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Detection of DNS Based Covert Channels  
Mr Stephen Sheridan, Dr Anthony Keane 
Institute of Technology Blanchardstown, Dublin, Ireland 
stephen.sheridan@itb.ie  
anthony.keane@itb.ie  
 
Abstract: Information theft or data exfiltration, whether personal or corporate, is now a lucrative 
mainstay of cybercrime activity. Recent security reports have suggested that while information, such 
as credit card data is still a prime target, other data such as corporate secrets, employee files and 
intellectual property are increasingly sought after on the black market. Malicious actors that are intent 
on exfiltrating valuable data, usually employ some form of Advanced Persistent Threat (APT) in order 
to exfiltrate large amounts of data over a long period of time with a high degree of covertness. 
Botnet’s are prime examples of APTs that are usually established on targeted systems through 
malware or exploit kits that leverage system vulnerabilities. Once established, Botnets rely on covert 
command and control (C&C) communications with a central server, this allows a malicious actor to 
keep track of compromised systems and to send out instructions for compromised systems to do their 
biding. Covert channels provide an ideal mechanism for data exfiltration and the exchange of 
command and control messages that are essential to a Botnets effectiveness. Our work focuses on 
one particular form of covert channel that enables communication of hidden messages over normal 
Domain Name Server (DNS) network traffic. Covert channels based on DNS traffic are of particular 
interest, as DNS requests are an essential part of most Internet traffic and as a result are rarely 
filtered or blocked by firewalls. As part of our work we have created a test bed system that uses a 
covert DNS channel to exfiltrate data from a compromised host. Using this system we have carried 
out network traffic analysis that uses baseline comparisons as a means to fingerprint covert DNS 
activity. Even though detection of covert DNS activity is relatively straightforward, there is anecdotal 
evidence to suggest that most organisations do not filter or pay enough attention to DNS traffic and 
are therefore susceptible to data exfiltration attacks once a host on their network has been 
compromised. Our work shows that freely available covert DNS tools have particular traffic signatures 
that can be detected in order to mitigate data exfiltration and C&C traffic.  
 
Keywords: Data exfiltration, covert channels, advanced persistent threat (APT), DNS, botnet, 
command & control (C&C). 
 

1. Introduction  
The latest European Union Agency for Network and Information Security “Threat Landscape Report” 
(ENISA, 2014) refers to 2014 as the year of the data breach.  The scale of data breaches experienced 
in 2014 ranged from the theft of personal information stored in the cloud to massive targeted attacks 
on large corporations. Targeted attacks that threaten intellectual property, customer data and 
sensitive government information use sophisticated attack chains, as shown in figure 1, to 
compromise networks and carry out malicious activities such as data exfiltration. The creators of 
targeted attacks go to great lengths to ensure that each step in the attack chain remains undetected. 
However, it is the command and control (C&C) and data exfiltration phases of the attack chain that 
generate the most “noise” in terms of network traffic and are therefore, of particular interest to security 
researchers that wish to mitigate such threats. 
 

 
 

Figure 1: Typical phases of a targeted attack chain 
 



Targeted attacks that include a C&C phase are commonly referred to as Advanced Persistent Threats 
(APTs). APTs are a category of attack that aggressively pursue and compromise specific targets. 
APTs often use social engineering techniques such as spearfishing campaigns (Trend Micro, 2012) to 
gain an entry point into the target network and then attempt to move laterally throughout the network 
to discover and exfiltrate sensitive assets. C&C communication between the attacker and the 
compromised host machine is crucial as it allows for: 
 

• Confirmation of system breach and frequent beacon messages 
• Information gathering about breached network and hosts machines 
• Communication with malware within the compromised network 
• Forwarding instructions to download second stage malware 
• Data exfiltration 

 
C&C traffic plays a pivotal role in the success of an APT. Therefore, it is in the best interests of an 
attacker to mask C&C traffic in order to remain undetected. Analysis of known ATPs such as Auora, 
Zeus and PoisinIvy has shown that ATP creators can use many different forms of C&C ranging from 
the use of IRC Channels, HTTP/HTTPS Web Traffic (Gu, Zhang & Lee, 2008) and even social media 
channels such as Twitter (Burghouwt, Spruit & Sips, 2011). Advances in C&C traffic detection have 
forced APT creators to move towards more covert channels of communication that can sometimes be 
obfuscated and encrypted. This makes it very difficult for security researchers to distinguish between 
malicious and benign network traffic. 
 
