
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference Papers Network Security and Digital Forensics Group

2015

Detection of DNS Based Covert Channels Detection of DNS Based Covert Channels

Stephen Sheridan
Technological University Dublin, stephen.sheridan@tudublin.ie

Anthony Keane
Institute of Technology Blanchardstown, anthony.keane@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/nsdcon

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sheridan, S., Keane, A. (2015). In Proceedings of the 14th European Conference on Cyber Warfare and
Security (ECCWS), University of Hertfordshire, Hatfield, UK.

This Conference Paper is brought to you for free and
open access by the Network Security and Digital
Forensics Group at ARROW@TU Dublin. It has been
accepted for inclusion in Conference Papers by an
authorized administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301311191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/nsdcon
https://arrow.tudublin.ie/nsd
https://arrow.tudublin.ie/nsdcon?utm_source=arrow.tudublin.ie%2Fnsdcon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fnsdcon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Detection of DNS Based Covert Channels
Mr Stephen Sheridan, Dr Anthony Keane
Institute of Technology Blanchardstown, Dublin, Ireland
stephen.sheridan@itb.ie
anthony.keane@itb.ie

Abstract: Information theft or data exfiltration, whether personal or corporate, is now a lucrative
mainstay of cybercrime activity. Recent security reports have suggested that while information, such
as credit card data is still a prime target, other data such as corporate secrets, employee files and
intellectual property are increasingly sought after on the black market. Malicious actors that are intent
on exfiltrating valuable data, usually employ some form of Advanced Persistent Threat (APT) in order
to exfiltrate large amounts of data over a long period of time with a high degree of covertness.
Botnet’s are prime examples of APTs that are usually established on targeted systems through
malware or exploit kits that leverage system vulnerabilities. Once established, Botnets rely on covert
command and control (C&C) communications with a central server, this allows a malicious actor to
keep track of compromised systems and to send out instructions for compromised systems to do their
biding. Covert channels provide an ideal mechanism for data exfiltration and the exchange of
command and control messages that are essential to a Botnets effectiveness. Our work focuses on
one particular form of covert channel that enables communication of hidden messages over normal
Domain Name Server (DNS) network traffic. Covert channels based on DNS traffic are of particular
interest, as DNS requests are an essential part of most Internet traffic and as a result are rarely
filtered or blocked by firewalls. As part of our work we have created a test bed system that uses a
covert DNS channel to exfiltrate data from a compromised host. Using this system we have carried
out network traffic analysis that uses baseline comparisons as a means to fingerprint covert DNS
activity. Even though detection of covert DNS activity is relatively straightforward, there is anecdotal
evidence to suggest that most organisations do not filter or pay enough attention to DNS traffic and
are therefore susceptible to data exfiltration attacks once a host on their network has been
compromised. Our work shows that freely available covert DNS tools have particular traffic signatures
that can be detected in order to mitigate data exfiltration and C&C traffic.

Keywords: Data exfiltration, covert channels, advanced persistent threat (APT), DNS, botnet,
command & control (C&C).

1. Introduction
The latest European Union Agency for Network and Information Security “Threat Landscape Report”
(ENISA, 2014) refers to 2014 as the year of the data breach. The scale of data breaches experienced
in 2014 ranged from the theft of personal information stored in the cloud to massive targeted attacks
on large corporations. Targeted attacks that threaten intellectual property, customer data and
sensitive government information use sophisticated attack chains, as shown in figure 1, to
compromise networks and carry out malicious activities such as data exfiltration. The creators of
targeted attacks go to great lengths to ensure that each step in the attack chain remains undetected.
However, it is the command and control (C&C) and data exfiltration phases of the attack chain that
generate the most “noise” in terms of network traffic and are therefore, of particular interest to security
researchers that wish to mitigate such threats.

