search points the HEXBS algorithm saved compared to DS. This

was explained by the HEXBS algorithm only needing to evaluate 3 new checking points for

each new search step compared with 3 or 5 in the Diamond Search.

Fig. 2.11 Search Patterns used in the HEXBS algorithm.

(a) large HEXBS pattern with the LDSP overlaid for comparison (b) small HEXBS pattern

with the SDSP overlaid for comparison. Source: Zhu et al (2002).

The HEXBS algorithm (Zhu et al, 2002) is summarized as follows:

Step 1: (Starting) The large hexagon with seven checking points is centred at (0, 0), the centre

of a predefined search window in the motion field. If the minimum BDM point is found to be

at the centre of the hexagon, proceed to Step 3; otherwise, proceed to Step 2.

Step 2: (Searching) With the minimum BDM point in the previous search step as the centre, a

new large hexagon is formed. Three new candidate points are checked, and the minimum

BDM point is again identified. If the minimum BDM point is still the centre point of the

newly formed hexagon, then go to Step 3; otherwise, repeat this step continuously.

Step 3: (Ending) Switch the search pattern from the large to the small size of the hexagon.

The four points covered by the small hexagon are evaluated to compare with the current

minimum BDM point. The new minimum BDM point is the final solution of the motion

vector.

-18-

Fig. 2.12 Hexagon Based Search Pattern Procedure.

HEXBS pattern search path example locating the motion vector (+4,-4). Note: a small HEXBS

pattern is applied in the final step after the best candidate search point at step 3 remains the

best at step 4. In total, 20 (7+3+3+3+4) search points are evaluated in five steps.

Source: Zhu et al (2002).

-19-

2.9 Cross Diamond Search (CDS)

Cheung and Po (2002b) proposed the CDS algorithm which used a cross-search pattern as the

initial step and large/small diamond search (DS) patterns in the subsequent steps. In their

analysis of 6 real-world sequences they found that over 80% of the motion vectors were

located within a 5x5 search grid. In addition they described the cross-centre-biased (CCB)

motion vector distribution - locations where there was a high probability of the motion vector

being found. This formed the basis of for their algorithm and their selection of the 9 highly

probable candidate points located horizontally and vertically at the centre of a 5x5 search grid.

The algorithm employed 2 halfway-stop techniques which meant small motion vectors were

found with fewer search points than the DS algorithm while maintaining similar or even better

search quality. The first step stop involved a search of only 9 search points compared to 13 for

DS (9+4) while the second step stop required only 11 search points compared to a best case

search of 16 for DS (9+3+4). Cheung and Po (2002b) reported a speedup of up to 40% over

DS in some cases. They also reported that CDS was more robust and provided faster searching

speed and smaller distortions than other popular fast block-matching algorithms of the time.

Fig. 2.13 Search patterns used in the Cross Diamond Search algorithm.

(a) CSP (b) LDSP and SDSP. Source: Cheung and Po (2002b).

The CDS algorithm Cheung and Po (2002b) is summarized as follows:

 Step 1: (Starting) A minimum BDM is found from the nine search points of the CSP

located at the centre of the search window. If the minimum BDM point occurs at the centre

of the CSP, the search stops. This is called the first-step-stop as shown in Fig. 2.14(a).

Otherwise, go to Step 2.

 Step 2: (Half-diamond Searching) Two additional search points of the central LDSP

closest to the current minimum of the central CSP are checked, i.e. two of the four

candidate points located at (±1, ±1). If the minimum BDM found in step 1 is located at the

middle wing of the CSP, i.e. (±1, 0) or (0, ±1), and the new minimum BDM found in this

step still coincides with this point, then the search stops. This is called the second-step stop,

e.g. Fig. 2.14(b). Otherwise, go to Step 3.

 Step 3: (Searching) A new LDSP is formed by repositioning the minimum BDM found in

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the

centre of this newly formed LDSP, then go to Step 4; otherwise, this step is repeated again.

 Step 4: (Ending) With the minimum BDM point in the previous step as the centre, a new

SDSP is formed. The location of the minimum BDM point found for this step is the motion

vector.

-20-

Fig. 2.14 Cross Diamond Block Matching Algorithm procedure.

Examples show each candidate point marked with its corresponding step number. The

minimum BDM point at the end of each step is shown filled. (a) First-step-stop with MV(0,0).

(b) Second-step-stop with MV(-1, 0). (c) An Unrestricted search path with MV(-5, +2) and (d)

MV(+2, -4), respectively. In (d), the best-matched point at step 6 coincides with that at steps 5

and 4. In total, 27 (9+2+4+3+5+4) search points are evaluated. For comparison a DS overlay

is shown – this would have found the motion vector by evaluating only 24 (9+3+3+5+4)

search points. Source: Cheung and Po (2002b).

-21-

2.10 Small Cross Diamond Search (SCDS)

Cheung and Po (2002a) introduced the SCDS in the same year that they introduced CDS

(Cheung and Po, 2002b). It differed by having a smaller cross pattern in the initial step - using

5 points instead of 9. The algorithm also employed 2 halfway-stop techniques which meant

small motion vectors were found using fewer search points than with the DS algorithm. The

first step stop involved a search of only 5 search points compared to 13 for DS (9+4) while the

third step stop required only 11 (5+4+2) search points compared to a best case search of 16 for

DS (9+3+4). An unrestricted large diamond search (DS) pattern was employed in the

subsequent steps followed by a final small diamond search. Cheung and Po (2002a) reported a

speedup of up to 146% over DS for the Akiyo QCIF video conference sequence.

Fig. 2.15 Search patterns used in the Small Cross Diamond Search algorithm.

(a) LCSP and SCSP (b) LDSP and SDSP. Source: Cheung and Po (2002a).

The SCDS algorithm Cheung and Po (2002a) is summarized as follows:

 Step 1: (Starting) A minimum BDM is found from the five search points of the SCSP

located at the centre of the search window. If the minimum BDM point occurs at the centre

of the SCSP, the search stops. This is called the first-step-stop as shown in Fig. 2.16(a).

Otherwise, go to Step 2.

 Step 2: (Large Cross Searching) The four outermost search points of the central LCSP are

checked, i.e. the four candidate points located at (0, ±2) and (±2, 0). This step guides the

possible correct direction for the subsequent steps. Then go to Step 3.

 Step 3: (Half-Diamond Searching) Two additional search points of the central LDSP

closest to the current minimum of the central LCSP are checked, i.e. two of the four

candidate points located at (±1, ±1). If the minimum BDM found in step 1 is located at the

middle wing of the CSP, i.e. (±1, 0) or (0, ±1), and the new minimum BDM found in this

step still coincides with this point, then the search stops. This is called the third-step stop,

e.g. Fig. 2.16(b). Otherwise, go to Step 4.

 Step 4: (Searching) A new LDSP is formed by repositioning the minimum BDM found in

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the

centre of this newly formed LDSP, then go to Step 5; otherwise, this step is repeated again.

 Step 5: (Ending) With the minimum BDM point in the previous step as the centre, a new

SDSP is formed. The location of the minimum BDM point found for this step is the motion

vector.

-22-

Fig. 2.16 Small Cross Diamond Block Matching Algorithm procedure.

Examples show each candidate point marked with its corresponding step number. The

minimum BDM point at the end of each step is shown filled.

(a) First-step-stop with MV(0, 0). (b) Third-step-stop with MV(-1, 0). (c) An Unrestricted

search path with MV(+4, -1). In (c), the best-matched point at step 6 coincides with that at

steps 5 and 4. Source: Cheung and Po (2002a).

-23-

2.11 New Cross Diamond Search (NCDS)

Lam et al (2003) introduced the NCDS which like SCDS the previous year (Cheung and Po,

2002a) used a 5 point small cross shape pattern (SCSP) as the initial step. The 5 point pattern

is repeated in the second step if needed which makes the algorithm more efficient than both

the previous SCDS or CDS and thus making a saving on the number of search points for

stationary or quasi-stationary blocks. The algorithm also employed 2 halfway-stop techniques

which meant small motion vectors were found with fewer search points than the DS algorithm.

The first step stop involved a search of only 5 search points compared to 13 for DS (9+4)

while the second step stop required only 8 (5+3) search points compared to a best case search

of 16 for DS (9+3+4). An unrestricted large diamond search (DS) pattern was employed in the

subsequent steps followed by a final small diamond search. Lam et al (2003) reported a

speedup of up to 58% over DS for the Claire CIF video conference sequence.

Fig. 2.17 Search patterns used in the New Cross Diamond Search algorithm.

(a) LCSP and SCSP (b) LDSP and SDSP. Source: Cheung and Po (2002a).

The NCDS algorithm Lam et al (2003) is summarized as follows:

 Step 1: (Starting) – Small Cross Shape Pattern (SCSP) A minimum BDM is found from

the five search points of the SCSP located at the centre of the search window. If the

minimum BDM point occurs at the centre of the SCSP, the search stops. This is called the

first-step-stop as shown in Fig. 2.18(a). Otherwise, go to Step 2.

 Step 2: (SCSP) With the vertex (minimum BDM point) from the first SCSP as the centre, a

new SCSP is formed. If the minimum BDM point occurs at the centre of this SCSP, the

search stops. This is called the second-step-stop as shown in Fig. 2.18(b). Otherwise, go to

Step 3.

 Step 3: Guiding Large Cross Shape Pattern (LCSP) The three unchecked outermost

search points of the central LCSP are checked. This step is trying to guide the possible

correct direction for the subsequent steps. Go to Step 4.

 Step 4: (Searching) A new LDSP is formed by repositioning the minimum BDM found in

the previous step as the centre of the LDSP. If the new minimum BDM point is still at the

centre of this newly formed LDSP, then go to Step 5; otherwise, this step is repeated again.

 Step 5: (Ending) With the minimum BDM point in the previous step as the centre, a new

SDSP is formed. The location of the minimum BDM point found for this step is the motion

vector.

Note: Around this time another New Cross Diamond Search algorithm was also developed by

Jia and Zhang (2004).

-24-

Fig. 2.18 New Cross Diamond Block Matching Algorithm procedure.

Examples show each candidate point marked with its corresponding step number. The

minimum BDM point at the final step is shown filled.

(a) First-step-stop with MV(0,0). (b) Second-step-stop with MV(+1, 0). (c) and (d) An

Unrestricted search path with MV(-1, -1) and MV(+4, +1) respectively. In (c), the best-

matched point at step 5 coincides with that at steps 4 and 2. Source: Lam et al (2003).

-25-

3.0 Implementation of Algorithms

3.1 Video Sequences used for Analysis

Motion vectors are typically estimated from the luma component only (Richardson, 2002).

The frames to be input into the various algorithms are stored in Sun Rasterfile format (.ras)

which is an uncompressed greyscale format. The standard video sequences used for algorithm

analysis are saved as CIF (Common Intermediate Format) or QCIF (Quarter CIF format)

which in some sources are stored in the .yuv file format. These were then converted to usable

images which are used as input by the various block search algorithms. In the conversion the

Cb and Cr components are suppressed while the Y (luma) component is retained. The

MATLAB code used is given in Appendix D.

A variety of sequences were chosen as described by Tham et al (1998):

1. The first sequence “Miss America” is a typical videoconferencing scene with limited

object motion and a stationary background.

2. The second sequence “Flower Garden” consists mainly of stationary objects, but with

a fast camera panning motion.

3. The third sequence “Football” contains large local object motion.

Using the study of Barjatya (2004) as a basis, motion vectors will be predicted for 30 frames

using a distance of 2 between the current frame and the reference frame. Thus only the first 32

frames of each sequence need to be examined.

Table 3.1: Video Sequences used for Analysis

Frame Format (Frame Size, Number of Frames) Sequences

CIF (352 x 288, 32 frames) Flower Garden

SIF (352 x 240, 32 frames) Football

QCIF (176 x 144, 32 frames) Miss America ‡

Sources: CIPR, (2008) and VTRG ‡, (2008).

Miss America ‡

Flower Garden

Football

Fig. 3.1 Stills of the Video Sequences Analysed.

Sources: CIPR, (2008) and VTRG ‡, (2008).

-26-

3.2 Algorithms to be Implemented

The Diamond Search algorithm (DS) proved to be the best block matching algorithm for many

years after it was introduced in 1998 (Barjatya, 2004). Towards the end of 2002 some hybrid

DS algorithms began to appear. Cheung and Po (2002b) introduced Cross Diamond Search

(CDS) and Small Cross Diamond Search (SCDS) (2002a) and Lam et al (2003) introduced

New Cross Diamond Search (NCDS). All improved on the performance of Diamond Search

(DS) by modifying the starting search pattern from Large Diamond Search Pattern (LDSP) to

the Cross Search Pattern (CSP) originated by Ghanbari (1990). The three algorithms differed

with respect to the number of points being used out of the CSP as shown in Fig. 3.2. CDS uses

all 9 points whereas SCDS and NCDS use only the inner 5 points to start and then expand

their search. In addition they improved on DS by providing half-way stops for stationary or

quasi-stationary sequences, thus helping to reduce the number of points searched. After

applying the initial cross search pattern these CSP based variants follow the normal DS

procedure - that of an unrestricted LDSP followed by a final Small Diamond Search Pattern

(SDSP).

In his 2004 study, Barjatya referenced these three CSP algorithms but did not provide an

implementation. He stated that they improved on DS and that of the three, NCDS came closest

to the performance of ARPS - which was the best performing of the 7 algorithms studied.

Fig. 3.2 The Cross Search Pattern used by CDS, SCDS, and NCDS.

CDS uses all 9 points, SCDS and NCDS use only the inner 5 points.

Source: Barjatya, (2004).

3.3 Thesis Aims

The aims of this thesis are to:

1. provide a detailed description of the many block search algorithms available today.

2. code an implementation in MATLAB for the 3 hybrid DS algorithms.

3. validate the results obtained from the implementation against results from the

literature.

4. quantify the performance of the 3 algorithms against the Diamond Search algorithm.

5. quantify the performance of the 3 algorithms against the ARPS algorithm and

6. make a recommendation of ‘best-practice’ when nominating a Block Search

Algorithm.

3.4 Coding the Algorithms

As an initial stage in coding all 3 algorithms their flowcharts are drawn and presented below.

Their MATLAB implementation is presented in Appendix C.

-27-

Fig. 3.3 Flowchart for the Cross Diamond Search Algorithm.

-28-

Fig. 3.4 Flowchart for the Small Cross Diamond Search Algorithm.

-29-

Fig. 3.5 Flowchart for the New Cross Diamond Search Algorithm.

-30-

3.5 Program Execution

motionsEstAnalysis.m – the main script to execute all algorithms is run in the MATLAB

command window. Initially 2 frames of a particular video sequence are loaded into the

workspace – the first is the reference frame and the second is the frame to be predicted

(encoded). The first block match algorithm is called. The block distortion measure (BDM)

used is the mean absolute difference (MAD). The macroblock size is set at 16 pixels x 16

pixels and the maximum displacement in the search area is ±7 pixels in both the horizontal

and the vertical directions. A frame difference of 2 was used in calculating predicted frames.

The algorithm function called returns the motion vector matrix for the predicted frame – one

motion vector for every macroblock in the frame.

The average number of points searched to calculate each motion vector within the predicted

frame is also returned.

