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= Research Aim:

To develop novel modelling capability that is inclusive of the
power engineering complexities associated with urban
(electricity) network integration of small/micro wind generation,
and informed by urban climate research
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Research Motivation

Micro/Small Wind Electricity Generation

@I Locati@
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Maximum Energy
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Micro/Small Wind Electricity Generation

WHY URBAN WIND?

Population Centres
Transmission/Distribution losses
Green solutions must include wind

Smarter energy diversification must be
Inclusive of wind within urban centres BUT
solutions predicated on the resource and not
specifically the technology are needed

K. Sunderland
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Research Motivation

= Smart Cities.... Smart Grids

o An amalgamation of communication and electrical
capabilities that allow utilities to understand, optimize,
and regulate demand, supply, costs and reliability.

Facilitating electrical providers to interact with the power delivery
system and determine whether electricity is being used and from where

it can be drawn during the time of crisis and peak demand.

On the demand side — the smart grid empowers the consumer to
become a ‘prosumer’...

K. Sunderland Slide 4
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= Why is a Smart Grid needed?

o Future grid networks must be competitive and supportive
of environmental objectives and sustainability

o Reliability, flexibility, accessibility and cost-effectiveness
are the primary objectives

o Should accommodate both central and dispersed
generation

o Options for end-users to be more interactive with both
market and grid; promoting the concept of a ‘prosumer’
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= Why is a Smart Grid needed?

o Future grid networks must be competitive and supportive
of environmental objectives and sustainability

o Reliability, flexibility, accessibility and cost-effectiveness
are the primary objectives

o Should accommodate both central and dispersed
generation

o Options for end-users to be more interactive with both
market and grid; promoting the concept of a ‘prosumer’

)

Therefore the means of applying the primary energy resource (Wind) in this regard
within urban centres must be achieved
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Urban Effects & Wind Modelling

Suburban

Urban Environmnet Two zones categorised in terms of
local heterogeneity: (Urban and
Suburban)
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k Urban Environmnet
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52 Urban Effects & Wind Modelling
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52 Urban Effects & Wind Modelling

NEERING

Suburban

Urban Environmnet Two zones categorised in terms of (Electrical) Distribution Network
local heterogeneity: (Urban and considered in terms of both local
Suburban) climate zones
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“* Urban Effects & Wind Modelling
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** Urban Effects & Wind Modelling

EERING

Wieranga, Bottema approximation
and a Logarithmic extrapolation
based on fitted surface roughness
Logarithmic parameterisation
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DwG & DN Implications
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(Standardised) Distribution
Network analysis
o Single-phase 4-Wire
(and Ground)
o Complex/unbalanced

(consumer) load
configurations
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DwG & DN Implications

ENGINEERING

(Standardised) Distribution
Network analysis
o Single-phase 4-Wire
(and Ground)
o Complex/unbalanced

(consumer) load
configurations

Energy flow - Mono-
directional Power Flow
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DwG & DN Implications
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DwG & DN Implications
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DwG & DN Implications
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DwG & DN Implications

Embedded Generation Issues
o Bi-directional power flow

0 Network Power Quality
management

o Safety implications
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Surface Roughness Parameterisation

Su Cu

Obs. Obs.

Freq. Ung us Diny | Dirg Freq. | uy ug Diry Dirg
Dir[deg] | [%] [m/s] | [m/s] | [deg] | [deg.] | zo[m] | [%] [m/s] [m/s] [deg.] | [deg.] | zo[m]
0-30 1.8% 1.9 0.9 104 86 1.9% 2.3 1.0 82 &6
30-60 2.9% 2.4 1.0 91 47 3.0% 3.3 1.5 76 46
60-90 3.5% 3.0 1.3 103 42 3.8% 4.1 1.8 91 34
90-120 4.6% 2.8 1.6 127 51 3.9% 3.3 1.8 113 42
120-150 12.1% | 3.4 1.9 151 49 0.924 | 10.1% | 3.6 1.8 139 42 1.145
150-180 5.8% 3.7 1.8 179 37 0.395 | 4.4% 34 1.7 167 39 0.870
180-210 10.1% | 5.2 2.4 218 27 0.180 | 9.0% 4.9 2.2 211 26 0.640
210-240 21.2% | 5.0 2.2 244 23 0.342 | 22.0% | 5.0 2.2 239 18 0.791
240-270 22.4% | 4.8 2.1 268 18 0.660 | 243% | 5.1 2.1 263 14 1.0575
270-300 10.1% | 3.4 1.6 281 30 0.602 | 11.3% | 3.9 1.8 282 17 0.724
300-330 3.7% 2.6 1.4 286 55 4.0% 3.0 1.6 287 45
330-360 | 2.0% | 2.1 1.1 219 | 115 22% |22 0.9 231 117

L 0faverage) 0.5171 ZOfaverage) 0.8713
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Surface Roughness Parameterisation
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Cy Sk

Wieranga Bottema Log-
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1.2202 1.3873 1.0479
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Results & Findings
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 Urban Observations & Modelllng

Observation vs. Modelling

Scattergram comparison of high-platform Energy implications with respect to height
observed and modelled wind speeds variation for a wind generator at both sites
(Nov. 2010 —to— Jan 2011) (Nov. 2010 —-to— Jan 2011)
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Distribution Network Reaction

Typical Mean Year of Wind Speed (Markov Chain)

Urban Modelled Wind Speed (Cn)

Suburban Modelled Wind Speed (Sg)

Markov chain

Markov chain

Statistical Modelled Wind | Extended Data set | Modelled Wind | Extended Data set
Comparison | Data (4789 Hrs) (8760hrs) Data (5556 Hrs) (8760hrs)
UhMean 4.62 4.58 4.39 433
UsTd 2.09 2.18 1.96 2.05
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Distribution Network Reaction
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Future Work

Us 7—d To be applicable from the ISL into the RSL,
U(z) = 2 In | —— neighbourhoods of homogeneity need to be identified —
distinctly different surfaces can be considered separately

J. T. Millward-Hopkins, et al., "Estimating Aerodynamic Parameters of Urban-Like Surfaces with Heterogeneous

Building Heights," Boundary-Layer Meteorology, vol. 141, pp. 443-465, 2011/12/01 2011. n
J. T. Millward-Hopkins, et al., "Aerodynamic Parameters of a UK City Derived from Morphological Data,"
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= Rastered Digital Elevation Model (DEM) - - building footprints (Dublin)
= Divide the city into distinct neighbourhood regions — Adaptive Grid

Geometric Parameterisation: Employing an

adaptive grid to calculate the geometric
parameters
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= Morphemetric Model
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Conclusions

ENGINEERING

= |n the context of smart cities and smarter (electricity) grids, this type of research is
essential if renewable energy is to facilitate a cultural shift towards an era of
prosumers.

= In terms of the limits available to wind energy extraction in an urban context., the
analyses illustrated limited opportunities below a height2 > 4 x z,, |

= By linking urban wind observations to a background reference, an empirical
logarithmically matched profile was possible. (Analytical linkages to observations within
the canopy suggested that knowledge of the background resource in this regard is of
limited value)

= Analyses of a fully described 4-wire unbalanced section of Dublin city network, in
respect of increasing levels of prosumer (with a grid-tied commercially available DwG),
illustrated that for exemplar consumer load and a typical mean year of wind speed,
voltage tolerance breaches are unlikely and of marginal concern (<2% of occasions)

= Future work will focus on validating the emperical logarithmic extrapolation models
through moprphemtric means of deriving the Dublin city urban aerodynamic
parameters

K. Sunderland Slide 14
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