Our work focuses on a form of covert channel based on the Domain Name Service (DNS) that is 
responsible for resolving network domain names into IP addresses. Almost all Internet traffic depends 
on DNS and it is this widespread reliance on DNS that makes it a prime target for use as a conduit for 
C&C and data exfiltration communications. This paper will focus on the techniques used to embed 
malicious traffic within DNS packets, it will detail our experimental setup using a freely available tool 
for covert DNS communication called Iodine (Ekman, 2006) and will identify patterns within Iodine 
generated DNS traffic that can be used for APT detection. The remainder of this paper will be 
organised as follows. Section 2 will outline the characteristics of covert channels and will give a brief 
overview of the DNS protocol. Section 3 will describe our experimental setup using the Iodine DNS 
Tunnel tool and will outline how it hides data within DNS queries. Section 4 will outline the methods 
used to profile malicious DNS traffic generated by the Iodine DNS Tunnel software. In section 5 we 
will discuss our conclusions along with related and future work. 

2. Covert channels and DNS 
Dietrich et al. (2011) have analysed C&C traffic form Malware software known as FeederBot. This 
ananlysis found that FeederBot did not seem to use any obvious form of communication. By reverse 
engineering the malware sample the authors found that its C&C communications were hidden in what 
seemed to be regular DNS network traffic. The work carried out by Dietrich et al. and other 
researchers, is direct evidence that the creators of APTs are developing increasingly sophisticated 
covert channels over the DNS protocol to send and receive C&C communications and exfiltrate 
sensitive data. The next two sections of this paper will take a deeper look at the concepts behind 
covert channels and the DNS protocol in order to demonstrate how this can be achieved.  

2.1 Covert channels 
The idea of sending a hidden message can be dated back to around 440 BC  when Grecians 
enscribed messages on a wooden tablet, then covered it with wax upon which an innocent covering 
message was written. There are many examples of covert communication throughout history but one 
of the first contemporary discussions of covert channels in the context of monolithic software systems 
is given by Lampson (1973) who defines covert channels as “those not intended for information 
transfer at all”.  The goal is not always, like in the case of encryption, to conceal data, but to conceal 
the very fact that a communication channel exists.  
 
Simply put,  a covert channel is an effective mechanism for sending and receiving information data 
between hosts without alerting any firewalls or Intrusion Detection Systems (IDS) on the network. The 
technique derives its stealthy nature by virtue of the fact that it sends traffic through ports that are left 
open on most firewalls. In addition, the technique can bypass an IDS by appearing to be an 



innocuous network packet carrying ordinary information when in fact it is concealing its actual data. 
Covert channels can be used to:  
 

• Steal data 
• Evade detection 
• Install, spread and control malware 
• Bypass government restrictions that limit freedom of expression 
• Circumvent pay-walls to access the Internet 

 
Modern Internet communication protocols provide an almost infinite number of ways in which data can 
be hidden or embed whithin seemingly normal network traffic. This added with the widespread 
availability of highspeed bandwidth makes hijacking exsitng network protocols an entirely viable 
option when it comes to exfiltrating large amounts of sensitive data. Fisk et al. (2002) put forward 
some interesting bandwidth numbers based on a large site that had over 500 millions packets of 
traffic each day. Their research states that based on the assumption that a malicious insider could 
manipulate 1 bit per packet of data, the site would loose 26 GB of data annually. If the manipulation 
increased to 8 bits per packet the data loss would rise to 4 GB daily. These numbers are alarming, 
especially considering that modern covert channels have capacity well in excess of 8 bits per packet. 

2.2 DNS overview 
The domain name system (DNS) acts as the telephone directory of the Internet. DNS is responsible 
for resolving human readable and memorable domain names into IP addresses. According to RFC 
1035, a domain name can consist of the ASCII characters a-Z, 0-9, and dashes (Mockapetris 1987).  

2.2.1 Fully qualified domain name space 

Each ASCII character in a domain name is stored as 8 bits and is referred to as an octet. A fully 
qualified domain name (FQDN) is expressed in terms of a sequence of labels. Each label is 
represented as a one octet length field followed by that number of octets. Since every domain name 
ends with the null label of the root, a domain name is terminated by a length byte of zero. Figure 2 
shows how the domain name www.itb.ie is represented as a FQDN. 
 

 
Figure 2: Fully qualified domain name structure. 