Figure 1: Typical phases of a targeted attack chain

Targeted attacks that include a C&C phase are commonly referred to as Advanced Persistent Threats
(APTs). APTs are a category of attack that aggressively pursue and compromise specific targets.
APTs often use social engineering techniques such as spearfishing campaigns (Trend Micro, 2012) to
gain an entry point into the target network and then attempt to move laterally throughout the network
to discover and exfiltrate sensitive assets. C&C communication between the attacker and the
compromised host machine is crucial as it allows for:

• Confirmation of system breach and frequent beacon messages
• Information gathering about breached network and hosts machines
• Communication with malware within the compromised network
• Forwarding instructions to download second stage malware
• Data exfiltration

C&C traffic plays a pivotal role in the success of an APT. Therefore, it is in the best interests of an
attacker to mask C&C traffic in order to remain undetected. Analysis of known ATPs such as Auora,
Zeus and PoisinIvy has shown that ATP creators can use many different forms of C&C ranging from
the use of IRC Channels, HTTP/HTTPS Web Traffic (Gu, Zhang & Lee, 2008) and even social media
channels such as Twitter (Burghouwt, Spruit & Sips, 2011). Advances in C&C traffic detection have
forced APT creators to move towards more covert channels of communication that can sometimes be
obfuscated and encrypted. This makes it very difficult for security researchers to distinguish between
malicious and benign network traffic.

Our work focuses on a form of covert channel based on the Domain Name Service (DNS) that is
responsible for resolving network domain names into IP addresses. Almost all Internet traffic depends
on DNS and it is this widespread reliance on DNS that makes it a prime target for use as a conduit for
C&C and data exfiltration communications. This paper will focus on the techniques used to embed
malicious traffic within DNS packets, it will detail our experimental setup using a freely available tool
for covert DNS communication called Iodine (Ekman, 2006) and will identify patterns within Iodine
generated DNS traffic that can be used for APT detection. The remainder of this paper will be
organised as follows. Section 2 will outline the characteristics of covert channels and will give a brief
overview of the DNS protocol. Section 3 will describe our experimental setup using the Iodine DNS
Tunnel tool and will outline how it hides data within DNS queries. Section 4 will outline the methods
used to profile malicious DNS traffic generated by the Iodine DNS Tunnel software. In section 5 we
will discuss our conclusions along with related and future work.

2. Covert channels and DNS
Dietrich et al. (2011) have analysed C&C traffic form Malware software known as FeederBot. This
ananlysis found that FeederBot did not seem to use any obvious form of communication. By reverse
engineering the malware sample the authors found that its C&C communications were hidden in what
seemed to be regular DNS network traffic. The work carried out by Dietrich et al. and other
researchers, is direct evidence that the creators of APTs are developing increasingly sophisticated
covert channels over the DNS protocol to send and receive C&C communications and exfiltrate
sensitive data. The next two sections of this paper will take a deeper look at the concepts behind
covert channels and the DNS protocol in order to demonstrate how this can be achieved.

2.1 Covert channels
The idea of sending a hidden message can be dated back to around 440 BC when Grecians
enscribed messages on a wooden tablet, then covered it with wax upon which an innocent covering
message was written. There are many examples of covert communication throughout history but one
of the first contemporary discussions of covert channels in the context of monolithic software systems
is given by Lampson (1973) who defines covert channels as “those not intended for information
transfer at all”. The goal is not always, like in the case of encryption, to conceal data, but to conceal
the very fact that a communication channel exists.

Simply put, a covert channel is an effective mechanism for sending and receiving information data
between hosts without alerting any firewalls or Intrusion Detection Systems (IDS) on the network. The
technique derives its stealthy nature by virtue of the fact that it sends traffic through ports that are left
open on most firewalls. In addition, the technique can bypass an IDS by appearing to be an

innocuous network packet carrying ordinary information when in fact it is concealing its actual data.
Covert channels can be used to:

• Steal data
• Evade detection
• Install, spread and control malware
• Bypass government restrictions that limit freedom of expression
• Circumvent pay-walls to access the Internet

Modern Internet communication protocols provide an almost infinite number of ways in which data can
be hidden or embed whithin seemingly normal network traffic. This added with the widespread
availability of highspeed bandwidth makes hijacking exsitng network protocols an entirely viable
option when it comes to exfiltrating large amounts of sensitive data. Fisk et al. (2002) put forward
some interesting bandwidth numbers based on a large site that had over 500 millions packets of
traffic each day. Their research states that based on the assumption that a malicious insider could
manipulate 1 bit per packet of data, the site would loose 26 GB of data annually. If the manipulation
increased to 8 bits per packet the data loss would rise to 4 GB daily. These numbers are alarming,
especially considering that modern covert channels have capacity well in excess of 8 bits per packet.

