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Abstract 

 

The syntheses of tetra-tetrazole macrocycles, containing two bis-tetrazole units linked by a variety 

of alkyl chain lengths from four to eight carbons, are described. The crystal structures of three of 

these derivatives are reported, and the molecular conformation in the solid state is compared to that 

of one previously reported tetra-tetrazole macrocycle and to other bis- and tris(tetrazole)benzene 

structures. The macrocycle conformation is influenced by the length of the alkyl chain linker, the 

relative orientation of the tetrazole rings on the benzene ring, and by intermolecular interactions. In 

the macrocycles based on 1,2-bis(tetrazole)benzene, the adjacent tetrazole rings on the benzene ring 

are prevented from becoming co-planar on intramolecular (steric) grounds. In the 1,3- and 1,4-

bis(tetrazole)benzene derivatives, there is no such impediment, and a co-planar arrangement is 

observed where intra- and/or intermolecular stacking interactions exist. Deviations from co-

planarity are associated with optimisation of intermolecular interactions between the tetrazole rings 

and adjacent alkyl chains. In the macrocycle based on 1,4-bis(tetrazole)benzene with four-carbon 

linkers, an intramolecular stacking interaction exists, which precludes the presence of any cavity. In 

the macrocycle based on 1,3-bis(tetrazole)benzene with six-carbon linkers, a cavity of 10.8 x 9.4 Å 

is observed for each molecule in the solid state, although the packing of adjacent molecules is such 

that there are no extended channels running through the crystal. 
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Introduction 

 

The growth of tetrazole chemistry over the last twenty-five years has been significant, mainly as a 

result of the roles played by tetrazoles in coordination chemistry as ligands, in medicinal chemistry 

as stable surrogates for carboxylic acids and in materials applications, including explosives and 

photography.
1
 The synthesis of tetrazoles by cycloaddition reactions between azides and nitriles is 

well documented.
2
 Recently, attention has been directed towards the use of polydentate aromatic 

nitrogen heterocycles, specifically ligands with five-membered rings, that is azoles. Tetrazoles 

exhibit a strong networking ability usually acting as mono- or bidentate ligands in most of the 

reported complexes.
3
 One possible application for these materials is in generating supramolecular 

arrays which embody additional functional groups capable of metal complexation. This would 

result in a metallotetrazole framework with possible potential as novel anti-microbial or therapeutic 

agents. Our interest in tetrazoles concerns their use as precursors for the formation of new 

functionalised poly-tetrazole macrocycles, which can find application, for example, as sensors or in 

molecular recognition. We have previously reported some preliminary synthetic steps concerning 

the addition of pendant short-chain alkyl halides, from dihaloalkanes, to some bis-tetrazoles.
4
 These 

reactions yield bis-tetrazole derivatives with pendant alkyl halide arms and also bis-tetrazole 

derivatives with pendant vinyl arms. We have also described the reactions of 1,4-

bis(tetrazole)benzenes with various long chain ,-dibromoalkanes.
5
 Butler and co-workers have 

synthesised both 1,2- and 1,3-bis(bromoalkyltetrazolyl)benzenes from N-unsubstituted tetrazoles 

and have succeeded in using these bis-(bromoalkyltetrazolyl)-benzenes to generate the tetra-

tetrazole macrocycle.
6
 The latter compound includes a cavity that can be tailored by both the length 

and flexibility of the alkyl chain and also by the substitution pattern on the benzene ring.
7
 In this 

paper, we describe the synthesis and characterisation of tetra-tetrazole macrocycles from 1,2-, 1,3- 

and 1,4-benzene derivatives, using short four-carbon, medium six-carbon and long eight-carbon 

alkyl linkers. The X-ray crystal structures of the 1,2- and 1,4-benzene derivatives with 4-carbon 

chain linkers are described, as well as the 1,3-benzene derivative containing the 6-carbon linker. 

Our principal focus is on the variation of the macrocycle cavity shape and dimensions through the 

series. 
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Results and Discussion 

 

Syntheses 

Butler and co-workers have described the synthesis of tetra-tetrazole macrocycles, based on either 

1,2- or 1,3-bis(tetrazol-5-yl)benzenes, with alkyl chains having either six or eight carbon chain 

linkers.
6
 We have extended this class of compounds by preparing macrocycles with four-carbon 

chain linkers, and also new macrocycles based on 1,4-bis(tetrazol-5-yl)benzene (Fig. 1). The 

syntheses were carried out in a manner similar to that described,
6
 by reacting 1,x-[bis(2-(y-

bromoalkyl)tetrazol-5-yl]benzene (x = 2, 3 or 4; y = 4, 6 or 8; alkyl = butyl, hexyl or octyl) with 

1,n-bis(tetrazol-5-yl)benzene (n = 2, 3 or 4) in dimethylformamide, using K2CO3 as base. 

