
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference Papers Computer Science Education

2007-12

Evaluation of Robocode as a Teaching Tool for Computer Evaluation of Robocode as a Teaching Tool for Computer

Programming Programming

Arnold Hensman
Technological University Dublin, arnold.hensman@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/itbinfocsecon

 Part of the Computer Sciences Commons, Engineering Education Commons, and the Robotics

Commons

Recommended Citation Recommended Citation
Hensman, A.: Evaluation of Robocode as a Teaching Tool for Computer Programming. Proceedings of the
National Digital Learning Repository (NDLR) Symposium, 2007, Trinity College Dublin, Ireland. December
14, 2007.

This Conference Paper is brought to you for free and
open access by the Computer Science Education at
ARROW@TU Dublin. It has been accepted for inclusion in
Conference Papers by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact yvonne.desmond@tudublin.ie,
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301310733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/itbinfocsecon
https://arrow.tudublin.ie/itbinfocse
https://arrow.tudublin.ie/itbinfocsecon?utm_source=arrow.tudublin.ie%2Fitbinfocsecon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fitbinfocsecon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=arrow.tudublin.ie%2Fitbinfocsecon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=arrow.tudublin.ie%2Fitbinfocsecon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=arrow.tudublin.ie%2Fitbinfocsecon%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 1

Abstract—Robocode began as an educational tool to aid in

learning Java programming. It has since evolved into something

of a phenomenon, as the prospect of creating simple to complex

virtual tanks appears to pose an attractive challenge to both

novice and expert programmers alike. What started out as a

teaching tool has grown into a worldwide network of competitors,

all keen to prove that their ‘bot’ stands out from the crowd.

Competitions are well organised and many Robocode events are a

PR dream for the computing companies that sponsor them.

Without a doubt, this easy to use application has sparked the

imagination of the world of programming. This is especially

evident in the number of higher education institutes that

regularly hold competitions for their computing and engineering

students, often inviting participants from other colleges. In

Ireland alone, a major national event for third level students is

held annually at the Tipperary Institute. Sponsors have included

the likes of Microsoft and Lenovo and students from most Irish

universities and colleges have taken part. This is merely a

scenario that has been mimicked across the globe.

A cursory browse through a typical computing faculty website

will likely reveal a reference to Robocode. This paper attempts to

look back to the roots of Robocode, and evaluate its merits as a

teaching tool whether for use inside or outside the classroom. The

detailed results of a survey are presented, showing the responses

of students who have used the tool in a number of capacities,

more specifically, an evaluation by those who have participated in

the national competition or merely used the tool as part of their

programming course work. Lecturers have also been asked for an

evaluation to gauge its effect on programming students. With so

many willing to dedicate extra curricular time to participate, it is

worth investigating what ignited this spark in the first place.

What motivates a student or indeed any programmer to want to

develop a robot tank that fires bullets, and, attempts to dodge the

bullets of other tanks?

Index Terms—Robocde, Teaching Tool, Object-Oriented

Programming, Tank, Bot.

I. WHAT IS ROBOCODE?

HE game is designed to help people learn how to program

in Java in an enjoyable way. Programmers use software to

control a miniature battle tank on screen. Once designed and

coded a robot can be uploaded to take part in a military style

battle. Although a basic battle tank can be created in minutes,

the most sophisticated models may take months of refinement.

Tanks move around an arena and essentially have two

functions: to fire bullets at other tanks as precisely as possible

and avoid being hit by bullets as much as possible. This

involves clever use of scanning, driving closely around the

walls of the arena and general manipulation of the physics of

battle. There is a large set of specialized robot tanks included

in the application which users can pit their own robot up

against for practice. Some are good at tracking walls, others at

spinning away quickly or aggressively firing at targeted

objects. Battles can be one on one, may involve several tanks,

or you might even be up against a melee of non-competing

tanks just to stir things up.

