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Abstract 

 
The Context Aware Smart Classroom (CASC) is a classroom that responds to lecturers and student 
groups based on preset policies and the lecture timetables. CASC has been enhanced in two ways: 
initially to support the real-time software configuration of computers as required by specific 
laboratory activities; secondly to improve the decision making using knowledge engineering 
techniques. This paper outlines the design, implementation and evaluation of an enhanced system, 
CASC for Software Configuration (CASC–SC). Context aware environments respond in a pseudo-
intelligent manner depending on the identity of occupants, particular location, desired activity and 
specific time. With the pervasive nature of personal mobile devices it is now possible to 
investigate development of low-cost location and identification systems that support development 
of a smart classroom 
 
 

Keywords: Smart Classroom, Context, Context-Aware, Knowledge Engineering, Inference Engine 
 
 
1 Introduction 
 
The diversity of mature mobile personal electronic communication devices from mobile phones and 
PDAs to laptops presents the opportunity to develop truly Ubiquitous Computing [1] environments 
that can respond intelligently to occupants. In particular the use of such personal devices, supported by 
existing IT infrastructures, provides the possibility of developing cost effective Context Aware 
systems [2] for use in academia to enhance student learning experiences. 
 
The Context Aware Smart Classroom to support real-time Software Configuration, CASC-SC, is 
designed to enable classrooms to make software configuration decisions for classroom PCs. Decisions 
are based on specific situational information such as location, identity of students and lecturers within 
the space, classroom timetables, and preset rules and policies. CASC–SC uses a rule based expert 
system to manage the reaction to changes in the environment according to rules in the system. The 
original smart classroom CASC [3] was developed to provide, real-time, context aware decisions, 
based on: information collected from environment sensors; policies; and rules of the smart classroom, 
in order to disseminate lecture material over WLAN, LAN or email during a class period. 
 
CASC–SC is an enhanced version of CASC [3] and is focussed on in this work. CASC–SC provides 
additional functionality to support software configuration of computer rooms to ensure that only 
specific software is available during a class session as specified by preset policies. An additional 
enhancement provided by CASC-SC is the use of a Knowledge Engineering technique, in the form of 
an expert system based inference engine, to make appropriate decisions. The original version of CASC 
used nested if-then-else structures to parse the original rule set and policies. The inclusion of an 
inference engine will permit more complex rules to be used with the context data collected by the 
system. 
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2. Context Aware Smart Classroom 
 
2.1 Context-aware 
“Context-aware computing is a mobile computing paradigm in which applications can discover and 
take advantage of contextual information (such as user location, time of day, nearby people and 
devices and user activity)” [4]. This concept has been around for over a decade and it is only the recent 
availability of suitable portable computing and wireless network resources that make it possible to 
implement such systems. 
 
The term context is used to describe real world situations, and everything is said to happen in a certain 
context. This makes it difficult to define context in a precise manner for many different situations. In 
computing the term “context-aware” was introduced in [5] and was applied to location information 
that could enable software to adapt according to its location of use, the identities of nearby people and 
objects, and changes to those objects over time 
 
2.2 Context 
Location is an essential element in defining context but it is by no means the only aspect that needs to 
be considered. Context in computing terms involves a number of different aspects. In [6] a definition 
for context with 3 elements is presented: 
 

1. Computing context, made up of nearby computing resources, communications and 
communications bandwidth. 

2. User context, such as the user’s profile, location, people nearby and even the social situation. 
3. Physical context, such as lighting noise levels, traffic conditions and temperature. 

 
To more completely define context for computing, time was proposed as a fourth element in [4]: 

4. Time context, where user and physical contexts can be logged to provide a context history that 
can be useful in certain applications.  

 
These four particular aspects provide sufficient definition of context for the design and development of 
the context aware smart classroom.  
 
Awareness of the context of the environment and the ability to react to changing context permits the 
development of pseudo intelligent or smart environments that can make autonomous decisions without 
the need to refer to users. 
 
2.3 Smart Environments 
 
Smart environments are an extension of the ubiquitous computing paradigm. One of the core concepts 
in ubiquitous computing is the ability of technology to disappear and become invisible to users [7, 8]. 
In the ubiquitous computing paradigm, Weiser [1] states, if a computer “knows merely what room it is 
in, it can adapt its behaviour in significant ways without requiring even a hint of artificial 
intelligence”. While this is certainly the case, the addition of artificial intelligence techniques extends 
the potential range of behaviour and supports independent reaction. 
 
