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The influence of correlation on the extreme traffic loading of bridges 
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ABSTRACT: Accurate traffic loading models based on measured data are essential for the accurate assess-
ment of existing bridges.  There are well-established methods for the Monte Carlo simulation of single lanes 
of traffic, and this can easily be extended to model the loading on bridges with two independent streams of 
traffic in opposing directions.  However, a typical highway bridge will have multiple lanes in the same direc-
tion, and various types of correlation are evident in measured traffic. This paper analyses traffic patterns using 
multi-lane WIM data collected at two European sites.  It describes an approach to the Monte Carlo simulation 
of this traffic which applies variable bandwidth kernel density estimators to empirical traffic patterns of vehi-
cle weights, gaps and speeds. This method provides a good match with measured data for multi-truck bridge 
loading events, and it is shown that correlation has a small but significant effect on lifetime maximum load ef-
fects. 

1 INTRODUCTION  

Much work has been done on modeling bridge load-
ing due to two-lane same-direction traffic. In the 
work by Nowak (1993), a number of simplifying as-
sumptions were made – for example that one in 15 
heavy trucks has another truck side-by-side, and that 
for one in 30 of these multiple truck events, the two 
trucks have perfectly correlated weights. A heavy 
truck was defined as one with a gross vehicle weight 
(GVW) in the top 20% of measured truck weights. 
As Kulicki et al. (2007) note, the assumptions used 
were based on limited observations, and the assump-
tions on weight correlation were entirely based on 
judgment, as almost no data were available. Moses 
(2001) presents a simple traffic model for estimating 
multiple presence probabilities as a function of aver-
age daily truck traffic (ADTT), and then selects con-
servative values, some being based on subjective 
field observations, for calibrating load factors for 
bridge assessment. Sivakumar et al. (2007) refine the 
definition of side-by-side events to include two 
trucks with headway separation of ± 18.3 m (60 ft), 
and also consider the influence of the bridge length. 
Sivakumar et al. (2008), citing Gindy & Nassif 
(2006a), extend this further by classifying multiple-
presence events as side-by-side, staggered, following 
or multiple. They present statistics, derived from 
weigh-in-motion (WIM) measurements, for the fre-
quency of occurrence of these events for different 
truck traffic volumes and bridge spans. They de-

scribe a method for estimating site-specific bridge 
loading which uses multiple-presence probabilities 
calculated either directly from WIM data or esti-
mated from traffic volumes using reference data col-
lected at other sites. It is assumed, surprisingly 
enough. that the GVW distribution is the same in 
both lanes, and that there is no correlation between 
weights in adjacent lanes.  

In the development of the Eurocode for bridge 
loading (EC1 2003), characteristic load effects were 
estimated by extrapolating directly from results for 
measured traffic, and also by extrapolating from 
Monte Carlo simulation of traffic, with each lane be-
ing simulated independently (Bruls et al. 1996; 
Dawe 2003; O'Connor et al. 2001). 

Croce & Salvatore (2001) present a theoretical 
stochastic model based on a modified equilibrium 
renewal process of vehicle arrivals on a bridge and 
note that while existing numerical models are par-
ticularly efficient when single-lane traffic flow is 
considered, they are unsatisfactory for multi-lane 
traffic, and have often employed drastic simplifica-
tions. In their model, convolution is used to combine 
load effect distributions for traffic in multiple lanes. 

This study is based on WIM data collected at two 
European sites. A detailed analysis of the data re-
veals that for groups of adjacent vehicles in both 
lanes, there are patterns of correlation and interde-
pendence between vehicle weights, speeds and inter-
vehicle gaps. A Monte Carlo simulation model has 
been developed for evaluating bridge loading due to 



traffic in two same-direction lanes. This simulation 
seeks to reproduce the sometimes subtle patterns of 
correlation that are evident in measured traffic while 
also adding an element of randomness so as to vary 
the loading. This study focuses on short to medium 
span bridges, up to 45 m long, where free-flowing 
traffic with dynamics is taken to govern (Bruls et al. 
1996; Flint & Jacob 1996). 