After a battle, statistical results can easily be viewed such as

ranking order, number of hits, energy used etc. Programmers

are thus encouraged to bring their own strategies to the game,

all of which seems to have captivated the imagination. Fig. 1

below shows a typical multi tank battle scenario in progress.

Robocode was created by Mathew Nelson as an endeavor to

use Java to build the game “he always wanted to play”. While

employed by IBM, he uploaded Robocode to their emerging

technologies portal, alphaWorks [1], a web community for

early adapters to preview prototype technologies. In 2001,

Evaluation of Robocode as a Teaching Tool for

Computer Programming

Arnold Hensman

Department of Informatics, School of Informatics and Engineering

Institute of Technology Blanchardstown, Dublin 15, Ireland

Email: Arnold.Hensman@itb.ie

T

Fig. 1. A Robocode tank battle in progress

mailto:Arnold.Hensman@itb.ie

 2

after only one year on alphaWorks, Robocode had been

downloaded over 120,000 times. Nelson’s intention was to

create a tool for competitive programmers which would, as he

puts it himself, be “Like chess, simple to learn, difficult to

master” [2]. Six years on, this Open Source educational game

has been highly refined by both its creator and a series of

contributors. At this point, some of the more successful bots –

computer controlled entities simulating a multiplayer knock-

out – have gained reputations in their own right
1
. This more or

less sums up the attraction for students, who can almost

immediately get a robot up and running with only a basic

knowledge of Java. The experimentation and testing phases of

robot creation add a fun element to programming.

 In Ireland, smaller competitions are held locally in many

colleges and universities and a national event is held once a

year at the Tipperary Institute, Thurles, where participants are

invited from around the country
2
. NUI Maynooth, for example,

has a competition outlined on its computing department

website to be used as a stepping stone towards the national

finals. The problem based learning (PBL) research group at

NUI Maynooth has also proposed using Robocode to teach

computer programming in a PBL setting. O’Kelly and Gibson

[3] assert that a combination of using Robocode both in the

classroom and in competitions meets Duch’s five requirements

[4] for a good problem appropriate to PBL. Computer

programming is generally considered a subject area where

good problems are difficult to come across.

The national competition held annually at the Tipperary

Institute is described on its website as an opportunity for

talented first year computing students from around the country

to showcase their work [5]. This has drawn the attention of

local industries, with many spectators on the lookout for such

talent. These events have a proven track record for finding the

student with a natural flair for programming and giving

confidence to the high achiever. The original intention of

Robocode however, was not as a medium for programming

competitions, but as a learning tool for computer

programming. This paper attempts to evaluate its merits in this

regard and determine if it could in fact be successfully used in

the classroom to help students, both weak and strong to

improve their coding skills.

II. ROBOCODE AND OBJECT ORIENTED PROGRAMMING

At first glance, Robocode may appear to require intricate

knowledge of object-oriented programming, a concept many

first-years would barely have touched upon. Every basic tank

for example is an extension of a parent class. These elements

however, can easily be avoided at the initial stages of robot

design, leaving the student to concentrate solely on the details

of their bot.

It should be noted at this point that there is two schools of

thought regarding the best way to teach computer

1 A league table provided by the RoboRumble@Home competition is the

main active ranking structure for current bots

2 The National Robcode Competition is an annual event inaugurated by

Philip Burke, The Tipperary Institute, Thurles, Ireland

programming. At one end of the spectrum, educators prefer to

introduce standard procedural programming first, grounding

the student in these ideas, and eventually introducing objects at

a later stage. At the opposite end, they strongly recommend

introducing object-oriented concepts from the beginning – the

so-called Objects First method. For the former, Robocode

enables novices to get involved at an early stage in their

course, even if they must just accept certain elements of the

package without fully appreciating them at the time. For the

latter, Robocode is an ideal tool, a way to present the complex

theories about objects in an imaginative way.

III. THE SURVEY

This paper attempts to evaluate Robocode as a learning aid

by posing a survey to students and lecturers who have used it.

