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Introduction 
Signals are all around us and come in a wide variety of shapes and forms. When we 

speak we create pressure variations in the air which generate audio signals; earthquakes 

produce large seismic signals; healthcare professionals monitor ECG signals which 

capture the electrical activity of the heart; radio, internet and telephone signals are 

being transmitted across the world; the list of signals is endless! 

(see 2 minute video at pzdsp.com/vid1 for some examples) 

Digital signal processing (DSP) is primarily about making use of 

computers to help us analyse and manipulate signals in order to 

help us with our everyday lives. To get a flavour of where DSP is 

being used check out the lists below; it really is a key component 

in many innovative solutions and products in recent times. 

 

This document introduces a few of the basic concepts of digital signal processing with 

relatively little mathematics. You should treat it as a relatively gentle introduction to the 

area which will hopefully provide a route to understanding more sophisticated 

techniques. 

Communications
- Improved telephone call quality

- Increased internet data 
transmission

- Data security and encryption

Healthcare
- Diagnosis of heart conditions

- MRI and sonogram analysis

- Sleep disorder detection

- Neurological tremor analysis

Audio and Image 
Processing

- Streaming of audio and video

- Fingerprint/facial recgnition

- Data compression (MP3 and Jpeg)

Warning Systems
- Earthquake detection

- Tsunami early alert system

- Radar and sonar 

An ECG signal showing the 
electrical activity of the 
heart 

http://pzdsp.com/vid1
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Two example applications 

DSP impacts many areas of our lives but it’s often executing in the background and can 

go unnoticed by a casual user. As you become comfortable with the various signal 

processing techniques you will start to appreciate more and more where DSP plays its 

role in helping us go about our daily business. Here are just a couple of examples of 

where DSP is applied that most people can readily appreciate. 

Music transcription 

The digital age has meant that everyone has easy access to large 

amounts of music and it’s very easy to listen to whatever appeals 

to you whenever and wherever you want. While DSP has made 

this possible through compression techniques like MP3 it can also 

be used to automatically convert your digital music collection 

into musical notation or score. The DSP techniques work by 

analysing the frequencies of each note using Fourier transform 

techniques together with statistical and music knowledge to 

identify which notes being played in a recording. So if you’d like 

to find out what chords are being played in your favourite guitar riff then DSP can come 

to the rescue! 

 

My early research career was all about analysing and manipulating both music and 

speech signals. I was part of an audio research group who were developing DSP 

techniques to transcribe music, isolate instruments from a recording and to either speed 

up or slow down the playback rate of music. You can see some of the results of this 

research in a software application called Riffstation – ‘The Ultimate Guitar App’! Check 

it out at riffstation.com! 

MP3
1 0 1 1 0 1 1 0 1 1 0 0

0 1 1 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 1 1 1 1 0 1 0 1 0

DSP

Algorithms

?
YN

http://riffstation.com/
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‘Cleaning’ a ‘noisy’ ECG signal 

The signals that you see on a heart monitor are taken from a patient 

who has electrode pads attached to his/her skin and electrical leads 

carry the signal from the patient to the monitor. Unfortunately any 

electrical lead can suffer from interference as a result of being in the 

vicinity of other electrical equipment - and there are lots of interesting 

electrical devices in hospitals! This interference, referred to as noise, 

would make the ECG (electrocardiogram) signal very difficult for a 

healthcare professional to interpret as it effects what the signal would 

look like on the monitor. DSP filtering techniques clean up the noisy 

signal so that the noise is removed making it easier for doctors to read the signal. 

 

DSP doesn’t have to stop with just removing noise from the ECG signal, it can go much 

further by detecting the heart rate and automatically identifying abnormalities within 

each cycle of the ECG waveform (see pzdsp.com/vid2 for an ECG heart rate analysis 

example). There is ongoing research into how DSP techniques can further help with the 

diagnosis of health conditions through the analysis of ECG signals and other 

physiological signals like brain waves (EEG – Electroencephalogram). This is an area of 

significant commercial interest with large multinationals investing heavily in research 

into such topics. 

  

DSP

Filter

Noisy ECG Signal Filtered ECG Signal

http://pzdsp.com/vid2
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Digital/Discrete signals 
At some stage in your early life you will have undertaken an 

investigation whereby you have measured something like the 

temperature outside your school or perhaps the amount of rain that has 

fallen. When you did this you would have recorded your measurements 

every so often and then tabulated them; and once you had finished 

gathering your data you probably would have plotted a graph like the 

one shown at the bottom of this page. 

You didn't realise it at the time but you were actually 

capturing your first digital signal! By measuring a signal 

(temperature as it changes over time) at discrete time 

intervals (e.g. every half hour) you created a list of 

numbers that represented a signal. That sequence of 

numbers that you made a note of was a digital signal!  