Smart environments display a degree of autonomy, can adapt to changing situations and can 
communicate with users [9]. The provision of intelligent automation enhances ubiquitous computing 
environments and provides the opportunity for additional features such as detection of anomalous 
behaviour. Devices can easily be controlled using existing communications infrastructures based on 
sensor information collected and in particular predictive decision making can be included in the 
capabilities of the smart environment [10]. These capabilities allow an environment to exhibit pseudo-
intelligent behaviour and so be considered as a smart environment. 
 
 



2.4 Smart Classrooms 
 
The development of “applications are of course the whole point of ubiquitous computing” [11] 
similarly in developing smart environments an experimental methodology is used as identified in [12]. 
This approach has lead to the development of a number of smart classrooms such as classroom 2000 
[13] and eClass [14, 15] that were intended to reduce the workload of students. These systems 
automatically capture the lecture and make the material available on the web and this permits students 
to become more actively involved in the learning process during the class. The classroom 2000 and 
eClass research has targeted the capture and delivery of lectures using cameras and audio recording 
and supporting software infrastructure [12] to prepare notes for dissemination via the web.  
 
CASC [3] was developed to disseminate lecture material used during a class period to students who 
had opted to participate. As part of the registration process for CASC, students provided a set of 
preferences for modes of receiving material such as Bluetooth, WLAN, or email etc. Details of 
personal Bluetooth enabled devices were also required as these were required by the system for 
location identification.  
 
A key limitation of CASC was the use of nested if-then-else structures to make decisions. A more 
complex decision making approach using knowledge engineering was identified as a requirement for 
developing a campus wide system that could support more complex rule sets. 
 
2.5 Knowledge Engineering 
 
Knowledge engineering is the discipline that involves gathering and integrating knowledge into 
computer systems in order to solve complex problems normally requiring a high level of human 
expertise [16]. It is used in many computer science domains including expert systems which are a 
branch of Artificial Intelligence (AI) [17] that attempt to produce a solution to the level of a human 
expert in a specific problem domain by using the specialized knowledge that a human expert 
possesses. Knowledge is represented in two parts, facts and rules. Facts are data and the rules 
determine what the facts mean, e.g. consider a doctor using an expert system to choose the correct 
diagnosis based on a number of symptoms. Based on the facts that a patient has presented with a runny 
nose and a headache but no fever, an appropriate rule in the system might determine that the patient 
has a cold. 
 
Expert systems attempt to reproduce the performance of human experts for a specific domain by 
creating a knowledge base of inference rules for that domain using some knowledge representation 
formalism and populating this knowledge base with information gathered from domain experts. Each 
inference rule is entered separately and an inference engine is used to infer information or take action 
based on the interaction of facts and the inference rules in the knowledge base.  
 
2.6 Expert Systems 
 
Expert systems are implemented using rule based languages rather than conventional procedural 
programming. In rule-based languages programs are composed by a set of inference rules. Each 
inference rule is composed of two parts, respectively called left hand side (lhs) and right hand side 
(rhs). The program executes on the content of a specialized memory, called working memory. The 
working memory always contains a collection of records. The effect of a computation is the successive 
application of the inference rules in the program to the content of the working memory. The effect of 
applying an inference rule to the working memory is either the removal of a record or the introduction 
of a new record. The rhs of the inference rule contains the action used to modify the contents of the 
working memory. The lhs of each inference rule represents the conditions that have to be met for the 
rule to be applicable. Examples of rule based languages include CLIPS, Prolog and Jess (Java Expert 
System Shell). 
 



2.6.1 The Rete algorithm 
 
Expert systems with even moderately sized knowledge bases would perform too slowly if each rule 
had to be checked against known facts. The Rete algorithm [18] provides a more efficient 
implementation for an expert system . A Rete-based expert system builds a network of nodes, where 
each node (except the root) corresponds to a pattern occurring in the left-hand-side (the condition part) 
of a rule. The path from the root node to a leaf node defines a complete left-hand-side rule. Each node 
has a memory of facts which satisfy that pattern. As new facts are asserted or modified, they propagate 
along the network, causing nodes to be annotated when that fact matches the pattern. When a fact or 
combination of facts causes all of the patterns for a given rule to be satisfied, a leaf node is reached 
and the corresponding rule is triggered.  
 