The motion vector matrix is then input into the motionComp.m function which creates the

motion compensated image from each motion vector and its corresponding macroblock in the

reference frame.

The PSNR of the motion compensated image with respect to the original frame is then

calculated and recorded by calling the imgPSNR.m function – one value for each predicted

frame.

The next algorithm is then called and the process repeats for a complete analysis of 10

algorithms. The process then loads the next frame to be encoded along with its reference

frame, runs all 10 algorithms again, and then loops until 30 frames in total are predicted.

The main script also contains code to produce 2 comparative plots of the main metrics for all

10 algorithms – Search points per macroblock Vs Frame Number and PSNR Vs Frame

Number. The code saves these to disk in jpeg format. In addition the main script outputs some

statistics for each algorithm such as Average Searching Points, Average PSNR and Speed

Improvement Ratio. The latter was used for the 3 implemented algorithms to quantify their

performance compared to the Diamond Search and the Exhaustive Search.

For the analysis of another video sequence the main script is updated to point to its location

and is then run again.

Fig. 3.6 MATLAB environment showing the main script running for the Football sequence.

-31-

4.0 Analysis of the Implemented Block Search Algorithms

4.1 Experimental Results

The simulation is performed on 3 sequences with different degrees and types of motion-

content. The CDS, SCDS and NCDS were compared against 7 other algorithms using the

following test criteria:

1) Average points searched – the average number of search points used to find the motion

vector as shown in Table 4.1

2) the average Peak-Signal-to-Noise-Ratio (PSNR) as shown in Table 4.2

3) the average Speed Improvement Ratio (SIR) with respect to the DS and the ES as shown

in Tables 4.3 and 4.4

4) the difference in average PSNR compared to the DS as shown in Table 4.5

Table 4.1: Average Points Searched for selected Fast BMAs over 3 sequences

Sequence ES TSS NTSS 4SS SES DS CDS SCDS NCDS ARPS

flower
CIF (352x288)

210.317 23.813 24.570 19.989 15.930 18.303 18.413 17.176 16.530 9.562

football
SIF (352x240)

202.049 23.095 22.799 19.355 15.842 18.527 17.385 16.071 15.401 11.014

Ms America
QCIF (176x144)

195.963 22.503 16.241 15.594 16.575 12.427 9.260 6.380 5.778 5.645

Table 4.2: Average PSNR (dB) for selected Fast BMAs over 3 sequences

Sequence ES TSS NTSS 4SS SES DS CDS SCDS NCDS ARPS

flower 24.373 23.819 24.145 23.379 23.561 23.329 23.130 22.885 22.649 24.295

football 20.307 20.128 20.101 19.949 19.630 19.886 19.830 19.778 19.757 19.898

Ms America 39.378 39.354 39.377 39.360 39.153 39.375 39.324 39.317 39.323 39.332

Table 4.3: Average Speed Improvement Ratio (%) over ES for 3 sequences

Sequence CDS SCDS NCDS ARPS

flower 91.245 91.834 92.140 95.454
football 91.396 92.046 92.378 94.549
Ms America 95.275 96.744 97.052 97.119

Table 4.4: Average Speed Improvement Ratio (%) over DS for 3 sequences

Sequence CDS SCDS NCDS ARPS

flower -0.601 6.158 9.682 47.757
football 6.165 13.256 16.874 40.549
Ms America 25.487 48.663 53.508 54.574

Table 4.5: Difference in Average PSNR (dB) over DS for 3 sequences

Sequence CDS SCDS NCDS ARPS

flower 0.199 0.444 0.680 -0.966‡
football 0.0558 0.1086 0.1294 -0.0119 ‡
Ms America 0.0514 0.0581 0.0516 0.0433

‡ a negative value indicates a PSNR greater than the DS value was achieved.

-32-

Initial observations of Table 4.1 show that in many cases the actual number of search points is

lower than the theoretical estimation e.g. 225 for Exhaustive Search theoretically versus ~ 200

experimentally. This is due to truncation of the search window at picture boundaries and

truncation of searching patterns at window boundaries which end up saving many search

points practically (Cheung and Po, 2002b).

Fig. 4.1 and Fig. 4.2 show a frame-by-frame comparison of search point number per block and

PSNR respectively for the different algorithms applied to the Football sequence. Fig. 4.1

shows a curve that fluctuates quite intensely for all 3 hybrid DS algorithms representing the

high motion content of the sequence. There appear to be spikes of more intense motion around

frames 7, 17 and 24 representing a transition from small to large motion and then back to

small motion. It is noted that the number of search points fluctuate much more sharply for the

3 hybrid DS algorithms and the DS than for the ARPS algorithm.

Fig. 4.3 and Fig. 4.4 plot a frame-by-frame comparison of search point number per block and

PSNR respectively for the different algorithms applied to the Flower Garden sequence. Fig.

4.3 shows that the average number of search points per macroblock with NCDS < SCDS <

CDS. There is a deviation from the expected improvement of CDS over DS – the CDS in fact

takes more search points than the DS for most of the frames predicted – this may be due to a

number of factors which are discussed below. Fig. 4.4 also demonstrates that this sequence

displays the largest degradation of video quality for any of the algorithms compared to the

Exhaustive search.

Fig. 4.5 and Fig. 4.6 plot a frame-by-frame comparison of search point number per block and

PSNR respectively for the different algorithms applied to the Miss America sequence. Fig. 4.5

shows that the average number of search points per macroblock with NCDS < SCDS < CDS <

DS. Also this is the only sequence of the three examined where NCDS comes close to

matching ARPS for performance. Fig. 4.6 also demonstrates that there is almost no

degradation of video quality for any of the algorithms compared to the Exhaustive search.

The Exhaustive Search is not graphed since it has the largest number of search points

requiring ~200 searches per macroblock for each sequence. Although PSNR performance of

4SS, DS, and ARPS is relatively the same, ARPS takes a factor of 2 less computations in

some sequences and hence is the best of the fast block matching algorithms studied.

-33-

Fig. 4.1 Search points per macroblock for selected Fast BMAs applied to Football.

Fig. 4.2 PSNR performance for selected Fast BMAs applied to Football.

-34-

Fig. 4.3 Search points per macroblock for selected Fast BMAs applied to Flower garden.

Fig. 4.4 PSNR performance for selected Fast BMAs applied to Flower garden.

-35-

Fig. 4.5 Search points per macroblock for selected Fast BMAs applied to Miss America.

Fig. 4.6 PSNR performance for selected Fast BMAs applied to Miss America.

-36-

4.2 Validation of the Implementation

Jia and Zhang (2004) tested the Miss America sequence (CIF, 150 frames) and the Football

sequence (SIF, 125 frames) for various algorithms including the ES, NTSS, DS and the CDS.

They did not test the Flower Garden sequence.

For the Miss America sequence they reported 17.314 search points for the DS algorithm and

12.419 for the CDS while for the Football sequence the corresponding figures were 17.376

search points for the DS algorithm and 15.634 for the CDS. These results agree closely with

our implementation for the Football sequence of 18.527 search points for the DS algorithm

and 17.385 for the CDS – however they did use more frames at 125.

Their results vary slightly from our implementation for the Miss America sequence of 12.427

search points for the DS algorithm and 9.260 for the CDS – however they did use the larger

CIF resolution so a larger number of search points would be expected.

Their PSNR for the DS and the CDS were 37.097dB and 37.305dB respectively for the Miss

America sequence, while the Football sequence obtained a PSNR of 21.892dB and 21.803dB

respectively. These values compare very favourably with our results.

Lam et al (2003) – who introduced the NCDS – tested the DS, CDS, SCDS and the NCDS for

each of the 3 sequences we employed: the Miss America sequence (CIF, 80 frames), the

Flower Garden sequence (SIF, 80 frames) and the Football sequence (SIF, 80 frames).

For the Miss America sequence Lam et al (2003) reported 16.36 search points for the DS

algorithm, 11.75 for the CDS, 10.75 for the SCDS and 8.7745 for the NCDS.

As stated previously a smaller resolution for the Miss America sequence was used resulting in

fewer search points for each algorithm – the large drop in search points from the DS to the

CDS is also reproduced in our results.

For the Flower Garden sequence the corresponding figures were 16.84 search points for the

DS algorithm, 15.09 for the CDS, 14.87 for the SCDS and 13.4562 for the NCDS.

We also used the larger CIF resolution for this sequence so our number of search points would

be expected to be higher. The rate of decrease in the number of search points is lower than for

the slower Miss America sequence and this is reproduced in our results as in Lam et al (2003).

The 3 hybrid algorithms work best for low motion video conferencing sequences – indeed the

values for the CDS that we obtained are actually higher than DS. This may be due to the

complexity of the frames selected.

The sequence of frames we used contains both rotational motion (a windmill) as well as the

translational motion to do with the panning from left to right. The difficulty in making a

comparison here with the findings of Lam et al (2003) is that only a portion of the available

115 frames (CIPR, 2008) are being used. Lam et al (2003) used 80 frames but the trend in

their results may point to the fact that they used frames with translational motion only. Our 30

frame sequence has both, making it more complex and requiring more search points than

translational motion alone.

For the Football sequence Lam et al (2003) reported 13.67 search points for the DS algorithm,

10.96 for the CDS, 8.24 for the SCDS and 7.9022 for the NCDS.

-37-

These values are a great deal lower than in our implementation – however Lam et al (2003)

did use 80 frames. Again the difficulty in making a comparison here with the findings of Lam

et al (2003) is that only a portion of the available 125 frames (CIPR, 2008) are being used.

Lam et al (2003) used the MSE to ascertain the effect on video quality instead of the PSNR

measure and so no comparison could be made for distortion.

In conclusion, considering the various resolutions used, the number of frames used and

variation in the complexity of the motion depending on which frames of a sequence were

selected to be tested, this implementation effectively reproduces the findings of Jia and Zhang

(2004) and Lam et al (2003).

4.3 Performance of the 3 Hybrid DS Algorithms versus DS

Table 4.4 shows that the CDS is nearly 26% faster than the DS for the Miss America sequence,

slightly slower than the DS for the Flower Garden sequence (though this deviation is

explained below) and 6% faster than the DS for the Football sequence.

Both the SCDS and the NCDS improve further on the DS. Table 4.4 shows that the SCDS is

nearly 49% faster than the DS for the Miss America sequence, the NCDS is almost 54% faster;

the SCDS is 6% faster than the DS for the Flower Garden sequence, the NCDS is nearly 10%

faster; the SCDS is 13% faster than the DS for the Football sequence, the NCDS is nearly

17% faster.

For the Miss America sequence with motion vectors limited within a small region around

(0, 0), the 3 hybrid DS algorithms achieve a considerable speed improvement over the DS.

They reduce computations significantly over the DS particularly for low bit-rate video

applications with 1) gentle or no motion, such as background information and 2) small motion.

Both types of motion estimation are accomplished by the first and second-step stop

respectively.

For the Flower Garden sequence with medium motion, there is in fact a lower average SIR for

the CDS over the DS as shown in Table 4.4. Figure 4.7 shows an overlay of motion vectors for

the predicted picture. Some of the true motion vectors as calculated by the Exhaustive Search

(Zhu et al, 2002) can be as large as (-5, 0) to (-7, 0) which are at the limits of the search

window. As mentioned above the sequence of frames we used contains both rotational motion

(a windmill) as well as the translational motion to do with the panning from left to right. This

makes the sequence more complex and would require more search points than for translational

motion alone. This could explain why there are a larger number of points searched for the

CDS than for the DS and hence why there is a decrease in the SIR for the CDS compared to

the DS. Cheung and Po (2002b) state that although both first-step-stop and second-step-stop

halfway techniques employed in the CDS algorithm can optimize the highly probable CCB

characteristics, the DS algorithm does in fact seem to be more efficient beyond the central 3x3

cross-shaped region. Figure 4.8 shows that when a motion vector occurs outside the central

3x3 cross-shaped region the CDS algorithm actually uses more search points. This suggests

strongly that the CDS is only advantageous for slow moving videoconferencing sequences.

-38-

Fig. 4.7 The Flower Garden sequence with its Motion Vectors overlaid.

The Flower Garden sequence involves a pan from left to right, a motion vector points to the

best match macroblock in the reference frame, hence the predominance of motion vectors

pointing to the left. Source: Girod, (2008).

Fig. 4.8 Maximum number of search points saved / used by the CDS compared to the DS.

The search points saved are denoted as +ve while those used as –ve for the corresponding

motion vector location. Outside of the central 3x3 region the DS begins to outperform the

CDS. For example to find the MV(+2, -4) the CDS will require 3 more search points than the

DS. This was previously demonstrated for the CDS procedure in chapter 2.

Source: Cheung and Po (2002b).

For the Football sequence, as shown by Table 4.4, each of the 3 hybrid DS algorithms are

shown to be faster than the DS. The camera is stationary in this sequence and the object

movement is due to the players arriving within the shot. Thus there are areas of the pitch with

zero or no motion which would benefit from the halfway stops of the 3 hybrid DS algorithms.

The larger the motion in a video sequence, the smaller the speed improvement rate of the 3

hybrid algorithms over the DS or the other fast algorithms will be – this can be seen when

contrasted with the slower moving Miss America sequence. This again demonstrates that the

CDS, the SCDS and the NCDS are better choices than the DS for slow moving

videoconferencing sequences.

-39-

Comparing the performance of the 3 hybrid algorithms with each other in Table 4.1 we see

that in terms of average number of search points used NCDS < SCDS < CDS < DS. For larger

motions all 3 hybrid algorithms take 11 points to reach the unrestricted LDSP – CDS uses 9

initial points, plus 2 from HDSP; SCDS uses 5 initial points, 4 for LCSP and 2 from HDSP

and NCDS uses 5 initial points, 3 for its second SCSP and 3 for LCSP. Thus the saving must

occur within its halfway stops. The CDS performs poorer than the SCDS or the NCDS for low

motion sequences or for sequences with local areas of low motion since it uses more points in

reaching its halfway stops.

In general in using fewer search points a fast block match algorithm trades off block distortion

for higher search speed (Tham et al, 1998). From Table 4.2 it can be observed that all 3

algorithms perform very competitively in terms of PSNR compared to the DS even though

they lower the average number of search points. For a better comparison of the trade off

between PSNR and search speed, Tables 4.4 and 4.5 give the percentage SIR over the DS and

the Difference in Average PSNR for the 3 sequences. It can be seen that the NCDS has

marginally worse PSNR performance than the DS compared to the other 2 techniques – the

highest being a drop in PSNR of 0.680dB for the Flower Garden sequence. However, the

speed improvements with the NCDS are quite substantial – up to 53% for the low motion

sequence Miss America and thus justifies its use over the DS.

Table 4.5 shows that the CDS, the SCDS and the NCDS have a marginally lower PSNR than

the DS – the highest being 0.680dB for the Flower Garden sequence. They consistently

perform better than the DS algorithm with respect to speed, in particular for the low motion

video conferencing sequence.

In conclusion, the CDS, the SCDS and the NCDS had a higher search speed than the DS for

all 3 sequences with only a minimal loss in PSNR. From experimental results shown in Table

4.1, the NCDS takes the smallest average number of search points per block among the 3

hybrid cross diamond algorithms or the DS for each of the three test sequences. The NCDS is

thus the fastest of the 3 hybrid cross diamond algorithms.