 

 

I can’t emphasise this basic fact that a digital signal is a list of sequence of numbers 

enough. It’s a key point that if somehow goes unappreciated can cause no end of 

confusion. It’s also the key reason why computers and DSP are linked so closely 

together, since computers are extremely good at processing (adding, multiplying, etc.) 

sequences of numbers extremely quickly and accurately. Digital signals and computers 

Time Temperature (°C) 

09:00 15.1 

09:30 15.6 

10:00 16.7 

10:30 18.4 

11:00 19.5 

11:30 20.1 

A digital signal is just a sequence 
of numbers which represents 
some signal of interest. 
The temperature signal example 
is represented by the following 
sequence of numbers: 

[15.1   15.6   16.7   18.4   19.5   20.1] 
 
Note that it’s easier to interpret 
digital signals when they are 
graphed! 
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really are a perfect match and this combination has allowed engineers create some 

amazing technology which has become part and parcel of how we live today. 

At this stage you might be wondering how signals are recorded on to a computer so that 

we can take advantage of their computational power. One way is to simply type the 

numbers into a spreadsheet or text editor like Notepad++, but there is of course a much 

easier way using some electronic components to do the job automatically. If you’d like 

to see a demo of this in action check out pzdsp.com/vid3. 

While it is true that digital signals are just a sequence of numbers we normally like to 

visualise them graphically since generally we find it much easier to interpret a sequence 

of numbers when they are plotted in a graph. As an example take a look at the sequence 

of numbers shown below. It might not be obvious but there is a repeating pattern in that 

digital signal. Now take a look at the graph of the same digital signal to the right – I’m 

sure you’ll agree that it’s easier to see the repeating pattern in the graph! 

 

 

NOTE: I'd like to point out that digital signals are often referred to as discrete signals (or 

more correctly discrete-time signals), I often use the terms interchangeably myself. 

There is however a subtle difference between them which I don't explain in these notes 

as I feel it can be a distraction from the key point that a discrete/digital signal is simply 

sequence of numbers. If you would to find out more you can always make use of your 

favourite search engine! 

Terminology used 
Whenever you start doing something new you have to get used to a new 'language' and 

terminology in order to communicate with everyone else involved. This applies to 

sports, board games, work and even digital signal processing. If you don't know the 

This sequence of 100 numbers is a digital 
signal which represents a short 20ms 
segment of a speech signal: 
 
-11 -6  6  6 13  2 -15 -18 -18 -24 -19 -12 -7  4 44 63 
19 -8 -27 -44 -25 14 28 24 20 -2 -22 -15  3 25 20  7 
-10 -27 -21 -13 -14 -13 -11 -10 -2 27 63 30 -8 -23 -
35 -26  8 31 21 12 -2 -17 -15  5 22 25 12 -19 -28 -
20 -15 -10 -8 -15 -15 -2 27 65 35 -10 -29 -35 -22 8 
34 24 6 -8 -17 -11 8 28 24  1 -21 -27 -17 -9 -9 -14 -
18 -15 -1 31 71 32 -18 -38 

 

A plot of a quasi-periodic digital signal given 
by the numbers to the left. There are about 3.5 

repetitions in the signal shown.  

http://pzdsp.com/vid3
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terminology you won't be able to discuss your ideas 

with others and work on projects within a team. 

Unfortunately in signal processing there is quite a 

bit of new terminology and also a requirement to use 

mathematical notation to explain some concepts. 

Getting used to the terminology can take some time 

even though the concepts behind the terminology can be pretty straightforward. So if 

you find yourself being confused by the terminology or mathematical notation remind 

yourself that the concepts are the most important aspect and being comfortable with the 

new terminology will come with time. The next few paragraphs introduce some of the 

terminology and notation that will be used throughout this document. 

In the temperature measurement example shown earlier the temperature was measured 

every 30 minutes. In this case the temperature signal is said to be sampled at a particular 

sampling rate or sampling frequency. The sampling rate in this case is 2 samples per 

hour, which is the same as saying that the sampling interval is 30 minutes. Each 

measurement taken is referred to as a sample, so there are 6 samples in the example 

temperature signal and 100 samples of a speech signal used in the second example. 

Also note that the sampling interval is normally given in seconds and the sampling rate 

given in Hertz, so for the temperature example the sampling interval is 1800 seconds and 

the sampling rate/frequency is 0.0005555Hz.  You can test your understanding of these 

terms by completing the quiz at pzdsp.com/quiz1 after you complete the next section on 

Mathematical notation. 

Notation used 
The table below shows that data used in the temperature measurement example with 

three additional columns: sample number, sample notation and sample value. You’ll 

notice that the first value is referred to as sample number 0 rather than 1. 