Compounds 2, 3, 5 and 6 have been reported previously.
6
  

 

N

N

NN

N N

N

N

N

N

N N

NN

N

N

n

n
N

N

N

N

N
N

N

N N

N

N

N

N
N

N

N

n

nn = 4; 1
n = 6; 2
n = 8; 3 n = 4; 4

n = 6; 5
n = 8; 6

N

NN

N

N

N N

N N

N N

N

N

NN

N

n

n

n = 4; 7
n = 6; 8
n = 8; 9

1

2 3

4
a = (2-,2-,2-,2-)
b = (2-,2-,2-,1-)

 

 

Figure 1. Tetra-tetrazole macrocycles 
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In several of our reactions, carried out in relatively dilute conditions, two macrocyclic compounds 

were isolated, one containing all four tetrazole rings substituted at N-2, and the other containing 

three rings substituted at N-2 and the other one substituted at N-1, as reported previously.
6
 The 

macrocycles with all four tetrazole rings substituted in the same way will be designated hereafter 

with the suffix a, while those with one different substitution will be designated with the suffix b. 

 

In all reactions undertaken, on average 40% of the starting bis-tetrazole compounds were recovered. 

Extensive column chromatography, using a hexane/ethyl acetate mixture as eluent, was required to 

separate the product macrocycles from the starting materials and other intractable polymeric 

material. The isolated yields of the macrocyclic products were in the range 20-25%, which are 

comparable to those reported by Butler,
6
 and are reasonable for syntheses of this type. One possible 

reason for the low yields in these reactions is the potential to form polymeric chains between the 

two bis-tetrazole units, rather than macrocycles. Evidence that some polymeric chains were 

synthesised came from the fact that intractable material, which could not be dissolved in any solvent 

we tried, was obtained from all the reactions we attempted. The isomeric 1-N- and 2-N-tetrazole 

derivatives should be readily distinguishable from their respective 
1
H and 

13
C NMR spectra,

4,5a,6,8
 

with the 
13

C NMR chemical shift of the tetrazole carbon atom appearing at ca. 154.0 and 164.0 ppm 

in N-1 and N-2 substituted tetrazoles, respectively. Macrocycles containing four tetrazole rings all 

substituted at N-2 gave rise to only a single resonance at ~164.0 ppm, while both signals were 

apparent in the macrocycles containing tetrazole rings substituted at both N-1 and N-2. The high 

symmetry in the macrocycles containing four tetrazole rings substituted at N-2 also gave a 

corresponding decrease in the number of signals in the 
1
H NMR spectra compared to those 

substituted at both N-1 and N-2. 

 

X-Ray Crystal Stuctures 

We were able to obtain single crystals of the three symmetrical macrocycles 1a, 5a and 7a. The 

crystal structure of 2a has already been reported.
7
 Attempts to obtain suitable crystals of any of the 

unsymmetrical macrocycles have so far been unsuccessful. The molecular structures of 1a, 2a, 5a 

and 7a are shown in Figures 2, 3, 4 and 6 respectively. In each case, the molecule is 

centrosymmetric and is sited on a crystallographic centre of inversion. For comparison, in particular 

with regard to the orientations of the tetrazole substituents relative to the benzene ring, 16 further 

bis- and tris(tetrazole)benzene structures were identified in the Cambridge Structural Database 

(Version5.27 plus January, May and August updates; 388720 structures in total)
9
 and are listed in 

Table 1. 
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Table 1. 1,2-bis, 1,3-bis, 1,4-bis and 1,3,5-tris(tetrazole)benzene structures identified in the CSD. 

Compound CSD 

Refcode 

Dihedral angles between planes of 

tetrazole and benzene rings (º) 

Reference 

1,2-bis(tetrazole)benzenes    

 DEBSOS 34.1, 34.8 8 

 MARPOK 55.7, 55.7 10a 

 SADCUV 38.3, 58.5 10b 

 SADDAC 7.7, 85.6 10b 

 SARCEU 13.3, 83.7 4 

 ZUMWOT 47.9, 57.5 10c 

 ZUMWUZ 54.0, 56.6; 52.5, 66.6 10c 

1,3-bis(tetrazole)benzenes    

 DEBQUW 13.7, 13.7 8 

 FELZOM 29.4, 42.0 10d 

 FELZUS 14.7, 24.3; 10.1, 38.6 10d 

 SARCAQ 6.2, 8.8 4 

 ZUMXAG 8.3, 12.1 10c 

1,4-bis(tetrazole)benzenes    

 ICEGAZ 6.4, 6.4 10e 

 ICEGED 3.9, 3.9; 10.0, 10.0; 29.4, 29.4 10e 

1,3,5-tris(tetrazole)benzenes    

 HUKRUA 3.6, 4.7, 7.5 10f 

 TAWRIS 1.2, 22.4, 24.6,  10g 

 

The molecular structures of 1a (Fig. 2) and 2a (Fig. 3) are broadly comparable. One of the two 

unique tetrazole rings (containing N5-N8) lies close to coplanar with the benzene ring to which it is 

attached (dihedral angle between ring planes = 2.9 in 1a and 9.6 in 2a), while the other ring 

(containing N1-N4) is approximately orthogonal to it (dihedral angle between ring planes = 86.1 in 

1a and 82.5 in 2a). This arrangement eliminates potential repulsion between adjacent tetrazole 

rings (e.g. N1···N8) that would arise if they were coplanar. Comparable arrangements have been 

observed in two other 1,2-bis(tetrazole)benzene derivatives, namely SADDAC and SARCEU 

(Table 1). In all other 1,2-derivatives reported to date (Table 1), both tetrazole rings are twisted 

from the plane of the benzene ring, with dihedral angles in the range 34.1-66.6. 