The Rete algorithm is designed to sacrifice memory for increased speed. In most cases, the speed 
increase over naïve implementations is several orders of magnitude (because Rete performance is 
theoretically independent of the number of rules in the system). In very large expert systems, however, 
the original Rete algorithm tends to run into memory consumption problems. Rete has become the 
basis for many popular expert system shells, including CLIPS and Jess. 
 
2.6.2 Jess Rules Engine 
 
Jess (Java Expert System Shell) [19] is a rules engine and scripting environment written in the Java 
programming language. The Jess language is derived from CLIPS in its syntax and uses the Rete 
algorithm for its pattern matching algorithm which makes Jess much faster than a simple set of 
cascading if-the statements adopted in conventional programming languages [19]. 
 
A Jess rule is something like an if-then-else statement in a procedural language, but it is not used 
in a procedural way. While if-then-else statements are executed at a specific time and in a specific 
order, according to how the programmer writes them, Jess rules are executed whenever their if parts 
(their LHSs) are satisfied, given only that the rule engine is running. It’s architecture can be many 
orders of magnitude faster than an equivalent set of traditional if-then-else statements [19]. 
 
Jess provides several constructs to enable the construction of an expert system. Users can add their 
own functions to the language using native Jess code which makes Jess a powerful rule language 
facilitating users to execute their own Java classes in the Jess environment. The fact that Jess is written 
in Java allows its simple integration into Java applications.  
 
3. CASC-SC System Design 
 
Context Aware Smart Classroom for real-time Software configuration, CASC-SC, has been designed 
to enable the automatic software configuration of computers in a specific location for a particular class 
or laboratory session based on context data and a timetable schedule. In particular it is designed to 
ensure that only the programs required for the session are accessible to students. Preset policies 
determine the software requirements for a particular session. An inference engine, with appropriate 
rules, is used to ensure that the computers are configured in time for each session. The system is also 
designed to recognize different context events that occur, for example if a lecturer switches a session 
to a room other than that assigned in the timetable schedule, the system detects this (based on the 
location information for the class members) and the inference engine will automatically reconfigure 
the software for the PCs in the new room for that session. To help create a more efficient and secure 
environment the system will deny users access to PCs in a classroom if they are not scheduled to be in 
that classroom. Also, if a user tries to log into a PC and the system has not detected that the student is 
located within the room then the system will reject the login request as a security precaution. 
 
 
 



3.1 CASC-SC Framework  
 
CASC-SC is an enhancement of the CASC [3] prototype that disseminated material from a lecture to 
students. The framework architecture of CASC-SC is shown below in Figure 1. It is implemented as a 
client-server architecture to support distributed operation across a campus environment. 
 
A presentation session is responsible for managing material shown during the class period. The smart 
classroom manager manages the adaptive behaviour and uses the inference engine to apply the rules 
for the system. Policies, set a priori, are retrieved from a policy manager database. Lecturers and 
students set policies related to their courses and specific personal devices that they will be using in the 
space. The policy manager identifies the appropriate activity for a classroom based on the timetable 
and identifies that the correct lecturer and students are present prior to commencing the session. The 
lecturer can set the note dissemination policy to determine the conditions required for students to 
receive different material developed in the session, such as to restrict dissemination of specific 
material to students present in the session. The context manager collects real-time data from 
environment sensors and a Bluetooth monitoring daemon running on the local client computer 
identifies individuals and communicates with their devices. 
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Figure 1: CASC-SC Framework 
 
Using the design classifications identified by Baldauf et al. [2], the architecture of CASC-SC is a 
Context Server, deployed in a client-server model that implements a Logic Based Context Model. The 
context model is implemented using a Jess based inference engine based on facts and data from the 
database. 
 
3.2 Inference Engine 
The inference engine is an enhancement to the original CASC [3] prototype. A rules engine based on 
the Rete pattern matching algorithm [18] was designed to use information updated in database tables 
and make decisions based on the current system context and preset software configuration policies. 
The additional rules implemented for the prototype are: 
 

• What software should be configured on the client PCs for a particular room based on 
those present in the room and the timetable schedule? 

• Who should be allowed access to a classroom PC? 
 