Time Temperature (°C) Sample Number (n) Sample Notation Sample Value 

09:00 15.1 0 x[0] 15.1 

09:30 15.6 1 x[1] 15.6 

10:00 16.7 2 x[2] 16.7 

10:30 18.4 3 x[3] 18.4 

11:00 19.5 4 x[4] 19.5 

11:30 20.1 5 x[5] 20.1 

Q: You weren’t told what the sampling 
rate was for the speech signal example 
but you could work it out from the 
information given! See if you can work 
out why it’s 5000Hz! 

http://pzdsp.com/quiz1
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The 4th column of the table shows the mathematical notation used to represent each 

sample, so sampled number 0 is denoted by x[0] has a value of 15.1; sample number 1 is 

denoted by x[1] has a value of 15.6; and so on. In this document I'll use the notation x[n] 

to refer to the entire sequence of numbers associated with a discrete signal and I’ll show 

the sample values as follows: 

x[n] = [15.1   15.6   16.7   18.4   19.5   20.1] 

If I'm referring to two or more discrete signals I'll just use a different letter to represent 

each signal. So here are two more discrete signals 

g[n] and w[n]: 

g[n] = [310 23 90 100 390 255 292 42 902 34 102 394 

292 492 12 324 841 232]  

w[n] = [-0.12 0.35 1.01 -2.3 8.7 0.02 ] 

 

Working with Matlab/Octave  

In order to fully appreciate the concepts presented in this document you should start to 

create and visualise signals yourself. Matlab and Octave are two applications that are 

used frequently by signal processing engineers and scientists to analyse and manipulate 

discrete signals and I would encourage you to install one of these on your computer so 

that you can try out the techniques that you will learn about; alternatively you can use 

online versions of these tools with some restrictions http://octave-online.net. Whatever 

route you choose make sure that you start working on problems as it really is a great way 

to develop your understanding!  

In this document I’ll provide links to video tutorials on using Matlab/Octave (I mainly 

use Matlab but all the tutorials should work with Octave as well) and it would be useful 

to try and replicate what you see in those tutorials as much as you can without having 

the example code used directly in front of you. It might a good idea to have the code 

available close by for reference if required though. The key aspect of this activity is that 

you write the code yourself! You might feel that there is no need to write code because 

you understood everything while you watched a video but you will find that that you’ll 

gain valuable insight by trying things out and you’ll also be developing the practical 

skills that you’d need to work in industry. You will most likely find writing your own 

Q: If the sampling rate associated with g[n] 
is 5Hz and the sampling interval associated 
with w[n] is 200ms, which signal shown 
has a longer duration?  

Q: Can you see why the result of 
multiplying g[3]by w[1] is 35? 
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code to be a slow process at first but you should persevere as the commands used in the 

tutorials are used very frequently in practical signal analysis. You’ll also see the benefits 

later on if you start to work on more complex problems. 

Additional resources 

An online quiz can be found at pzdsp.com/quiz1 

Some related videos: 

pzdsp.com/vid4 - Introduction to discrete signals 

pzdsp.com/vid5 - Capture of discrete signals demonstration 

pzdsp.com/vid6 - Choice of sampling rate/sampling interval 

pzdsp.com/vid7 - Discrete versus continuous signals using plots 

pzdsp.com/vid8 - Overview of process of capturing a discrete signal 

pzdsp.com/vid9 - An introduction to aliasing  

pzdsp.com/vid10 - Quantisation error explanation 

 

  

http://pzdsp.com/quiz1
http://pzdsp.com/vid4
http://pzdsp.com/vid5
http://pzdsp.com/vid6
http://pzdsp.com/vid7
http://pzdsp.com/vid8
http://pzdsp.com/vid9
http://pzdsp.com/vid10
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Frequency-domain representation of signals 
When someone plays the guitar different sounds are created because the guitar strings 

vibrate or oscillate at different frequencies. A similar effect can be heard if you stretch an 

elastic band between your fingers and pluck it and you’d notice that changing either the 

length or the tension of the band would alter the frequency of the sound since this 

causes the band to vibrate at a different rate or frequency. 

When something is oscillating a repeating pattern is being produced over time. This can 

be seen with a vibrating elastic band as it moves backwards and forwards through its 

initial position. Take a look at the following link to clearly see this effect a slow motion 

video of guitar strings as they oscillate: pzdsp.com/vid11.  

The repeating nature associated with the movement of a guitar string can also be seen in 

a plot of the audio signal produced. You should note that the rate of oscillation of the 

string is the same as the rate of oscillation of the audio signal since it is the string 

vibrations that cause pressure variations in the air which we perceive as sound (The 

recording of the bass guitar signal shown above can be downloaded from 

pzdsp.com/sig1) . The change in air pressure can also be picked up by a microphone and 

stored on a computer as a discrete signal.  

