
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Other resources School of Electrical and Electronic Engineering

2015-01-27

Digital Signal Processing Foundations Digital Signal Processing Foundations

David Dorran
Technological University Dublin, david.dorran@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engschelecon

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Dorran, D. (2015) Digital Signal Processing Foundations.

This Working Paper is brought to you for free and open
access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Other resources by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301310623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engschelecon
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engschelecon?utm_source=arrow.tudublin.ie%2Fengschelecon%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=arrow.tudublin.ie%2Fengschelecon%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Dublin Institute of Technology
ARROW@DIT

Conference papers School of Electrical and Electronic Engineering

2015-01-27

Digital Signal Processing Foundations
David Dorran

Follow this and additional works at: http://arrow.dit.ie/engscheleart

Part of the Signal Processing Commons

This Article is brought to you for free and open access by the School of
Electrical and Electronic Engineering at ARROW@DIT. It has been
accepted for inclusion in Conference papers by an authorized administrator
of ARROW@DIT. For more information, please contact
yvonne.desmond@dit.ie, arrow.admin@dit.ie.

http://arrow.dit.ie?utm_source=arrow.dit.ie%2Fengscheleart%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/engscheleart?utm_source=arrow.dit.ie%2Fengscheleart%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/engschele?utm_source=arrow.dit.ie%2Fengscheleart%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/engscheleart?utm_source=arrow.dit.ie%2Fengscheleart%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=arrow.dit.ie%2Fengscheleart%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie

Digital Signal Processing Foundations

David Dorran Page 1

Table of Contents
Introduction .. 2

Two example applications ... 3

Music transcription ... 3

‘Cleaning’ a ‘noisy’ ECG signal... 4

Digital/Discrete signals ... 5

Terminology used .. 6

Notation used .. 7

Working with Matlab/Octave ... 8

Additional resources ... 9

Frequency-domain representation of signals .. 10

What are sinusoids? ... 12

All signals can be decomposed into sinusoids .. 14

Additional resources .. 15

Discrete systems ... 16

Difference equations and signal flow diagrams .. 17

Example 1 – An amplifier .. 17

Example 2 – Moving average filter ... 18

Example 3 – Temperature model .. 20

Implementing discrete systems using Matlab/Octave .. 24

Implementation examples .. 26

Additional resources ..27

Digital Signal Processing Foundations

David Dorran Page 2

Introduction
Signals are all around us and come in a wide variety of shapes and forms. When we

speak we create pressure variations in the air which generate audio signals; earthquakes

produce large seismic signals; healthcare professionals monitor ECG signals which

capture the electrical activity of the heart; radio, internet and telephone signals are

being transmitted across the world; the list of signals is endless!

(see 2 minute video at pzdsp.com/vid1 for some examples)

Digital signal processing (DSP) is primarily about making use of

computers to help us analyse and manipulate signals in order to

help us with our everyday lives. To get a flavour of where DSP is

being used check out the lists below; it really is a key component

in many innovative solutions and products in recent times.

This document introduces a few of the basic concepts of digital signal processing with

relatively little mathematics. You should treat it as a relatively gentle introduction to the

area which will hopefully provide a route to understanding more sophisticated

techniques.

Communications
- Improved telephone call quality

- Increased internet data
transmission

- Data security and encryption

Healthcare
- Diagnosis of heart conditions

- MRI and sonogram analysis

- Sleep disorder detection

- Neurological tremor analysis

Audio and Image
Processing

- Streaming of audio and video

- Fingerprint/facial recgnition

- Data compression (MP3 and Jpeg)

Warning Systems
- Earthquake detection

- Tsunami early alert system

- Radar and sonar

An ECG signal showing the
electrical activity of the
heart

http://pzdsp.com/vid1

Digital Signal Processing Foundations

David Dorran Page 3

Two example applications

DSP impacts many areas of our lives but it’s often executing in the background and can

go unnoticed by a casual user. As you become comfortable with the various signal

processing techniques you will start to appreciate more and more where DSP plays its

role in helping us go about our daily business. Here are just a couple of examples of

where DSP is applied that most people can readily appreciate.

Music transcription

The digital age has meant that everyone has easy access to large

amounts of music and it’s very easy to listen to whatever appeals

to you whenever and wherever you want. While DSP has made

this possible through compression techniques like MP3 it can also

be used to automatically convert your digital music collection

into musical notation or score. The DSP techniques work by

analysing the frequencies of each note using Fourier transform

techniques together with statistical and music knowledge to

identify which notes being played in a recording. So if you’d like

to find out what chords are being played in your favourite guitar riff then DSP can come

to the rescue!

My early research career was all about analysing and manipulating both music and

speech signals. I was part of an audio research group who were developing DSP

techniques to transcribe music, isolate instruments from a recording and to either speed

up or slow down the playback rate of music. You can see some of the results of this

research in a software application called Riffstation – ‘The Ultimate Guitar App’! Check

it out at riffstation.com!