CASC-SC has been developed to support the automated software configuration of client PCs in 
individual smart rooms to suit the needs of the students and lecturer present within their environments 
and the timetable schedule. For instance if a programming lab is scheduled for a class the space should 
be able to configure itself to launch the appropriate software required for that lab, on the other hand if 
a lab is running a computer based exam the system should allow the lecturer to, for example, 
implement a policy to restrict access to the internet..   



 
3.3 Program Manager 
The program manager is a client that resides on a local PC in the smart classroom that is responsible 
for implementing a software configuration policy for the PCs in that room. This component denies 
users access to certain programs based on the classroom policy which is assigned by the decision 
server and stored in a central database. It also listens for login requests from users. Upon receipt of a 
login request it contacts the decision server to determine if the user is allowed access to the PC or not.  
 
 
4  System Implementation 
 
CASC-SC is a multi-threaded client-server architecture with a central server that manages the database 
tables and implements a Jess based rules engine to provide rule based decision-making functionality. 
Java was used as the core programming language for both client and server implementations with 
MySQL chosen as the database. The program scanner client machine and the decision server were 
both implemented on a Windows platform though any Linux operating system could equally be used. 
However the classroom scanner machine had to be Linux as CASC-SC uses a Linux API called BlueZ 
to manage the Bluetooth connections. 
 
A component diagram showing the key components of CASC-SC is shown in Figure 2 below and the 
system was deployed as depicted in Figure 3. 
 

 
Figure 2: CASC-SC Component Diagram 

 
4.1 Decision Server 
 
The core and central server of the CASC-SC system is the Decision Server that provides the adaptive 
behaviour based on a set of system rules. It collects and updates the appropriate database tables with 
real-time context data from the classroom scanner component. It listens for login requests for users 
from the program scanner component. It uses the Jess rules engine to make decisions on whether a 
user is granted access to a PC in a particular classroom; and on the appropriate software configuration 
for user PCs in that classroom. 



 
 

 
Figure 3: CASC-SC Deployment 

 
4.2 Classroom Scanner 
 
The classroom scanner component is a client program that resides on the Classroom Client PC in a 
smart classroom. It is responsible for supplying the decision server with the identities of the 
individuals in the space. This is implemented by scanning the space for Bluetooth devices and sending 
the MAC address data for any device found, as well as the room identity, to the decision server over a 
LAN connection.  
 
 

 
 

Figure 4. Room Location in the LDAP Server 
 
4.4 Software Configuration of a Classroom PC 
 
Each Classroom PC runs a local scanner client program which is responsible for monitoring user 
requests and implementing the policies on the local machine.  
 



When the classroom PC is booted an application is started that first retrieves its room location from an 
LDAP server as shown in Figure 4. After the room location is retrieved the application calls the 
location verifier to process a login request with the decision server. Next the application 
“impersonates” a user with higher credentials on the PC and retrieves three policy lists from the 
database – the desktop list, the start-up list and the blocked list. It then writes the desktop shortcuts, as 
in Figure 4, from the desktop list as the impersonated user and launches the programs from the start up 
list. The application then retrieves the blocked list from the database and checks which processes are 
in the queue on the operating system. If a program from the blocked list is found it, the program 
scanner will use a system call to terminate the disallowed process. This process is then continued in a 
constant loop. 
 
5. Evaluation 
 
The system was evaluated over a 4 week period with two lecturer roles and several simulated student 
roles in order to determine the usability of the system. From this deployment, the system was 
evaluated from a technical perspective and recommendations developed for future enhancements. It 
was commented that the system removed tedious activities at the start of practical sessions and 
improved efficiency. It was also noted that it could potentially provide a management layer for the 
classroom that would abstract the lecturer from the technology.  
 
5.1 Deployment  
 
The CASC-SC system uses commonly available personal mobile devices supported by pervasive 
technologies such as Bluetooth, WLAN and LAN that make system deployment relatively simple and 
cheap to deploy in a real academic environment. The system is a client-server architecture which 
makes it easy to set up many smart rooms by adding the CASC-SC client with a Bluetooth dongle to 
existing theatre or lecture facilities. The CASC-SC system effectively manages the software 
configuration of the PCs within the smart classroom.  
 
The rules engine, Jess, used in this system uses the Rete algorithm to process rules and is thus much 
faster than a simple set of cascading if-then-else statements adopted in conventional programming 
languages [20] and the original CASC implementation [3]. 
 