4.4 Performance of the 3 Hybrid DS Algorithms and the DS versus ARPS

Table 4.4 shows that ARPS is nearly 55% faster than the DS for the Miss America sequence,

48% faster than the DS for the Flower Garden sequence and nearly 41% faster than the DS for

the Football sequence. ARPS is also significantly faster than the CDS, the SCDS and the

NCDS for the Flower Garden sequence and the Football sequence and only the NCDS comes

close to matching its speed for the Miss America sequence.

Table 4.5 shows that ARPS has a marginally lower PSNR than the DS by 0.0433dB for the

Miss America sequence, but a higher PSNR than the DS by 0.966dB for the Flower Garden

sequence and 0.0119dB higher than the DS for the Football sequence. It consistently performs

better than the 3 hybrid DS algorithms with respect to PSNR.

Generally ARPS gave both higher PSNR and higher search speed than the DS, the CDS, the

SCDS and the NCDS for all 3 sequences. The reason for the good performance of ARPS is

that it quickly directs the search into the local region of the global minimum by calculating the

Predicted Motion Vector, the minimum error from the rood pattern of nodes is found and then

a final refined search calculates the motion vector.

-40-

4.5 Choosing a Block Motion Algorithm

Since with real-time encoding of video one may not always know the type of motion that will

enter the encoder, the best fast block motion algorithm of the 10 algorithms studied is ARPS

from the point of view of speed (lowest number of search points used per macroblock) and

video quality (PSNR).

-41-

5.0 Conclusions & Future Work

Conclusions

A detailed description of the many block search algorithms available today was provided. An

implementation for the 3 hybrid DS algorithms was coded in MATLAB. Three test sequences

were examined.

Based on the cross-centre biased motion vector distribution of real world video sequences, the

3 hybrid DS algorithms were shown to improve on the DS algorithm by altering the starting

pattern and providing a number of halfway stops. Simulation results showed that the NCDS

was the fastest algorithm amongst the 3 hybrid DS algorithms simulated. A speedup ranging

from 10% for the complex motion sequence Flower Garden to nearly 54% for the low motion

video conference sequence Miss America was recorded.

All 3 algorithms performed very competitively in terms of PSNR compared to the DS even

though they lower the average number of search points. It was shown that the NCDS has

marginally worse PSNR performance than the DS compared to the other 2 algorithms – the

highest being a drop in PSNR of 0.680dB for the Flower Garden sequence. However, the

speed improvements for the NCDS are quite substantial and would thus justify its use over the

DS. The results from the implementation concurred with the literature, therefore validating the

implementation.

The implementation was used as a guide in nominating a ‘robust’ Block Search Algorithm.

When the DS, CDS, SCDS or NCDS were compared with ARPS it was shown that ARPS

generally gave both higher PSNR and higher search speed for all 3 sequences. The reason for

the good performance of ARPS is that it quickly directs the search into the local region of the

global minimum by calculating the Predicted Motion Vector, the minimum error from the

rood pattern of nodes is found and then a final refined search calculates the motion vector.

Simulation results showed that ARPS was the best algorithm amongst the 10 algorithms

simulated from the point of view of speed (lowest number of search points used per

macroblock) and video quality (PSNR). For real-time encoding of video the best fast block

motion algorithm to advise is ARPS.

Future Work

Future work could look at some other recent block search algorithms such as Kite Cross

Diamond Search (Lam et al, 2004), Enhanced Hexagonal Search (Zhu et al, 2004) and Cross

Diamond Hexagonal Search (Cheung and Po, 2005) – and provide implementations.

Another interesting area for analysis would be an investigation of the useful potential

applications of Motion vectors – such as motion detection, object tracking, and even potential

alternative encoding methods. A computational benefit is that an MPEG file does not need to

be decoded to analyze its motion vectors.

Another area of investigation could be the analysis of flexible block sizes in motion estimation

(Yu, 2004 and Servias et al, 2005). Traditional codecs commonly process frames at the

macroblock level (16 pixels by 16 pixels). H.264, however can process on segments within a

macroblock, ranging in size from the commonly used 16x16 to as small as 4x4, which helps to

code complex motion in areas of high detail. The existing MATLAB code could be

redeveloped to perform its processing on a variety of block sizes within a frame – benefiting

scenes with complicated motion and thus providing higher quality in lower data rates. The

existing code could also perhaps be developed to use both past and future frames in the motion

estimation process as is the case with standard codecs.

-42-

References

1. J.R. Jain and A.K. Jain, (Dec 1981) Displacement Measurement and its Application in

Interframe Image Coding, IEEE Trans. Commun., Vol. COM-29, No. 12, pp. 1799-

1808.

2. T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro (Nov-Dec 1981) Motion-

Compensated Interframe Coding for Video Conferencing, Proceedings National

Telecommunications Conference, New Orleans, '81 (IEEE), p G.5.3.1 - G.5.3.5.

3. M. Ghanbari. (July 1990) The Cross-Search Algorithm for Motion Estimation, IEEE

Transactions on Communications, Volume 38, No. 7, pp. 950–953.

4. Le Gail, D. (April 1991) MPEG: A Video Compression Standard for Multimedia

Applications, Communications of the ACM, Vol. 34, No. 4, pp. 47-58.

5. Renxiang Li, Bing Zeng and Ming L. Liou, (Aug. 1994) A New Three-Step Search

Algorithm For Block Motion Estimation, IEEE Transactions on Circuits and Systems

for Video Technology, Volume 4, Issue 4, pp. 438–442.

6. Lai Man Po and Wing-Chung Ma, (June 1996) A Novel Four-Step Search Algorithm

For Fast Block Motion Estimation, IEEE Transactions on Circuits and Systems for

Video Technology, Volume 6, Issue 3, pp. 313–317.

7. Lurng-Kuo Liu and Ephraim Feig, (Aug 1996) A Block-Based Gradient Descent

Search Algorithm For Block Motion Estimation In Video Coding, IEEE Transactions

on Circuits and Systems for Video Technology, Volume 6, Issue 4, pp.419–422.

8. Jianhua Lu and Ming L. Liou, (Apr. 1997) A Simple And Efficient Search Algorithm

For Block-Matching Motion Estimation, IEEE Transactions on Circuits and Systems

for Video Technology, Volume 7, Issue 2, pp. 429–433.

9. Cheung Chok Kwan (July 1998) Fast Motion Estimation Techniques For Video

Compression, Thesis (M.Phil.), Dept. of Electronic Engineering, City University Of

Hong Kong.

10. J. Y. Tham, S. Ranganath, M. Ranganath and A. A. Kassim, (Aug. 1998) A Novel

Unrestricted Center-Biased Diamond Search Algorithm For Block Motion Estimation,

IEEE Transactions on Circuits and Systems for Video Technology, Volume 8, pp.

369–377.

-43-

11. Yen-Kuang Chen (Nov 1998) True Motion Estimation — Theory, Application, And

Implementation, Thesis (PhD), Department Of Electrical Engineering, Princeton

University.

12. Shan Zhu and Kai-Kuang Ma, (Feb. 2000) A New Diamond Search Algorithm For

Fast Block-Matching Motion Estimation, IEEE Transactions on Image Processing,

Volume 9, Issue 2, pp. 287–290.

13. Dahlstrand, M. (Dec 2001) Prediction Based Block Matching for Video Encoding. A

thesis presented to the Royal Institute Of Technology, Department Of Signals, Sensors

& Systems Signal Processing, Stockholm [online]. Available from:

http://www.ee.kth.se/php/modules/publications/reports/2001/IR-SB-EX-0125.pdf

[Accessed Aug 03 2008].

14. Mei-Juan Chen, Ming-Chung Chu and Chih-Wei Pan. (Apr. 2002) Efficient Motion-

Estimation Algorithm For Reduced Frame-Rate Video Transcoder. IEEE Transactions

on Circuits and Systems for Video Technology, Volume 12, Issue 4, pp. 269–275.

15. Ce Zhu, Xiao Lin and Lap-Pui Chau, (May 2002) Hexagon-Based Search Pattern For

Fast Block Motion Estimation, IEEE Transactions on Circuits and Systems for Video

Technology, Volume 12, Issue 5, pp. 349–355.

16. Chun-Ho Cheung and Lai-Man Po, (Sept. 2002a) A Novel Small-Cross-Diamond

Search Algorithm For Fast Video Coding And Videoconferencing Applications,

Proceedings. IEEE 2002 International Conference on Image Processing, Volume 1, pp.

681–684.

17. Chun-Ho Cheung and Lai-Man Po, (Dec. 2002b) A Novel Cross-Diamond Search

Algorithm For Fast Block Motion Estimation, IEEE Transactions on Circuits and

Systems for Video Technology, Volume 12, Issue 12, pp. 1168–1177.

18. Yao Nie and Kai-Kuang Ma. (Dec. 2002) Adaptive Rood Pattern Search For Fast

Block-Matching Motion Estimation, IEEE Transactions on Image Processing, Volume

11, Issue 12, pp. 1442–1449.

19. Richardson, I. (2002) Video CODEC Design: Developing Image and Video

Compression Systems, 1
st
 Edition, West Sussex: John Wiley & Sons.

20. Chau, L.P. and Jing, X. (Apr. 2003) Efficient Three-Step Search Algorithm For Block

Motion Estimation In Video Coding. Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Volume 3, pp. 421-424.

http://www.ee.kth.se/php/modules/publications/reports/2001/IR-SB-EX-0125.pdf

-44-

21. Wiegand, T., Sullivan, G., Bjøntegaard, G. and Luthra, A. (July 2003) Overview of the

H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 13, No. 7.

22. Lam, C.W., Po, L.M. and Cheung, C.H. (Dec. 2003) A New Cross-Diamond Search

Algorithm For Fast Block-Matching Motion Estimation, IEEE International

Conference on Neural Networks & Signal Processing, Volume 2, pp. 1262–1265.

23. Booth, S. P.W. (2003) A New Fast Motion Search Algorithm For Block Based Video

Encoders. A thesis presented to the University of Waterloo, Ontario, Canada. [online].

Available from: www.eng.uwaterloo.ca/~dclausi/Theses/SimonBoothMASc2003.pdf

[Accessed Aug 03 2008].

24. Ce Zhu, Xiao Lin, Lap-Pui Chau, Hock-Ann Ang and Choo-Yin Ong. (Mar. 2004).

Efficient Inner Search For Faster Diamond Search, Signal Processing, Volume 84,

Issue 3, pp. 527–533.

25. Barjatya, Aroh (April 2004) Block Matching Algorithms For Motion Estimation, DIP

6620 Final Project Paper in Digital Image Processing, Utah State University, pp. 1–6.

[online]. Available from his homepage at http://cc.usu.edu/~arohb and also on the

Mathworks file exchange site at http://www.mathworks.com/mathlabcentral.

[Accessed Mar 06 2008].

26. Lam, C.W., Po, L.M. and Cheung, C.H. (May 2004) A Novel Kite-Cross-Diamond

Search Algorithm For Fast Block-Matching Motion Estimation. Proceedings of the

2004 IEEE International Symposium on Circuits and Systems (ISCAS), Volume 3, pp.

729–732.

27. Jia, H. and Zhang, L. (May 2004) A New Cross Diamond Search Algorithm for Block

Motion Estimation. Proceedings of the 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Volume 3, pp. 357–360.

28. Yu, A.C. (May 2004) Efficient Block-Size Selection Algorithm For Inter-Frame

Coding In H.264/MPEG-4 AVC, Proceedings IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Volume 3, pp. 169–172.

29. Jing, X. and Chau, L.P. (June 2004) An Efficient Three-Step Search Algorithm For

Block Motion Estimation, IEEE Transactions on Multimedia, Volume 6, Issue 3, pp.

435–438.

http://www.eng.uwaterloo.ca/~dclausi/Theses/SimonBoothMASc2003.pdf
http://cc.usu.edu/~arohb
http://www.mathworks.com/mathlabcentral

-45-

30. Zhu, C., Lin, X., Chau, L. and Po, L.M. (Oct 2004) Enhanced Hexagonal Search for

Fast Block Motion Estimation, IEEE Transactions on Circuits and Systems for Video

Technology, Volume 14, Issue 10, pp. 1210–1214.

31. Chapman, N. and Chapman, J. (2004) Digital Multimedia, 2
nd

 Edition, West Sussex:

John Wiley & Sons.

32. Cheung, C.H. and Po, L.M. (Feb. 2005) Novel Cross-Diamond-Hexagonal Search

Algorithms For Fast Block Motion Estimation, IEEE Transactions on Circuits on

Multimedia, Volume 7, No. 1, pp. 16–22.

33. Servias, M., Vlachos, T. and Davies, T. (Sept. 2005) Motion-Compensation Using

Variable-Size Block-Matching With Binary Partition Trees, ICIP 2005. IEEE

International Conference on Image Processing, Volume 1, pp. 157–160.

34. Amer, I. (2008) DMET 1004 - Advanced Video Technology Lecture Notes, German

University in Cairo [online]. Available from:

http://cs.guc.edu.eg/courses/_Spring2008/DMET1004/Tutorials/readyuv.m

[Accessed Sept 06 2008].

35. CIPR (2008) Center for Image Processing Research, Electrical, Computer, and

Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York.

[online]. Available from: http://www.cipr.rpi.edu/resource/sequences

[Accessed Aug 03 2008].

36. Girod, B. (2008) EE398 Image and Video Compression Lecture Notes [online].

Available from: http://www.stanford.edu/class/ee398/handouts/lectures

[Accessed Aug 06 2008].

37. Keepence, B. (2008) IP Video CCTV and H.264 [online]. Available from:

http://www.indigovision.com/learnabout-cctvh264.php [Accessed Sept 06 2008].

38. VTRG (2008) Video Trace Research Group, Arizona State University [online].

Available from: http://trace.eas.asu.edu/yuv/index.html

[Accessed Aug 03 2008].

http://cs.guc.edu.eg/courses/_Spring2008/DMET1004/Tutorials/readyuv.m
http://www.cipr.rpi.edu/resource/sequences
http://www.stanford.edu/class/ee398/handouts/lectures
http://www.indigovision.com/learnabout-cctvh264.php
http://trace.eas.asu.edu/yuv/index.html

-46-

Appendix A: Glossary of Terms

Chrominance – This is the colour information for the pixel. In many applications, the

luminance and chrominance are combined and displayed as RGB (red, green, blue) format

rather than YUV (luminance and two chrominance components). RGB, YUV and others are

known as colour spaces.

CIF (Common Intermediate Format) – a set of standard video formats used in

videoconferencing, defined by their resolution 352x288. The original CIF is also known as

Full CIF (FCIF).

Current Frame – The frame that is being predicted using blocks from a reference frame. A set

of motion vectors results from the prediction.

Error Measure – The measure of how different one macroblock is to another. Some examples

are Mean Absolute Error and Mean Square Error.

Luminance – This is the black and white content of the image or how light or dark a pixel is.

Macroblock – A group of 16x16 contiguous pixels within an image.

Motion Vector – A pair of numbers (a vector) representing the displacement between a

macroblock in the current frame and a macroblock in the reference frame.