MP3
1 0 1 1 0 1 1 0 1 1 0 0

0 1 1 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 1 1 1 1 0 1 0 1 0

DSP

Algorithms

?
YN

http://riffstation.com/

Digital Signal Processing Foundations

David Dorran Page 4

‘Cleaning’ a ‘noisy’ ECG signal

The signals that you see on a heart monitor are taken from a patient

who has electrode pads attached to his/her skin and electrical leads

carry the signal from the patient to the monitor. Unfortunately any

electrical lead can suffer from interference as a result of being in the

vicinity of other electrical equipment - and there are lots of interesting

electrical devices in hospitals! This interference, referred to as noise,

would make the ECG (electrocardiogram) signal very difficult for a

healthcare professional to interpret as it effects what the signal would

look like on the monitor. DSP filtering techniques clean up the noisy

signal so that the noise is removed making it easier for doctors to read the signal.

DSP doesn’t have to stop with just removing noise from the ECG signal, it can go much

further by detecting the heart rate and automatically identifying abnormalities within

each cycle of the ECG waveform (see pzdsp.com/vid2 for an ECG heart rate analysis

example). There is ongoing research into how DSP techniques can further help with the

diagnosis of health conditions through the analysis of ECG signals and other

physiological signals like brain waves (EEG – Electroencephalogram). This is an area of

significant commercial interest with large multinationals investing heavily in research

into such topics.

DSP

Filter

Noisy ECG Signal Filtered ECG Signal

http://pzdsp.com/vid2

Digital Signal Processing Foundations

David Dorran Page 5

Digital/Discrete signals
At some stage in your early life you will have undertaken an

investigation whereby you have measured something like the

temperature outside your school or perhaps the amount of rain that has

fallen. When you did this you would have recorded your measurements

every so often and then tabulated them; and once you had finished

gathering your data you probably would have plotted a graph like the

one shown at the bottom of this page.

You didn't realise it at the time but you were actually

capturing your first digital signal! By measuring a signal

(temperature as it changes over time) at discrete time

intervals (e.g. every half hour) you created a list of

numbers that represented a signal. That sequence of

numbers that you made a note of was a digital signal!

I can’t emphasise this basic fact that a digital signal is a list of sequence of numbers

enough. It’s a key point that if somehow goes unappreciated can cause no end of

confusion. It’s also the key reason why computers and DSP are linked so closely

together, since computers are extremely good at processing (adding, multiplying, etc.)

sequences of numbers extremely quickly and accurately. Digital signals and computers

Time Temperature (°C)

09:00 15.1

09:30 15.6

10:00 16.7

10:30 18.4

11:00 19.5

11:30 20.1

A digital signal is just a sequence
of numbers which represents
some signal of interest.
The temperature signal example
is represented by the following
sequence of numbers:

[15.1 15.6 16.7 18.4 19.5 20.1]

Note that it’s easier to interpret
digital signals when they are
graphed!

Digital Signal Processing Foundations

David Dorran Page 6

0 20 40 60 80 100
-50

0

50

100

Sample number

A
m

p
lit

u
d
e

really are a perfect match and this combination has allowed engineers create some

amazing technology which has become part and parcel of how we live today.

At this stage you might be wondering how signals are recorded on to a computer so that

we can take advantage of their computational power. One way is to simply type the

numbers into a spreadsheet or text editor like Notepad++, but there is of course a much

easier way using some electronic components to do the job automatically. If you’d like

to see a demo of this in action check out pzdsp.com/vid3.

While it is true that digital signals are just a sequence of numbers we normally like to

visualise them graphically since generally we find it much easier to interpret a sequence

of numbers when they are plotted in a graph. As an example take a look at the sequence

of numbers shown below. It might not be obvious but there is a repeating pattern in that

digital signal. Now take a look at the graph of the same digital signal to the right – I’m

sure you’ll agree that it’s easier to see the repeating pattern in the graph!

NOTE: I'd like to point out that digital signals are often referred to as discrete signals (or

more correctly discrete-time signals), I often use the terms interchangeably myself.

There is however a subtle difference between them which I don't explain in these notes

as I feel it can be a distraction from the key point that a discrete/digital signal is simply

sequence of numbers. If you would to find out more you can always make use of your

favourite search engine!

Terminology used
Whenever you start doing something new you have to get used to a new 'language' and

terminology in order to communicate with everyone else involved. This applies to

sports, board games, work and even digital signal processing. If you don't know the

This sequence of 100 numbers is a digital
signal which represents a short 20ms
segment of a speech signal:

-11 -6 6 6 13 2 -15 -18 -18 -24 -19 -12 -7 4 44 63
19 -8 -27 -44 -25 14 28 24 20 -2 -22 -15 3 25 20 7
-10 -27 -21 -13 -14 -13 -11 -10 -2 27 63 30 -8 -23 -
35 -26 8 31 21 12 -2 -17 -15 5 22 25 12 -19 -28 -
20 -15 -10 -8 -15 -15 -2 27 65 35 -10 -29 -35 -22 8
34 24 6 -8 -17 -11 8 28 24 1 -21 -27 -17 -9 -9 -14 -
18 -15 -1 31 71 32 -18 -38

A plot of a quasi-periodic digital signal given
by the numbers to the left. There are about 3.5

repetitions in the signal shown.

http://pzdsp.com/vid3

Digital Signal Processing Foundations

David Dorran Page 7

terminology you won't be able to discuss your ideas

with others and work on projects within a team.