Many of the lecturers have been involved in organizing local

and national Robocode competitions The survey contains

questions about the best ways Robocode could be used in a

higher-education environment. The aim is also to determine if

it is suitable for beginners or if it is merely a platform for the

more experienced student to showcase their work. Students

have been asked to rate how useful it is in learning

programming given the hindsight of spending one or more

years in college. All students surveyed are currently in their

second year of a computing degree. They are also asked about

their own learning preferences and to objectively rate their

interest and abilities in computer programming. Since

Robocode is mainly targeted at the kinesthetic learner – the

‘doers’ – some interesting results are evident. Lecturers are

asked to rate the package with a view to what stage in a course

it could best be used, more specifically, should it be used

before or after introducing objects. Lecturers have also been

asked how they feel about using it in the classroom and if they

have, what kind of results it yielded.

In total, the responses of 25 lecturers and 65 students from

various universities and institutes of technologies around the

country are presented. The students have been divided into two

categories, those who have participated in the national

competition or otherwise and those who have not. Students

have also been given a slightly different set of questions

regarding their profile and how much they feel they learned

from the tool. While lecturers have been asked to select a

variety of reasons why Robocode has become so popular,

students are forced to select the one thing they liked most

about it in order to gauge their primary motivation.

IV. LECTURER EVALUATION

From the lecturers surveyed, 83.3% agreed that students can

still use the tool quite easily without any real knowledge of

objects. It is revealing, that only 21.4% of lecturers thought

students should spend a considerable time - one year or more -

receiving a solid grounding in procedural programming

methods before looking into objects. The remainder either

thought it best to introduce object-orientated programming

very early, after the first semester of first year – 42.9%, or

even from the very beginning – 35.7%.

 3

Several ‘Objects first’ lecturers even commented that

teaching that teaching procedural methods first and then

switching to objects can actually confuse weaker students. A

few participants commented that they have used Robocode to

introduce objects in the second semester of first year. This is

interesting to note, since many university and institute of

technology syllabi appear to require at almost one full

academic year of procedural programming before seriously

tackling objects. In some cases the transition is made from C

programming in first year - inherently procedural - and

progressing to C++ in subsequent years.

Authors of computing text books have been chanting the

‘objects first’ mantra for years. While in theory it may seem a

logical approach, the heavy syntax imposed by Java can make

this difficult for new students. Even in their first Java program

the, public static void main etc, requires some level of mental

abstraction.

Barns and Kolling’s introductory programming book uses

the popular BlueJ application to argue that early objects need

not be difficult for novice programmers [6], [7]. BlueJ is an

IDE that provides an easy means of representing concepts such

as inheritance, aggregation and polymorphism in a visual way.

BlueJ can even generate initialization code from UML type

diagrams drawn up by users. Once students understand the

ideas graphically, the basic coding becomes very accessible.

Compared to other UML modeling tools such as IBM’s

Rational Rose, BlueJ provides a low-budget alternative that

works well in an educational setting.

It has been argued that with so much Robocode web content

available, the proliferation of Java code would encourage

plagiarism. Phelps, Egert, and Bierre[8] have developed a

similar gaming system called MUPPETS - multi-user

programming pedagogy for enhancing traditional study. It is

still in its initial release phase but claims to support both Java

and C#. However, when objects are tackled seriously by

lecturers, tools like BlueJ and Robocode are highly suited to

demonstrating them.

Almost all were lecturers surveyed were optimistic about its

merits as an aid to learning as well as its use for competitions.

Fig. 2 illustrates the responses of lecturers when asked to

evaluate Robocode as a teaching tool.

Regarding using it use in the classroom, 66.7% said they have

or would use it in tutorials, while 25% said that they would be

willing to provide a demonstration to students and then

encourage them to use it as a compliment to their studies.

Comments included that Robocode is good for teaching

difficult mathematical concepts that student normally struggle

with. It was also noted that it is an apt demonstration tool for

further development of agents as the implementation of agents

is well explained in the accompanying documentation. In fact,

within the field of AI, the development of genetically evolved

rather than manually coded tanks has recently been tested to

great effect. Shichel, Ziserman and Sipper’s [9] genetically

programmed bot came third place of twenty-seven in a

competition where it was the only one not written by a human.