Motion estimation – the process done by the coder to find the motion vector pointing to the

best prediction macroblock in a reference frame or field. Compression redundancy between

adjacent frames can be exploited where a frame is selected as a reference and subsequent

frames are predicted from the reference using motion estimation. The motion estimation

process analyzes previous or future frames to identify blocks that have not changed, and

motion vectors are stored in place of blocks. The process of video compression using motion

estimation is also known as interframe coding.

QCIF (Quarter CIF) – a video format defined by a resolution 176x144.

Reference Frame – The frame that is used to make a prediction of another frame. The other

frame may be a future or a previous frame.

Search Window – The area of the reference frame that is searched when motion estimation is

performed. This is defined by the search parameter w which is typically set = ±7 pixels from

the current macroblock position.

-47-

Appendix B: M-Code by Aroh Barjatya

Barjatya’s project consisted of a project report and MATLAB source code as part of

coursework for a Digital Image Processing Class at Utah State University. The caltrain test

images, scripts and paper can be found at his homepage http://cc.usu.edu/~arohb and also on

the Mathworks file exchange site at http://www.mathworks.com/mathlabcentral.

Approximately 1,700 lines of code were originally written by Aroh Barjatya. In all 7 block

search algorithms were coded. Each algorithm calculates a matrix of motion vectors for each

frame. The average number of locations searched per motion vector is recorded for each frame

of the test sequence. The motion vectors are input into a motion compensated image creator

script which reconstructs the image. The quality of the reconstructed image can be ascertained

by comparing it with the original image and outputting the PSNR metric.

The following m files are his original work:

Table B.1: M files used by Barjatya and their role

 M-file Name Description

1. motionsEstAnalysis.m Main Script to execute all Algorithms

2. motionEstES.m Exhaustive Search

3. motionEstTSS.m Three Step Search Algorithm

4. motionEstNTSS.m New Three Step Search Algorithm

5. motionEstSESTSS.m Simple And Efficient Search Algorithm

6. motionEst4SS.m Four Step Search Algorithm

7. motionEstDS.m Diamond Search Algorithm

8. motionEstARPS.m Adaptive Rood Pattern Search Algorithm

9. costFuncMAD.m Mean Absolute Difference Function

10. minCost.m Identifies minimum cost macroblock

11. motionComp.m Computes the motion compensated image

using the given motion vectors

12. imgPSNR.m finds the PSNR of the motion

compensated image w.r.t. original image

The MATLAB code used is shown below:

http://cc.usu.edu/~arohb
http://www.mathworks.com/mathlabcentral

-48-

1. motionEstAnalysis.m Script to execute all Algorithms

% This script uses all the Motion Estimation algorithms written for the
% final project and save their results.
% The algorithms being used are Exhaustive Search, Three Step Search, New
% Three Step Search, Simple and Efficient Search, Four Step Search, Diamond
% Search, and Adaptive Rood Pattern Search.
%

close all
clear all

% the directory and files will be saved based on the image name
% Thus we just change the sequence / image name and the whole analysis is
% done for that particular sequence

imageName = 'caltrain';
mbSize = 16;
p = 7;

for i = 0:30

 imgINumber = i;
 imgPNumber = i+2;

 if imgINumber < 10
 imgIFile = sprintf('./%s/gray/%s00%d.ras',imageName, imageName, imgINumber);
 elseif imgINumber < 100
 imgIFile = sprintf('./%s/gray/%s0%d.ras',imageName, imageName, imgINumber);
 end

 if imgPNumber < 10
 imgPFile = sprintf('./%s/gray/%s00%d.ras',imageName, imageName, imgPNumber);
 elseif imgPNumber < 100
 imgPFile = sprintf('./%s/gray/%s0%d.ras',imageName, imageName, imgPNumber);
 end

 imgI = double(imread(imgIFile));
 imgP = double(imread(imgPFile));
 imgI = imgI(:,1:352);
 imgP = imgP(:,1:352);

 % Exhaustive Search
 [motionVect, computations] = motionEstES(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 ESpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 EScomputations(i+1) = computations;

 % Three Step Search
 [motionVect,computations] = motionEstTSS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 TSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 TSScomputations(i+1) = computations;

 % Simple and Efficient Three Step Search
 [motionVect, computations] = motionEstSESTSS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 SESTSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 SESTSScomputations(i+1) = computations;

-49-

 % New Three Step Search
 [motionVect,computations] = motionEstNTSS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 NTSSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 NTSScomputations(i+1) = computations;

 % Four Step Search
 [motionVect, computations] = motionEst4SS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 SS4psnr(i+1) = imgPSNR(imgP, imgComp, 255);
 SS4computations(i+1) = computations;

 % Diamond Search
 [motionVect, computations] = motionEstDS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 DSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 DScomputations(i+1) = computations;

 % Adaptive Rood Pattern Search
 [motionVect, computations] = motionEstARPS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 ARPSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 ARPScomputations(i+1) = computations;

end

save dsplots2 DSpsnr DScomputations ESpsnr EScomputations TSSpsnr ...
 TSScomputations SS4psnr SS4computations NTSSpsnr NTSScomputations ...
 SESTSSpsnr SESTSScomputations ARPSpsnr ARPScomputations

-50-

2. motionEstES.m Exhaustive Search Algorithm

% Computes motion vectors using exhaustive search method
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% EScomputations: The average number of points searched for a macroblock

function [motionVect, EScomputations] = motionEstES(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(2*p + 1, 2*p +1) * 65537;

computations = 0;

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the exhaustive search starts here
 % we will evaluate cost for (2p + 1) blocks vertically
 % and (2p + 1) blocks horizontaly
 % m is row(vertical) index
 % n is col(horizontal) index
 % this means we are scanning in raster order

 for m = -p : p
 for n = -p : p
 refBlkVer = i + m; % row/Vert co-ordinate for ref block
 refBlkHor = j + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end
 costs(m+p+1,n+p+1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;

 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ... this is what will be passed back.

 [dx, dy, min] = minCost(costs); % finds which macroblock in imgI gave us min Cost
 vectors(1,mbCount) = dy-p-1; % row co-ordinate for the vector
 vectors(2,mbCount) = dx-p-1; % col co-ordinate for the vector

-51-

 mbCount = mbCount + 1;
 costs = ones(2*p + 1, 2*p +1) * 65537;
 end
end

motionVect = vectors;
EScomputations = computations/(mbCount - 1);

-52-

3. motionEstTSS.m Three Step Search Algorithm

% Computes motion vectors using Three Step Search method
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% TSScomputations: The average number of points searched for a macroblock

function [motionVect, TSScomputations] = motionEstTSS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(3, 3) * 65537;

computations = 0;

% we now take effectively log to the base 2 of p
% this will give us the number of steps required

L = floor(log10(p+1)/log10(2));
stepMax = 2^(L-1);

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the three step search starts
 % we will evaluate 9 elements at every step
 % read the literature to find out what the pattern is
 % my variables have been named aptly to reflect their significance

 x = j;
 y = i;

 % In order to avoid calculating the center point of the search
 % again and again we always store the value for it from teh
 % previous run. For the first iteration we store this value outside
 % the for loop, but for subsequent iterations we store the cost at
 % the point where we are going to shift our root.

 costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);

 computations = computations + 1;
 stepSize = stepMax;

-53-

 while(stepSize >= 1)

 % m is row(vertical) index
 % n is col(horizontal) index
 % this means we are scanning in raster order
 for m = -stepSize : stepSize : stepSize
 for n = -stepSize : stepSize : stepSize
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 costRow = m/stepSize + 2;
 costCol = n/stepSize + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);

 computations = computations + 1;
 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ... this is what will be passed back.

 [dx, dy, min] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % shift the root for search window to new minima point

 x = x + (dx-2)*stepSize;
 y = y + (dy-2)*stepSize;

 % Arohs thought: At this point we can check and see if the
 % shifted co-ordinates are exactly the same as the root
 % co-ordinates of the last step, then we check them against a
 % preset threshold, and ifthe cost is less then that, than we
 % can exit from teh loop right here. This way we can save more
 % computations. However, as this is not implemented in the
 % paper I am modeling, I am not incorporating this test.
 % May be later...as my own addition to the algorithm

 stepSize = stepSize / 2;
 costs(2,2) = costs(dy,dx);

 end
 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(3,3) * 65537;
 end
end

motionVect = vectors;
TSScomputations = computations/(mbCount - 1);

-54-

4. motionEstNTSS.m New Three Step Search Algorithm

% Computes motion vectors using *NEW* Three Step Search method
%
% Based on the paper by R. Li, b. Zeng, and M. L. Liou
% IEEE Trans. on Circuits and Systems for Video Technology
% Volume 4, Number 4, August 1994 : Pages 438:442
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% NTSScomputations: The average number of points searched for a macroblock

function [motionVect, NTSScomputations] = motionEstNTSS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(3, 3) * 65537;

% we now take effectively log to the base 2 of p
% this will give us the number of steps required

L = floor(log10(p+1)/log10(2));
stepMax = 2^(L-1);

computations = 0;

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the NEW three step search starts

 x = j;
 y = i;

 % In order to avoid calculating the center point of the search
 % again and again we always store the value for it from the
 % previous run. For the first iteration we store this value outside
 % the for loop, but for subsequent iterations we store the cost at
 % the point where we are going to shift our root.
 %
 % For the NTSS, we find the minimum first in the far away points
 % we then find the minimum for the close up points
 % we then compare the minimums and which ever is the lowest is where
 % we shift our root of search. If the minimum is the center of the

-55-

 % current window then we stop the search. If its one of the
 % immediate close to the center then we will do the second step
 % stop. And if its in the far away points, then we go doing about
 % the normal TSS approach
 %
 % more details in the code below or read the paper/literature

 costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);
 stepSize = stepMax;
 computations = computations + 1;

 % This is the calculation of the outer 8 points
 % m is row(vertical) index
 % n is col(horizontal) index
 % this means we are scanning in raster order
 for m = -stepSize : stepSize : stepSize
 for n = -stepSize : stepSize : stepSize
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 costRow = m/stepSize + 2;
 costCol = n/stepSize + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ...

 [dx, dy, min1] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % Find the exact co-ordinates of this point

 x1 = x + (dx-2)*stepSize;
 y1 = y + (dy-2)*stepSize;

 % Now find the costs at 8 points right next to the center point
 % (x,y) still points to the center

 stepSize = 1;
 for m = -stepSize : stepSize : stepSize
 for n = -stepSize : stepSize : stepSize
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;

-56-

 end

 costRow = m/stepSize + 2;
 costCol = n/stepSize + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 end

 % now find the minimum amongst this

 [dx, dy, min2] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % Find the exact co-ordinates of this point

 x2 = x + (dx-2)*stepSize;
 y2 = y + (dy-2)*stepSize;

 % the only place x1 == x2 and y1 == y2 will take place will be the
 % center of the search region

 if (x1 == x2 && y1 == y2)
 % then x and y still remain pointing to j and i;
 NTSSFlag = -1; % this flag will take us out of any more computations
 elseif (min2 <= min1)
 x = x2;
 y = y2;
 NTSSFlag = 1; % this flag signifies we are going to go into NTSS mode
 else
 x = x1;
 y = y1;
 NTSSFlag = 0; % This value of flag says, we go into normal TSS
 end

 if (NTSSFlag == 1)
 % Now in order to make sure that we dont calcylate the same
 % points again which were in the initial center window we take
 % care as follows

 costs = ones(3,3) * 65537;
 costs(2,2) = min2;
 stepSize = 1;
 for m = -stepSize : stepSize : stepSize
 for n = -stepSize : stepSize : stepSize
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 if ((refBlkVer >= i - 1 && refBlkVer <= i + 1) ...

-57-

 && (refBlkHor >= j - 1 && refBlkHor <= j + 1))
 continue;
 end

 costRow = m/stepSize + 2;
 costCol = n/stepSize + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 end

 % now find the minimum amongst this

 [dx, dy, min2] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % Find the exact co-ordinates of this point and stop

 x = x + (dx-2)*stepSize;
 y = y + (dy-2)*stepSize;

 elseif (NTSSFlag == 0)
 % this is when we are going about doing normal TSS business
 costs = ones(3,3) * 65537;
 costs(2,2) = min1;
 stepSize = stepMax / 2;
 while(stepSize >= 1)
 for m = -stepSize : stepSize : stepSize
 for n = -stepSize : stepSize : stepSize
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 costRow = m/stepSize + 2;
 costCol = n/stepSize + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;

 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ... this is what will be passed back.

 [dx, dy, min] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % shift the root for search window to new minima point

-58-

 x = x + (dx-2)*stepSize;
 y = y + (dy-2)*stepSize;

 stepSize = stepSize / 2;
 costs(2,2) = costs(dy,dx);

 end
 end

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(3,3) * 65537;
 end
end

motionVect = vectors;
NTSScomputations = computations/(mbCount - 1);

-59-

5. motionEstSESTSS.m Simple And Efficient Search Algorithm

% Computes motion vectors using Simple and Efficient TSS method
%
% Based on the paper by Jianhua Lu and Ming L. Liou
% IEEE Trans. on Circuits and Systems for Video Technology
% Volume 7, Number 2, April 1997 : Pages 429:433
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% SESTSScomputations: The average number of points searched for a macroblock
%
% Written by Aroh Barjatya

function [motionVect, SESTSScomputations] = motionEstSESTSS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);

% we now take effectively log to the base 2 of p
% this will give us the number of steps required

L = floor(log10(p+1)/log10(2));
stepMax = 2^(L-1);
costs = ones(1,6)*65537;

computations = 0;

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the Simple and Efficient three step search starts here
 %
 % each step is divided into two phases
 % in the first phase we evaluate the cost in two ortogonal
 % directions at a distance of stepSize away
 % based on a certain relationship between the three points costs
 % we select the remaining TSS points in the second phase
 % At the end of the second phase, which ever point has the least
 % cost becomes the root for the next step.
 % Please read the paper to find out more detailed information

 stepSize = stepMax;

-60-

 x = j;
 y = i;
 while (stepSize >= 1)
 refBlkVerPointA = y;
 refBlkHorPointA = x;

 refBlkVerPointB = y;
 refBlkHorPointB = x + stepSize;

 refBlkVerPointC = y + stepSize;
 refBlkHorPointC = x;

 if (refBlkVerPointA < 1 || refBlkVerPointA+mbSize-1 > row ...
 || refBlkHorPointA < 1 || refBlkHorPointA+mbSize-1 > col)
 % do nothing %

 else
 costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointA:refBlkVerPointA+mbSize-1, ...
 refBlkHorPointA:refBlkHorPointA+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointB < 1 || refBlkVerPointB+mbSize-1 > row ...
 || refBlkHorPointB < 1 || refBlkHorPointB+mbSize-1 > col)
 % do nothing %

 else
 costs(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointB:refBlkVerPointB+mbSize-1, ...
 refBlkHorPointB:refBlkHorPointB+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointC < 1 || refBlkVerPointC+mbSize-1 > row ...
 || refBlkHorPointC < 1 || refBlkHorPointC+mbSize-1 > col)
 % do nothing %

 else
 costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointC:refBlkVerPointC+mbSize-1, ...
 refBlkHorPointC:refBlkHorPointC+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (costs(1) >= costs(2) && costs(1) >= costs(3))
 quadrant = 4;
 elseif (costs(1) >= costs(2) && costs(1) < costs(3))
 quadrant = 1;
 elseif (costs(1) < costs(2) && costs(1) < costs(3))
 quadrant = 2;
 elseif (costs(1) < costs(2) && costs(1) >= costs(3))
 quadrant = 3;
 end