 
Table 1. Summary of WIM data. _________________________________________________ 
Country        Netherlands  Czech Republic _________________________________________________ 
Time period      Feb 2005 to  May 2007 to 

June 2005   May 2008            __________________________ 
          Slow  Fast  Slow  Fast 
          lane  lane  lane  lane                                        __________________________ 
Total trucks       596568 49980 684345 45584 
ADTT**       6545  557  4490  261 
Maximum GVW (t )    166  75   129  128 
      (kips)  365  165  284  282 2 WIM DATA No. over 60 t   [132 kips]  1680  36   322  54 
No. over 100 t [220 kips]  238  0   10   2 _________________________________________________ The WIM data used as the basis for this study were 

collected at two sites – at Woerden in the Nether-
lands, and at Sedlice in the Czech Republic. Table 1 
summarizes the WIM data sets used.  

* Average daily truck traffic per lane on week days. 

As can be seen from the GVW distributions for 
each lane in the Netherlands in Figure 1, there are 
significant differences between the two lanes, with a 
much higher proportion of light vehicles in the fast 
lane (Fig. 1a) and the same is true in the Czech data. 
In the Netherlands, there is a much higher proportion 
of extremely heavy vehicles in the slow lane (Fig. 
1b) which is important for bridge loading. 

3 CORRELATIONS IN MEASURED DATA 

3.1 Vehicle weights 
For short to medium span bridges, loading events 
featuring one truck in each lane (either side-by-side 
or staggered) are particularly important. To assess if 
there is any dependence between the weights of 
these vehicles, each fast-lane truck in the measured 
data is notionally paired with the nearest truck in the 
slow lane, and the gap is measured in seconds be-
tween the front axles of the two vehicles. At both 
sites, most fast-lane trucks are within 2 seconds of a 
slow-lane truck – 75% in the Netherlands and 72% 
in the Czech Republic. The average GVW of the 
truck in the fast lane and of the nearest truck in the 
slow lane are plotted against the inter-lane gap for 
the Netherlands in Figure . There is a significant 
peak in the fast lane GVW when the gap is around 
zero – i.e. when the trucks are very close – and a 
similar pattern is evident in the Czech Republic. It 
appears that a heavy truck in the fast lane tends to be 
associated with a nearby truck in the slow lane, i.e. it 
is passing another truck. 
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Figure 2. Inter-lane GVW correlation, the Netherlands. 

(a) Netherlands up to 60 t [132 kips]. 
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(b) Netherlands over 60 t. 

Figure 1. GVW distributions. 

 3.2 Gaps and speeds  
 It is well established that the distribution of same-

lane gaps between vehicles varies with traffic flow  



rate (O'Brien & Caprani 2005); in general gaps are 
less for higher flows. It is evident from the WIM 
data used here that there is also some slight depend-
ence between gaps and GVW, and that successive 
gaps are not independent. At both sites, the axle to 
axle gap observed behind vehicles tends to increase 
as the GVW increases. This can be attributed partly 
to driver behaviour, perhaps greater overhang (axle 
to bumper) distances, and also to the fact that many 
trucks in excess of the normal legal weight limit are 
followed by escort vehicles. The idea that successive 
gaps are not independent is reasonably intuitive. The 
platooning effect commonly observed on highways 
means that smaller gaps tend to occur in groups.  

As might be expected, there is a tendency for 
heavier vehicles to travel at slightly lower speeds, al-
though most extremely heavy vehicles are travelling 
at around 80 km/h which would be regarded as a 
normal highway speed for any truck. Speeds of suc-
cessive vehicles in the same lane show a relatively 
high degree of correlation when the inter-vehicle 
gaps are small, with an average coefficient of corre-
lation for both sites of 53% when the gap is less than 
2 seconds. This drops to 15% when the gap is more 
than 2 seconds.  

4 SIMULATION OF TRAFFIC 

It is evident from the foregoing that there are dis-
cernible patterns in the measured traffic that may be 
significant for bridge loading. Using measured traf-
fic to calculate a distribution of load effects and then 
extrapolating from this to lifetime maxima implicitly 
incorporates the patterns in the traffic, but suffers 
from high uncertainty due to the extrapolation proc-
ess. Variation in results from extrapolation of up to 
33% have been reported by Gindy & Nassif (2006b), 
and up to 20% for the estimation of characteristic 
load for the Eurocode (Dawe 2003). The approach 
used here is to build a Monte Carlo simulation 
model that incorporates the patterns and then to run 
the simulation for a sufficiently long time period to 
avoid the problems associated with extrapolation.  