 

In 1a and 2a, the planes of the benzene and tetrazole rings on opposite sides of the rectangular 

macrocycle (N5-N8 and its symmetry equivalent) are parallel. The four-carbon chain linkers in 1a 

adopt an approximately fully-extended conformation, with all four carbon atoms lying in the same 

plane. In 2a, five of the six carbons of the linker adopt a similar fully-extended conformation, while 

the sixth (C13) lies gauche with respect to the remainder of the chain (Fig. 3). Macrocycle 1a 

appears close to a regular rectangle, while 2a is sheared parallel to the long axis of the alkyl linker. 

The internal dimensions of the macrocycle (defined as the cross-macrocycle distances between the 

centroids of the tetrazole rings) are 9.7  5.3 Å in 1a, compared to 11.1  5.6 Å in 2a. Thus, the 
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cross-macrocycle distance between the two co-planar tetrazole rings (5.3-5.6 Å) changes only 

slightly with variation of the chain linker. As noted by Butler et al.,
7
 space-filling representations of 

1a and 2a (Figs 2 and 3) show that the central “cavity” of the macrocycle is largely illusory, at least 

for the conformation observed in the solid state.  

 

 

 

Figure 2. Molecular structure of 1a showing displacement ellipsoids at the 50% probability level 

for non-H atoms (top), and a space-filling representation (bottom). 
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Figure 3. Molecular structure of 2a showing displacement ellipsoids at the 50% probability level 

for non-H atoms (top), and a space-filling representation (bottom).
7
 

 

In the structure of 5a (Fig. 4), both unique tetrazole rings remain close to coplanar with the benzene 

ring to which they are attached. The dihedral angle between the tetrazole and benzene ring is 25.2 

and 5.6º for N1-N4 and N5-N8, respectively. Comparison with other 1,3-bis(tetrazole)benzene 

structures (Table 1) shows that approximate co-planarity (considered to encompass the range 6.2 - 

14.7º) is common, and the structures of DEBQUW, SARCAQ and ZUMXAG show explicitly that 

there is no intramolecular impediment to approximate co-planarity of both rings. The moderate 

deviation from co-planarity for N1-N4 in 5a seems attributable, therefore, to optimisation of 

intermolecular contacts (see below) rather than any intramolecular feature. Similar to 2a, the six-

carbon chain linker in 5a exhibits an essentially fully-extended conformation for five of its six 

carbon atoms, while the sixth (C13) lies approximately gauche with respect to the remainder of the 

chain. The macrocycle geometry, in this case, is close to a regular square, with cross-macrocycle 

dimensions 10.8  9.4 Å. A space-filling representation of the structure (Fig. 4) shows that a 

genuine cavity is retained in the solid state.  
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Figure 4. Molecular structure of 5a showing displacement ellipsoids at the 50% probability level 

for non-H atoms (top), and a space-filling representation (bottom). 

 

Adjacent macrocycles in 5a are arranged so that one benzene-tetrazole unit lies over the cavity of 

the adjacent macrocycle (Fig. 5a), forming a local stacking arrangement similar to that seen within 

7a (see below). On account of this packing arrangement, there are no extended channels running 

through the crystal. The interplanar separation between stacked benzene rings in this region is 3.68 

Å and the benzene centroid-to-centroid distance is 5.16 Å. A shorter contact of 4.05 Å exists 

between the centroid of the benzene ring and the centroid of one adjacent tetrazole ring (N5-N8). 

Involvement of the N5-N8 ring in this stacking interaction is consistent with its co-planarity with 

the benzene ring. In projection (Fig. 5b), the stacked macrocycles closely resemble 7a (Fig. 6). 

They are arranged in a herring-bone manner, which brings the tetrazole ring N1-N4 into the vicinity 

of an adjacent alkyl chain. The 25.2 twist of the tetrazole ring with respect to the benzene ring 

brings its mean plane parallel to that of the fully-extended section of the alkyl chain (C8-C12). 

Thus, the moderate twist of ring N1-N4 can be attributed clearly to optimisation of this 

intermolecular interaction. 
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Figure 5. (a) Stacking interaction between adjacent macrocycles in 5a. (b) Projection of 5a 

approximately along the a axis, showing the herring-bone arrangement, which brings tetrazole ring 

N1–N4 into close contact with an alkyl chain of the adjacent macrocycle. 