Unfortunately in signal processing there is quite a

bit of new terminology and also a requirement to use

mathematical notation to explain some concepts.

Getting used to the terminology can take some time

even though the concepts behind the terminology can be pretty straightforward. So if

you find yourself being confused by the terminology or mathematical notation remind

yourself that the concepts are the most important aspect and being comfortable with the

new terminology will come with time. The next few paragraphs introduce some of the

terminology and notation that will be used throughout this document.

In the temperature measurement example shown earlier the temperature was measured

every 30 minutes. In this case the temperature signal is said to be sampled at a particular

sampling rate or sampling frequency. The sampling rate in this case is 2 samples per

hour, which is the same as saying that the sampling interval is 30 minutes. Each

measurement taken is referred to as a sample, so there are 6 samples in the example

temperature signal and 100 samples of a speech signal used in the second example.

Also note that the sampling interval is normally given in seconds and the sampling rate

given in Hertz, so for the temperature example the sampling interval is 1800 seconds and

the sampling rate/frequency is 0.0005555Hz. You can test your understanding of these

terms by completing the quiz at pzdsp.com/quiz1 after you complete the next section on

Mathematical notation.

Notation used
The table below shows that data used in the temperature measurement example with

three additional columns: sample number, sample notation and sample value. You’ll

notice that the first value is referred to as sample number 0 rather than 1.

Time Temperature (°C) Sample Number (n) Sample Notation Sample Value

09:00 15.1 0 x[0] 15.1

09:30 15.6 1 x[1] 15.6

10:00 16.7 2 x[2] 16.7

10:30 18.4 3 x[3] 18.4

11:00 19.5 4 x[4] 19.5

11:30 20.1 5 x[5] 20.1

Q: You weren’t told what the sampling
rate was for the speech signal example
but you could work it out from the
information given! See if you can work
out why it’s 5000Hz!

http://pzdsp.com/quiz1

Digital Signal Processing Foundations

David Dorran Page 8

The 4th column of the table shows the mathematical notation used to represent each

sample, so sampled number 0 is denoted by x[0] has a value of 15.1; sample number 1 is

denoted by x[1] has a value of 15.6; and so on. In this document I'll use the notation x[n]

to refer to the entire sequence of numbers associated with a discrete signal and I’ll show

the sample values as follows:

x[n] = [15.1 15.6 16.7 18.4 19.5 20.1]

If I'm referring to two or more discrete signals I'll just use a different letter to represent

each signal. So here are two more discrete signals

g[n] and w[n]:

g[n] = [310 23 90 100 390 255 292 42 902 34 102 394

292 492 12 324 841 232]

w[n] = [-0.12 0.35 1.01 -2.3 8.7 0.02]

Working with Matlab/Octave

In order to fully appreciate the concepts presented in this document you should start to

create and visualise signals yourself. Matlab and Octave are two applications that are

used frequently by signal processing engineers and scientists to analyse and manipulate

discrete signals and I would encourage you to install one of these on your computer so

that you can try out the techniques that you will learn about; alternatively you can use

online versions of these tools with some restrictions http://octave-online.net. Whatever

route you choose make sure that you start working on problems as it really is a great way

to develop your understanding!

In this document I’ll provide links to video tutorials on using Matlab/Octave (I mainly

use Matlab but all the tutorials should work with Octave as well) and it would be useful

to try and replicate what you see in those tutorials as much as you can without having

the example code used directly in front of you. It might a good idea to have the code

available close by for reference if required though. The key aspect of this activity is that

you write the code yourself! You might feel that there is no need to write code because

you understood everything while you watched a video but you will find that that you’ll

gain valuable insight by trying things out and you’ll also be developing the practical

skills that you’d need to work in industry. You will most likely find writing your own

Q: If the sampling rate associated with g[n]
is 5Hz and the sampling interval associated
with w[n] is 200ms, which signal shown
has a longer duration?

Q: Can you see why the result of
multiplying g[3]by w[1] is 35?

Digital Signal Processing Foundations

David Dorran Page 9

code to be a slow process at first but you should persevere as the commands used in the

tutorials are used very frequently in practical signal analysis. You’ll also see the benefits

later on if you start to work on more complex problems.

Additional resources

An online quiz can be found at pzdsp.com/quiz1

Some related videos:

pzdsp.com/vid4 - Introduction to discrete signals

pzdsp.com/vid5 - Capture of discrete signals demonstration

pzdsp.com/vid6 - Choice of sampling rate/sampling interval

pzdsp.com/vid7 - Discrete versus continuous signals using plots

pzdsp.com/vid8 - Overview of process of capturing a discrete signal

pzdsp.com/vid9 - An introduction to aliasing

pzdsp.com/vid10 - Quantisation error explanation

http://pzdsp.com/quiz1
http://pzdsp.com/vid4
http://pzdsp.com/vid5
http://pzdsp.com/vid6
http://pzdsp.com/vid7
http://pzdsp.com/vid8
http://pzdsp.com/vid9
http://pzdsp.com/vid10

Digital Signal Processing Foundations

David Dorran Page 10

Frequency-domain representation of signals
When someone plays the guitar different sounds are created because the guitar strings

vibrate or oscillate at different frequencies. A similar effect can be heard if you stretch an

elastic band between your fingers and pluck it and you’d notice that changing either the

length or the tension of the band would alter the frequency of the sound since this

causes the band to vibrate at a different rate or frequency.