-61-

 switch quadrant
 case 1
 refBlkVerPointD = y - stepSize;
 refBlkHorPointD = x;

 refBlkVerPointE = y - stepSize;
 refBlkHorPointE = x + stepSize;

 if (refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ...
 || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col)
 % do nothing %

 else
 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ...
 || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col)
 % do nothing %

 else
 costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end

 case 2
 refBlkVerPointD = y - stepSize;
 refBlkHorPointD = x;

 refBlkVerPointE = y - stepSize;
 refBlkHorPointE = x - stepSize;

 refBlkVerPointF = y;
 refBlkHorPointF = x - stepSize;

 if (refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ...
 || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col)
 % do nothing %

 else
 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ...
 || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col)
 % do nothing %

-62-

 else
 costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointE:refBlkVerPointE+mbSize-1, ...
 refBlkHorPointE:refBlkHorPointE+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointF < 1 || refBlkVerPointF+mbSize-1 > row ...
 || refBlkHorPointF < 1 || refBlkHorPointF+mbSize-1 > col)
 % do nothing %

 else
 costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointF:refBlkVerPointF+mbSize-1, ...
 refBlkHorPointF:refBlkHorPointF+mbSize-1), mbSize);
 computations = computations + 1;
 end

 case 3
 refBlkVerPointD = y;
 refBlkHorPointD = x - stepSize;

 refBlkVerPointE = y - stepSize;
 refBlkHorPointE = x - stepSize;

 if (refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ...
 || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col)
 % do nothing %

 else
 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end

 if (refBlkVerPointE < 1 || refBlkVerPointE+mbSize-1 > row ...
 || refBlkHorPointE < 1 || refBlkHorPointE+mbSize-1 > col)
 % do nothing %

 else
 costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end

 case 4
 refBlkVerPointD = y + stepSize;
 refBlkHorPointD = x + stepSize;

 if (refBlkVerPointD < 1 || refBlkVerPointD+mbSize-1 > row ...
 || refBlkHorPointD < 1 || refBlkHorPointD+mbSize-1 > col)
 % do nothing %

-63-

 else
 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointD:refBlkVerPointD+mbSize-1, ...
 refBlkHorPointD:refBlkHorPointD+mbSize-1), mbSize);
 computations = computations + 1;
 end
 otherwise

 end

 % Now we find the vector where the cost is minimum
 % and store it ... this is what will be passed back.
 % we use the matlab function min() in this case and not the one
 % that is written by author: minCosts()

 [cost, dxy] = min(costs); % finds which macroblock in imgI gave us min Cost

 switch dxy
 case 1
 % x = x; y = y;
 case 2
 x = refBlkHorPointB;
 y = refBlkVerPointB;
 case 3
 x = refBlkHorPointC;
 y = refBlkVerPointC;
 case 4
 x = refBlkHorPointD;
 y = refBlkVerPointD;
 case 5
 x = refBlkHorPointE;
 y = refBlkVerPointE;
 case 6
 x = refBlkHorPointF;
 y = refBlkVerPointF;

 end

 costs = ones(1,6) * 65537 ;
 stepSize = stepSize / 2;

 end

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 end
end

motionVect = vectors;
SESTSScomputations = computations/(mbCount - 1);

-64-

6. motionEst4SS.m Four Step Search Algorithm

% Computes motion vectors using Four Step Search method
%
% Based on the paper by Lai-Man Po, and Wing-Chung Ma
% IEEE Trans. on Circuits and Systems for Video Technology
% Volume 6, Number 3, June 1996 : Pages 313:317
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% SS4computations: The average number of points searched for a macroblock

function [motionVect, SS4Computations] = motionEst4SS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(3, 3) * 65537;

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it
computations = 0;

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the 4 step search starts
 % we are scanning in raster order

 x = j;
 y = i;

 costs(2,2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);
 computations = computations + 1;

 % This is the calculation of the 9 points
 % As this is the first stage, we evaluate all 9 points
 for m = -2 : 2 : 2
 for n = -2 : 2 : 2
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

-65-

 costRow = m/2 + 2;
 costCol = n/2 + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;

 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ...

 [dx, dy, cost] = minCost(costs); % finds which macroblock in imgI gave us min Cost

 % The flag_4ss is set to 1 when the minimum
 % is at the center of the search area

 if (dx == 2 && dy == 2)
 flag_4ss = 1;
 else
 flag_4ss = 0;
 xLast = x;
 yLast = y;
 x = x + (dx-2)*2;
 y = y + (dy-2)*2;
 end

 costs = ones(3,3) * 65537;
 costs(2,2) = cost;

 stage = 1;
 while (flag_4ss == 0 && stage <=2)
 for m = -2 : 2 : 2
 for n = -2 : 2 : 2
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 if (refBlkHor >= xLast - 2 && refBlkHor <= xLast + 2 ...
 && refBlkVer >= yLast - 2 && refBlkVer <= yLast + 2)
 continue;
 end

 costRow = m/2 + 2;
 costCol = n/2 + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end

 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...

-66-

 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;

 end
 end

 [dx, dy, cost] = minCost(costs);

 if (dx == 2 && dy == 2)
 flag_4ss = 1;
 else
 flag_4ss = 0;
 xLast = x;
 yLast = y;
 x = x + (dx-2)*2;
 y = y + (dy-2)*2;
 end

 costs = ones(3,3) * 65537;
 costs(2,2) = cost;
 stage = stage + 1;

 end % while loop ends here

 % we now enter the final stage

 for m = -1 : 1 : 1
 for n = -1 : 1 : 1
 refBlkVer = y + m; % row/Vert co-ordinate for ref block
 refBlkHor = x + n; % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 costRow = m + 2;
 costCol = n + 2;
 if (costRow == 2 && costCol == 2)
 continue
 end
 costs(costRow, costCol) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 end

 % Now we find the vector where the cost is minimum
 % and store it ...

 [dx, dy, cost] = minCost(costs);

 x = x + dx - 2;
 y = y + dy - 2;

-67-

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(3,3) * 65537;

 end
end

motionVect = vectors;
SS4Computations = computations/(mbCount - 1);

-68-

7. motionEstDS.m Diamond Search Algorithm

% Computes motion vectors using Diamond Search method
%
% Based on the paper by Shan Zhu, and Kai-Kuang Ma
% IEEE Trans. on Image Processing
% Volume 9, Number 2, February 2000 : Pages 287:290
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% DScomputations: The average number of points searched for a macroblock
%
% Written by Aroh Barjatya

function [motionVect, DScomputations] = motionEstDS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(1, 9) * 65537;

% we now take effectively log to the base 2 of p
% this will give us the number of steps required

L = floor(log10(p+1)/log10(2));

% The index points for Large Diamond search pattern
LDSP(1,:) = [0 -2];
LDSP(2,:) = [-1 -1];
LDSP(3,:) = [1 -1];
LDSP(4,:) = [-2 0];
LDSP(5,:) = [0 0];
LDSP(6,:) = [2 0];
LDSP(7,:) = [-1 1];
LDSP(8,:) = [1 1];
LDSP(9,:) = [0 2];

% The index points for Small Diamond search pattern
SDSP(1,:) = [0 -1];
SDSP(2,:) = [-1 0];
SDSP(3,:) = [0 0];
SDSP(4,:) = [1 0];
SDSP(5,:) = [0 1];

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

-69-

computations = 0;

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the Diamond search starts
 % we are scanning in raster order

 x = j;
 y = i;

 costs(5) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);
 computations = computations + 1;

 % This is the first search so we evaluate all the 9 points in LDSP
 for k = 1:9
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 if (k == 5)
 continue
 end
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 [cost, point] = min(costs);

 % The SDSPFlag is set to 1 when the minimum
 % is at the center of the diamond

 if (point == 5)
 SDSPFlag = 1;
 else
 SDSPFlag = 0;
 if (abs(LDSP(point,1)) == abs(LDSP(point,2)))
 cornerFlag = 0;
 else
 cornerFlag = 1; % the x and y co-ordinates not equal on corners
 end
 xLast = x;
 yLast = y;
 x = x + LDSP(point, 1);
 y = y + LDSP(point, 2);
 costs = ones(1,9) * 65537;
 costs(5) = cost;
 end

-70-

 while (SDSPFlag == 0)
 if (cornerFlag == 1)
 for k = 1:9
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 if (k == 5)
 continue
 end

 if (refBlkHor >= xLast - 1 && refBlkHor <= xLast + 1 ...
 && refBlkVer >= yLast - 1 && refBlkVer <= yLast + 1)
 continue;
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 end

 else
 switch point
 case 2
 refBlkVer = y + LDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window
 else
 costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(2,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(2,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window
 else

 costs(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);

-71-

 computations = computations + 1;
 end

 refBlkVer = y + LDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window
 else

 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 case 3
 refBlkVer = y + LDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window
 else

 costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(3,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(3,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window
 else

 costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(6,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(6,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)

-72-

 % do nothing, outside search window
 else

 costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 case 7
 refBlkVer = y + LDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(7,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(7,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(7) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(9,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(9,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(9) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

-73-

 case 8
 refBlkVer = y + LDSP(6,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(6,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(6) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(8,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(8,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(8) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end

 refBlkVer = y + LDSP(9,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(9,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 % do nothing, outside search window

 else
 costs(9) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 end
 otherwise
 end
 end

 [cost, point] = min(costs);

 if (point == 5)
 SDSPFlag = 1;

-74-

 else
 SDSPFlag = 0;
 if (abs(LDSP(point,1)) == abs(LDSP(point,2)))
 cornerFlag = 0;
 else
 cornerFlag = 1;
 end
 xLast = x;
 yLast = y;
 x = x + LDSP(point, 1);
 y = y + LDSP(point, 2);
 costs = ones(1,9) * 65537;
 costs(5) = cost;
 end

 end % while loop ends here

 % we now enter the SDSP calculation domain
 costs = ones(1,5) * 65537;
 costs(3) = cost;

 for k = 1:5
 refBlkVer = y + SDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % do nothing, outside search window
 end

 if (k == 3)
 continue
 end

 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;

 end

 [cost, point] = min(costs);

 x = x + SDSP(point, 1);
 y = y + SDSP(point, 2);

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(1,9) * 65537;

 end
end

motionVect = vectors;
DScomputations = computations/(mbCount - 1);

-75-

8. motionEstARPS.m Adaptive Rood Pattern Search Algorithm

% Computes motion vectors using Adaptive Rood Pattern Search method
%
% Based on the paper by Yao Nie, and Kai-Kuang Ma
% IEEE Trans. on Image Processing
% Volume 11 Number 12, December 2002 : Pages 1442:1448
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter (read literature to find what this means)
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% ARPScomputations: The average number of points searched for a macroblock
%
% Written by Aroh Barjatya

function [motionVect, ARPScomputations] = motionEstARPS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(1, 6) * 65537;

% The index points for Small Diamond search pattern
SDSP(1,:) = [0 -1];
SDSP(2,:) = [-1 0];
SDSP(3,:) = [0 0];
SDSP(4,:) = [1 0];
SDSP(5,:) = [0 1];

% We will be storing the positions of points where the checking has been
% already done in a matrix that is initialised to zero. As one point is
% checked, we set the corresponding element in the matrix to one.

checkMatrix = zeros(2*p+1,2*p+1);

computations = 0;

% we start off from the top left of the image
% we will walk in steps of mbSize
% mbCount will keep track of how many blocks we have evaluated

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 % the Adapive Rood Pattern search starts
 % we are scanning in raster order

 x = j;
 y = i;

-76-

 costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);

 checkMatrix(p+1,p+1) = 1;
 computations = computations + 1;
 % if we are in the left most column then we have to make sure that
 % we just do the LDSP with stepSize = 2
 if (j-1 < 1)
 stepSize = 2;
 maxIndex = 5;
 else
 stepSize = max(abs(vectors(1,mbCount-1)), abs(vectors(2,mbCount-1)));

 % now we have to make sure that if the point due to motion
 % vector is one of the LDSP points then we dont calculate it
 % again
 if ((abs(vectors(1,mbCount-1)) == stepSize && vectors(2,mbCount-1) == 0) ...
 || (abs(vectors(2,mbCount-1)) == stepSize && vectors(1,mbCount-1) == 0)) ...

 maxIndex = 5; % we just have to check at the rood pattern 5 points

 else
 maxIndex = 6; % we have to check 6 points
 LDSP(6,:) = [vectors(2, mbCount-1) vectors(1, mbCount-1)];
 end
 end

 % The index points for first and only Large Diamond search pattern

 LDSP(1,:) = [0 -stepSize];
 LDSP(2,:) = [-stepSize 0];
 LDSP(3,:) = [0 0];
 LDSP(4,:) = [stepSize 0];
 LDSP(5,:) = [0 stepSize];

 % do the LDSP

 for k = 1:maxIndex
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)

 continue; % outside image boundary
 end

 if (k == 3 || stepSize == 0)
 continue; % center point already calculated
 end
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(LDSP(k,2) + p+1, LDSP(k,1) + p+1) = 1;

 end

-77-

 [cost, point] = min(costs);

 % The doneFlag is set to 1 when the minimum
 % is at the center of the diamond

 x = x + LDSP(point, 1);
 y = y + LDSP(point, 2);
 costs = ones(1,5) * 65537;
 costs(3) = cost;

 doneFlag = 0;
 while (doneFlag == 0)
 for k = 1:5
 refBlkVer = y + SDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue;
 end

 if (k == 3)
 continue
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue;
 elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1)
 continue
 end

 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 checkMatrix(y-i+SDSP(k,2)+p+1, x-j+SDSP(k,1)+p+1) = 1;
 computations = computations + 1;

 end

 [cost, point] = min(costs);

 if (point == 3)
 doneFlag = 1;
 else
 x = x + SDSP(point, 1);
 y = y + SDSP(point, 2);
 costs = ones(1,5) * 65537;
 costs(3) = cost;
 end

 end % while loop ends here

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(1,6) * 65537;

 checkMatrix = zeros(2*p+1,2*p+1);
 end
end

motionVect = vectors;
ARPScomputations = computations/(mbCount-1) ;

-78-

9. costFuncMAD.m Mean Absolute Difference Function

% Computes the Mean Absolute Difference (MAD) for the given two blocks
% Input
% currentBlk : The block for which we are finding the MAD
% refBlk : the block w.r.t. which the MAD is being computed
% n : the side of the two square blocks
%
% Output
% cost : The MAD for the two blocks
%
% Written by Aroh Barjatya

function cost = costFuncMAD(currentBlk,refBlk, n)

err = 0;
for i = 1:n
 for j = 1:n
 err = err + abs((currentBlk(i,j) - refBlk(i,j)));
 end
end
cost = err / (n*n);