 

In 7a (Fig. 6), the four-carbon chain linkers permit an intramolecular stacking interaction, similar to 

that observed in macrocyclic systems such as bis(1,4-phenylene)crown ethers with ether chain 

linkers of appropriate length.
11

 The interplanar separation is 3.44 Å and the benzene centroid-to-

centroid distance is 3.91 Å. Clearly, this precludes the existence of any cavity within the 

macrocycle, and this interaction is likely to persist in solution. The tetrazole rings lie approximately 

co-planar with the benzene rings to which they are attached, forming dihedral angles 10.8 and 4.8º 

for the N1-N4 and N5-N8 rings, respectively, consistent with their participation in the stacking 

interaction. The approximately co-planar arrangement is most common in all previously examined 

1,4-bis(tetrazole)benzene structures (Table 1). Face-to-face stacking of 1,4-bis(tetrazole)benzene 

units is also observed between macrocycles for 7a in the solid state. The shortest additional contacts 

to the tetrazole ring are in-plane C–H···N interactions. 
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Figure 6. Molecular structure of 7a showing displacement ellipsoids at the 50% probability level 

for non-H atoms (top), and a space-filling representation (bottom). 

 

Conclusions 

 

In the solid state, the conformation of the macrocycle is influenced by the orientation of the 

tetrazole rings on the benzene ring, by the length of the alkyl-chain linkers and by intermolecular 

interactions. In the macrocycles based on 1,2-bis(tetrazole)benzene, the adjacent tetrazole 

substituents on the benzene ring are prevented from becoming co-planar on steric grounds. In both 

1a and 2a, the resulting conformation is such that no genuine cavity is retained. In the macrocycles 

based on 1,3- and 1,4-bis(tetrazole)benzene, there is no intramolecular impediment to co-planarity 

of the tetrazole rings with the benzene ring, and co-planarity is observed where stacking interactions 

are present. In 5a, these stacking interactions are intermolecular, while in 7a they are 

intramolecular. In the former case, one tetrazole ring is twisted slightly out of the plane of the 

benzene ring to which it is bound, apparently to optimise intermolecular interactions with an 

adjacent alkyl chain. In 7a, the intramolecular stacking interaction precludes the existence of any 

cavity, and this interaction is likely to persist in solution. In 5a, however, a genuine cavity of 

dimensions 10.8  9.4 Å is retained in the solid state, and appears feasible in solution. Currently, 

metal complexation reactions with this macrocycle are currently being investigated. We are 

interested in looking at both first row transition metal ions as well as some smaller alkali and 

alkaline earth metals, as metal ions from these groups using tetrazoles as ligands in coordination 

chemistry are described in the literature.
12
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Experimental 

 

1
H and 

13
C NMR (δ ppm; J Hz) spectra were recorded on a JEOL JNM-LA300 FT-NMR 

spectrometer using saturated CDCl3 solutions with Me4Si reference, unless indicated otherwise, 

with resolutions of 0.18 Hz and 0.01 ppm, respectively. Infrared spectra (cm
-1

) were recorded as 

KBr discs or liquid films between KBr plates using a Nicolet Impact 410 FT-IR. Melting point 

analysis was carried out using a Stewart Scientific SMP 1 melting point apparatus and are 

uncorrected. Mass spectra were carried out in the Mass Spectroscopy unit in the Centre for 

Synthesis and Chemical Biology, University College, Dublin. Microanalysis was carried out at the 

Microanalytical Laboratory of University College, Dublin. Standard Schlenk techniques were used 

throughout. Starting materials were commercially obtained and used without further purification. 

The synthesis of compounds 2a,
6b

 3a,
6b

 5a
6c

 and 6a
6c

 have been described in the literature 

previously. 

 

General Syntheses of tetra-tetrazolophanes 

 

A mixture of 1,n-bis(tetrazol-5-yl)benzene (1.1 mmol) and potassium carbonate (1.5 g, 11 mmol) in 

dimethylformamide (60 ml) was stirred for one hour at 75 C under an nitrogen atmosphere, and 

treated with 1,n-bis(2-(n-bromoalkyl)tetrazol-5-yl)]benzene (1.1 mmol) and stirred at 75 C for 24 

h. Insoluble salts, filtered from the cooled mixture, were washed with ethyl acetate and the 

combined washings and mother-liquor were evaporated under reduced pressure. The oily residue 

was chromatographed on silica gel using ethyl acetate : hexane (50 : 50) as eluent to give the 

cyclophane. All compounds were then recrystallised from chloroform. 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(4)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (1a). 