The frequency-domain representation of a signal is a convenient way of showing the 

oscillation rate of a signal, as explained in the following paragraph.  

 

As can be seen in the figure the sound pressure oscillates after the initial ‘attack’ or 

transient component of the signal. This plot of pressure variation over time is referred to 

as a time-domain plot and by looking closely at this plot you can see that the time to 

complete one cycle of an oscillation is about 1.82 milliseconds (approx. 11 cycles over a 

200ms segment

Time-domain view of a

1.5 second recording of a bass guitar

M
a
g
n
it
u
d
e

Frequency Hz

Frequency-domain view

time

A
m

p
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u
d
e

50 100 150 200 250 300

Fundamental (55 Hz)

http://pzdsp.com/vid11
http://pzdsp.com/sig1
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200ms segment). In other words the cycle is repeating about 55 times every second. To 

the right of the time-domain plot is a plot of the magnitude spectrum which is a 

frequency-domain representation that can be used to quickly determine the rate of 

oscillations in time-domain signals. The three relatively large ‘spikes’ shown in the 

magnitude spectrum represent the fundamental frequency (55Hz) and the first two 

harmonics (110Hz and 165Hz). You should notice that you can tell the rate of oscillation 

(55Hz) quite easily when you look at the signal in the frequency-domain; much more 

quickly and easily than by analysing the period of the time-domain signal. 

 This type of repeating pattern doesn’t just happen with audio signals and it can be 

observed in many signals including those from our heart. Your heart will beat at 

particular rate, or frequency, depending on what you are doing and your heart rate will 

increase if you go for a run or cycle. Engineers and scientists (and musicians and 

doctors!) are often analysing the repeating nature of signals and the frequency-domain 

view of a signal shows the frequency of the repeating patterns in a convenient graph. 

The frequency-domain view of a signal provides another way of analysing a signal which 

can provide valuable insight into a signals’ behaviour. I find it useful to relate this to the 

way an architect has different drawings of a building depending on who she is dealing 

with: A client would find it easier to visualise what the building would look like by 

examining a 3-D view of the building; while a builder would require detailed plans in 

order to construct the building. Both sets of drawings are 

representations of the same building and both have their 

uses. It’s the same with the time-domain and frequency-

domain views of signals – both represent the same signal and 

both can be very useful when analysing signals. Here’s a link 

to a video which demonstrates the benefit of both the time-

domain view and frequency-domain view of a signal 

pzdsp.com/vid12.  

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
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Time-domain view of an ECG signal Frequency-domain view of the ECG Signal

Magnitude Spectrum

http://pzdsp.com/vid12
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Frequency-domain graphs of signals are very easy to create using tools like Octave and 

Matlab and they make use of Fourier analysis techniques to extract frequency 

information from a time-domain signal. A detailed description of how these techniques 

work is outside the scope of this document but I’ve provided links to videos at the end of 

this section if you would like to find out more. It is worth noting that the basic principle 

behind all of the Fourier analysis techniques is that any signal can be broken down into 

a set of sinusoidal signals and this concept is explored in the next couple of subsections. 

What are sinusoids? 

A sinusoid is a waveform that oscillates smoothly over time and is associated with many 

signals that occur in nature. For example, when you whistle you create pressure 

variations in the air which have a sinusoidal shape or of you were to allow an object 

attached to the end of a spring bounce up and down then the motion of the object 

would also be sinusoidal (see pzdsp.com/vid13). Even more interestingly it turns out that 

sinusoids are a fundamental building block of any signal so it’s worth spending some 

time getting used to what they look like and how they can be represented 

mathematically. This fact was proven mathematically by a French mathematician called 

Jean Baptiste Joseph Fourier (1768-1830). 

There are three features of sinusoidal waveforms that you’ll need to be comfortable with: 

frequency, amplitude and phase offset. 

 

The figure above shows a time-domain plot of a cosine waveform to the left and its 

corresponding magnitude spectrum to the right. From the time-domain view notice that 

the sinusoids amplitude oscillates between 1.5 and -1.5 which means that the amplitude 

of the sinusoid is 1.5. You’ll notice that the sinusoid is repeating every 0.5 seconds, in 

other words it has a period of 0.5 seconds, which means that it has a frequency of 2Hz. 

A sinusoidal waveform of

amplitude 1.5 and frequency 2 Hz

0 0.5 1 1.5 2 2.5 3

-1
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1
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Frequency-domain view

1 2 3 4 5 6

Time-domain view

1.5

http://pzdsp.com/vid13
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I’d recommend you check out the interactive animation at 

pzdsp.com/sinusoids in order to get a clearer idea about these 

parameters. 