When something is oscillating a repeating pattern is being produced over time. This can

be seen with a vibrating elastic band as it moves backwards and forwards through its

initial position. Take a look at the following link to clearly see this effect a slow motion

video of guitar strings as they oscillate: pzdsp.com/vid11.

The repeating nature associated with the movement of a guitar string can also be seen in

a plot of the audio signal produced. You should note that the rate of oscillation of the

string is the same as the rate of oscillation of the audio signal since it is the string

vibrations that cause pressure variations in the air which we perceive as sound (The

recording of the bass guitar signal shown above can be downloaded from

pzdsp.com/sig1) . The change in air pressure can also be picked up by a microphone and

stored on a computer as a discrete signal.

The frequency-domain representation of a signal is a convenient way of showing the

oscillation rate of a signal, as explained in the following paragraph.

As can be seen in the figure the sound pressure oscillates after the initial ‘attack’ or

transient component of the signal. This plot of pressure variation over time is referred to

as a time-domain plot and by looking closely at this plot you can see that the time to

complete one cycle of an oscillation is about 1.82 milliseconds (approx. 11 cycles over a

200ms segment

Time-domain view of a

1.5 second recording of a bass guitar

M
a
g
n
it
u
d
e

Frequency Hz

Frequency-domain view

time

A
m

p
lit

u
d
e

50 100 150 200 250 300

Fundamental (55 Hz)

http://pzdsp.com/vid11
http://pzdsp.com/sig1

Digital Signal Processing Foundations

David Dorran Page 11

200ms segment). In other words the cycle is repeating about 55 times every second. To

the right of the time-domain plot is a plot of the magnitude spectrum which is a

frequency-domain representation that can be used to quickly determine the rate of

oscillations in time-domain signals. The three relatively large ‘spikes’ shown in the

magnitude spectrum represent the fundamental frequency (55Hz) and the first two

harmonics (110Hz and 165Hz). You should notice that you can tell the rate of oscillation

(55Hz) quite easily when you look at the signal in the frequency-domain; much more

quickly and easily than by analysing the period of the time-domain signal.

 This type of repeating pattern doesn’t just happen with audio signals and it can be

observed in many signals including those from our heart. Your heart will beat at

particular rate, or frequency, depending on what you are doing and your heart rate will

increase if you go for a run or cycle. Engineers and scientists (and musicians and

doctors!) are often analysing the repeating nature of signals and the frequency-domain

view of a signal shows the frequency of the repeating patterns in a convenient graph.

The frequency-domain view of a signal provides another way of analysing a signal which

can provide valuable insight into a signals’ behaviour. I find it useful to relate this to the

way an architect has different drawings of a building depending on who she is dealing

with: A client would find it easier to visualise what the building would look like by

examining a 3-D view of the building; while a builder would require detailed plans in

order to construct the building. Both sets of drawings are

representations of the same building and both have their

uses. It’s the same with the time-domain and frequency-

domain views of signals – both represent the same signal and

both can be very useful when analysing signals. Here’s a link

to a video which demonstrates the benefit of both the time-

domain view and frequency-domain view of a signal

pzdsp.com/vid12.

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

M
a

g
n

it
u

d
e

Frequency (Hz)

0

A
m

p
lii

tu
d

e

Time (Seconds)

Fundamental (1.1 Hz)

Time-domain view of an ECG signal Frequency-domain view of the ECG Signal

Magnitude Spectrum

http://pzdsp.com/vid12

Digital Signal Processing Foundations

David Dorran Page 12

Frequency-domain graphs of signals are very easy to create using tools like Octave and

Matlab and they make use of Fourier analysis techniques to extract frequency

information from a time-domain signal. A detailed description of how these techniques

work is outside the scope of this document but I’ve provided links to videos at the end of

this section if you would like to find out more. It is worth noting that the basic principle

behind all of the Fourier analysis techniques is that any signal can be broken down into

a set of sinusoidal signals and this concept is explored in the next couple of subsections.

What are sinusoids?

A sinusoid is a waveform that oscillates smoothly over time and is associated with many

signals that occur in nature. For example, when you whistle you create pressure

variations in the air which have a sinusoidal shape or of you were to allow an object

attached to the end of a spring bounce up and down then the motion of the object

would also be sinusoidal (see pzdsp.com/vid13). Even more interestingly it turns out that

sinusoids are a fundamental building block of any signal so it’s worth spending some

time getting used to what they look like and how they can be represented

mathematically. This fact was proven mathematically by a French mathematician called

Jean Baptiste Joseph Fourier (1768-1830).