White solid. Analysis: Found: C, 54.02; H, 4.81; N, 41.42. Calc. For C24H24N16: C, 53.72; H, 4.51; 

N, 41.77; Yield: 33 mg, 12.3 %, 0.06 mmol; Rf 0.52 (50 : 50 hexane : ethyl acetate); M.p. 224–228 

C; νmax (KBr) 3150, 3090, 2955, 2828, 1724, 1500, 1499, 1467, 1440, 1391, 1359, 1285, 1178, 

1038, 787, 775, 730, 668 cm
-1

; H : 1.89 (m, 8 H, CH2), 4.64 (t, 8 H, J = 13.6 Hz, NCH2), 7.81 (m, 4 

H, Ar-H), 7.95 (m, 4 H, Ar-H); C : 29.1, 52.0 (tetrazole N2-CH2), 127.6, 130.3, 131.1, 164.5 (2,5-

tetrazole); HRMS (EI) Calc. 537.2448, Found 537.2422. 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(4)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (1b). 
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White waxy solid. Analysis: Found: C, 53.57; H, 4.84; N, 41.99. Calc. For C24H24N16: C, 53.72; H, 

4.51; N, 41.77; Yield: 22 mg, 8.2 %, 0.04 mmol; Rf 0.42 (50 : 50 hexane : ethyl acetate); νmax (KBr) 

3440, 2942, 2870, 1625, 1520, 1435, 1389, 1360, 1199, 1087, 1050, 910, 812, 787, 745, 692 cm
-1

; 

H : 1.91 (m, 6 H, CH2), 2.13 (m, 2 H, CH2), 4.64 (t, 2 H, J = 14.6 Hz, N
1
CH2), 4.77 (t, 6 H, J = 

13.6 Hz, N
2
CH2), 7.48 (d, 1 H, J = 6.6 Hz, Ar-H), 7.66 (t, 1 H, J = 13.0 Hz, Ar-H), 7.76 (d, 3 H, J = 

6.6 Hz, Ar-H), 8.37 (t, 3 H, J = 13.0 Hz, Ar-H); C : 29.0, 29.1, 46.6 (tetrazole N1-CH2), 52.6 

(tetrazole N2-CH2), 52.8 (tetrazole N2-CH2), 52.9 (tetrazole N2-CH2), 122.9, 127.2, 127.3, 127.5, 

129.4, 130.3, 130.6, 130.8, 131.1, 131.5, 154.1 (1,5-tetrazole), 162.7 (2,5-tetrazole), 163.1 (2,5-

tetrazole), 164.1 (2,5-tetrazole); HRMS (EI) Calc. 537.2448, Found 537.2437. 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (2a).
6b 

White solid. Analysis: M.p. 178-180 C; Rf 0.50 (50 : 50 hexane : ethyl acetate); H : 1.37 (m, 8 H, 

CH2), 2.00 (m, 8 H, CH2), 4.59 (t, 8 H, J = 13.5 Hz, NCH2), 7.59 (m, 4 H, Ar-H), 7.91 (m, 4 H, Ar-

H). 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (2b). 

White solid. Analysis: Found: C, 56.96; H, 5.18; N, 37.86. Calc. For C28H32N16: C, 56.74; H, 5.44; 

N, 37.81; Yield: 49 mg, 18.2 %, 0.08 mmol; Rf 0.40 (50 : 50 hexane : ethyl acetate); M.p. 128–130 

C; νmax (KBr) 3435, 2925, 2858, 1629, 1555, 1450, 1359, 1275, 1198, 1049, 1099, 855, 746, 729, 

671 cm
-1

; H : 1.30 (m, 14 H, CH2), 1.75 (m, 2 H, CH2), 4.03 (t, 2 H, J = 14.2 Hz, N
1
CH2), 4.63 (t, 6 

H, J = 13.5 Hz, N
1
CH2), 7.48 (d, 1 H, J = 6.6 Hz, Ar-H), 7.66 (t, 1 H, J = 13.0 Hz, Ar-H), 7.73 (d, 3 

H, J = 6.6 Hz, Ar-H), 8.30 (t, 3 H, J = 13.0 Hz, Ar-H); C : 25.1, 25.3, 25.4, 25.5, 28.2, 28.6, 28.7, 

28.8, 47.1 (tetrazole N1-CH2), 52.5 (tetrazole N2-CH2), 52.7 (tetrazole N2-CH2), 53.4 (tetrazole 

N2-CH2), 122.8, 127.2, 127.5, 129.5, 130.0, 130.2, 130.3, 130.8, 131.5, 153.8 (1,5-tetrazole), 162.8 

(2,5-tetrazole), 164.1 (2,5-tetrazole), 164.1 (2,5-tetrazole); HRMS (EI) Calc. 593.3074, Found 

593.3100. 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(8)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (3a).
6b 

White solid. Analysis: M.p. 148-150 C (lit. 147-148 C); Rf 0.53 (50 : 50 hexane : ethyl acetate); 

H : 1.35 (m, 12 H, CH2), 1.96 (m, 12 H, CH2), 4.57 (t, 8 H, J = 13.9 Hz, NCH2), 7.60 (m, 4 H, Ar-

H), 7.91 (m, 4 H, Ar-H). 

 

Di-orthobenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(8)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (3b). 