The spatial layout of vehicles on a two-lane 
bridge can be described by three gap distributions – 
in-lane gaps for each of the two lanes and inter-lane 
gaps. The standard approach to simulating random 
variables is to generate values from the required dis-
tributions. In this case, the three gap distributions 
cannot be simulated independently – for example 
generating random values from the two in-lane gap 
distributions will position vehicles in each lane, and 
this automatically determines the inter-lane gap dis-
tribution. For bridge loading, it might be reasonable 
to assume that the slow-lane and inter-lane gaps are 
more important than the fast-lane gaps. On this basis 
the slow-lane and inter-lane gaps can be simulated 
directly from the distributions, and a good match be-

tween observed and simulated gaps can be obtained. 
However, the simulation of the fast-lane gaps is 
completely wrong, with the platooning effect in that 
lane being lost in the simulation. 

In order to build a conventional simulation model 
for two same-direction lanes, all significant patterns 
in the measured data must be identified and quanti-
fied in some way that can be incorporated into the 
simulation. It is possible to build a reasonably accu-
rate model in this way, but the process is very site-
specific and time-consuming and the model needs to 
be carefully calibrated. Extending such a model 
from two to three or more lanes would be very chal-
lenging. An alternative multi-dimensional smoothed 
bootstrap approach is adopted here which avoids 
many of the difficulties associated with the conven-
tional approach, and in principle can quite easily be 
extended to more than two lanes. 

The principle of bootstrapping is to repeatedly 
draw random samples from the observed data (Efron 
& Tibshirani 1993). In this case, the samples used 
are “traffic scenarios”, with each scenario consisting 
of between five and eight slow-lane trucks in suc-
cession, with any adjacent fast-lane trucks. In prepa-
ration for simulation, the WIM data are analysed and 
all scenarios are identified. The parameters recorded 
for each scenario are flow rate, gaps, GVWs and 
speeds. The flow rate is represented by the number 
of slow-lane trucks in the current hour, rounded to 
the nearest 10 trucks/hour. The gaps needed to de-
fine the scenario are the gaps within each lane, and 
one inter-lane gap which positions the first fast-lane 
truck relative to the leading slow-lane truck in the 
scenario, as shown in Figure 3. 

The number of parameters needed to describe a 
single scenario (i.e. the dimensionality of the prob-
lem) varies with the size of the scenario, but in the 
typical scenario shown in Figure 3, a total of 21 dif-
ferent parameters are needed – the GVWs and 
speeds of seven trucks, six gap values and a flow 
rate. Correlations between parameters are implicitly 
included in each scenario.  

The aim in setting up the scenarios is to keep 
them reasonably small so as to maximise the vari-
ability in the simulation, but also to have them large 
enough to capture patterns that may be significant 
for bridge loading. In order to preserve any signifi-
cant groups of heavy vehicles in the slow lane, the 
first and last slow-lane trucks are required to be less 
than 30 t [66 kips]. Hence, starting from a truck less 
than 30 t, trucks are included until another less than 
30 t is found. The last truck in each scenario be-
comes the first in the next scenario. In order to pro-
vide greater coverage of different scenarios, four 
scans are made through the WIM data with the 
minimum scenario size varying from five slow-lane 
trucks for the first scan up to eight for the last scan. 

 



Slow-lane 

Slow 

Fast 

Fast-lane Inter-lane  
Figure 3. Traffic scenario. 

 
In the simulation process, a flow rate is deter-

mined for the time of day, based on average meas-
ured values for all weekdays. A scenario is selected 
at random from all scenarios corresponding to this 
flow rate. For a given traffic flow rate, each scenario 
has an equal probability of selection, and this means 
that the measured relative frequencies of the parame-
ters defining the scenarios are reproduced in the 
simulation. The number of different scenarios for a 
given flow rate depends on the quantity of measured 
WIM data, but at both sites there are in excess of 
20 000 scenarios for each of the commonly observed 
flow rates. The trucks in the selected scenario are 
added to the stream of traffic, the time is advanced, 
and another scenario is selected. The scenarios are 
joined together by overlapping the last truck of the 
previous scenario with first truck in the new scenario 
and then discarding the latter. As noted already, the 
overlapping trucks are all less than 30 t. 