 
The maximum size for any FQDN name is 255 octets including the length octets and the root. 
Therefore, in terms of ASCII characters, the maximum size of a FQDN is 253 octets given that two of 
the 255 octets are accounted for by the leftmost length octet and the root. 

2.2.2 Domain name resolution, a quick overview 

When a user types www.mydomain.com into a browser, the browser communicates with a domain 
name resolver to translate the given URL into an IP address. In order to make the translation, the 
resolver queries what is effectively a distributed database of DNS records stored on servers located 
around the globe. The following steps represent a simplified view of the resolution process and 
assume that a local DNS server does not have the IP address of www.mydomain.com stored in 
cache.  
 

1. The client requests an A record, which represents an IP address, from the local DNS server 
for www.mydomain.com. 



2. The local DNS server receives the requests and it forwards it to one of the 13 root DNS 
servers.  

3. The root DNS server doesn't know anything about www.mydomain.com, but will reply with a 
referral to the top level DNS servers. In this case the Global Top Level Domain (GTLD) 
responsible for the .com domain.  

4. The local DNS server requests the address resolution from the top level DNS server 
responsible for the .com domain.  

5. The top level DNS server will reply with a referral to the second level DNS server that in this 
case is the server responsible for the .com domain.  

6. The local DNS server requests the address resolution from the second level DNS server 
(.com server).  

7. Because in this case the second level DNS server is authoritative, it will reply with the IP 
address of the host. 

8. The local DNS server replies to the client with the answer.  
 

 
Figure 3: Domain name resolution. 

 

3. Experimental setup using the Iodine DNS tunnel 
DNS stands out amongst most protocols as a candidate for covert communication as it is one of the 
most relied upon components of the Internet and it is largely ignored in terms of security policies and 
firewall rules. This makes DNS a convenient medium for attackers to exploit and create covert 
communication channels for their nefarious purposes. A number of DNS tunneling tools currently exist 
that allow for covert communication over DNS, some are more flexible and stable then others. 
According to tests carried out by Aiello et al. (2012), Iodine shows linear behaviour in various network 
configurations, has a lower overhead then other DNS tunnel software and is probably the best tool for 
general purpose DNS tunnelling. 

3.1 Payload encapsulation  
Iodine, developed by Erik Ekman, allows the tunneling of IPv4 data through DNS. Iodine works by 
taking advantage of unused domain name space for payload storage that is usually encoded using 
Base32 or Base64. As can be seen in figure 4 (a) and (b), this specially encoded domain name is 
then formed into a DNS request that is sent to a controlled domain name server which in turn 
forwards it to a server running the Iodined server software. The Iodined server software then strips out 
the encoded portion of the domain name and replies back with a similarly encoded DNS response. 
Iodine splits IP packets into several DNS packets and sends them separately. IP packets are 
resembled at the endpoint (in a way similar to IP fragmentation). It is highly portable, working on 
Linux, MacOS X, FreeBSD, NetBSD, OpenBSD and Windows. According to its creator, it allows up to 
1 Mbit/s downstream bandwidth, while upstream is limited. Iodine uses NULL RDATA, which allows 
every DNS reply to contain over a kilobyte of compressed payload data. Iodine is highly configurable 



and in cases where NULL RDATA is not available, due to a particular server implementation, it can 
fall back on other DNS record types such as TXT, Service Record (SRV), MX, CNAME and A records.  
 

 
Figure 4 (a): Standard DNS A record request and response (IPV4/IPV6). 

 
Figure 4 (b): Iodine TX and RX over DNS Request and Response using NULL Record. 

 

3.2 DNS setup 
Iodine requires control over a real domain like mooo.com, and a server with a public IP address to run 
the Iodine server. A subdomain of the domain name under control, say cns.mooo.com, needs to be 
delegated to the iodined server. For the purposes of our experiments we used the services of 
FreeDNS (FreeDNS, 2014) to setup a domain and subdomain similar to that shown in table 1. 
 

Domain name Record Address 
c.mooo.com A 192.168.1.10 
cns.mooo.com NS c.mooo.com 

 
Table 1: Domain name server setup for Iodine DNS Tunnel. Note: address for A record should be the 

external IP address of server running Iodined server software. 
 
 

 
Figure 5: Typical Iodine setup that could be used for data exfiltration. The top half of the setup (from 

client to server) reflects our own experimental test bed. 
 