10. minCost.m Locates Minimum Cost Macroblock

% Finds the indices of the cell that holds the minimum cost
% Input

% costs : The matrix that contains the estimation costs for a macroblock
%

% Output
% dx : the motion vector component in columns
% dy : the motion vector component in rows
%
% Written by Aroh Barjatya

function [dx, dy, min] = minCost(costs)

[row, col] = size(costs);

% we check whether the current
% value of costs is less then the already present value in min. If its
% indeed smaller then we swap the min value with the current one and note
% the indices.

min = 65537;

for i = 1:row
 for j = 1:col
 if (costs(i,j) < min)
 min = costs(i,j);
 dx = j; dy = i;
 end
 end
end

-79-

11. motionComp.m Motion Compensated Image Creator

% Computes motion compensated image using the given motion vectors
% Input

% imgI : The reference image
% motionVect : The motion vectors
% mbSize : Size of the macroblock

% Ouput
% imgComp : The motion compensated image
%

% Written by Aroh Barjatya

function imgComp = motionComp(imgI, motionVect, mbSize)

[row col] = size(imgI);

% we start off from the top left of the image
% we will walk in steps of mbSize
% for every marcoblock that we look at we will read the motion vector
% and put that macroblock from reference image in the compensated image

mbCount = 1;
for i = 1:mbSize:row-mbSize+1
 for j = 1:mbSize:col-mbSize+1

 % dy is row(vertical) index
 % dx is col(horizontal) index
 % this means we are scanning in order

 dy = motionVect(1,mbCount);
 dx = motionVect(2,mbCount);
 refBlkVer = i + dy;
 refBlkHor = j + dx;
 imageComp(i:i+mbSize-1,j:j+mbSize-1) = imgI(refBlkVer:refBlkVer+mbSize-1,
refBlkHor:refBlkHor+mbSize-1);

 mbCount = mbCount + 1;
 end
end

imgComp = imageComp;

12. imgPSNR.m Finds M.C. Image PSNR w.r.t. Reference Image

% Computes motion compensated image's PSNR
% Input

% imgP : The original image
% imgComp : The compensated image
% n : the peak value possible of any pixel in the images

% Ouput
% psnr : The motion compensated image's PSNR

function psnr = imgPSNR(imgP, imgComp, n)

[row col] = size(imgP);

err = 0;

for i = 1:row
 for j = 1:col
 err = err + (imgP(i,j) - imgComp(i,j))^2;
 end
end

mse = err / (row*col);

psnr = 10*log10(n*n/mse);

-80-

Appendix C: Corrections to Barjatya code by Jerome Casey

Some corrections to the original implementation by Barjatya have been added by me.

The following m-files have been updated:

motionEstSESTSS.m recalculates the cost at the central point A at the beginning of the while

loop when the cost is already available at the end of the previous iteration. This will lead to an

overestimation in the average number of points searched per macroblock for this algorithm.

Thus initially calculate the cost of the centre point before entering the while loop as shown.

stepSize = stepMax;
 x = j;
 y = i;

 refBlkVerPointA = y;
 refBlkHorPointA = x;

 if (refBlkVerPointA < 1 || refBlkVerPointA+mbSize-1 > row ...
 || refBlkHorPointA < 1 || refBlkHorPointA+mbSize-1 > col)
 % do nothing %

 else
 costs(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVerPointA:refBlkVerPointA+mbSize-1, ...
 refBlkHorPointA:refBlkHorPointA+mbSize-1), mbSize);
 computations = computations + 1;
 end

 while (stepSize >= 1)

 refBlkVerPointB = y;
 refBlkHorPointB = x + stepSize;

 refBlkVerPointC = y + stepSize;
 refBlkHorPointC = x;

 if (refBlkVerPointB < 1 || refBlkVerPointB+mbSize-1 > row ...
 || refBlkHorPointB < 1 || refBlkHorPointB+mbSize-1 > col)
 % do nothing %

The function also has an error in the location of point E in quadrant 3.

 case 3
 refBlkVerPointD = y;
 refBlkHorPointD = x - stepSize;

 refBlkVerPointE = y + stepSize;
 refBlkHorPointE = x - stepSize;

The code also orders the 4 quadrants differently to the original paper of Lu and Liou (1997)

but is consistent in this. This is purely semantics and will not affect the PSNR or Average

number of search points so the code does not need to be changed.

-81-

The minimum cost calculated at the end of an iteration should be stored for the next iteration.

In the existing code it is recalculated again. In addition when a motion vector is found the cost

matrix should be reset for the next motion vector iteration.

 costs = ones(1,6) * 65537 ;
 stepSize = stepSize / 2;
 costs (1) = cost ;
 end

 vectors(1,mbCount) = y - i; % row co-ordinate for the vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the vector
 mbCount = mbCount + 1;
 costs = ones(1,6) * 65537 ;
 end
end

costFuncMAD.m is speeded up by vectorizing the for-loops within the M-file code. This

optimises the function as well as the overall program execution since the function is called

frequently.

err = sum(sum(abs(currentBlk - refBlk)));

imgPSNR.m is speeded up by vectorizing the for-loops within the M-file code.

err = (sum(sum(imgP - imgComp)))^2;

-82-

Appendix D: M-Code by Jerome Casey

The implementation added by me contains approximately 1,100 additional lines of code.

The following m files have been added:

Table D.1: M-files used by Casey and their role

 M-file Name Description

1. motionEstCDS.m Cross Diamond Search Algorithm

2. motionEstSCDS.m Small Cross Diamond Search Algorithm

3. motionEstNCDS.m New Cross Diamond Search Algorithm

4. plots.m Produces frame-wise plots of Average Searching

Points and Average PSNR

5. stats.m Calculates Average Searching Points, Average

PSNR, Speed Improvement Ratio and the PSNR

difference (w.r.t. Diamond Search) for the

sequence overall.

motionsEstAnalysis.m - the main script - has also been updated to call the 3 additional

algorithms and save the results to a .mat file.

 % 8 Cross Diamond Search

 [motionVect, computations] = motionEstCDS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 CDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 CDScomputations(i+1) = computations;

 % 9 Small Cross Diamond Search

 [motionVect, computations] = motionEstSCDS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 SCDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 SCDScomputations(i+1) = computations;

 % 10 New Cross Diamond Search

 [motionVect, computations] = motionEstNCDS(imgP,imgI,mbSize,p);
 imgComp = motionComp(imgI, motionVect, mbSize);
 NCDSpsnr(i+1) = imgPSNR(imgP, imgComp, 255);
 NCDScomputations(i+1) = computations;
 end
save dsplots2 DSpsnr DScomputations ESpsnr EScomputations TSSpsnr ...
 TSScomputations SS4psnr SS4computations NTSSpsnr NTSScomputations ...
 SESTSSpsnr SESTSScomputations ARPSpsnr ARPScomputations ...
CDSpsnr CDScomputations SDSpsnr SDScomputations NCDSpsnr NCDScomputations

The additional MATLAB code used in this work is shown below:

-83-

1. motionEstCDS.m Cross Diamond Search Algorithm

% Computes motion vectors using the Cross Diamond Search method
%
% Based on the paper by Chun-Ho Cheung and Lai-Man Po.
% IEEE Transactions on Circuits and Systems for Video Technology
% (Dec. 2002b) Volume 12, Issue 12, pp. 1168–1177.
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% CDScomputations: The average number of points searched for a macroblock
%
% Written by Jerome Casey

function [motionVect, CDScomputations] = motionEstCDS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(1, 9) * 65537; % 9 point cost matrix for the Cross Shaped pattern

% The index points for the Cross Shape pattern
CSP(1,:) = [0 -2];
CSP(2,:) = [0 -1];
CSP(3,:) = [-2 0];
CSP(4,:) = [-1 0];
CSP(5,:) = [0 0];
CSP(6,:) = [1 0];
CSP(7,:) = [2 0];
CSP(8,:) = [0 1];
CSP(9,:) = [0 2];

% we start off from the top left of the image and walk in steps of mbSize
% for every macroblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

% We will be storing the positions of points where the checking has been
% already done in a matrix that is initialised to 0. As a point is
% checked the corresponding element in the matrix to set to 1.

checkMatrix = zeros(2*p+1,2*p+1);
computations = 0;

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 x = j;
 y = i;
 xStart = j; % needed in step 2 if 2 of 4 points of a central-half LDSP
 yStart = i; % need to be calculated

-84-

 % apply the CSP and find the minimum BDM of the 9 points.
 % If the minimum BDM is at the centre then the search stops (first step stop).
 % If it is at another point then store the location and value of the min BDM.
 % and continue to the next step

 MVfoundFlag = 0; % MVfoundFlag is set to 1 when Motion Vector is found
 SDSPFlag = 0; % SDSPFlag is set to 1 when a SDSP needs to be executed

 % ********** Step 1 Uses a CSP to find a min BDM from 9 points************************************
 for k = 1:9
 refBlkVer = y + CSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + CSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(CSP(k,2) + p+1,CSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz
 end
 end

 [cost, point] = min(costs);
 if (point == 5)
 MVfoundFlag = 1; % first step stop
 else
 xCSP = x + CSP(point, 1); % shift centre to min BDM location for next step
 yCSP = y + CSP(point, 2);
 minCostCSP = cost; % retain the cost for comparison with the min BDM from step 2
 end

 % points 2,4,6,8 are located at the middle wing of the CSP i.e.(±1,0) or (0,±1) if the min BDM
%occurs at any
 % of these 4 points and is still the overall min BDM by step 2 then we have a Second step stop

 if (mod(point,2)==0) % remainder after division by 2 is zero for even numbers
 MiddleWingFlag = 1;
 else
 MiddleWingFlag = 0;
 end

 % ********** Step 2 A Half Diamond Search Pattern is applied**************************************

 if (MVfoundFlag == 0)

 % The index points for the Half Diamond Search pattern (±1,±1)
 HDSP(1,:) = [-1 -1];
 HDSP(2,:) = [1 -1];
 HDSP(3,:) = [-1 1];
 HDSP(4,:) = [1 1];

 HalfDiamondCosts = ones(1,4) * 65537; % initialise a new cost matrix to store costs for the 4 half
%diamond locations

 % Of the 4 candidate points in HDSP, just check the 2 points closest to the current min CSP
%BDM i.e. point
 switch point

-85-

 case {1 2}
 refBlkVer = yStart + HDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(2,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(2,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case {3 4}
 refBlkVer = yStart + HDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(3,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(3,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case {6 7}

-86-

 refBlkVer = yStart + HDSP(2,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(2,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case {8 9}
 refBlkVer = yStart + HDSP(3,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(3,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 otherwise
 end % end switch

-87-

 [minHalfDiamondcost, HalfDiamondpoint] = min(HalfDiamondCosts);

 xHDSP = xStart + HDSP(HalfDiamondpoint, 1); % min BDM location is at one of the 4 points of
%the HDSP
 yHDSP = yStart + HDSP(HalfDiamondpoint, 2); % record co-ords of min BDM HDSP point

 % decide overall min BDM from 2 costs
 % 1.minCostCSP at (xCSP,yCSP) or 2.HalfDiamondcost at (xHDSP,yHDSP)
 OverallMinCost = ones(1, 2) * 65537; % 2 point cost matrix

 OverallMinCost(1)= minCostCSP;
 OverallMinCost(2)= minHalfDiamondcost;

 [mincost, location] = min(OverallMinCost);

 % if the overall min BDM is at the middle wing of the CSP i.e.(±1,0) or (0,±1) then we have a Second
%step stop
 if (location == 1)
 if (MiddleWingFlag == 1)
 MVfoundFlag = 1; % Second step stop
 end
 x = xCSP;
 y = yCSP;
 else
 x = xHDSP;
 y = yHDSP;
 end

 if (MVfoundFlag == 0)
 costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search if MV
%not found
 costs(5) = mincost; % retain the cost so as not to calculate it again
 end

 end % end if from start of step 2

 % ******Step 3 An unrestricted Large Diamond Search Pattern is applied until the Min BDM
%occurs at the centre**
 while (MVfoundFlag == 0 && SDSPFlag == 0)

 % The index points for Large Diamond search pattern
 LDSP(1,:) = [0 -2];
 LDSP(2,:) = [-1 -1];
 LDSP(3,:) = [1 -1];
 LDSP(4,:) = [-2 0];
 LDSP(5,:) = [0 0];
 LDSP(6,:) = [2 0];
 LDSP(7,:) = [-1 1];
 LDSP(8,:) = [1 1];
 LDSP(9,:) = [0 2];

 for k = 1:9
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary

-88-

 end

 if (k == 5)
 continue; % since centre point has already been calculated
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % since outside of search window
 elseif (checkMatrix(y-i+LDSP(k,2)+p+1,x-j+LDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+LDSP(k,2)+ p+1,x-j+LDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end
 end % end for

 [cost, point] = min(costs);
 if (point == 5) % The SDSPFlag is set to 1 when the minimum
 SDSPFlag = 1; % cost occurs at the centre of the diamond
 else
 x = x + LDSP(point, 1); % shift centre to min BDM location for next step
 y = y + LDSP(point, 2);
 costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop
 costs(5) = cost; % retain the cost so as not to calculate it again
 end
 end %end while

 %****** Step 4 A final Small Diamond Search Pattern is applied*********
 if (SDSPFlag == 1)

 % The index points for the Small Diamond search pattern
 SDSP(1,:) = [0 -1];
 SDSP(2,:) = [-1 0];
 SDSP(3,:) = [0 0];
 SDSP(4,:) = [1 0];
 SDSP(5,:) = [0 1];

 costs = ones(1,5) * 65537;
 costs(3) = cost; % value of cost comes from final LDSP loop

 for k = 1:5
 refBlkVer = y + SDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % do nothing, outside search window
 end

 if (k == 3)
 continue; % since centre point has already been calculated
 elseif (checkMatrix(y-i+SDSP(k,2)+p+1,x-j+SDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...