The frequency-domain plot of the sinusoid shows a single spike at 

a frequency of 2Hz. Anytime you have a time-domain plot of a 

single sinusoid you will observe a single spike in the frequency-

domain and the position of the spike on the frequency axis 

corresponds to the frequency of the sinusoid. The magnitude 

(height) of the spike is proportional to the amplitude of the 

sinusoid. You’ll see examples of signals with more than one 

sinusoid present in the next section. 

Before we look at the phase associated with this sinusoid lets first take a look at a 

mathematical function often used to represent a sinusoid which is shown below: 

 

The A parameter determines the amplitude of the sinusoid; f determines the frequency 

and  (Greek letter phi) parameter determines the phase offset (also referred to as the 

initial phase or phase). The t variable represents time and the mathematical expression 

is evaluated for a range of values of t in order to create a time-domain signal. So if you 

wanted to recreate the plot of the sinusoid shown above you’d substitute A with 1.5, f 

with 2 and  with 0 to give x(t) = 1.5cos(4 t), and then you could solve this for a 

number of values of t before finally plotting your graph of x(t) against time.  

 

 You should notice that when the phase value is zero that the waveform will be a 

maximum when t=0 and every period of the waveform after that. Changing the phase 

will change the times when the maximum of the sinusoid will occur. You should try this 

Code to create a plot of a 
sinusoid: 
A = 1.5; 
f = 2; 
phi = 0; 
duration = 1; %1 second 
T = 1/f; 
t=0:T/100:duration; 
x = A*cos(2*pi*f*t + phi); 
plot(t,x) 
xlabel(‘time (seconds)’) 
ylabel(‘Amplitude’) 

http://pzdsp.com/sinusoids
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out for yourself using the code above and you should also observe that adding 2  to any 

phase offset value you try out will produce the same waveform. For example, the 

waveform produced when the phase offset is set to 1.4 will be the same as the waveform 

produced when the phase is set to 1.4+2 , or 1.4+4 , or even 1.4-2  for that matter.  

All signals can be decomposed into sinusoids 

The French mathematician called Jean-Baptiste Joseph Fourier proved that any signal 

can be recreated by adding sinusoidal signals together. (see pzdsp.com/vid14 and 

pzdsp.com/vid15 for video tutorials/demonstrations on this concept). 

The frequency-domain view of a signal provides a way to visualise the sinusoids that 

make up a signal. The magnitude spectrum shows the amplitudes of the various 

sinusoids which make up a signal, while the phase spectrum shows the phases of the 

sinusoids which make up a signal.  

 

The figure above shows a waveform (top) which is a plot of the time-domain signal 

produced when the two sinusoids shown below it are added together. The frequency-

domain view of this signal contains two spikes; the spike at 2 Hz is larger than the one at 

24Hz because the 2Hz sinusoid is larger (5 times larger) than the 24Hz sinusoid. 

http://pzdsp.com/vid14
http://pzdsp.com/vid15
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The figure to the right shows the 

magnitude spectrum of a signal in 

the bottom plot; with the time-

domain view of the same signal 

shown in the top plot. Each of the 

'spikes' in the magnitude spectrum 

represents a sinusoid (there are 4 in 

total indicating the presence of 4 

sinusoids in the signal; in other 

words the signal could be reproduced 

by adding four sinusoids together). 

Each of the four sinusoids, which 

when summed together produce the time-domain signal shown in the top plot, is shown 

in the middle plot. The green sinusoid has 5 cycles over the one second duration of the 

segment shown and therefore has a frequency of 5 Hz; it has the largest amplitude, as 

can also be seen in the corresponding magnitude spectrum plot where the ‘spike’ shown 

at 5 Hz is the largest. It can also be seen in the magnitude spectrum that the ‘spike’ at 8 

Hz is less than half the height of the 5 Hz spike; this can also be seen in the middle plot 

whereby the sinusoid with 8 cycles in one second has an amplitude of less than a half 

the amplitude of the 5 Hz sinusoid.  

The phase values for each of the sinusoids present in the signal are 0, 0, 3.14, 2.13 radians 

for the 1, 5, 8, and 10 Hz components. These phase values are phase shifts relative to 

cosine waveforms. A plot of the phase spectrum shows the phase values plotted against 

frequency in a similar way to the magnitude spectrum showing the magnitude values 

plotted against frequency.  

If you would like to see a practical application of the frequency-domain then take a look 

at pzdsp.com/vid12. 

Additional resources 

An online quiz can be found at pzdsp.com/quiz2 

Some related videos:  

pzdsp.com/vid16 – Using matlab’s fft function 

pzdsp.com/vid17– Plotting magnitude spectrum 

http://pzdsp.com/vid12
http://pzdsp.com/quiz2
http://pzdsp.com/vid16
http://pzdsp.com/vid17
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Discrete systems 
Discrete systems are used to manipulate or modify discrete signals in meaningful ways. 

They take a discrete signal 

(sequence of numbers) as an input 

and generate a discrete signal at 

their output. 