However, for lecturers, it was mainly the social aspects that

seemed to be its selling point rather than its use per se, as a

learning tool. Learning tools for programming are nothing

new, yet most have failed to inspire the imagination in the

same way. A simple answer as to what makes Robocode

different would be that its multiplayer nature introduces

students to a new network of like minded programmers. The

good students can release their competitive instincts and the

weaker ones can learn from their peers in a fun, sociable way.

The application is after all a game, and every gamer loves

competition. Fig. 3 illustrates the other that factors lectures felt

have contributed to its popularity and the percentage of

lecturers that selected that reason.

 It can clearly be seen that the competitive and social

dimensions are perceived by lecturers as being the primary

motivators for students. Even if the motivation of a student is

not necessarily to enhance their programming skills, it would

seem that enhanced coding skills are a natural by-product of

taking part. Since the national competition requires a team

effort from each institution, students are forced to work

together and therefore exchange ideas. The social dimension to

programming in this way should not be underestimated, and

seems a most welcome variation within a pursuit that can often

be a solitary one.

Usefulness as teaching tool - Lecturer

Evalutaion

58.3%

33.3%

8.3%

0%
0

10

20

30

40

50

60

70

Excellent Good Showcase

Only

No. Fun

Only

%
 L

e
c

tu
re

rs

Fig. 2. Lecturer evaluation of Robocode’s usefulness as a teaching tool

Aspects of Robocode's Popularity (Lecturers)

 Showcase

Skills

54.6%

Social

Dimension

100%

Good for

learning

Programing

 36.4%

Graphics

and Visuals

 9.1%

Competitive

Aspects

100%

0

20

40

60

80

100

120

%
L
e
c
tu

re
rs

Fig. 3. Reasons chosen by lecturers for Robocode’s popularity

 4

Although the original intention outlined by Mathew Nelson

was to create a tool catering to any level of programmer, the

vast majority of lecturers surveyed, 66.7%, thought that it is

mainly suited to novices or first year programmers.

V. STUDENT EVALUATION

Practically all students agreed that it was useful as a learning

tool and similar findings to the lecturers were determined

concerning this question. (Fig. 4 below)

Interestingly, when students were asked about what they

enjoyed most, the social dimension did not feature as highly as

the lecturers had concluded. However, unlike lecturers,

students were forced to choose the one thing that they liked the

most and several comments were made by students that the

social dimension was a close second. This makes sense since

the success of Robocode over other teaching tools seems to be

that the learning is made possible due to its interactive context.

In fact the difference between those who took part in the

national competition and those who simply used it to better

their programming was quite telling.

The various aspects of Robocode that students found the

most enjoyable is indicated in Fig. 5 below.

Note the very different pictures emerging from those who took

part in competitions and those who did not. The competition

participants almost overwhelmingly preferred the competitive

aspects over everything else, while those who only used

Robocode in tutorials cited the fact that it helps them to learn

programming as its most enjoyable feature.

This is an interesting statistic and seems to reinforce the fact

that there are two definite advantages to the tool; One within

the classroom as an aid to learning and the other within

competitions as a platform for students to showcase their work

in a socially interactive environment.

Learning Merits of Robocode – Students

It can clearly be seen from Fig. 6 below that students who

took part in competitions did not feel as strongly about the

learning merits as much as those who did not compete. Note

that 0% of the competing students described the tool as

‘Excellent’ for learning compared to 12.5% for the non-

competing. It also appears that fewer of the non-competing

students described Robocode as ‘Fun only’.