-89-

 imgI(refBlkVer:refBlkVer+mbSize-1,refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+SDSP(k,2)+ p+1,x-j+SDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end
 end %end for

 [cost, point] = min(costs);
 x = x + SDSP(point, 1);
 y = y + SDSP(point, 2);
 end %end if from start of step 4

 vectors(1,mbCount) = y - i; % row co-ordinate for the motion vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the motion vector
 mbCount = mbCount + 1;
 costs = ones(1, 9) * 65537; % reset cost matrix for next MV search i.e. 9 point Cross Shaped
%pattern
 checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search
 end %end for j
end %end for i

motionVect = vectors;
CDScomputations = computations/(mbCount - 1);

-90-

2. motionEstSCDS.m Small Cross Diamond Search Algorithm

% Computes motion vectors using the Small Cross Diamond Search method
%
% Based on the paper by Chun-Ho Cheung and Lai-Man Po.
% IEEE 2002 International Conference on Image Processing Proceedings
% (Sept. 2002a) Volume 1, pp. 681–684.
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% SCDScomputations: The average number of points searched for a macroblock
%
% Written by Jerome Casey

function [motionVect, SCDScomputations] = motionEstSCDS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(1, 5) * 65537; % 5 point cost matrix for Small Cross Shaped pattern

% The index points for the Small Cross Shaped pattern
SCSP(1,:) = [0 -1];
SCSP(2,:) = [-1 0];
SCSP(3,:) = [0 0];
SCSP(4,:) = [1 0];
SCSP(5,:) = [0 1];

% we start off from the top left of the image and walk in steps of mbSize
% for every macroblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

% We will be storing the positions of points where the checking has been
% already done in a matrix that is initialised to 0. As a point is
% checked the corresponding element in the matrix to set to 1.

checkMatrix = zeros(2*p+1,2*p+1);
computations = 0;

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 x = j;
 y = i;
 xStart = j; % needed if BDM of outer 4 points of a LCSP and 2 of 4 points of
 yStart = i; % a central-half LDSP need to be calculated in step 3

 % In order to avoid re-calculating the centre point of the search
 % we always store the value for it from the previous run.
 % For the first iteration of the While loop we store this value outside
 % the loop, but for subsequent iterations we store the cost at

-91-

 % the point where we are going to shift our root.
 %
 % For the SCDS we apply the Small CSP and find the minimum BDM of the 5 points.
 % If the minimum BDM is at the centre the search stops (first step stop).
 % If it is at one of the other 4 points, store the location and value of min BDM.
 % and continue to next step

 MVfoundFlag = 0; % MVfoundFlag is set to 1 when Motion Vector is found
 SDSPFlag = 0; % SDSPFlag is set to 1 when a SDSP needs to be executed

 % **********Step 1 Uses a SCSP to find a min BDM from 5 points************************************
 for k = 1:5
 refBlkVer = y + SCSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SCSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(SCSP(k,2) + p+1,SCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz
 end
 end

 [cost, point] = min(costs);
 if (point == 3)
 MVfoundFlag = 1; % first step stop
 else
 xSCSP = x + SCSP(point, 1); % shift centre to min BDM location for next step
 ySCSP = y + SCSP(point, 2);
 minCostSCSP = cost; % retain the cost so as not to calculate it again
 end

 % **********Step 2 (Guiding Step) Uses a LCSP to find a min BDM from the 4 outer
%points***********
 % this will guide the Half Diamond search pattern of step 3

 if (MVfoundFlag == 0)

 % The index points for the Large Cross Shape pattern
 LCSP(1,:) = [0 -2];
 LCSP(2,:) = [-2 0];
 LCSP(3,:) = [0 0];
 LCSP(4,:) = [2 0];
 LCSP(5,:) = [0 2];

 OuterCosts = ones(1,5) * 65537; % intialise a new cost matrix to store costs for the 4 outer points

 % original centre located at (xStart,yStart) - could also have used (j,i)here as well

 for k = 1:5
 refBlkVer = yStart + LCSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + LCSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 end

-92-

 % no need to add code referring to p parameter just yet as search is still within the search
%window
 % but it will be needed for the unrestricted LDSP search

 if (k == 3) % since this is the original centre point (xStart,yStart) and has already been
%calculated
 continue; % in step 1 above
 else
 OuterCosts(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(LCSP(k,2) + p+1,LCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then col/Horiz
 end
 end % end for

 [Outercost, Outerpoint] = min(OuterCosts);

 xLCSP = xStart + LCSP(Outerpoint, 1); % min BDM location is at one of the 4 outer points of
%the LCSP
 yLCSP = yStart + LCSP(Outerpoint, 2); % record co-ords of min BDM LCSP point

 %**********Step 3 A Half Diamond Search Pattern is applied**************************************

 % The index points for the Half Diamond Search pattern
 HDSP(1,:) = [-1 -1];
 HDSP(2,:) = [1 -1];
 HDSP(3,:) = [-1 1];
 HDSP(4,:) = [1 1];

 HalfDiamondCosts = ones(1,4) * 65537; % initialise a new cost matrix to store costs for the 4 half
%diamond locations

 % Of the 4 candidate points in HDSP, just check the 2 points closest to the min LCSP BDM i.e.
%Outerpoint
 switch Outerpoint
 case 1
 refBlkVer = yStart + HDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(2,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(2,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...

-93-

 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case 2
 refBlkVer = yStart + HDSP(1,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(1,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(1) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(1,2) + p+1,HDSP(1,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(3,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(3,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case 4
 refBlkVer = yStart + HDSP(2,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(2,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(2) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(2,2) + p+1,HDSP(2,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...

-94-

 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 case 5
 refBlkVer = yStart + HDSP(3,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(3,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(3,2) + p+1,HDSP(3,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 refBlkVer = yStart + HDSP(4,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + HDSP(4,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 % do nothing, outside image boundary
 else
 HalfDiamondCosts(4) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, ...
 refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(HDSP(4,2) + p+1,HDSP(4,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end

 otherwise
 end % end switch

 [minHalfDiamondcost, HalfDiamondpoint] = min(HalfDiamondCosts);

 xHDSP = xStart + HDSP(HalfDiamondpoint, 1); % min BDM location is at one of the 4 points of
%the HDSP
 yHDSP = yStart + HDSP(HalfDiamondpoint, 2); % record co-ords of min BDM HDSP point

 % decide overall min BDM from 3 costs
 % 1.minCostSCSP at (xSCSP,ySCSP) 2.Outercost at (xLCSP,yLCSP) and 3.HalfDiamondcost at
% (xHDSP,yHDSP)
 OverallMinCost = ones(1, 3) * 65537; % 3 point cost matrix

 OverallMinCost(1)= minCostSCSP;
 OverallMinCost(2)= Outercost;
 OverallMinCost(3)= minHalfDiamondcost;

 [mincost, location] = min(OverallMinCost);
 if (location == 1)
 MVfoundFlag = 1; % Third step stop
 x = xSCSP;
 y = ySCSP;

-95-

 elseif(location == 2)
 x = xLCSP;
 y = yLCSP;
 else
 x = xHDSP;
 y = yHDSP;
 end

 if (MVfoundFlag == 0)
 costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search if MV
%not found
 costs(5) = mincost; % retain the cost so as not to calculate it again
 end

 end % end if from start of step 2

 %****** Step 4 An unrestricted Large Diamond Search Pattern is applied until the Min BDM
%occurs at the centre**
 while (MVfoundFlag == 0 && SDSPFlag == 0)

 % The index points for the Large Diamond search pattern
 LDSP(1,:) = [0 -2];
 LDSP(2,:) = [-1 -1];
 LDSP(3,:) = [1 -1];
 LDSP(4,:) = [-2 0];
 LDSP(5,:) = [0 0];
 LDSP(6,:) = [2 0];
 LDSP(7,:) = [-1 1];
 LDSP(8,:) = [1 1];
 LDSP(9,:) = [0 2];

 for k = 1:9
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 end

 if (k == 5)
 continue; % since centre point has already been calculated
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % since outside of search window
 elseif (checkMatrix(y-i+LDSP(k,2)+p+1 , x-j+LDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+LDSP(k,2) + p+1,x-j+LDSP(k,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end
 end % end for

 [cost, point] = min(costs);
 if (point == 5) % The SDSPFlag is set to 1 when the minimum
 SDSPFlag = 1; % cost occurs at the centre of the diamond
 else

-96-

 x = x + LDSP(point, 1); % shift centre to min BDM location for next step
 y = y + LDSP(point, 2);
 costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop
 costs(5) = cost; % retain the cost so as not to calculate it again
 end

 end %end while from start of step 4

 % ****** Step 5 A final Small Diamond Search Pattern is applied*********
 if (SDSPFlag == 1)

 % The index points for the Small Diamond search pattern
 SDSP(1,:) = [0 -1];
 SDSP(2,:) = [-1 0];
 SDSP(3,:) = [0 0];
 SDSP(4,:) = [1 0];
 SDSP(5,:) = [0 1];

 costs = ones(1,5) * 65537;
 costs(3) = cost; % value of cost comes from final LDSP loop

 for k = 1:5
 refBlkVer = y + SDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % do nothing, outside search window
 end

 if (k == 3)
 continue; % since centre point has already been calculated
 elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+SDSP(k,2) + p+1,x-j+SDSP(k,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz

 end
 end %end for

 [cost, point] = min(costs);
 x = x + SDSP(point, 1);
 y = y + SDSP(point, 2);
 end %end if from start of step 5

 vectors(1,mbCount) = y - i; % row co-ordinate for the motion vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the motion vector
 mbCount = mbCount + 1;
 costs = ones(1, 5) * 65537; % reset cost matrix for next MV search i.e. 5 point Small Cross
%Shaped pattern
 checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search
 end %end for j
end %end for i

motionVect = vectors;
SCDScomputations = computations/(mbCount - 1);

-97-

3. motionEstNCDS.m New Cross Diamond Search Algorithm

% Computes motion vectors using the New Cross Diamond Search method
%
% Based on the paper by Chi-Wai Lam, Lai-Man Po and Chun Ho Cheung
% IEEE International Conference on Neural Networks & Signal Processing
% (Dec. 2003) Volume 2, pp. 1262–1265.
%
% Input
% imgP : The image for which we want to find motion vectors
% imgI : The reference image
% mbSize : Size of the macroblock
% p : Search parameter
%
% Ouput
% motionVect : the motion vectors for each integral macroblock in imgP
% NCDScomputations: The average number of points searched for a macroblock
%
% Written by Jerome Casey

function [motionVect, NCDScomputations] = motionEstNCDS(imgP, imgI, mbSize, p)

[row col] = size(imgI);

vectors = zeros(2,row*col/mbSize^2);
costs = ones(1, 5) * 65537; % 5 point cost matrix for Small Cross Shaped pattern

% The index points for the Small Cross Shaped pattern
SCSP(1,:) = [0 -1];
SCSP(2,:) = [-1 0];
SCSP(3,:) = [0 0];
SCSP(4,:) = [1 0];
SCSP(5,:) = [0 1];

% we start off from the top left of the image and walk in steps of mbSize
% for every macroblock that we look at we will look for
% a close match p pixels on the left, right, top and bottom of it

% We will be storing the positions of points where the checking has been
% already done in a matrix that is initialised to 0. As a point is
% checked the corresponding element in the matrix to set to 1.

checkMatrix = zeros(2*p+1,2*p+1);
computations = 0;

mbCount = 1;
for i = 1 : mbSize : row-mbSize+1
 for j = 1 : mbSize : col-mbSize+1

 x = j;
 y = i;
 xStart = j; % needed if BDM of outer 3 points
 yStart = i; % of a LCSP needs to be calculated in step 3

 % In order to avoid re-calculating the centre point of the search
 % we always store the value for it from the previous run.

-98-

 % For the first iteration of the While loop we store this value outside
 % the loop, but for subsequent iterations we store the cost at
 % the point where we are going to shift our root.
 %
 % For the NCDS we apply the Small CSP and find the minimum BDM of the 5 points.
 % If the minimum BDM is at the centre the search stops (first step stop).
 % If it is at one of the other 4 points, make that the centre for a 2nd Small CSP
 % If the minimum BDM is at the centre at this step the search stops (second step stop).
 % If it is at one of the other 4 points, record the location and
 % continue to next While loop

 costs(3) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(i:i+mbSize-1,j:j+mbSize-1),mbSize);
 checkMatrix(p+1,p+1) = 1;
 computations = computations + 1;

 MVfoundFlag = 0; % MVfoundFlag is set to 1 when Motion Vector is found
 SDSPFlag = 0; % SDSPFlag is set to 1 when a SDSP needs to be executed
 step = 1; % about to start step 1

 % ***********Step(s) 1/2 Uses a SCSP to find a min BDM from 5 points***********

 while (MVfoundFlag == 0 && step <= 2)
 for k = 1:5
 refBlkVer = y + SCSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SCSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 end

 if (k == 3)
 continue; % since centre point has already been calculated
 elseif (checkMatrix(y-i+SCSP(k,2)+p+1 , x-j+SCSP(k,1)+p+1) == 1)% y-i=0 and x-j=0 in step 1
 continue; % needed since step 2 will have some points where checking has already been
%done
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+SCSP(k,2) + p+1,x-j+SCSP(k,1) + p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end
 end % end for

 [cost, point] = min(costs);
 if (point == 3)
 MVfoundFlag = 1; % first/second step stop
 else
 x = x + SCSP(point, 1); % shift centre to min BDM location for next step
 y = y + SCSP(point, 2);
 costs = ones(1,5) * 65537;
 costs(3) = cost; % retain the cost so as not to calculate it again
 end

 step = step + 1;
 end % end while

-99-

 % ***********Step 3 Uses a LCSP to guide the centre for the following LDSP step***********
 % find the minimum BDM between the 3 outer points of the LCSP and the mincost in step 2

 if (MVfoundFlag == 0)

 % The index points for the Large Cross Shape pattern
 LCSP(1,:) = [0 -2];
 LCSP(2,:) = [-2 0];
 LCSP(3,:) = [0 0];
 LCSP(4,:) = [2 0];
 LCSP(5,:) = [0 2];

 OuterCosts = ones(1,5) * 65537; % intialise a new cost matrix to store costs for the 3 outer points
 % original centre located at (xStart,yStart) - could also have used (j,i)here as well

 for k = 1:5
 refBlkVer = yStart + LCSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = xStart + LCSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 end

 % no need to add code referring to p parameter just yet as search is still within the search
%window
 % but it will be needed for the unrestricted LDSP search

 if (k == 3) % since this is the original centre point and has already been calculated
 continue; % in any case min cost from step 2 is < cost at the original centre point
 elseif (checkMatrix(LCSP(k,2)+p+1,LCSP(k,1)+p+1) == 1)% will avoid 1 of the 4 pts already
%calculated
 continue;
 else
 OuterCosts(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(LCSP(k,2)+ p+1,LCSP(k,1)+p+1) = 1; % row/Vert co-ord first, then col/Horiz
 end
 end % end for

 [Outercost, Outerpoint] = min(OuterCosts);

 if (Outercost < cost) % compare with min cost from step 2
 x = xStart + LCSP(Outerpoint, 1); % min BDM location is at one of the 3 outer points of the
%LCSP
 y = yStart + LCSP(Outerpoint, 2); % shift centre here for the upcoming LDSP
 mincost = Outercost;
 else
 % x,y are already pointing to mincost location from step 2
 mincost = cost;
 end
 costs = ones(1,9) * 65537; % initialise a new cost matrix for the upcoming LDSP search
 costs(5) = mincost; % retain the cost so as not to calculate it again
 end % end if from start of step 3

 %****** Step 4 An unrestricted Large Diamond Search Pattern is applied until the Min BDM
%occurs at the centre**
 while (MVfoundFlag == 0 && SDSPFlag == 0)

-100-

 % The index points for Large Diamond search pattern
 LDSP(1,:) = [0 -2];
 LDSP(2,:) = [-1 -1];
 LDSP(3,:) = [1 -1];
 LDSP(4,:) = [-2 0];
 LDSP(5,:) = [0 0];
 LDSP(6,:) = [2 0];
 LDSP(7,:) = [-1 1];
 LDSP(8,:) = [1 1];
 LDSP(9,:) = [0 2];

 for k = 1:9
 refBlkVer = y + LDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + LDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % since outside image boundary
 end

 if (k == 5)
 continue; % since centre point has already been calculated
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % since outside of search window
 elseif (checkMatrix(y-i+LDSP(k,2)+p+1 , x-j+LDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+LDSP(k,2)+p+1,x-j+LDSP(k,1)+p+1) = 1; % row/Vert co-ord first, then col/Horiz
 end
 end % end for