4.1 Kernel density estimators 
The term “kernel density estimator” describes the 
use of kernel functions to provide a better estimate 
of a probability density function from sample data 
(Scott 1992). A simple histogram gives an estimate 
of the density at discrete points, but is influenced by 
the choice of the bin size and origin. Replacing each 
data point by a kernel function and summing these 
functions gives a better estimate. Different kernel 
functions can be used – they are typically symmetric 
unimodal functions such as the Normal density func-
tion. In Monte Carlo simulation, for each random 
variable, some estimate of its probability density is 
required. This estimate can be a parametric fit to the 
data or some non-parametric density. One non-
parametric method is to use interpolation on the em-
pirical cumulative distribution, but using a kernel 
density estimate gives a better coverage of the de-
sign space which is important for generating traffic 
loading scenarios that will be critical for bridges. As 
Hormann & Leydold (2000) point out, the 
“smoothed bootstrap” method – re-sampling the ob-
served data and adding some noise – is the same as 
generating random variates from the kernel density 
estimate, but without needing to compute the esti-
mated density. In this study, the smoothed bootstrap 
is applied to three variables – GVW, gaps and 
speeds. Each value xi taken from the observed traffic 
scenarios is modified by adding some noise: 

This bootstrap process would be expected to pro-
duce bridge loading very similar to the measured 
traffic. The measurements have been collected over 
a number of months, but in order to estimate lifetime 
maximum bridge loading, many years of traffic must 
be simulated. A key part of this process is to extend 
the simulation to incorporate scenarios that have not 
been directly observed. Of particular interest is the 
modeling of vehicles heavier than, and with more 
axles than, any measured vehicles. Different gap 
combinations than those observed also need to be al-
lowed to occur. Variations from the observed sce-
narios are introduced in a number of ways. Each 
time a scenario is selected in the simulation, the 
GVWs, gaps and speeds that define it are modified 
using variable-bandwidth kernel density estimators, 
as described in the following section. When a GVW 
has been selected for a particular vehicle, the num-
ber of axles is randomly chosen from the measured 
distribution for that weight. The axle spacings, and 
distribution of the GVW to individual axles, are also 
generated randomly from measured distributions for 
vehicles with different numbers of axles. The ap-
proach used for vehicle modeling is described in 
more detail by Enright & O'Brien (2009b). 

[ ])( iii xhKxX +=  (1) 

where K is a kernel function, centered at zero with a 
variable bandwidth h which depends on the value of 
xi. For each random variable being modeled, a suit-
able bandwidth must be chosen – if the bandwidth is 
too small, not enough variability will be introduced 
to the empirical data, whereas too large a bandwidth 
will oversmooth the data.  
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Figure 4. Normal and triangle kernel functions. 
 
Scott (1992) suggests that the choice of which kernel 
function to use is much less important than the 
choice of bandwidth. A triangle kernel is used here 
for gaps because its boundedness is useful at very 
small gaps, and a Normal kernel is used for GVW. 
Equivalent Normal and triangle kernel functions are 
shown in Figure 4. The bandwidth of the triangle 
kernel in this example is 1.0, and the bandwidth 
(standard deviation) for the equivalent Normal ker-
nel is  0.411 (Scott 1992). 

The modeling of the upper tail of the GVW dis-
tribution is critically important, and O'Brien et al. 
(2009) describe a method which involves fitting the 
tail of a Normal distribution to the upper tail of the 
measured GVW distribution to allow for interpola-
tion between relatively sparse data values and for 
extrapolation to higher GVW values that are likely 
to be encountered during the lifetime of a bridge. 
Using a Normal kernel with a suitable variable 
bandwidth achieves similar results. The chosen 
bandwidth formulations for the different parameters 
are summarized in Table 2. 
 
Table 2. Kernel bandwidths. __________________________________________________ 
Variable (x)      Kernel    Bandwidth __________________________________________________ 
Slow-lane GVW (t) *   Normal    0.08(x2)/Max(x) 
Fast-lane GVW (t)    Normal    0.065(x2)/Max(x) 
Slow-lane gap (s)    Triangle    Min(0.2x,0.4) 
Fast-lane gap (s)     Triangle    Min(0.3x,0.6) 
Inter-lane gap (s)    Triangle    Min(0.08|x|,0.16) 
Slow-lane speed (km/h)  Triangle    0.6 
Fast-lane speed (km/h)  Triangle    1.0 __________________________________________________ 
* For GVWs, Max(x) is the site-specific maximum observed 
GVW per lane 

