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ABSTRACT: Kernel density estimators are a non-parametric method of 

estimating the probability density function of sample data. In this paper, the 

method is applied to find characteristic maximum daily truck weights on 

highway bridges. The results are then compared with the conventional 

approach. 

 

KEY WORDS: Bridge; Characteristic; Traffic; Kernel Density Estimators; 

Loading.  

 

1 INTRODUCTION 
Bridge safety assessment involves a comparison of load effect (stress, etc.) and 

the capacity of the bridge to resist that effect. Probabilistic assessment requires 

the convolution of the probability density functions for load effects and 

resistances. However, a load and resistance factor approach is commonly 

applied which requires the calculation or estimation of characteristic levels of 

load effect and resistance. This paper concentrates on the loading side of this 

equation and describes a method of estimating characteristic load effects for 

road bridges using Weigh-in-Motion (WIM) traffic data. 

The accurate estimation of characteristic load effect is critically dependent on 

the extreme upper tail of the load distribution. Relatively few measured values 

are available for this tail region, and some form of interpolation and 

extrapolation is required. A popular approach is to plot the measured data on 

Gumbel probability paper [1] and to fit a type III Generalised Extreme Value 

(Weibull) distribution to this data [2-4]. Characteristic load effects can be 

estimated using this fitted distribution. A return period of 1000 years is used in 

the Eurocode for the design of new bridges, based on a 5% probability of 

exceedance in 50 years. The U.S. AASHTO design code is based on the 

distribution of the 75-year maximum loading [5].Lesser periods have been used 

for assessment, typically in the 5 to 10 year range [6]. One of the disadvantages 

of this method is that it is assumed that the data comes from a Weibull 

distribution. Kernel density estimators (KDEs) are a non-parametric method of 

estimating the probability density function (PDF) of sample data. The PDF is 
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built from the measured data without assuming that it comes from a certain 

theoretical distribution. As a result, the PDF is ‘more true’ to the original data 

as it does not force a theoretical distribution upon it. 

 

1.1 Introduction to kernel density estimators 
In the KDE method, each sample data point is replaced by a component density 

(kernel function), and these densities are then added to form the complete PDF. 

Rectangular, triangular and Normal kernel functions are common although any 

distribution can be used. Depending on the parameters of the kernel function 

used, the resultant PDF will have different characteristics. The KDE method is 

not then entirely non-parametric but  may provide a compromise between a 

purely non-parametric approach and a parametric approach [7]. Figs. 1 and 2 

illustrate a simple example of how the method works. Fig. 1 shows the 

histogram of 30 loads randomly sampled from a Normal distribution. It is clear 

that the histogram is not an accurate representation of the true distribution. 

Using the KDE method a normal kernel function of area 1/30 is created for each 

data point (shown at bottom of Fig. 2). These individual kernel functions are 

then added to create the PDF, which gives a much better approximation of the 

theoretical normal distribution than the histogram. This simple example uses 

just 30 data points but the more data points that are available, the more accurate 

the estimate of the true distribution.  

  
Figure 1. Histogram of 30 sample data points Figure 2. Kernel density estimate of PDF for 

30 sample data points 
 
The bandwidth of the kernel functions refers to the width of the individual 

distributions. In the case of Fig. 2, the bandwidth would refer to the standard 

deviation of the normal kernel functions. This is an important factor in the KDE 

method and has a significant influence on the smoothness of the estimated PDF. 

Smaller bandwidths result in fewer data points influencing the estimate at any 

one point, which gives a ‘bumpier’ estimate of the PDF [8]. As the bandwidth 

increases, a smoother PDF is achieved as there is more overlap between the 
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individual kernel functions. A certain degree of smoothness is desirable but as 

the bandwidth increases, the estimated PDF becomes a poorer fit to the 

measured data. The optimal bandwidth is therefore a compromise between 

smoothness and achieving a good fit to the original data. This optimal 

bandwidth is often chosen by plotting a number of different bandwidths and 

subjectively picking the one which best fits one's expectations for the density. 