 [cost, point] = min(costs);
 if (point == 5) % The SDSPFlag is set to 1 when the minimum
 SDSPFlag = 1; % cost occurs at the centre of the diamond
 else
 x = x + LDSP(point, 1); % shift centre to min BDM location for next step
 y = y + LDSP(point, 2);
 costs = ones(1,9) * 65537; % reset cost matrix for another LDSP loop
 costs(5) = cost; % retain the cost so as not to calculate it again
 end

 end % end while

 % ****** Step 5 A final Small Diamond Search Pattern is applied*********
 if (SDSPFlag == 1)

 % The index points for the Small Diamond search pattern
 SDSP(1,:) = [0 -1];
 SDSP(2,:) = [-1 0];
 SDSP(3,:) = [0 0];
 SDSP(4,:) = [1 0];
 SDSP(5,:) = [0 1];

 costs = ones(1,5) * 65537;

-101-

 costs(3) = cost; % value of cost comes from final LDSP loop

 for k = 1:5
 refBlkVer = y + SDSP(k,2); % row/Vert co-ordinate for ref block
 refBlkHor = x + SDSP(k,1); % col/Horizontal co-ordinate
 if (refBlkVer < 1 || refBlkVer+mbSize-1 > row ...
 || refBlkHor < 1 || refBlkHor+mbSize-1 > col)
 continue; % do nothing, outside image boundary
 elseif (refBlkHor < j-p || refBlkHor > j+p || refBlkVer < i-p ...
 || refBlkVer > i+p)
 continue; % do nothing, outside search window
 end

 if (k == 3)
 continue; % since centre point has already been calculated
 elseif (checkMatrix(y-i+SDSP(k,2)+p+1 , x-j+SDSP(k,1)+p+1) == 1)
 continue;
 else
 costs(k) = costFuncMAD(imgP(i:i+mbSize-1,j:j+mbSize-1), ...
 imgI(refBlkVer:refBlkVer+mbSize-1, refBlkHor:refBlkHor+mbSize-1), mbSize);
 computations = computations + 1;
 checkMatrix(y-i+SDSP(k,2)+ p+1,x-j+SDSP(k,1)+ p+1) = 1; % row/Vert co-ord first, then
%col/Horiz
 end
 end %end for

 [cost, point] = min(costs);
 x = x + SDSP(point, 1);
 y = y + SDSP(point, 2);
 end %end if from start of step 5

 vectors(1,mbCount) = y - i; % row co-ordinate for the motion vector
 vectors(2,mbCount) = x - j; % col co-ordinate for the motion vector
 mbCount = mbCount + 1;
 costs = ones(1, 5) * 65537; % reset cost matrix for next MV search i.e. 5 point Small Cross
%Shaped pattern
 checkMatrix = zeros(2*p+1,2*p+1); % reset checkMatrix for next MV search
 end
end

motionVect = vectors;
NCDScomputations = computations/(mbCount - 1);

-102-

plots.m - Produces frame-wise plots of Average Searching Points and Average PSNR and

saves the corresponding images.

%***************Plot Search Points per MacroBlock vs Frame Number**********
 % Line Style Specifiers: Specifier Line Style
 % - Solid line (default) -- Dashed line;
 % : Dotted line -. Dash-dot line

 % Specifier and Marker Type
 % + Plus sign;o Circle;* Asterisk;. Point;x Cross;'square' or s Square;
 %'diamond' or d Diamond;^ Upward-pointing triangle;v Downward-pointing triangle
 % > Right-pointing triangle; < Left-pointing triangle
 %'pentagram' or p Five-pointed star (pentagram)
 %'hexagram' or h Six-pointed star (hexagram)

 % Color and Specifiers
 % r Red;g Green;b Blue;c Cyan;m Magenta;y Yellow;k Black;w White
figure(1)
 plot (NTSScomputations,'-.b');
 hold all;

 grid on;
 plot (SS4computations,':g');
 plot (SESTSScomputations,'-g');
 plot (TSScomputations,'-k');
 plot (ARPScomputations,'-r');
 plot (DScomputations,'-db');
 plot (CDScomputations,'-dy');
 plot (SCDScomputations,'-dm');
 plot (NCDScomputations,'-dc');

 title([imageName,' sequence Block Size ',num2str(mbSize),'x',num2str(mbSize),' Search Parameter p =
',num2str(p)]);
 xlabel([imageName,' Frame Number']);
 ylabel('Search Points per MacroBlock');

legend({'NTSScomputations','SS4computations','SESTSScomputations','TSScomputations','ARPScomputations','
DScomputations','CDScomputations','SCDScomputations','NCDScomputations'},'FontSize',7);

 hold off;
 saveas(gcf,[imageName,'NumSearchPtsperMacroBlock.jpg'])

%*****Plot PSNR of the motion compensated image w.r.t. original image vs Frame Number******
 figure(2)
 plot (ESpsnr,'-.r');
 hold all;

 grid on;
 plot (NTSSpsnr,'-.b');
 plot (SS4psnr,':g');
 plot (SESTSSpsnr,'-g');
 plot (TSSpsnr,'-k');
 plot (ARPSpsnr,'-r');
 plot (DSpsnr,'-db');
 plot (CDSpsnr,'-dy');
 plot (SCDSpsnr,'-dm');
 plot (NCDSpsnr,'-dc');

 title([imageName,' sequence Block Size ',num2str(mbSize),'x',num2str(mbSize),' Search Parameter p =
',num2str(p)]);
 xlabel([imageName,' Frame Number']);
 ylabel('PSNR (dB)');

legend({'ESpsnr','NTSSpsnr','SS4psnr','SESTSScomputations','TSSpsnr','ARPSpsnr','DSpsnr','CDSpsnr','SCDSps
nr','NCDSpsnr'},'FontSize',7);

 hold off;
 saveas(gcf,[imageName,' PSNR of the motcomp image w.r.t. original.jpg'])
 %**

-103-

stats.m - code to calculate some statistics such as Average Searching Points, Average PSNR

Speed Improvement Ratio, and the PSNR difference (w.r.t. Diamond Search) for the sequence

overall.

%**********Stats: Average Searching Points, Average PSNR, Speed Improvement Ratio********
%%%% Average Searching Points for selected Fast BMAs %%%%
ES_Av_Comp = mean(EScomputations) %1.
TSS_Av_Comp = mean(TSScomputations) %2.
NTSS_Av_Comp = mean(NTSScomputations) %3.
SS4_Av_Comp = mean(SS4computations) %4.
SESTSS_Av_Comp = mean(SESTSScomputations) %5.
DS_Av_Comp = mean(DScomputations) %6.
CDS_Av_Comp = mean(CDScomputations) %7.
SCDS_Av_Comp = mean(SCDScomputations) %8.
NCDS_Av_Comp = mean(NCDScomputations) %9.
ARPS_Av_Comp = mean(ARPScomputations) %10.

%%%% Average PSNR for selected Fast BMAs %%%%
ES_Av_PSNR = mean(ESpsnr) %1.
TSS_Av_PSNR = mean(TSSpsnr) %2.
NTSS_Av_PSNR = mean(NTSSpsnr) %3.
SS4_Av_PSNR = mean(SS4psnr) %4.
SESTSS_Av_PSNR = mean(SESTSSpsnr) %5.
DS_Av_PSNR = mean(DSpsnr) %6.
CDS_Av_PSNR = mean(CDSpsnr) %7.
SCDS_Av_PSNR = mean(SCDSpsnr) %8.
NCDS_Av_PSNR = mean(NCDSpsnr) %9.
ARPS_Av_PSNR = mean(ARPSpsnr) %10.

%%%% Average Speed Improvement Ratio (%) over ES %%%%
SirCDS_ES = (ES_Av_Comp - CDS_Av_Comp)*100/ ES_Av_Comp
SirSCDS_ES = (ES_Av_Comp - SCDS_Av_Comp)*100/ ES_Av_Comp
SirNCDS_ES = (ES_Av_Comp - NCDS_Av_Comp)*100/ ES_Av_Comp
SirARPS_ES = (ES_Av_Comp - ARPS_Av_Comp)*100/ ES_Av_Comp

%%%% Average Speed Improvement Ratio (%) over DS %%%%
SirCDS_DS = (DS_Av_Comp - CDS_Av_Comp)*100/ DS_Av_Comp
SirSCDS_DS = (DS_Av_Comp - SCDS_Av_Comp)*100/ DS_Av_Comp
SirNCDS_DS = (DS_Av_Comp - NCDS_Av_Comp)*100/ DS_Av_Comp
SirARPS_DS = (DS_Av_Comp - ARPS_Av_Comp)*100/ DS_Av_Comp

%%%% Difference in Average PSNR over DS %%%%
PSNR_Diff_CDS_DS = DS_Av_PSNR - CDS_Av_PSNR
PSNR_Diff_SCDS_DS = DS_Av_PSNR - SCDS_Av_PSNR
PSNR_Diff_NCDS_DS = DS_Av_PSNR - NCDS_Av_PSNR
PSNR_Diff_ARPS_DS = DS_Av_PSNR - ARPS_Av_PSNR

-104-

Appendix E: M-Code to convert CIF & QCIF files

Some of the standard video sequences used for algorithm analysis are saved as CIF (Common

Intermediate Format) or QCIF (Quarter CIF format) which are in the .yuv file format. These

need to be converted to usable images for input to the various block search algorithms. In the

conversion the Cb and Cr components are suppressed while the Y (luma) component is

retained. The motion vectors are typically estimated from the luma component only. The

frames are saved to disk in Sun Rasterfile format (.ras) which is an uncompressed greyscale

format. These are later called for processing by the motionsEstAnalysis.m main script. The

MATLAB code used is adapted from Amer (2008) and is as follows:

readYUV.m Conversion of CIF/QCIF Files to Usable Images

%% This script reads a 4:2:0 yuv video file and converts it into RGB frames
% The tunable parameters are:
%
% * |*filename*|: a string specifying the yuv filename;
%
% * |*width*|: specifies the width of the frame;
%
% * |*height*|: specifies the height of the frame;
%
% * |*num*|: the number of frames to be read;
%
% * |*start*|: the number of frame at which we start reading from the file
% (assuming the first frame is 0)

clear, close all;

filename = 'mobile_qcif.yuv';
width = 352/2;
height = 288/2;
num = 32;
start = 0;

%% First, open the video file for binary reading
fid=fopen(filename,'r');
if (fid < 0)
 error('File does not exist!');
end

%% Pre-allocate temp variables for performance boost
tmpY = zeros(width, height); % rows then columns
tmpUV = zeros(width/2, height/2); % 1/4 the number of elements in Y
frmSize = numel(tmpY) + 2*numel(tmpUV); % frame size equals the total number of elements

%% Seek the video file till we reach the starting frame
fseek(fid, start * frmSize , 'bof');

%% Define the output YUV components
Y=cell(num,1); % a vector of arrays, each array corresponds to one frame of Y component
U=cell(num,1); % a vector of arrays, each array corresponds to one frame of U component
V=cell(num,1); % a vector of arrays, each array corresponds to one frame of V component

%% Read the binary values from the file into the vectors of frames

-105-

% The assumption here is that the file format is 4:2:0
for i=1:num
 % this automatically reads the 8-bit binary values into the matrix
 % starting with filling the first column then continues in a column
 % order. That's why transposing the matrix is necessary.

 tmpY = fread(fid,[width height],'uint8'); % the final dimensions of tmpY are width(rows) x
height(columns)
 Y{i} = tmpY'; % transposing and casting to uint8 for imshow() to work correctly

 tmpUV = fread(fid,[width/2 height/2],'uint8');
 U{i} = tmpUV'; % transposing and casting to uint8 for imshow() to work correctly

 tmpUV = fread(fid,[width/2 height/2],'uint8');
 V{i} = tmpUV'; % transposing and casting to uint8 for imshow() to work correctly
end

% we're done reading, so close the file
fclose(fid);

%% Perform the YUV-to-RGB transfromation
%% Define the output RGB cells
vRGB=cell(num,1);

%% Define the forward (RGB-to-YUV) transformation matrix as for YPrPb
% (see http://en.wikipedia.org/wiki/YCbCr)
rgb2yuvT = [0.299 0.587 0.114; -0.168736 -0.331264 0.5; 0.5 -0.418688 -0.081312];

%% Get the inverse (YUV-to-RGB) transormation matrix
yuv2rgbT = inv(rgb2yuvT);

%% Pre-allocate the temp variables
dY = zeros(height, width);
dU = zeros(height, width);
dV = zeros(height, width);

% the variable to hold the final rgb values for the frame
% rgb(:,:,1) will hold the Red component
% rgb(:,:,2) will hold the Green component
% rgb(:,:,3) will hold the Blue component
rgb = zeros(height, width, 3);

%% Iterate through all the frames
% The calculations will be done using double float numbers. After the
% transformation is done, the results will be scaled and quantized to 8-bit
% unsigned format again.

for i=1:num;
 % Convert the class of Y{i} to double instead of uint8 for better
 % precision during conversion
 dY = double(Y{i});

 % Convert the class of U{i} to double instead of uint8 for better
 % precision during conversion, and then perform bilinear interpolation
 %dU = imresize(double(U{i}), 2, 'bilinear'); % i suppress the color component here

Source: Girod, (2008)

-106-

 % Convert the class of U{i} to double instead of uint8 for better
 % precision during conversion, and then perform bilinear interpolation
 %dV = imresize(double(V{i}), 2, 'bilinear'); % i suppress the color component here

 % Shift the values of U and V down by 128 since we do not use uint8 anymore
 dY = dY -16; %dU=dU-128; %dV=dV-128;

 % Perform the transformation
 rgb(:,:,1) = yuv2rgbT(1,1) * dY + yuv2rgbT(1,2) * dU + yuv2rgbT(1,3) * dV; % Red
 rgb(:,:,2) = yuv2rgbT(2,1) * dY + yuv2rgbT(2,2) * dU + yuv2rgbT(2,3) * dV; % Green
 rgb(:,:,3) = yuv2rgbT(3,1) * dY + yuv2rgbT(3,2) * dU + yuv2rgbT(3,3) * dV; % Blue

 % Return to the unit8 class
 rgb = uint8(rgb);

 % Assign the frame to the vector of frames
 vRGB{i} = rgb;
end

%% Save the images into ras files, if desired
% The frames will be saved to ras files if the |*sv*| flag is set to one

% (save the images)-flag
sv=1;

% desired images filename_prefix (assumed to be the same as the video filename
fp = filename;

if(sv==1)
 for j=1:num
 fname=strcat(fp,'_','frame_',num2str(start+j),'.ras');
 imwrite(vRGB{j},fname); % the format is determined to be ras from the filename extension
 end
end

%% Plot the images, if desired
% The frames will be plotted in MATLAB if the |*pt*| flag is set to one

% (plot the images)-flag
pt=0;

if(pt==1)
 for k=1:num
 figure,
 figTitle=strcat('File:', fp,' - ','Frame No.',num2str(start+k));
 imshow(vRGB{k}), title(figTitle),
 end
end

	An Investigation of Block Searching Algorithms for Video Frame Codecs
	Recommended Citation

	An Investigation of Block Searching Algorithms for Video Frame Codecs