2.2 DNS overview
The domain name system (DNS) acts as the telephone directory of the Internet. DNS is responsible
for resolving human readable and memorable domain names into IP addresses. According to RFC
1035, a domain name can consist of the ASCII characters a-Z, 0-9, and dashes (Mockapetris 1987).

2.2.1 Fully qualified domain name space

Each ASCII character in a domain name is stored as 8 bits and is referred to as an octet. A fully
qualified domain name (FQDN) is expressed in terms of a sequence of labels. Each label is
represented as a one octet length field followed by that number of octets. Since every domain name
ends with the null label of the root, a domain name is terminated by a length byte of zero. Figure 2
shows how the domain name www.itb.ie is represented as a FQDN.

Figure 2: Fully qualified domain name structure.

The maximum size for any FQDN name is 255 octets including the length octets and the root.
Therefore, in terms of ASCII characters, the maximum size of a FQDN is 253 octets given that two of
the 255 octets are accounted for by the leftmost length octet and the root.

2.2.2 Domain name resolution, a quick overview

When a user types www.mydomain.com into a browser, the browser communicates with a domain
name resolver to translate the given URL into an IP address. In order to make the translation, the
resolver queries what is effectively a distributed database of DNS records stored on servers located
around the globe. The following steps represent a simplified view of the resolution process and
assume that a local DNS server does not have the IP address of www.mydomain.com stored in
cache.

1. The client requests an A record, which represents an IP address, from the local DNS server
for www.mydomain.com.

2. The local DNS server receives the requests and it forwards it to one of the 13 root DNS
servers.

3. The root DNS server doesn't know anything about www.mydomain.com, but will reply with a
referral to the top level DNS servers. In this case the Global Top Level Domain (GTLD)
responsible for the .com domain.

4. The local DNS server requests the address resolution from the top level DNS server
responsible for the .com domain.

5. The top level DNS server will reply with a referral to the second level DNS server that in this
case is the server responsible for the .com domain.

6. The local DNS server requests the address resolution from the second level DNS server
(.com server).

7. Because in this case the second level DNS server is authoritative, it will reply with the IP
address of the host.

8. The local DNS server replies to the client with the answer.

Figure 3: Domain name resolution.

3. Experimental setup using the Iodine DNS tunnel
DNS stands out amongst most protocols as a candidate for covert communication as it is one of the
most relied upon components of the Internet and it is largely ignored in terms of security policies and
firewall rules. This makes DNS a convenient medium for attackers to exploit and create covert
communication channels for their nefarious purposes. A number of DNS tunneling tools currently exist
that allow for covert communication over DNS, some are more flexible and stable then others.
According to tests carried out by Aiello et al. (2012), Iodine shows linear behaviour in various network
configurations, has a lower overhead then other DNS tunnel software and is probably the best tool for
general purpose DNS tunnelling.

3.1 Payload encapsulation
Iodine, developed by Erik Ekman, allows the tunneling of IPv4 data through DNS. Iodine works by
taking advantage of unused domain name space for payload storage that is usually encoded using
Base32 or Base64. As can be seen in figure 4 (a) and (b), this specially encoded domain name is
then formed into a DNS request that is sent to a controlled domain name server which in turn
forwards it to a server running the Iodined server software. The Iodined server software then strips out
the encoded portion of the domain name and replies back with a similarly encoded DNS response.
Iodine splits IP packets into several DNS packets and sends them separately. IP packets are
resembled at the endpoint (in a way similar to IP fragmentation). It is highly portable, working on
Linux, MacOS X, FreeBSD, NetBSD, OpenBSD and Windows. According to its creator, it allows up to
1 Mbit/s downstream bandwidth, while upstream is limited. Iodine uses NULL RDATA, which allows
every DNS reply to contain over a kilobyte of compressed payload data. Iodine is highly configurable

and in cases where NULL RDATA is not available, due to a particular server implementation, it can
fall back on other DNS record types such as TXT, Service Record (SRV), MX, CNAME and A records.