Student Profiles – Self Evaluation of Programming Ability

All students were asked to rate themselves objectively about

their interest and current ability as a programmer. Within both

groups of students there was a direct correlation between how

high a student rated themselves as a programmer and whether

they preferred the competitive aspects or learning aspects

more. Those that rated themselves higher tended to prefer the

competitive dimension. Fig. 7 above shows how students

evaluated their own abilities as a programmer on a scale from

1 to 4. Students were asked to select option 1 if they enjoyed

(Most Enjoyable Aspects

for Students)

14.3%

57.1%

15.6%

0%

13%

71.4%

14% 14.6%

0% 0%
0

10

20

30

40

50

60

70

80

Competitive

Nature

Helps to learn

Programming

Social / Fun Graphics and

Visuals

Not sure

Competition Participants

Non-Competition Participants

Fig. 5. Student choices of Robocode’s most enjoyable aspects

(Improved Coding Skills)

0%

42.9%

28.6% 28.6%

12.5%

37.5% 37.5%

12.5%

0

5

10

15

20

25

30

35

40

45

50

Excellent-

Helped

Immensely

Very Good - A

great help

Good - Helped a

little alright

OK - Its just for

fun

%
S

tu
d

e
n

ts

Competition Participants

Non-Competition Participants

Fig. 6. Student claims regarding improvements in their coding skills as a

result of using Robocode

Usefulness as learning tool - Student

Evaluation

0%

7.1%

42.9%50%

0

10

20

30

40

50

60

Excellent Good Just OK No. Fun

Only

%
 S

tu
d
e
n

ts

Fig. 4. Student evaluation of Robocode’s usefulness as a learning tool

Self Assesment

0%

14.3%

51.7%

28.6%

22.2%

33.3%33.3%

11.1%

0

10

20

30

40

50

60

Enjoy

Programming

Immensely

Decent - Room

for improvement

Ok - Hard at

times

Not Sure if I like

Programming

%
S

tu
d

e
n

ts

Competition Participants

Non-Competition Participants

Fig. 7. Student self-assessment of programming abilities

 5

programming immensely and had a desire to eventually

become a top level computer programmer.

Many of those who thought they were presently weak at

programming commented that they were grateful to find

something that makes sense of it all. When asked how much

they felt they improved by using Robocode, it was actually

those who did not participate in competitions at all who reaped

the most rewards in terms of increasing their current

knowledge. These results clearly indicate that Robocode

appears to have a place for both weak and strong students

alike.

VI. LEARNING PREFERENCES

Neither students nor lecturers cited the graphical or visual side

as one of the major advantages of using Robocode. This seems

somewhat ironic considering it is quite a glossy and colourful

computer game.

All students surveyed from IT Blanchardstown (ITB) were

given a general screening during their induction into first year

by the section of the National Learning Network
3
 on the ITB

campus. Included in this assessment is a section to gauge the

student’s personal learning preference and provide feedback

on how best to proceed once this preference is known. Fig. 8

shows the learning preferences of the constituent students.

While ITB students would have known in advance what their

learning preference was, the remaining students surveyed were

given the option to be directed to a secondary link in order to

do a VARK test online to determine if they have a visual,

aural/auditory, read/write or kinesthetic preference in

obtaining information. However this was optional and while

each preference type was explained in detail within the survey,

students ultimately had the power to select any preference they

felt was most suitable for them. The secondary link was merely

provided to assist them in making this decision.

G. Lyons [10] did a study in 2001 based on student

performances in exams and tutorials addressing the question of

whether or not computer programming in itself is more suited

3 The National Learning Network Assessment Service was established in

2003 and provides assessment and learning support for adolescents and

adults.

to a specific kind of learning style. He also considers that it

could be the traditional methods by which programming has

been taught that caters to certain learning preferences rather

than others.

Almost all competition students were either auditory or

kinesthetic learners in contrast with the non-competing

students who were mainly kinesthetic learners. The auditory

learners among competing students would naturally benefit

from discussions and social interactions with others. This

would seem to correlate with what the lecturers said about the

social dimension being a major attraction.

VII. CONCLUSIONS

Computer programming is perceived as a difficult subject to

learn. Currently, the Irish school system offers no serious

provision at second level for students to gain a solid

background in computing before presenting themselves to a

third level computing course. This can result in students being

introduced to an abstract and often confusing experience.