5.2 System Limitations  
 
The Bluetooth sensor occasionally scanned extra devices that were not inside the room. This problem 
depended on the actual positioning of the Bluetooth monitoring sensor. If it was positioned near the 
smart classroom door Bluetooth devices outside the room could be scanned. In this case the location 
database would be updated with incorrect data indicating that a user was inside the smart space. 
However, this problem was alleviated by placing the sensor at an external wall, away from the door. 
 
Another drawback when relying on Bluetooth technology to provide context data is that a user might 
not have their Bluetooth devices switched on resulting in the user not being recognised within the 
space. A better solution would be to use RFID as a means of identification. RFID tags respond much 
faster than Bluetooth devices and they can be integrated into a staff or student card. 
 
Performance issues, in terms of system response time, were identified when using Bluetooth as a 
means of identifying people in the space. Testing showed that the Bluetooth Device Discovery 
Protocol requires 5 to 8 seconds to identify a device within the space.  
 
A potential bottleneck in the system is the number of facts in the rules engine working memory that 
might have to be evaluated against the rules in the rules engine rules base. The solution employed in 
this implementation is to only load into the rules engine working memory with the timetable 
information for one hour at a time. In addition, as outlined in [19], the performance of a Rete-based 



system depends not so much on the number of rules and facts but on the number of partial matches 
generated by the rules. 
 
It might be argued that storing a person’s current location in a database is a breach of his or her 
privacy rights. From a regulatory perspective users are required to opt-in, which meets EU 
requirements [21]. However in this implementation to provide security, the data is encrypted and only 
the decision server can decrypt it. In addition, the decision server generates a new random encryption 
key each time it runs to maintain security. 
 
 
6. Conclusion 
 
CASC-SC has successfully demonstrated that it provides enhanced functionality over the previous 
prototype smart classroom, CASC [3]. The purpose of developing both CASC and CASC-SC system 
has been to leverage existing technologies such as the personal devices of students and lecturers to 
enhance the students experience in the classroom. The smart classroom manager, in collaboration with 
the inference engine, was designed to automatically adapt to the behaviour of the room, based on the 
context, user policies and the core rules of the system. Bluetooth provided an acceptable solution to 
identifying users within the room although it occasionally identified users outside the room. The time 
for Bluetooth to identify each user raises concerns about the potential scalability of this identification 
technique. An alternative technique such as RFID tags in the student cards would probably improve 
performance and avoid mistaken identification. However this approach would require an RFID reader 
to be fitted at the doors of all smart classrooms and thus increase the cost and complexity of 
deployment. The CASC-SC system operated as an effective demonstration of the use of context 
awareness as a driver for creating a low-cost smart environment that can be developed using existing 
infrastructure and personal devices.  
 
6.1 Future Work 
 
With the inclusion of the inference engine, CASC-SC can be used to interpret more complex scenarios 
defined as additional rules. Such additional complexity will permit CASC-SC to be deployed as a 
campus wide solution and the basis of a Smart Campus service. Technical enhancements will be added 
to permit lecturers to set the software policies for each session or to use default session policies based 
on room capabilities. Location and latency issues related to Bluetooth will be addressed by using 
RFID as a means of identification of users. The distributed components of the system exchange data 
using low level communication protocols which limits the systems expandability capabilities. More 
study will be committed to using an XML based messaging service to support multiple categories of 
contextual data to be exchanged throughout the system. User acceptance and involvement with CASC-
SC requires assessment over a longer period of time to establish the willingness of all stakeholders to 
engage with the system. A longitudinal research approach will be undertaken that will gather 
qualitative and quantitative research material through interviews and questionnaires.  
 
 
 
References 
 
[1] M. Weiser, "The computer for the 21st century," Scientific American Vol. 265, No. 3, Sept. 

1991, pp94-104, (Reprinted in Communications of ACM July 1993), vol. 3, pp. 3-11. 
[2] M. Baldauf, S. Dustdar, and F. Rosenberg, "A Survey on Context-Aware Systems," 

Internation Journal of Ad Hoc and Ubiquitous Computing, vol. 2, pp. 263 - 277, 2007. 
[3] C. O'Driscoll, M. Mohan, F. Mtenzi, and B. Wu, "Deploying a Context Aware Smart 

Classroom," in International Technology, Education and Development, InTED '08, Valencia, 
Spain, 2008. 