There are three features of sinusoidal waveforms that you’ll need to be comfortable with:

frequency, amplitude and phase offset.

The figure above shows a time-domain plot of a cosine waveform to the left and its

corresponding magnitude spectrum to the right. From the time-domain view notice that

the sinusoids amplitude oscillates between 1.5 and -1.5 which means that the amplitude

of the sinusoid is 1.5. You’ll notice that the sinusoid is repeating every 0.5 seconds, in

other words it has a period of 0.5 seconds, which means that it has a frequency of 2Hz.

A sinusoidal waveform of

amplitude 1.5 and frequency 2 Hz

0 0.5 1 1.5 2 2.5 3

-1

0

1

A
m

p
lit

u
d
e

time (seconds)

M
a
g
n
it
u
d
e

Frequency (Hz)

Frequency-domain view

1 2 3 4 5 6

Time-domain view

1.5

http://pzdsp.com/vid13

Digital Signal Processing Foundations

David Dorran Page 13

I’d recommend you check out the interactive animation at

pzdsp.com/sinusoids in order to get a clearer idea about these

parameters.

The frequency-domain plot of the sinusoid shows a single spike at

a frequency of 2Hz. Anytime you have a time-domain plot of a

single sinusoid you will observe a single spike in the frequency-

domain and the position of the spike on the frequency axis

corresponds to the frequency of the sinusoid. The magnitude

(height) of the spike is proportional to the amplitude of the

sinusoid. You’ll see examples of signals with more than one

sinusoid present in the next section.

Before we look at the phase associated with this sinusoid lets first take a look at a

mathematical function often used to represent a sinusoid which is shown below:

The A parameter determines the amplitude of the sinusoid; f determines the frequency

and (Greek letter phi) parameter determines the phase offset (also referred to as the

initial phase or phase). The t variable represents time and the mathematical expression

is evaluated for a range of values of t in order to create a time-domain signal. So if you

wanted to recreate the plot of the sinusoid shown above you’d substitute A with 1.5, f

with 2 and with 0 to give x(t) = 1.5cos(4 t), and then you could solve this for a

number of values of t before finally plotting your graph of x(t) against time.

 You should notice that when the phase value is zero that the waveform will be a

maximum when t=0 and every period of the waveform after that. Changing the phase

will change the times when the maximum of the sinusoid will occur. You should try this

Code to create a plot of a
sinusoid:
A = 1.5;
f = 2;
phi = 0;
duration = 1; %1 second
T = 1/f;
t=0:T/100:duration;
x = A*cos(2*pi*f*t + phi);
plot(t,x)
xlabel(‘time (seconds)’)
ylabel(‘Amplitude’)

http://pzdsp.com/sinusoids

Digital Signal Processing Foundations

David Dorran Page 14

out for yourself using the code above and you should also observe that adding 2 to any

phase offset value you try out will produce the same waveform. For example, the

waveform produced when the phase offset is set to 1.4 will be the same as the waveform

produced when the phase is set to 1.4+2 , or 1.4+4 , or even 1.4-2 for that matter.

All signals can be decomposed into sinusoids

The French mathematician called Jean-Baptiste Joseph Fourier proved that any signal

can be recreated by adding sinusoidal signals together. (see pzdsp.com/vid14 and

pzdsp.com/vid15 for video tutorials/demonstrations on this concept).

The frequency-domain view of a signal provides a way to visualise the sinusoids that

make up a signal. The magnitude spectrum shows the amplitudes of the various

sinusoids which make up a signal, while the phase spectrum shows the phases of the

sinusoids which make up a signal.

The figure above shows a waveform (top) which is a plot of the time-domain signal

produced when the two sinusoids shown below it are added together. The frequency-

domain view of this signal contains two spikes; the spike at 2 Hz is larger than the one at

24Hz because the 2Hz sinusoid is larger (5 times larger) than the 24Hz sinusoid.

http://pzdsp.com/vid14
http://pzdsp.com/vid15

Digital Signal Processing Foundations

David Dorran Page 15

The figure to the right shows the

magnitude spectrum of a signal in

the bottom plot; with the time-

domain view of the same signal

shown in the top plot. Each of the

'spikes' in the magnitude spectrum

represents a sinusoid (there are 4 in

total indicating the presence of 4

sinusoids in the signal; in other

words the signal could be reproduced

by adding four sinusoids together).

Each of the four sinusoids, which

when summed together produce the time-domain signal shown in the top plot, is shown

in the middle plot. The green sinusoid has 5 cycles over the one second duration of the

segment shown and therefore has a frequency of 5 Hz; it has the largest amplitude, as

can also be seen in the corresponding magnitude spectrum plot where the ‘spike’ shown

at 5 Hz is the largest. It can also be seen in the magnitude spectrum that the ‘spike’ at 8

Hz is less than half the height of the 5 Hz spike; this can also be seen in the middle plot

whereby the sinusoid with 8 cycles in one second has an amplitude of less than a half

the amplitude of the 5 Hz sinusoid.