Our experimental setup shown in figure 5 replicates a typical scenario in which Iodine could be used 
for data exfiltration. Using this setup, it is assumed that the Iodine client software has already been 
installed on a host machine within an imaginary corporate network. Since the focus of our work is on 
covert channel detection over DNS it really doesn’t matter how our host machine became infected in 
the first instance. To make the experimental scenario more realistic we have installed a popular 
firewall called Snort between the Iodine client and server. For the purposes of our experiments we 
loaded the Snort firewall with the latest set of community rules that include specific alerts and 
signatures for malware and suspicious DNS activity. As mentioned previously we used the FreeDNS 
service to setup forwarding DNS records so that our Iodine client could communicate with the Iodine 
server. The Iodine server was run on an Ubuntu virtual machine hosted on the Okeanos project 



(Okeanos, 2011). The Okeanos Infrastructure as a Service (IaaS) project allows for up to two free 
virtual machines that are assigned external IP addresses. The rest of the infrastructure shown in 
figure 5 (staging server and monetisation) is merely included to illustrate what happens to sensitive 
data once it has been successfully exfiltrated. 

4. Profiling Iodine DNS tunnel traffic 
The experimental system outlined in section 3 was used to profile the Iodine generated traffic. This 
was achieved by running a number of experiments to generate network traffic that was captured using 
the WireShark packet analyser.  

4.1 Baseline analysis 
In order to better understand the nature of DNS traffic generated by the Iodine Tunnel software we 
first captured baseline network traffic that was comprised of normal network activities such browsing 
the web and viewing YouTube videos. Our hypothesis was that we should see a correlation between 
the frequency and amount of HTTP and DNS packets.   
 

 

Figure 6: Baseline traffic capture of 39910 network packets captured over 13 minutes with an 
average packet size of 1360 bytes. 

 
As can be seen from figure 6, our graphs x-axis represents time in seconds and the y-axis represents 
the number of packets over time on a logarithmic scale. When HTTP and DNS activity are overlaid we 
see a strong correlation between them in terms of frequency and number of packets. This stands to 
reason as DNS requests are formed when a user generates HTTP requests by browsing the web. 

4.2 Passive tunnel traffic analysis 
In our next experiment we established a connection between the Iodine client and server. As DNS is 
based on UDP, which unlike TCP/IP is a connectionless protocol, the Iodine client and server must 
continuously poll one another to maintain a connection. This means that even if the DNS tunnel is not 
actively exfiltrating sensitive data we should still see an elevated level of DNS activity from the 
frequent polling. 

 

Figure 7: Passive DNS tunnel traffic capture of 40739 network packets captured over 18 minutes with 
an average packet size of 1320 bytes. 

 



As can be seen from figure 7, even with background FTP traffic included, it is clear that there is an 
elevated level of DNS activity that for the most part does not seem to correlate with HTTP or FTP 
traffic. We do witness spikes in DNS activity when there is an associated spike in HTTP activity. 
However, the DNS activity does not drop back to normal levels once it has served the HTTP requests. 
The timespan from 200s to 600s should be cause for concern for any network security analyst. While 
there is a clear increase in background DNS traffic, it is interesting to note there is only a negligible 
difference in the average packet size of 1360 bytes in figure 6 and 1320 bytes in this experiment. 
 

4.3 Active tunnel traffic analysis (data exfiltration) 
The experiment shown in figure 8 represents a typical scenario where a sensitive document with a file 
size of 98kb is exfiltrated from the system. The file transfer protocol (FTP) was used to send a file out 
through the tunnel. While this may not be the most clandestine approach it is useful to study in terms 
of the traffic patterns it produces. 
 

 

Figure 8: Active DNS tunnel traffic capture of 40643 network packets captured over 8 minutes with an 
average packet size of 2466 bytes. 

 
As can be seen from figure 8, there is a clear indication of abnormal DNS traffic from 300s to 360s on 
the timeline. Once again we see higher then normal background DNS activity and an unmistakable 
spike in activity for the duration of the file transfer. We also see an increase in the average packet 
size over the experiment timeframe due to larger DNS packets leaving the network. 
 
If we zoom in on the file transfer over the Iodine tunnel, as shown in figure 9, we can see that the 
transfer occurs approximately 5 minutes into the traffic capture and lasts for approximately 1.5 
minutes. 
 

 

Figure 9: Detailed section showing file transfer. 
 