5 VALIDATION 

In order to assess the simulation models, comparison 
is made between bridge loading by measured traffic 
and by simulated traffic on bridges of different 
lengths – 15, 25, 35 and 45 m. For the measured 
traffic, bridge load effects are calculated by moving 
the measured stream of traffic over each bridge. For 
convenience, these are referred to in the following as 
“measured” load effects. Daily maximum values are 

calculated for three load effects – mid-span bending 
moment on a simply supported bridge (LE1), sup-
port shear at the entrance to a simply supported 
bridge (LE2), and for bridges which are 35 m or 
longer, hogging moment over the central support of 
a two-span continuous bridge (LE3).  

As well as calculating the overall daily maxima, 
different loading event types are analysed. It is evi-
dent that the two most important loading events in 
the lifetime maximum loading for the spans consid-
ered are the one-truck event (“1+0”) and the two-
truck event with one truck in each lane (“1+1”). As 
the span increases, four other event types are in-
cluded in the comparison of the different simulation 
methods – the 1+2, 2+1, 2+0 and 2+2 events, where 
“i+j” indicates i and j truck(s) in the slow and fast 
lanes respectively. These are less onerous for the 
spans considered at the two sites, but could become 
significant at longer spans or at other sites with dif-
ferent traffic characteristics. The 1+2 and 2+1 events 
are considered for spans of 25 m and longer, the 2+0 
event for the 35 and 45 m spans, and the 2+2 event 
for the 45 m span. 

To assess the effects of correlation, an uncorre-
lated simulation model was also developed in which 
GVWs, slow-lane gaps, and speeds are drawn inde-
pendently for each truck from the observed distribu-
tion in the appropriate lane. Gap distributions are 
measured at 25 different flow rates, and the distribu-
tion appropriate to the flow (time of day) is used. 
For a site-specific percentage of slow-lane trucks, a 
fast-lane truck is generated and positioned relative to 
the slow-lane truck by drawing a value from the in-
ter-lane gap distribution. As noted earlier, this does 
not model the fast-lane gaps well. 

For comparison purposes, the two simulation 
models – smoothed bootstrap and uncorrelated – 
were run for 2000 days, and the simulated and 
measured results plotted on Gumbel paper (Ang & 
Tang 1975). An example is shown in Figure 5 for 
1+1 events on a 25 m bridge in the Netherlands, and 
this illustrates that the smoothed bootstrap gives a 
significantly better fit to the measured data. 

An analysis of all spans, load effects and event 
types described above shows that in general the 
smoothed bootstrap gives a better fit to the measured 
data for multi-truck events. For one-truck events, 
both methods perform equally well. 

 



- 2

 0

 2

 4

 6

 8

 600  800 1 000 1 200 1 400 1 600

LE3: Hogging moment (kNm)

- l
n 

( -
 ln

 ( 
p 

) )

Simulated (uncorrelated)
Measured

Simulated (smoothed boostrap)

 
- 2

 0

 2

 4

 6

 8

1 000 2 000 3 000 4 000 5 000

LE3: Hogging moment (kNm)

- l
n 

( -
 ln

 ( 
p 

) )

1+1 SB

1+1 UC

2+0 UC

2+0 SB

1+2 UC

1+2 SB

1000-year return level

1+0 SB/UC

 Figure 5. Simulated and measured daily maximum load effects. 
Figure 6. Annual maxima - smoothed bootstrap (SB) and un-
correlated model (UC). 
 6 RESULTS 
The increases in characteristic maximum load ef-
fects due to correlation in models were calculated 
for the four spans and three load effects considered 
at each site. Confidence intervals estimated using a 
parametric bootstrap indicate that differences be-
tween -3.4% and +3.4% for the 1000-year values are 
not significant (at 99% confidence). For the 75-year 
values, the corresponding confidence interval is be-
tween -1.9% and 1.9%. Correlation effects were 
found to account for an increase in 1000-year load-
ing of up to nearly 8%, with typical values of around 
5%, particularly when lateral distribution is high. 
For the mean 75-year maximum, correlation ac-
counted for increases of up to 7%. The types of load-
ing event that govern the characteristic maximum at 
the 1000-year return level were also identified. In 
some cases, just one event type is clearly dominant 
(i.e. either the 1+0 or the 1+1 event), but in other 
cases there is a mixture of both event types, and for 
the longer spans (35 and 45 m) in the Czech Repub-
lic, some simulated 1+2 events produce bending 
moments close to the characteristic values. 