 15 

White solid. Analysis: Found: C, 59.60; H, 6.41; N, 34.40. Calc. For C32H40N16: C, 59.24; H, 6.21; 

N, 34.54; Yield: 55 mg, 20.4 %, 0.08 mmol; Rf 0.40 (50 : 50 hexane : ethyl acetate); M.p. 146–148 

C; νmax (KBr) 3435, 2940, 2868, 1625, 1522, 1430, 1390, 1360, 1199, 1087, 1048, 910, 810, 787, 

745, 690 cm
-1

; H : 1.34 (m, 22 H, CH2), 1.72 (m, 2 H, CH2), 4.05 (t, 2 H, J = 14.6 Hz, N
1
CH2), 

4.55 (t, 6 H, J = 13.6 Hz, N
2
CH2), 7.48 (d, 1 H, J = 6.6 Hz, Ar-H), 7.66 (t, 1 H, J = 13.0 Hz, Ar-H), 

7.74 (d, 3 H, J = 6.6 Hz, Ar-H), 8.35 (t, 3 H, J = 13.0 Hz, Ar-H); C : 25.8, 25.9, 26.1, 26.1, 28.4, 

28.4, 28.5, 28.6, 28.6, 28.8, 29.1, 29.2,  47.3 (tetrazole N1-CH2), 52.8 (tetrazole N2-CH2), 52.8 

(tetrazole N2-CH2), 53.1 (tetrazole N2-CH2), 123.1, 127.4, 127.7, 129.5, 130.1, 130.4, 130.4, 130.5, 

130.8,  131.6, 153.9 (1,5-tetrazole), 162.9 (2,5-tetrazole), 164.1 (2,5-tetrazole), 164.3 (2,5-

tetrazole); HRMS (EI) Calc. 649.3700, Found 649.3679. 

 

Di-metabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(4)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (4a). 

White solid. Analysis: Found: C, 53.39; H, 4.43; N, 41.85. Calc. For C24H24N16: C, 53.72; H, 4.51; 

N, 41.77; Yield: 24 mg, 9.0 %, 0.04 mmol; Rf 0.50 (50 : 50 hexane : ethyl acetate); M.p. 284–286 

C; νmax (KBr) 3430, 2952, 2830, 1724, 1520, 1468, 1442, 1390, 1359, 1285, 1179, 1038, 787, 774, 

730, 667 cm
-1

; H : 1.89 (m, 8 H, CH2), 4.65 (t, 8 H, J = 13.5 Hz, NCH2), 7.63 (t, 2 H, J = 15.5 Hz, 

Ar-H), 8.27 (d, 4 H, J = 6.6 Hz, Ar-H), 8.82 (s, 2 H, Ar-H); C : 29.1, 52.0 (tetrazole N2-CH2), 

125.2, 128.2, 128.5, 129.6, 164.6 (2,5-tetrazole); HRMS (EI) Calc. 537.2448, Found 537.2452. 

 

Di-metabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (5a).
6c 

White solid. Analysis: M.p. 150-152 C (lit. 150-152 C); Rf 0.52 (50 : 50 hexane : ethyl acetate); 

H : 1.37 (m, 8 H, CH2), 2.04 (m, 8 H, CH2), 4.67 (t, 8 H, J = 13.5 Hz, NCH2), 7.63 (t, 2 H, J = 6.5 

Hz, Ar-H), 8.27 (d, 4 H, J = 6.5 Hz, Ar-H), 8.82 (s, 2 H, Ar-H). 

 

Di-metabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (5b). 

White solid. Analysis: Found: C, 57.05; H, 5.20; N, 37.53. Calc. For C28H32N16: C, 56.74; H, 5.44; 

N, 37.81; Yield: 26 mg, 9.8 %, 0.04 mmol; Rf 0.40 (50 : 50 hexane : ethyl acetate); M.p. 148–150 

C; νmax (KBr) 3440, 2925, 2850, 1630, 1560, 1451, 1360, 1274, 1196, 1046, 1005, 854, 746, 730, 

669 cm
-1

; H : 1.26 (m, 8 H, CH2), 1.75 (m, 2 H, CH2), 4.48 (t, 2 H, J = 14.4 Hz, N
1
CH2), 4.67 (t, 6 

H, J = 13.5 Hz, N
2
CH2), 7.63 (t, 2 H, J = 6.6 Hz, Ar-H), 7.81 (d, 2 H, J = 6.6 Hz, Ar-H), 8.27 (d, 2 

H, J = 6.6 Hz, Ar-H), 8.83 (s, 2 H, Ar-H); C : 26.1, 26.2, 26.3, 26.4, 29.5, 29.5, 29.6, 29.7, 49.0 

(tetrazole N1-CH2), 53.8 (tetrazole N2-CH2), 53.9 (tetrazole N2-CH2), 54.0 (tetrazole N2-CH2), 

124.7, 125.3, 127.0, 128.6, 128.9, 129.2, 129.8, 129.9, 130.1, 130.5, 130.9, 154.1 (1,5-tetrazole), 
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162.8 (2,5-tetrazole), 164.3 (2,5-tetrazole), 165.0 (2,5-tetrazole); HRMS (EI) Calc. 593.3074, 

Found 593.3065. 