Figure 4 (a): Standard DNS A record request and response (IPV4/IPV6).

Figure 4 (b): Iodine TX and RX over DNS Request and Response using NULL Record.

3.2 DNS setup
Iodine requires control over a real domain like mooo.com, and a server with a public IP address to run
the Iodine server. A subdomain of the domain name under control, say cns.mooo.com, needs to be
delegated to the iodined server. For the purposes of our experiments we used the services of
FreeDNS (FreeDNS, 2014) to setup a domain and subdomain similar to that shown in table 1.

Domain name Record Address
c.mooo.com A 192.168.1.10
cns.mooo.com NS c.mooo.com

Table 1: Domain name server setup for Iodine DNS Tunnel. Note: address for A record should be the

external IP address of server running Iodined server software.

Figure 5: Typical Iodine setup that could be used for data exfiltration. The top half of the setup (from

client to server) reflects our own experimental test bed.

Our experimental setup shown in figure 5 replicates a typical scenario in which Iodine could be used
for data exfiltration. Using this setup, it is assumed that the Iodine client software has already been
installed on a host machine within an imaginary corporate network. Since the focus of our work is on
covert channel detection over DNS it really doesn’t matter how our host machine became infected in
the first instance. To make the experimental scenario more realistic we have installed a popular
firewall called Snort between the Iodine client and server. For the purposes of our experiments we
loaded the Snort firewall with the latest set of community rules that include specific alerts and
signatures for malware and suspicious DNS activity. As mentioned previously we used the FreeDNS
service to setup forwarding DNS records so that our Iodine client could communicate with the Iodine
server. The Iodine server was run on an Ubuntu virtual machine hosted on the Okeanos project

(Okeanos, 2011). The Okeanos Infrastructure as a Service (IaaS) project allows for up to two free
virtual machines that are assigned external IP addresses. The rest of the infrastructure shown in
figure 5 (staging server and monetisation) is merely included to illustrate what happens to sensitive
data once it has been successfully exfiltrated.

4. Profiling Iodine DNS tunnel traffic
The experimental system outlined in section 3 was used to profile the Iodine generated traffic. This
was achieved by running a number of experiments to generate network traffic that was captured using
the WireShark packet analyser.

4.1 Baseline analysis
In order to better understand the nature of DNS traffic generated by the Iodine Tunnel software we
first captured baseline network traffic that was comprised of normal network activities such browsing
the web and viewing YouTube videos. Our hypothesis was that we should see a correlation between
the frequency and amount of HTTP and DNS packets.

Figure 6: Baseline traffic capture of 39910 network packets captured over 13 minutes with an
average packet size of 1360 bytes.

As can be seen from figure 6, our graphs x-axis represents time in seconds and the y-axis represents
the number of packets over time on a logarithmic scale. When HTTP and DNS activity are overlaid we
see a strong correlation between them in terms of frequency and number of packets. This stands to
reason as DNS requests are formed when a user generates HTTP requests by browsing the web.

4.2 Passive tunnel traffic analysis
In our next experiment we established a connection between the Iodine client and server. As DNS is
based on UDP, which unlike TCP/IP is a connectionless protocol, the Iodine client and server must
continuously poll one another to maintain a connection. This means that even if the DNS tunnel is not
actively exfiltrating sensitive data we should still see an elevated level of DNS activity from the
frequent polling.

Figure 7: Passive DNS tunnel traffic capture of 40739 network packets captured over 18 minutes with
an average packet size of 1320 bytes.

As can be seen from figure 7, even with background FTP traffic included, it is clear that there is an
elevated level of DNS activity that for the most part does not seem to correlate with HTTP or FTP
traffic. We do witness spikes in DNS activity when there is an associated spike in HTTP activity.
However, the DNS activity does not drop back to normal levels once it has served the HTTP requests.
The timespan from 200s to 600s should be cause for concern for any network security analyst. While
there is a clear increase in background DNS traffic, it is interesting to note there is only a negligible
difference in the average packet size of 1360 bytes in figure 6 and 1320 bytes in this experiment.