One common application of discrete systems is to remove some interference or ‘noise’ 

component from a signal. It was mentioned earlier that signals such as ECG signals can 

be plagued with the introduction of noise from electrical components in the vicinity of 

the sensors used to capture the signal. This type of noise is normally present at 

frequencies of 50Hz or 60Hz depending on where you live and discrete systems, known 

as filters, can be designed to remove such artefacts.  

 

Another common application of discrete systems is to model the behaviour of a real-

world systems like a bridge or the suspension of a car. Using the car suspension as an 

example, imagine you wanted to try out a new suspension design for a racing car and 

you’d like to see how it performs on bumpy race tracks. One way would be build the 

suspension, hire a track out for the day, test your design, go back to your workshop to 

make any adjustments, and repeat as often as needs be. This might prove to be very 

costly if you need to test frequently! An alternative is to build a discrete system that 

models your suspension design; then create a signal that models the forces being applied 

to the car as it goes over bumps; and finally use your computer to analyse and adjust 

how your design works before going through the costly process of manufacture.  

Discrete systems are capable of achieving some amazing results and they are central to 

Digital Signal Processing. In the next section you’ll learn about the three basic 

components of discrete systems: adders, multipliers and delays. You’ll also see how to 

visualise discrete systems using signal flow diagrams and how they relate to the 

mathematical description of a discrete system i.e. difference equations. 

DSP

Filter

Noisy ECG Signal Filtered ECG Signal
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Difference equations and signal flow diagrams 

In this section you’ll see how three practical discrete systems operate and also be shown 

their signal flow diagrams and difference equations. After you complete this section it 

will be important that you are able to relate the difference equations to the signal flow 

diagrams for each example. You’ll also be shown some example code which can be used 

to implement each system; if you just want to get a flavour of DSP then it’s not 

important for you to fully understand this code but if you want to be able to apply DSP 

then you will. 

Example 1 – An amplifier 

Perhaps the most basic discrete system is an amplifier. The figure below shows a discrete 

signal x[n] being amplified by a factor of 2 with all the samples of the input signal being 

multiplied by 2. (see pzdsp.com/vid18 for a demo) 

 

Although this is a very basic system it is nonetheless very useful. For example in audio 

applications such a system would have the effect of increasing the volume of the audio 

signal.  

Discrete systems are very often described mathematically and this amplifier system can 

be described using the following equation (referred to as a difference equation): 

 

, where x[n] represents the input to the system, y[n] represents the output and n 

represents the sample number. 

By solving this difference equation for different values of n you can determine the 

output of the system for any input discrete signal (sequence of numbers). For example 

http://pzdsp.com/v18
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let’s work out what the output of the amplifier will be if the input to the system is given 

by the following sequence: 

 

Let’s first solve for n = 0, therefore  

  

Substituting for  gives 

  

If you were to solve for n = 1 you’d find that ; n = 2 gives ; ; 

etc.  

I’m sure you’ll have found solving these equations a trivial task however it would 

become extremely tedious to determine the output of the system by hand if you were 

dealing with thousands or millions of input samples. This is where computers come in 

extremely handy since they can easily multiply millions of numbers every second. To 

give you an idea of how computers do this then take a look at this video which 

implements the following Octave/Matlab code that determines the output of the 

amplifier system for a large sequence of numbers. 

Another way of representing a discrete system is by using what’s referred to as a signal 

flow diagram. The signal flow diagram is a graphical representation of a discrete system 

which illustrates how the system behaves. The figure below shows the signal flow 

diagram for the amplifier system.  The signal flow diagram contains a multiplier 

operator which multiplies any input by a factor of 2. 

 

Example 2 – Moving average filter 

Another discrete system that is relatively straightforward to appreciate is a two-tap 

moving average filter. This system takes the average of two consecutive input samples 

and passes the result to the output of the system.  
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The moving average filter is very useful as it can mitigate fluctuations that may occur 

when data is gathered. For example consider the situation where you are measuring a 

river level which is affected by a local tide. These 

measurements will fluctuate as the water sloshes around 

the meter. By taking the average of two consecutive 

measurements the effect of the sloshing movement of the 

water will be reduced (take a look at the plots at the end of 

this subsection to see the effect of a moving average filter). 

The two-tap moving average system can be represented mathematically by the following 

difference equation: 

 

Once again if you were to solve this difference equation for different values of n you 

would determine the output of this system for any input x[n]. I would encourage you to 

do this for yourself and notice that when you solve for n = 0 that you will have an x[-1] 

term in the equation; this x[-1] term is not explicitly defined so you assume that it is 

zero. Also, if you were to solve for n = 6 using the input shown in the figure above you 

should get a value of 0.5 for y[6] since x[6] is not explicitly defined. Take some time to 

make sure you understand the contents of this paragraph. 