 

Di-metabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(8)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (6a).
6c 

White solid. Analysis: M.p. 144-148 C (lit. 144-146 C); Rf 0.53 (50 : 50 hexane : ethyl acetate); 

H : 1.35 (m, 12 H, CH2), 1.96 (m, 12 H, CH2), 4.59 (t, 8 H, J = 13.6 Hz, NCH2), 7.63 (t, 2 H, J = 

6.6 Hz, Ar-H), 8.27 (d, 4 H, J = 6.6 Hz, Ar-H), 8.82 (s, 2 H, Ar-H). 

 

Di-metabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(8)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (6b). 

White solid. Analysis: Found: C, 59.45; H, 6.20; N, 34.35. Calc. For C32H40N16: C, 59.24; H, 6.21; 

N, 34.54; Yield: 24 mg, 9.0 %, 0.04 mmol; Rf 0.41 (50 : 50 hexane : ethyl acetate); M.p. 136–142 

C; νmax (KBr) 3436, 2938, 2860, 1623, 1520, 1433, 1390, 1358, 1199, 1087, 1045, 911, 810, 787, 

744, 691 cm
-1

; H : 1.23 (m, 22 H, CH2), 1.72 (m, 2 H, CH2), 4.48 (t, 2 H, J = 14.6 Hz, N
1
CH2), 

4.64 (t, 6 H, J = 13.5 Hz, N
1
CH2), 7.63 (t, 2 H, J = 6.6 Hz, Ar-H), 7.81 (d, 2 H, J = 6.6 Hz, Ar-H), 

8.27 (d, 2 H, J = 6.6 Hz, Ar-H), 8.83 (s, 2 H, Ar-H); C : 25.9, 26.0, 26.1, 26.1, 28.4, 28.4, 28.5, 

28.5, 28.6, 28.8, 29.1, 29.2, 47.3 (tetrazole N1-CH2), 52.8 (tetrazole N2-CH2), 52.8 (tetrazole N2-

CH2), 53.1 (tetrazole N2-CH2), 123.1, 124.8, 125.3, 127.4, 127.7, 129.5, 129.8, 129.9, 130.1, 130.5, 

130.9, 153.9 (1,5-tetrazole), 162.9 (2,5-tetrazole), 164.1 (2,5-tetrazole), 164.3 (2,5-tetrazole); 

HRMS (EI) Calc. 649.3700, Found 649.3688. 

 

Di-parabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(4)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (7a). 

White solid. Analysis: Found: C, 53.45; H, 4.41; N, 41.83. Calc. For C24H24N16: C, 53.72; H, 4.51; 

N, 41.77; Yield: 82 mg, 30.6 %, 0.15 mmol; Rf 0.52 (50 : 50 hexane : ethyl acetate); M.p. > 300 C; 

νmax (KBr) 3150, 3090, 2950, 2830, 1725, 1500, 1478, 1465, 1440, 1390, 1359, 1285, 1178, 1037, 

787, 770, 733, 665 cm
-1

; H : 2.09 (m, 8 H, CH2), 4.69 (t, 8 H, J = 13.5 Hz, NCH2), 7.97 (s, 8 H, Ar-

H); C : 29.7, 52.0 (tetrazole N2-CH2), 127.1, 129.6, 164.6 (2,5-tetrazole); HRMS (EI) Calc. 

537.2448, Found 537.2463. 

 

Di-parabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (8a). 

White solid. Analysis: Found: C, 56.45; H, 5.20; N, 37.95. Calc. For C28H32N16: C, 56.74; H, 5.44; 

N, 37.81; Yield: 84 mg, 31.3 %, 0.14 mmol; Rf 0.50 (50 : 50 hexane : ethyl acetate); M.p. 240–244 

C; νmax (KBr) 3150, 3090, 2924, 2860, 1623, 1450, 1379, 1281, 1205, 1125, 1075, 1048, 860, 746 

cm
-1

; H : 1.33 (m, 8 H, CH2), 2.04 (m, 8 H, CH2), 4.66 (t, 8 H, J = 13.8 Hz, NCH2), 8.17 (s, 8 H, 
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Ar-H); C : 25.3, 29.7, 52.8 (tetrazole N2-CH2), 127.3, 129.0, 164.6 (2,5-tetrazole); HRMS (EI) 

593.3074, Found 593.3088. 

 

Di-parabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(6)]-cyclophane (1-N, 2-N', 2-N'', 2-N''') (8b). 

Off-white solid. Analysis: Found: C, C, 56.40; H, 5.68; N, 37.45. Calc. For C28H32N16: C, 56.74; H, 

5.44; N, 37.81; Yield: 27 mg, 10.2 %, 0.05 mmol; Rf 0.39 (50 : 50 hexane : ethyl acetate); M.p. 