Even after smoothing out the traffic data to allow for any irregularities, we can still see a clear DNS 
traffic anomaly where the number of DNS packets increases and the number of HTTP packets 
decreases during the file transfer. 
 



4.4 Specific firewall rules for Iodine 
Given that our traffic analysis tests were conducted without any specific firewall rules to detect Iodine 
traffic, we decided to include some freely available rules specifically designed to look for Iodine 
signatures (Chamberland, 2009). Figure 10 shows two Snort rules written by Michel Chamberland at 
SecurityWire.com.  
 

 
Figure 10: Iodine specific Snort Rules. 

 
The two Snort alert rules listed in figure 10 make use of the content keyword that allow searching for 
specific signatures content in the packet payload. Snort uses the Boyer-Moore (Boyer & Moore, 1977) 
pattern-matching algorithm to check for an exact match to given payload signature. We applied both 
of these rules to the Snort firewall system and transferred a 98177 byte PDF file across the DNS 
tunnel using FTP. The file transfer occurred over 10.8 seconds and generated only one alert in the 
Snort log file as can be seen in figure 11. 
 

 
Figure 11: iodine generated alert in Snort log file. 

 

5. Conclusions & future work 
Our work set out to investigate the detection of DNS based covert channels. We implemented an 
experimental setup in order to capture baseline and malicious Iodine DNS tunnel traffic for 
comparison. A firewall with a basic rule set was active during all of our experiments and at no time did 
it alert or detect any malicious DNS traffic. Our results show that even when the Iodine DNS tunnel is 
not actively exfiltrating data it still creates a noticeable amount of background DNS packets as a result 
of its needing to handshake with the Iodined server in order to maintain a connection. This 
background traffic alone is enough to cause concern and should be easily identifiable by looking at 
DNS packet frequency. Our deeper analysis of active Iodine traffic shows that exfiltration of sensitive 
data over the Iodine DNS tunnel, via FTP, results in clearly distinguishable traffic patterns that should 
raise immediate concern.   
 
It is important to note that the same base line analysis techniques that we have used can provide 
covert channel developers with valuable information on the behaviour of a network and in particular 
where it might be possible to further hide malicious DNS traffic amongst other protocols.  Butler et al. 
(2011) outline a scheme to distribute malicious DNS packets amongst other network traffic using a 
poisson distribution resulting in inter-arrival times that follow an exponential distribution. Using an 
approach like this would camouflage covert traffic even further, making baseline analysis and 
anomaly detection more difficult. 
 
The Iodine software used in our work generates “new” DNS packets thereby adding to existing 
network traffic. Born (2010) outlines a system of piggybacking on legitimate traffic instead of creating 
new network packets. Born shows how it is possible to inject messages and desired recipients into 
DNS packets that sit at a broker until they can be passively delivered to the appropriate client. The 
idea of communicating covertly over DNS without creating any new network packets is appealing 

alert udp any any -> any 53 (content:"|01 00 00 01 00 00 00 00 00 01|"; offset: 
2; depth: 10; content:"|00 00 29 10 00 00 00 80 00 00 00|";  \ 
msg: "covert iodine tunnel request"; threshold: type limit, track by_src, count 
1, seconds 300; sid: 5619500; rev: 1;) 
 
alert udp any 53 -> any any (content: "|84 00 00 01 00 01 00 00 00 00|"; offset: 
2; depth: 10; content:"|00 00 0a 00 01|";  \ 
msg: "covert iodine tunnel response"; threshold: type limit, track by_src, count 
1, seconds 300; sid: 5619501; rev: 1;) 
 

[**] [1:5619501:1] covert iodine tunnel response [**] 
[Priority: 0]  
01/29-18:14:17.452827 83.212.127.160:53 -> 10.0.2.15:56166 
UDP TTL:64 TOS:0x0 ID:35070 IpLen:20 DgmLen:92 
Len: 64 
 



because existing network traffic characteristics such as number of packets transmitted and packet 
frequency would not change making baseline analysis far less effective.  
 
As an extension of the work presented in this paper we plan on further investigating more robust DNS 
covert channel detection techniques that are based on DNS packet frequency and distribution, 
average packet size and statistical analysis of packet payloads. We also plan to test a number of 
commercially available firewalls in an out-of-box configuration in order to build a recommended 
configuration model. Our ultimate goal is to develop a multifaceted detection strategy that will address 
some of the more sophisticated advances in DNS covert channels described above. 
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