4.3 Active tunnel traffic analysis (data exfiltration)
The experiment shown in figure 8 represents a typical scenario where a sensitive document with a file
size of 98kb is exfiltrated from the system. The file transfer protocol (FTP) was used to send a file out
through the tunnel. While this may not be the most clandestine approach it is useful to study in terms
of the traffic patterns it produces.

Figure 8: Active DNS tunnel traffic capture of 40643 network packets captured over 8 minutes with an
average packet size of 2466 bytes.

As can be seen from figure 8, there is a clear indication of abnormal DNS traffic from 300s to 360s on
the timeline. Once again we see higher then normal background DNS activity and an unmistakable
spike in activity for the duration of the file transfer. We also see an increase in the average packet
size over the experiment timeframe due to larger DNS packets leaving the network.

If we zoom in on the file transfer over the Iodine tunnel, as shown in figure 9, we can see that the
transfer occurs approximately 5 minutes into the traffic capture and lasts for approximately 1.5
minutes.

Figure 9: Detailed section showing file transfer.

Even after smoothing out the traffic data to allow for any irregularities, we can still see a clear DNS
traffic anomaly where the number of DNS packets increases and the number of HTTP packets
decreases during the file transfer.

4.4 Specific firewall rules for Iodine
Given that our traffic analysis tests were conducted without any specific firewall rules to detect Iodine
traffic, we decided to include some freely available rules specifically designed to look for Iodine
signatures (Chamberland, 2009). Figure 10 shows two Snort rules written by Michel Chamberland at
SecurityWire.com.

Figure 10: Iodine specific Snort Rules.

The two Snort alert rules listed in figure 10 make use of the content keyword that allow searching for
specific signatures content in the packet payload. Snort uses the Boyer-Moore (Boyer & Moore, 1977)
pattern-matching algorithm to check for an exact match to given payload signature. We applied both
of these rules to the Snort firewall system and transferred a 98177 byte PDF file across the DNS
tunnel using FTP. The file transfer occurred over 10.8 seconds and generated only one alert in the
Snort log file as can be seen in figure 11.

Figure 11: iodine generated alert in Snort log file.

5. Conclusions & future work
Our work set out to investigate the detection of DNS based covert channels. We implemented an
experimental setup in order to capture baseline and malicious Iodine DNS tunnel traffic for
comparison. A firewall with a basic rule set was active during all of our experiments and at no time did
it alert or detect any malicious DNS traffic. Our results show that even when the Iodine DNS tunnel is
not actively exfiltrating data it still creates a noticeable amount of background DNS packets as a result
of its needing to handshake with the Iodined server in order to maintain a connection. This
background traffic alone is enough to cause concern and should be easily identifiable by looking at
DNS packet frequency. Our deeper analysis of active Iodine traffic shows that exfiltration of sensitive
data over the Iodine DNS tunnel, via FTP, results in clearly distinguishable traffic patterns that should
raise immediate concern.

It is important to note that the same base line analysis techniques that we have used can provide
covert channel developers with valuable information on the behaviour of a network and in particular
where it might be possible to further hide malicious DNS traffic amongst other protocols. Butler et al.
(2011) outline a scheme to distribute malicious DNS packets amongst other network traffic using a
poisson distribution resulting in inter-arrival times that follow an exponential distribution. Using an
approach like this would camouflage covert traffic even further, making baseline analysis and
anomaly detection more difficult.

The Iodine software used in our work generates “new” DNS packets thereby adding to existing
network traffic. Born (2010) outlines a system of piggybacking on legitimate traffic instead of creating
new network packets. Born shows how it is possible to inject messages and desired recipients into
DNS packets that sit at a broker until they can be passively delivered to the appropriate client. The
idea of communicating covertly over DNS without creating any new network packets is appealing

alert udp any any -> any 53 (content:"|01 00 00 01 00 00 00 00 00 01|"; offset:
2; depth: 10; content:"|00 00 29 10 00 00 00 80 00 00 00|"; \
msg: "covert iodine tunnel request"; threshold: type limit, track by_src, count
1, seconds 300; sid: 5619500; rev: 1;)

alert udp any 53 -> any any (content: "|84 00 00 01 00 01 00 00 00 00|"; offset:
2; depth: 10; content:"|00 00 0a 00 01|"; \
msg: "covert iodine tunnel response"; threshold: type limit, track by_src, count
1, seconds 300; sid: 5619501; rev: 1;)