160–164 C; νmax (KBr) 3150, 3090, 2926, 2856, 1629, 1556, 1451, 1359, 1275, 1196, 1046, 1003, 

854, 746, 729, 670 cm
-1

; H : 1.30 (m, 8 H, CH2), 1.75 (m, 2 H, CH2), 1.86 (m, 4 H, CH2), 1.99 (m, 

2 H, CH2), 4.03 (t, 2 H, J = 14.5 Hz, N
1
CH2), 4.61 (t, 6 H, J = 13.6 Hz, N

2
CH2), 7.61 (m, 4 H, Ar-

H), 7.85 (d, 2 H, J = 6.6 Hz, Ar-H); 8.17 (s, 8 H, Ar-H), 8.38 (d, 2 H, J = 6.6 Hz, Ar-H); C : 25.1, 

25.3, 25.4, 25.5, 28.2, 28.6, 28.7, 28.8, 47.1 (tetrazole N1-CH2), 52.5 (tetrazole N2-CH2), 52.7 

(tetrazole N2-CH2), 53.4 (tetrazole N2-CH2), 129.1, 125.5, 122.8, 127.2, 127.5, 127.7, 129.5, 153.8 

(1,5-tetrazole), 162.8 (2,5-tetrazole), 164.1 (2,5-tetrazole), 164.1 (2,5-tetrazole); HRMS (EI) Calc. 

593.3074, Found 593.3057. 

 

Di-parabenzenotetra(5', 2'-tetrazolo)[5'-(2)-2'-(8)]-cyclophane (2-N, 2-N', 2-N'', 2-N''') (9a). 

White solid. Analysis: Found: C, 59.06; H, 6.18; N, 34.54. Calc. For C32H40N16: C, 59.24; H, 6.21; 

N, 34.54; Yield: 50 mg, 18.5 %, 0.08 mmol; Rf 0.53 (50 : 50 hexane : ethyl acetate); M.p. 284–286 

˚C; νmax (KBr) 3150, 3090, 2925, 2855, 1624, 1520, 1455, 1431, 1390, 1366, 1210, 1085, 1045, 

909, 786, 745, 690, 670 cm
-1

; H : 1.32 (m, 8 H, CH2), 1.36 (m, 8 H, CH2), 2.04 (m, 8 H, CH2), 4.62 

(t, 8 H, J = 13.3 Hz, NCH2), 8.25 (s, 8 H, Ar-H); C : 25.9, 28.5, 29.2, 53.2 (tetrazole N2-CH2), 

127.3, 129.1, 164.6 (2,5-tetrazole); HRMS (EI) Calc. 649.3700, Found 649.3720. 

 

X-Ray Crystallography 

Crystals of 1a, 5a and 7a suitable for X-ray analysis were obtained by recrystallisation from 

chloroform solution. Data were collected at 180(2) K on a Bruker Nonius X8 APEX II 

diffractometer,
12

 and a multi-scan correction was applied.
13

 The structures were refined against F
2
 

using all data.
14

 Hydrogen atoms were placed at calculated positions and refined using a riding 

model. 

 

Compound 1a. Crystal data: C24H24N16, M = 536.59, triclinic, a = 8.5805(3), b = 8.7679(4), c = 

9.4091(4) Å, α = 81.976(2),  = 70.235(2), γ = 66.642(2), U = 611.56(5) Å
3
, space group P-1, Z = 

1, μ(Mo-Kα) = 0.099 mm
-1

, calc = 1.457 g cm
–3

. 22917 data (2300 unique, Rint = 0.0243) were 
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measured in the range 4.07 < θ < 25.74˚. R1(I > 2σ(I)) = 0.0292 and wR2(all data) = 0.0740. 

Goodness of fit on F
2
 = 1.05. CCDC No. 633941. 

 

Compound 5a. Crystal data: C28H32N16, M = 592.70, monoclinic, a = 6.8210(6), b = 24.146(3), c = 

8.7297(10) Å,  = 96.924(4), U = 1427.3(3) Å
3
, space group P21/n, Z = 2, μ(Mo-Kα) = 0.092 mm

-

1
, calc = 1.379 g cm

–3
. 17057 data (2620 unique, Rint = 0.0600) were measured in the range 3.59 < θ 

< 25.43˚. R1(I > 2σ(I)) = 0.0441 and wR2(all data) = 0.1194. Goodness of fit on F
2
 = 1.01. CCDC 

No. 633942. 

 

Compound 7a. Crystal data: C24H24N16, M = 536.59, triclinic, a = 6.7596(12), b = 7.1970(12), c = 

12.9550(19) Å, α = 91.008(7),  = 100.326(6), γ = 100.409(6), U = 609.02(17) Å
3
, space group P-

1, Z = 1, μ(Mo-Kα) = 0.099 mm
-1

, calc = 1.463 g cm
–3

. 10192 data (2101 unique, Rint = 0.0602) 

were measured in the range 3.76 < θ < 25.14˚. R1(I > 2σ(I)) = 0.0716 and wR2(all data) = 0.2158. 

Goodness of fit on F
2
 = 1.11. CCDC No. 633943. 

 

Supplementary material 

 

Crystallographic data for 1a, 5a and 7a have been deposited with the Cambridge Crystallographic 

Data Centre, CCDC Nos. 633941-633943. Copies of this information may be obtained free of 

charge from deposit@ccdc.cam.ac.uk or www:http://www.ccdc.cam.ac.uk 
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