The phase values for each of the sinusoids present in the signal are 0, 0, 3.14, 2.13 radians

for the 1, 5, 8, and 10 Hz components. These phase values are phase shifts relative to

cosine waveforms. A plot of the phase spectrum shows the phase values plotted against

frequency in a similar way to the magnitude spectrum showing the magnitude values

plotted against frequency.

If you would like to see a practical application of the frequency-domain then take a look

at pzdsp.com/vid12.

Additional resources

An online quiz can be found at pzdsp.com/quiz2

Some related videos:

pzdsp.com/vid16 – Using matlab’s fft function

pzdsp.com/vid17– Plotting magnitude spectrum

http://pzdsp.com/vid12
http://pzdsp.com/quiz2
http://pzdsp.com/vid16
http://pzdsp.com/vid17

Digital Signal Processing Foundations

David Dorran Page 16

Discrete systems
Discrete systems are used to manipulate or modify discrete signals in meaningful ways.

They take a discrete signal

(sequence of numbers) as an input

and generate a discrete signal at

their output.

One common application of discrete systems is to remove some interference or ‘noise’

component from a signal. It was mentioned earlier that signals such as ECG signals can

be plagued with the introduction of noise from electrical components in the vicinity of

the sensors used to capture the signal. This type of noise is normally present at

frequencies of 50Hz or 60Hz depending on where you live and discrete systems, known

as filters, can be designed to remove such artefacts.

Another common application of discrete systems is to model the behaviour of a real-

world systems like a bridge or the suspension of a car. Using the car suspension as an

example, imagine you wanted to try out a new suspension design for a racing car and

you’d like to see how it performs on bumpy race tracks. One way would be build the

suspension, hire a track out for the day, test your design, go back to your workshop to

make any adjustments, and repeat as often as needs be. This might prove to be very

costly if you need to test frequently! An alternative is to build a discrete system that

models your suspension design; then create a signal that models the forces being applied

to the car as it goes over bumps; and finally use your computer to analyse and adjust

how your design works before going through the costly process of manufacture.

Discrete systems are capable of achieving some amazing results and they are central to

Digital Signal Processing. In the next section you’ll learn about the three basic

components of discrete systems: adders, multipliers and delays. You’ll also see how to

visualise discrete systems using signal flow diagrams and how they relate to the

mathematical description of a discrete system i.e. difference equations.

DSP

Filter

Noisy ECG Signal Filtered ECG Signal

Digital Signal Processing Foundations

David Dorran Page 17

Difference equations and signal flow diagrams

In this section you’ll see how three practical discrete systems operate and also be shown

their signal flow diagrams and difference equations. After you complete this section it

will be important that you are able to relate the difference equations to the signal flow

diagrams for each example. You’ll also be shown some example code which can be used

to implement each system; if you just want to get a flavour of DSP then it’s not

important for you to fully understand this code but if you want to be able to apply DSP

then you will.

Example 1 – An amplifier

Perhaps the most basic discrete system is an amplifier. The figure below shows a discrete

signal x[n] being amplified by a factor of 2 with all the samples of the input signal being

multiplied by 2. (see pzdsp.com/vid18 for a demo)

Although this is a very basic system it is nonetheless very useful. For example in audio

applications such a system would have the effect of increasing the volume of the audio

signal.

Discrete systems are very often described mathematically and this amplifier system can

be described using the following equation (referred to as a difference equation):

, where x[n] represents the input to the system, y[n] represents the output and n

represents the sample number.

By solving this difference equation for different values of n you can determine the

output of the system for any input discrete signal (sequence of numbers). For example

http://pzdsp.com/v18

Digital Signal Processing Foundations

David Dorran Page 18

let’s work out what the output of the amplifier will be if the input to the system is given

by the following sequence:

Let’s first solve for n = 0, therefore

Substituting for gives

If you were to solve for n = 1 you’d find that ; n = 2 gives ; ;

etc.

I’m sure you’ll have found solving these equations a trivial task however it would

become extremely tedious to determine the output of the system by hand if you were

dealing with thousands or millions of input samples. This is where computers come in

extremely handy since they can easily multiply millions of numbers every second. To

give you an idea of how computers do this then take a look at this video which

implements the following Octave/Matlab code that determines the output of the

amplifier system for a large sequence of numbers.

Another way of representing a discrete system is by using what’s referred to as a signal

flow diagram. The signal flow diagram is a graphical representation of a discrete system

which illustrates how the system behaves. The figure below shows the signal flow

diagram for the amplifier system. The signal flow diagram contains a multiplier

operator which multiplies any input by a factor of 2.

Example 2 – Moving average filter

Another discrete system that is relatively straightforward to appreciate is a two-tap

moving average filter. This system takes the average of two consecutive input samples

and passes the result to the output of the system.

Digital Signal Processing Foundations

David Dorran Page 19

The moving average filter is very useful as it can mitigate fluctuations that may occur

when data is gathered. For example consider the situation where you are measuring a

river level which is affected by a local tide. These

measurements will fluctuate as the water sloshes around

the meter. By taking the average of two consecutive

measurements the effect of the sloshing movement of the

water will be reduced (take a look at the plots at the end of

this subsection to see the effect of a moving average filter).