Programming requires much experimentation and hands on

practical work on the part of the student to gain any significant

level of skill. Students are required to think laterally and use a

number of faculties such as mathematical ability and

algorithmic skill.

From those surveyed about Robocode, competition was the

foremost motivator for capable students as was the

social/interactive aspects for all who took part. As a teaching

tool, Robocode is currently being used in regular courses to

incorporate standard pedagogical methods, particularly as an

effective way to introduce objects and problem based learning.

It seems to have had a good effect on those who described

themselves as average or weak programmers. The good

programmers enjoyed the opportunity to show off their skills

while the less capable improved from peer interaction.

The national competition in Tipperary is now in its fifth

year and seems set to continue. Robocode has its place for

both junior and senior levels, particularly in providing a

context for complicated mathematical theories of graphics and

programming intelligent agents within the field of Artificial

Intelligence. However, as a learning tool, it seems best suited

to first and second year students. Further enhancements to the

survey presented in this paper would be to extend the profile

of students over number of years and monitor exam results in

the months and years after taking part in the national

Robocode competition to ascertain if it has had any visible

effect.

What Robocode does suggest, is that when an eclectic mix

of students is brought together for a specific purpose, it is

possible for capable, average and moderate programmers to

openly exchange insights. This brings programming to life for

a variety of learning styles. Visual elements combined with the

social dimension of team building gives rise to a very rich

environment for learning.

Learning Preferences

14.3%

42.9%

0%

42.9%

0%

11.1%

22.2%

0%

66.7%

0%
0

10

20

30

40

50

60

70

80

Visual Aural/Auditory Read/Write Kinesthetic Don't Know

Competition Participants

Non-Competition Participants

Fig. 8. Student Learning Preferences

 6

REFERENCES

[1] Alphaworks. IBM’s emerging technologies portal. 2007. Available

http://www.alphaworks.ibm.com

[2] D. Triplett, “AlphaBot, An Interview with Robocode creator Mat

Nelson”. DeveloperWorks, IBM’s Resource for Developers. May 2002.

Available:

http://ww.ibm.com/developerworks/java/library/j-nelson

[3] J. O'Kelly, J. P. Gibson, “RoboCode & problem-based learning: a non-

prescriptive approach to teaching programming”. ACM SIGCSE

Bulletin, v.38 n.3, September 2006

[4] B.Duch, Writing Problems for Deeper Understanding, pp. 47-53,

Stylus Publishing, Sterling, Virginia, 2001.

[5] Robocode Ireland Organising Committee. 2008. Tipperary Institute,

Thurles Tipperary, Ireland. Available:

http://www.robocode.ie

[6] BlueJ, The Interactive Java Environment. 2007. Available:

www.bluej.org

[7] D. J. Barnes, M. Kölling, Objects First with Java. A Practical

Introduction using BlueJ. Third Edition, Prentice Hall / Pearson

Education, 2006

[8] A. M. Phelps, C. A. Egert, K. J. Bierre. “MUPPETS: multi-user

programming pedagogy for enhancing traditional study: an

environment for both upper and lower division students”. In

Proceedings 35th Annual Conference of Frontiers in Education, 2005

(FIE ’05).

[9] Y. Shichel, E. Ziserman, M. Sipper. “GP-Robocode: Using Genetic

Programming to Evolve Robocode Players”. In Proceedings of 8th

European Conference on Genetic Programming, 2005 (EuroGP2005),

Vol. 3447 of Lecture Notes in Computer Science, pp. 143-154,

Springer.

[10] G. Lyons, “Learning styles and performance in the introductory

programming sequence”. ACM SIGCSE Bulletin

v.34 n.1, March 2002.

http://www.alphaworks.ibm.com/
http://ww.ibm.com/developerworks/java/library/j-nelson
http://www.robocode.ie/
http://www.bluej.org/

	Evaluation of Robocode as a Teaching Tool for Computer Programming
	Recommended Citation