The signal flow diagram of the two-tap moving 

average is shown to the left and it contains two 

multipliers, one adder and one delay operator (the 

square with a D inside it). The behaviour of the delay 

operator is most easily explained by way of example 

so check out pzdsp.com/vid19. 

http://pzdsp.com/vid19
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Moving average filters can average more than just two consecutive samples and can take 

the average of any number of consecutive samples. As an example, a four-tap moving 

average filter is applied to the following data sequence which represents a river level (in 

meters) taken at 20 minute intervals: 

[.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6] 

This raw data is plotted to the left in the figure below and you can see that the readings 

fluctuate significantly. The plot to the right shows the result of passing the data through 

a four-tap moving average which takes the average over 4 consecutive samples. You see 

that the fluctuations in the readings have been smoothed out by the filter. 

 

The difference equation of a four-tap moving average filter is given by: 

 

You will notice that the first four three samples 

of the filtered river data have a relatively steep 

slope. This is because the first three outputs 

(y[0], y[1], and y[2]) are all calculated using values 

of x[n] that are undefined and therefore assumed to 

be zero. This has the affect of skewing the output 

of the filter and DSP practitioners need to be 

acutely aware of this issue when filtering data. 

The signal flow diagram is shown to the right. 

Example 3 – Temperature model 

This example is not as straightforward as the other two examples and don’t be too 

concerned if the application of the example doesn’t make complete sense. The main 

reason I included this example is to show that the output of a system can be fed back 
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into a system i.e. in this system the output is dependent upon previous output samples 

and not just input samples.  

The discrete system given by the difference equation below allows you to determine 

(approximately) how the temperature of a glass of water would change if it was placed in 

a cool fridge. Hopefully you can appreciate that the temperature of the glass of water 

would gradually fall until it was the same temperature as the fridge. 

The model takes the initial temperature difference between the water and the fridge as 

an input x[n] and gives the change in temperature relative to the initial temperature over 

time as an output y[n]. Since the temperature of the glass of water will eventually match 

the temperature of the fridge then y[n] will eventually reach a near constant value, and 

be in steady-state. 

 

This model was derived using Newton’s Law of Cooling and the constant k is the referred 

to as the cooling constant and is dependent upon the amount of water in the glass and 

the insulation provided by the glass containing the water. The T variable is the sampling 

interval used by the system and the product kT should be no more than .01 to ensure the 

model is reasonably accurate.  

The constant k often determined through experimentation and once found you can use 

the model to predict how the temperature of a glass of water would change over time for 

any initial temperature difference and any fridge temperature (once the water remains a 

liquid! Also you would need to cover the glass to prevent any evaporation for high 

temperatures!). 

 

As an example let’s try to model how the temperature of a glass of water will change if it 

was initially 15 °C and then placed in a refrigerator of 4 °C. The difference is therefore 11 

°C and the input will be a sequence of sample values that are all values of 11: 
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In this example we’ll set the cooling constant k to being a value of 0.01. Since we are 

synthesising the input signal we can use any value for T that we like; the smaller the 

value of T the more accurate the model will be, however if T is very small we’d have to 

perform a lot of calculations before the output would reach a steady-state. A reasonable 

value for T in this case is 1. 

The difference equation is therefore: 

 

To determine the output of the system you need to solve this difference equation for 

different values of n. Solving for n =0 gives: 

 

 Substituting x[0] for 11 and y[-1] for 0 (since y[-1] has not yet been defined) gives: 

 

Solving for n = 1 gives 

 

Substituting x[1] for 11 and y[0] for  gives 

 

All of the remaining output samples can be determined in a similar manner which is 

possible but somewhat tedious. In practice a computer would be used to determine the 

output samples and you can see how to use Matlab or Octave to do this in the next 

section.  

The table to the left below shows the first 7 output samples of the discrete system model 

and you should make sure that you can work them out by hand to ensure you 

understand the process. The plot to the right shows a plot of 1000 output samples and 

you should notice that the output reaches what’s known as steady-state after about 500 

samples, which corresponds to 500 seconds in this example since the sampling interval 

is 1 second. Remember that the output represents the change from the initial input value 
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so the steady-state reading of -11 °C means that the temperature of the glass of water 

eventually reaches 4 °C (initial value of 15 °C less 11 °C). 

 

 

  

  

n x[n] y[n] 

0 11 -0.1089 

1 11 -0.2167 

2 11 -0.3235 

3 11 -0.4292 

4 11 -0.5339 

5 11 -0.6375 

6 11 -0.7401 
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Implementing discrete systems using Matlab/Octave 
Determining the output of discrete systems (implementing a discrete system) can be a 

tedious task when you are dealing with lots of samples. Luckily computers can perform 

the calculations for us extremely quickly and accurately. Both Matlab and Octave are 

used very frequently for this purpose and have built-in commands/functions that make 

it a very straight forward process; however these functions require the discrete systems 

to be described in terms of b and a coefficients. 