The two-tap moving average system can be represented mathematically by the following

difference equation:

Once again if you were to solve this difference equation for different values of n you

would determine the output of this system for any input x[n]. I would encourage you to

do this for yourself and notice that when you solve for n = 0 that you will have an x[-1]

term in the equation; this x[-1] term is not explicitly defined so you assume that it is

zero. Also, if you were to solve for n = 6 using the input shown in the figure above you

should get a value of 0.5 for y[6] since x[6] is not explicitly defined. Take some time to

make sure you understand the contents of this paragraph.

The signal flow diagram of the two-tap moving

average is shown to the left and it contains two

multipliers, one adder and one delay operator (the

square with a D inside it). The behaviour of the delay

operator is most easily explained by way of example

so check out pzdsp.com/vid19.

http://pzdsp.com/vid19

Digital Signal Processing Foundations

David Dorran Page 20

Moving average filters can average more than just two consecutive samples and can take

the average of any number of consecutive samples. As an example, a four-tap moving

average filter is applied to the following data sequence which represents a river level (in

meters) taken at 20 minute intervals:

[.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6]

This raw data is plotted to the left in the figure below and you can see that the readings

fluctuate significantly. The plot to the right shows the result of passing the data through

a four-tap moving average which takes the average over 4 consecutive samples. You see

that the fluctuations in the readings have been smoothed out by the filter.

The difference equation of a four-tap moving average filter is given by:

You will notice that the first four three samples

of the filtered river data have a relatively steep

slope. This is because the first three outputs

(y[0], y[1], and y[2]) are all calculated using values

of x[n] that are undefined and therefore assumed to

be zero. This has the affect of skewing the output

of the filter and DSP practitioners need to be

acutely aware of this issue when filtering data.

The signal flow diagram is shown to the right.

Example 3 – Temperature model

This example is not as straightforward as the other two examples and don’t be too

concerned if the application of the example doesn’t make complete sense. The main

reason I included this example is to show that the output of a system can be fed back

Digital Signal Processing Foundations

David Dorran Page 21

into a system i.e. in this system the output is dependent upon previous output samples

and not just input samples.

The discrete system given by the difference equation below allows you to determine

(approximately) how the temperature of a glass of water would change if it was placed in

a cool fridge. Hopefully you can appreciate that the temperature of the glass of water

would gradually fall until it was the same temperature as the fridge.

The model takes the initial temperature difference between the water and the fridge as

an input x[n] and gives the change in temperature relative to the initial temperature over

time as an output y[n]. Since the temperature of the glass of water will eventually match

the temperature of the fridge then y[n] will eventually reach a near constant value, and

be in steady-state.

This model was derived using Newton’s Law of Cooling and the constant k is the referred

to as the cooling constant and is dependent upon the amount of water in the glass and

the insulation provided by the glass containing the water. The T variable is the sampling

interval used by the system and the product kT should be no more than .01 to ensure the

model is reasonably accurate.

The constant k often determined through experimentation and once found you can use

the model to predict how the temperature of a glass of water would change over time for

any initial temperature difference and any fridge temperature (once the water remains a

liquid! Also you would need to cover the glass to prevent any evaporation for high

temperatures!).

As an example let’s try to model how the temperature of a glass of water will change if it

was initially 15 °C and then placed in a refrigerator of 4 °C. The difference is therefore 11

°C and the input will be a sequence of sample values that are all values of 11:

Digital Signal Processing Foundations

David Dorran Page 22

In this example we’ll set the cooling constant k to being a value of 0.01. Since we are

synthesising the input signal we can use any value for T that we like; the smaller the

value of T the more accurate the model will be, however if T is very small we’d have to

perform a lot of calculations before the output would reach a steady-state. A reasonable

value for T in this case is 1.

The difference equation is therefore:

To determine the output of the system you need to solve this difference equation for

different values of n. Solving for n =0 gives:

 Substituting x[0] for 11 and y[-1] for 0 (since y[-1] has not yet been defined) gives:

Solving for n = 1 gives

Substituting x[1] for 11 and y[0] for gives

All of the remaining output samples can be determined in a similar manner which is

possible but somewhat tedious. In practice a computer would be used to determine the

output samples and you can see how to use Matlab or Octave to do this in the next

section.

The table to the left below shows the first 7 output samples of the discrete system model

and you should make sure that you can work them out by hand to ensure you

understand the process. The plot to the right shows a plot of 1000 output samples and

you should notice that the output reaches what’s known as steady-state after about 500

samples, which corresponds to 500 seconds in this example since the sampling interval

is 1 second. Remember that the output represents the change from the initial input value

Digital Signal Processing Foundations

David Dorran Page 23

so the steady-state reading of -11 °C means that the temperature of the glass of water

eventually reaches 4 °C (initial value of 15 °C less 11 °C).

n x[n] y[n]

0 11 -0.1089

1 11 -0.2167

2 11 -0.3235

3 11 -0.4292

4 11 -0.5339

5 11 -0.6375

6 11 -0.7401

Digital Signal Processing Foundations

David Dorran Page 24

Implementing discrete systems using Matlab/Octave
Determining the output of discrete systems (implementing a discrete system) can be a

tedious task when you are dealing with lots of samples. Luckily computers can perform

the calculations for us extremely quickly and accurately. Both Matlab and Octave are

used very frequently for this purpose and have built-in commands/functions that make

it a very straight forward process; however these functions require the discrete systems

to be described in terms of b and a coefficients.