[**] [1:5619501:1] covert iodine tunnel response [**]
[Priority: 0]
01/29-18:14:17.452827 83.212.127.160:53 -> 10.0.2.15:56166
UDP TTL:64 TOS:0x0 ID:35070 IpLen:20 DgmLen:92
Len: 64

because existing network traffic characteristics such as number of packets transmitted and packet
frequency would not change making baseline analysis far less effective.

As an extension of the work presented in this paper we plan on further investigating more robust DNS
covert channel detection techniques that are based on DNS packet frequency and distribution,
average packet size and statistical analysis of packet payloads. We also plan to test a number of
commercially available firewalls in an out-of-box configuration in order to build a recommended
configuration model. Our ultimate goal is to develop a multifaceted detection strategy that will address
some of the more sophisticated advances in DNS covert channels described above.

References

Aiello, M., Merlo, A., & Papaleo, G. (2012) Performance assessment and analysis of DNS tunnelling
tools. Logic Journal of IGPL, jzr029.
Burghouwt, P., Spruit, M., Sips, H. (2011) Towards detection of botnet communication through social
media by monitoring user activity. Information Systems Security, pp. 131–143. Springer
Butler, W. Lampson. (1973) A Note on the Confinement Problem. In communications of the ACM, 16,
10, pp. 613-615.
Dietrich, C.J., Rossow, C., Freiling, F.C., Bos, H., van Steen, M., Pohlmann, N. (2011) "On
Botnets That Use DNS for Command and Control," Seventh European Conference on Computer
Network Defense, pp.9,16, 6-7
E. Ekman. (2006) Iodine: IP-over-DNS, IPv4 over DNS tunnel. Available at: http://code.kryo.se/iodine/
[Accessed 25th September 2014].
European Union Agency for Network and Information Security (2014) ‘ENISA Threat Landscape
2014'. Available at: https://www.enisa.europa.eu/activities/risk-management/evolving-threat-
environment/enisa-threat-landscape/enisa-threat-landscape-2014 [Accessed 10th January 2015].
Free DNS Hosting, Dynamic DNS Hosting, Static DNS Hosting, subdomain and domain hosting.
(2001) Available at: http://freedns.afraid.org/ [Accessed October 2014]
G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. (2002) "Eliminating Steganography in Internet Traffic
with Active Wardens", in Proc. Information Hiding, pp.18-35.
Gu, G., Zhang, J., & Lee, W. (2008) BotSniffer: Detecting Botnet Command and Control Channels in
Network Traffic. Proceedings of the 15th Annual Network and Distributed System Security
Symposium.
K. Born. (2011) PSUDP: A Passive Approach to Network-Wide Covert Communication. Black Hat
USA.
Mockapetris. P. (1987) Domain names - concepts and facilities. RFC 1034. Available at:
http://www.ietf.org/rfc/rfc1034.txt [Accessed 14th of January 2015]
Okeanos, Infrastructure as a service “IaaS”. (2011) Available at: https://okeanos.grnet.gr/home/
[Accessed January 2015]
Patrick Butler, Kui Xu, and Danfeng Daphne Yao. (2011). Quantitatively analyzing stealthy
communication channels. In Proceedings of the 9th international conference on Applied cryptography
and network security (ACNS'11), Javier Lopez and Gene Tsudik (Eds.). Springer-Verlag, Berlin,
Heidelberg, 238-254.
R.S. Boyer, J. Strother Moore. (1977) A Fast String Searching Algorithm. Communications of the
Association for Computing Machinery, 20(10), 1977, pp. 762-772.
Trend Micro (2011) ‘Spear-Phishing Email: Most Favored APT Attack Bait'. Available at:
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-
phishing-email-most-favored-apt-attack-bait.pdf [Accessed 2nd December 2014].

	Detection of DNS Based Covert Channels
	Recommended Citation

	Detection of DNS Based Covert Channels ECCWS 2015