[4] G. Chen and D. Kotz, " A survey of Context-Aware Mobile Computing Research," Dartmouth 
College Computer Science TR2000-381, 2000. 

[5] B. N. Schilit and M. M. Theimer, "Disseminating active map information to mobile hosts," 
Network, IEEE, vol. 8, p. 22, 1994. 

[6] B. Schilit, N. Adams, and R. Want, "Context-aware computing applications," in Workshop on 
Mobile Computing Systems and Applications, Proceedings., 1994, p. 85. 

[7] N. Streitz and P. Nixon, "Introduction to The Disappearing Computer," Communications of 
the ACM, vol. 48, pp. 32-35, 2005. 

[8] D. M. Russell, N. A. Streitz, and T. Winograd, "Building disappearing computers," 
Communications of the ACM, vol. 48, pp. 42-48, 2005. 

[9] S. K. Das, D. J. Cook, A. Battacharya, I. Heierman E. O., and A. T.-Y. L. Tze-Yun Lin, "The 
role of prediction algorithms in the MavHome smart home architecture," Wireless 
Communications, IEEE, vol. 9, p. 77, 2002. 

[10] S. K. Das and D. J. Cook, "Designing and modeling smart environments," in World of 
Wireless, Mobile and Multimedia Networks. WoWMoM  2006, p. 5 pp. 

[11] M. Weiser, "Some computer science issues in ubiquitous computing," Communications of the 
ACM, vol. 36, pp. 75-84, 1993. 

[12] G. D. Abowd, "Software Engineering Issues for Ubiquitous Computing," in Proceedings of 
the 21st International Conference on Software Engineering (ICSE '99), Los Angeles, CA, 
1999. 

[13] G. D. Abowd, "Classroom 2000: An Experiment with the Instrumentation of a Living 
educational Environment " IBM Systems Journal, vol. 38, pp. 508-530, 1999. 

[14] J. Brotherton and G. D. Abowd, "eClass. Sixth Chapter  " in The Digital University: Building 
a Learning Community, R. Hazemi, S. Hailes, and S. Wilbur, Eds.: Springer Verlag, 2002, p. 
252. 

[15] J. A. Brotherton and G. D. Abowd, "Lessons learned from eClass: Assessing automated 
capture and access in the classroom," ACM Transactions Computer-Human Interaction., vol. 
11, pp. 121-155, 2004. 

[16] E. Feigenbaum, McCorduck, P., Forgy, C.L., The fifth generation (1st ed.),. Reading, MA. 
Addison Wesley, ISBN 9780201115192, OCLC 9324691, 1983. 

[17] J. Giarratano, Riley, G., Expert Systems: Principles and Programming, Thomson Press, 2004. 
[18] C. L. Forgy, On the efficient implementation of production systems. Ph.D. Thesis, Carnegie-

Mellon University, 1979. 
[19] S. J. Sandina Labratories. (1997, the Rule Engine for the Java Platform. Retrieved April 09, 

2009, from Jess, the Rule Engine for the Java Platform: 
http://www.jessrules.com/jess/index.shtml. 

[20] S. Yang, Zhang, J., Chen, O., A Jess enabled context elicitation system for providing context-
aware Web services, Expert Systems with Applications, Volume 34, Issue4. 2008. 

[21] "Data Protection Directive (95/46/ec) ", 1995. 
 
 

http://www.jessrules.com/jess/index.shtml

	Context Aware Smart Classroom for Real Time Configuration of Computer Rooms
	Recommended Citation

	Context Aware Smart Classroom for Real Time Configuration of
	1 Introduction
	2. Context Aware Smart Classroom
	2.1 Context-aware
	2.2 Context
	2.3 Smart Environments
	2.4 Smart Classrooms
	2.5 Knowledge Engineering
	2.6 Expert Systems
	2.6.1 The Rete algorithm
	2.6.2 Jess Rules Engine


	3. CASC-SC System Design
	3.1 CASC-SC Framework
	3.2 Inference Engine
	3.3 Program Manager

	4  System Implementation
	4.1 Decision Server
	4.2 Classroom Scanner
	4.4 Software Configuration of a Classroom PC

	5. Evaluation
	5.1 Deployment
	5.2 System Limitations

	6. Conclusion
	6.1 Future Work

	References