Once you develop an understanding of b and a coefficients you will be able to quickly

implement and analyse discrete systems using built-in Matlab/Octave functions.

Perhaps the quickest way to understand how to determine a system’s b and a

coefficients is to run through a few of examples. The table below shows five discrete

systems in their difference equation form in the left column and their corresponding b

and a coefficient representation in the right. I’ll describe the conversion process in the

following paragraphs but you might find it easier to understand by looking at the

following video pzdsp.com/vid20

 a = [1]

b = [3 2]

 a = [1]

b = [0.5 -1 2]

 a = [1]

b = [-1 0 0 1]

 a = [1 -0.3]

b = [2]

 a = [1 0 0.2]

b = [0.1 0 1]

The mappings of the b and a coefficient vectors to the coefficients of the difference

equation for each of the examples shown in the table above is illustrated in the

paragraphs below. While referring to each of the illustrations you should note that the a

coefficients are all associated with y terms in the difference equation and the b

coefficients are all associated with x terms.

Also note that the first element of the a coefficient vector is associated with y[n]; the

second element (if there is one) is associated with y[n-1]; the third element (if there is

one) is associated with y[n-2]; etc.

http://pzdsp.com/vid20

Digital Signal Processing Foundations

David Dorran Page 25

Similarly the first element of the b coefficient vector is associated with x[n]; the second

element (if there is one) is associated with x[n-1]; the third element (if there is one) is

associated with x[n-2]; etc.

Example 1

Rewritten as:

a = [1]

b = [3 2]

Example 2

Rewritten as:

a = [1]

b = [0.5 -1 2]

Example 3

Rewritten as:

a = [1]

b = [-1 0 0 1]

Example 4

Rewritten as:

a = [1 -0.3]

b = [2]

Example 5

Rewritten as:

a = [1 0 0.2]

b = [0.1 0 1]

Digital Signal Processing Foundations

David Dorran Page 26

Implementation examples

Once you have the b and a coefficients of a system then the implementation is a trivial

task using built-in Matlab/Octave functions. This section runs through the examples

shown earlier (amplifier, moving average and system model) that you should try out

yourself. If you don’t have Matlab or Octave installed on your computer then you can

use an online version http://octave-online.net

An amplifier system which amplifies by a factor of 2 is described by the following

difference equation:

The b and a coefficients just have one value each i.e. a = [1] and b= [2].

Use the code below to determine the output of this system after applying an input x[n]

which is given by

[2 1.1 3.2 0.3 1 0]

A 4-tap moving-average filter is given by the following difference equation

The b and a coefficients are therefore: a= [1] and b = [0.25 0.25 0.25 0.25].

Use the code below to determine and plot the output after passing the following river

level signal though the system:

[.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6]

x = [2 1.1 3.2 0.3 1 0];
b = 2;
a = 1;
y = filter(b, a, x)

x = [.375 .35 .425 .475 .4 .375 .525 .425 .475 .425 .5 .45 .575 .525 .6 .675 .575 .7 .725 .6];
b = [0.25 0.25 0.25 0.25];
a = 1;
y = filter(b, a, x)
plot(y)

http://octave-online.net/

Digital Signal Processing Foundations

David Dorran Page 27

A model of the change in temperature of a glass of water placed in a fridge is

given by (where the cooling constant is 0.01 and the model operates on data sampled at

1Hz):

where x[n] is the initial difference in temperature between the water and the fridge and

y[n] is the change in the water temperature from its initial temperature.

Using the earlier example of the water temperature being initially 15 °C and then placed

in a refrigerator of 4 °C then x[n] will be constantly 11 °C.

Use the following code to model this setup for 1000 seconds:

Additional resources

An online quiz can be found at pzdsp.com/quiz3

Some related videos:

pzdsp.com/vid21 – System frequency response

pzdsp.com/vid22 – Magnitude response using plots

pzdsp.com/vid23 – Filtering signals using discrete systems

x = ones(1, 1000)*11; %1000 seconds
b = [-0.0099];
a = [1 -0.9901];
y = filter(b, a , x);
plot(y)
xlabel('Samples')
ylabel('Temperature Change')
figure
plot(y+15)
xlabel('Samples')
ylabel('Temperature of water')

http://pzdsp.com/quiz3
pzdsp.com/vid21
pzdsp.com/vid22
pzdsp.com/vid23

	Digital Signal Processing Foundations
	Recommended Citation

	Dublin Institute of Technology
	ARROW@DIT
	2015-01-27

	Digital Signal Processing Foundations
	David Dorran

	Digital Signal Processing Foundations