Once you develop an understanding of b and a coefficients you will be able to quickly 

implement and analyse discrete systems using built-in Matlab/Octave functions.  

Perhaps the quickest way to understand how to determine a system’s b and a 

coefficients is to run through a few of examples. The table below shows five discrete 

systems in their difference equation form in the left column and their corresponding b 

and a coefficient representation in the right. I’ll describe the conversion process in the 

following paragraphs but you might find it easier to understand by looking at the 

following video pzdsp.com/vid20 

 a = [ 1 ] 

b = [ 3   2 ] 

 a = [ 1 ] 

b = [0.5   -1  2] 

 a = [ 1 ] 

b = [ -1   0   0   1] 

 a = [ 1   -0.3] 

b = [ 2] 

 a = [ 1   0   0.2 ] 

b = [ 0.1   0   1] 

The mappings of the b and a coefficient vectors to the coefficients of the difference 

equation for each of the examples shown in the table above is illustrated in the 

paragraphs below. While referring to each of the illustrations you should note that the a 

coefficients are all associated with y terms in the difference equation and the b 

coefficients are all associated with x terms.  

Also note that the first element of the a coefficient vector is associated with y[n]; the 

second element (if there is one) is associated with y[n-1]; the third element (if there is 

one) is associated with y[n-2]; etc. 

http://pzdsp.com/vid20
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Similarly the first element of the b coefficient vector is associated with x[n]; the second 

element (if there is one) is associated with x[n-1]; the third element (if there is one) is 

associated with x[n-2]; etc.  

Example 1  

 
Rewritten as: 

 

a = [1] 

b = [3   2] 

 

Example 2  

 
Rewritten as: 

 

a = [1] 

b = [0.5   -1  2] 

 

Example 3  

 
Rewritten as: 

 

a = [1] 

b = [-1   0   0   1] 

 

Example 4 

 
Rewritten as: 

 

a = [1   -0.3] 

b = [2] 

 

Example 5 

 
Rewritten as: 

 

a = [ 1   0   0.2 ] 

b = [ 0.1   0   1 ] 
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Implementation examples 

Once you have the b and a coefficients of a system then the implementation is a trivial 

task using built-in Matlab/Octave functions. This section runs through the examples 

shown earlier (amplifier, moving average and system model) that you should try out 

yourself. If you don’t have Matlab or Octave installed on your computer then you can 

use an online version http://octave-online.net  

An amplifier system which amplifies by a factor of 2 is described by the following 

difference equation: 

 

The b and a coefficients just have one value each i.e. a = [1] and b= [2]. 

Use the code below to determine the output of this system after applying an input x[n] 

which is given by  

[2  1.1  3.2  0.3 1  0] 

 

 

 

A 4-tap moving-average filter is given by the following difference equation 

 

The b and a coefficients are therefore: a= [1] and b = [ 0.25  0.25  0.25  0.25 ]. 

Use the code below to determine and plot the output after passing the following river 

level signal though the system: 

[.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6] 

x = [2  1.1  3.2  0.3 1  0]; 
b = 2; 
a = 1; 
y = filter(b, a, x) 

x = [.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6]; 
b = [0.25 0.25 0.25 0.25]; 
a = 1; 
y = filter(b, a, x) 
plot(y) 

http://octave-online.net/
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A model of the change in temperature of a glass of water placed in a fridge is 

given by (where the cooling constant is 0.01 and the model operates on data sampled at 

1Hz):  

 

where x[n] is the initial difference in temperature between the water and the fridge and 

y[n] is the change in the water temperature from its initial temperature. 

Using the earlier example of the water temperature being initially 15 °C and then placed 

in a refrigerator of 4 °C then x[n] will be constantly 11 °C.  

Use the following code to model this setup for 1000 seconds: 

 

 

 

 

 

 

 

 

Additional resources 

An online quiz can be found at pzdsp.com/quiz3 

Some related videos:  

pzdsp.com/vid21 – System frequency response 

pzdsp.com/vid22 – Magnitude response using plots 

pzdsp.com/vid23 – Filtering signals using discrete systems 

 

x = ones(1, 1000)*11; %1000 seconds 
b = [ -0.0099 ]; 
a = [ 1  -0.9901]; 
y = filter(b, a , x); 
plot(y) 
xlabel('Samples') 
ylabel('Temperature Change') 
figure 
plot(y+15)  
xlabel('Samples') 
ylabel('Temperature of water') 
 

http://pzdsp.com/quiz3
pzdsp.com/vid21
pzdsp.com/vid22
pzdsp.com/vid23
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