To see what effect the different modeling assump-
tions have on the characteristic maximum loading, 
both methods were used to simulate 2500 years of 
traffic. In the Eurocode for bridge loading (EC1 
2003), the value with a 5% probability of ex-
ceedance in 50 years is specified for design which is 
approximately the value with a return period of 1000 
years. The focus in the AASHTO design code is on 
the mean 75-year maximum (Nowak 1995), and the 
effects of the different models on this are also calcu-
lated.  

Lateral distribution is accounted for by applying 
different lane factors to truck weights in the fast 
lane. These factors are based on finite element 
analyses carried out by the authors (Enright & 
O'Brien 2009a). For bending moments on bridges 
with high lateral distribution, the factor is 1.0 (i.e. no 
reduction), and 0.45 for low distribution. Maximum 
shear at the supports occurs when trucks are close to 
the support, and there is less opportunity for lateral 
distribution. In this case, a factor of 0.45 represents 
high distribution, and 0.05 is low. A closer examination of the events in the simula-

tions that produce the characteristic 1000-year loads 
shows that for bridges with low lateral transfer, the 
critical loading event for bending moment is typi-
cally an extremely heavy vehicle in the slow lane 
(80% to 90% of the 1000-year GVW), with a stan-
dard vehicle (in the range 30 to 40 t [66 to 88 kips]) 
in the fast lane – similar to Turkstra’s rule (Naess & 
Røyset 2000). For bending moment in bridges with 
high lateral distribution, it is a very heavy vehicle 
(60% to 80% of 1000-year GVW) in the slow lane 
with a moderately heavy vehicle (50 to 60 t [110 to 
132 kips]) in the fast lane – a variation on Turkstra’s 
rule. For shear at the supports, lateral distribution 
tends to be low, and the dominant event type is usu-
ally a single extremely heavy truck in the slow lane 
(75% to 95% of the 1000-year GVW).  

Sample results are plotted in Figure 6 which 
shows simulated annual maxima on a 45 m bridge in 
the Netherlands with high lateral distribution. Four 
event types are shown – one truck in the slow lane 
(1+0), one truck in each lane (1+1), two trucks in the 
slow lane (2+0), and one truck in the slow lane with 
two trucks in the fast lane (1+2). For the 1+0 event, 
both models give the same results, but for events in-
volving two or more trucks there are significant dif-
ferences between the two simulation models, with 
the smoothed bootstrap method giving more conser-
vative results than the uncorrelated model. The 
curves are reasonably parallel for the 1+1 and 2+0 
events, but in the case of the 1+2 event, the curves 
converge as the return period increases. It can be 
seen that in this example, the 1+1 event governs at 
the 1000-year return level. 



7 CONCLUSIONS 

There are subtle patterns of correlation evident in 
measured traffic data. This inter-dependence be-
tween weights, speeds and inter-vehicle gaps for ad-
jacent trucks affects the estimation of lifetime 
maximum bridge loading. While it may be possible 
to model this dependence reasonably well using 
conventional Monte Carlo simulation techniques, an 
alternative multi-dimensional smoothed bootstrap 
approach is presented here which re-samples ob-
served traffic scenarios and uses kernel functions to 
introduce additional variation. The traffic scenarios 
are defined so as to capture patterns that may be sig-
nificant for bridge loading, and to maximise vari-
ability in the simulation. The method is relatively 
simple to implement for any new site, and could be 
extended to three or more lanes. It is effectively the 
same as sampling from empirical distributions (for 
GVW, gaps and speed), but with correlation and 
some additional smoothing and randomness. It po-
tentially could be used to model congested or partly 
congested traffic, if sufficient data were available. 
The choice of bandwidth for the kernel smoothing 
functions is somewhat arbitrary, although results for 
characteristic bridge loading are, within reason, not 
too sensitive to this choice.  

The model presented provides a better fit to 
measured data across the range of key loading event 
types than is obtained with a model which does not 
include any correlation effects. The effects of corre-
lation on characteristic maximum loading may be as 
high as 8% for the range of bridge spans considered. 
The uncorrelated model, which is somewhat easier 
to implement, is less accurate and is non-
conservative. 
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