For many applications this method is sufficient but an objective approach is 

more appropriate for inexperienced users or if multiple data sets are to be 

analysed [9, 10].  

Towards the peaks of the sample data, where there are many sample data points, 

small bandwidths are best but towards the tails of the data, where there are very 

few sample data points, larger bandwidths are required to obtain a smooth PDF 

and a more appropriate estimate of the density. Scott [11] suggests methods for 

picking bandwidths and for varying bandwidths based on the distribution of the 

data.  

KDEs are known to work well for interpolation of measured data but less well 

for extrapolation beyond the measured data [7]. This paper aims to develop a 

method for improving the accuracy of the method for extrapolation in order to 

estimate characteristic load events. 

  

2 APPLICATION OF KERNEL DENSITY ESTIMATORS TO 

LOAD DATA 
Measured maximum daily load data is usually assumed to be consistent with the 

Generalized Extreme Value distribution. Type 1 Generalized Extreme Value 

(Gumbel) distributions are therefore used here as the kernel functions. In this 

paper the bandwidth of the kernel function refers to the scale parameter of the 

Gumbel kernel functions. Figs. 3 and 4 show the histogram of 1000 truck 

weights, randomly sampled from a Gumbel distribution. Fig. 3 uses a fixed 

bandwidth of 5 kN to estimate the PDF of the data while Fig. 4 uses a larger 

fixed bandwidth of 40 kN. The difference in smoothness between the two 

estimates of the distribution is clear. The smaller bandwidth gives a PDF which 

follows the data very closely but fails to smooth the local peaks in the histogram 

(which appear due to the randomness in the limited data set). It is clear in Fig. 4 

that the larger bandwidth has over-smoothed the data set and produced a poor fit 

to histogram of the data. To achieve a good fit to the original data, while also 

smoothing the PDF sufficiently, a variable bandwidth can be used. A smaller 

bandwidth is used where there are high densities of data and the bandwidth 

increases as the data points become more sparse, i.e., towards the tails of the 

data. 
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Figure 3. Kernel density estimate of PDF using 

bandwidth of 5 kN 

Figure 4. Kernel density estimate of PDF using 

bandwidth of 40 kN 

 

To find an appropriate starting bandwidth at the mode of the data Eq. (1) is used 

[11]. This equation is for Normal kernel functions but works well with the 

Gumbel kernel functions used here. 

        -        (1) 

where: h is the bandwidth 

   is the standard deviation of the sample 

 n is the sample size 

 

Eq. (2) is used to increase the bandwidth with increasing distance from the 

mode of the data.  This approach was developed by Abramson [12] and cited in 

Scott [11].  

 i 
 

      
     (2) 

where:         is the density function  

    is a constant  

     is the bandwidth used  

 

Eq. (1) is used to obtain the starting bandwidth at the mode of the data. The 

constant   is then calculated by substituting this value into Eq. (2). Fig. 5 shows 

that using Eq. (2), the bandwidth increases rapidly with increasing distance 

from the mode of the data. These large bandwidths resulted in overestimation of 

the value of the PDF in the extrapolation region of the tail. To address this, a 

bandwidth cap is required to prevent the bandwidth from increasing above a 

certain level.  
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Figure 5. Variation in calculated bandwidth with respect to PDF 

Different approaches for calculating the optimal bandwidth cap are investigated. 

The method which gave the best results is based on the scale parameter of the 

sample data. The scale parameter of a Gumbel distribution can be estimated 

using Eq. (3) [13].   

  
   

 
      (3) 

where:  S is the standard deviation of the data and 

    is the scale parameter of the data  

 

To calibrate this method the KDE approach is applied to different data sets 

using caps of 70, 80 and 90% of the estimated scale parameter for the datasets. 

These sample data sets are generated from Gumbel distributions using 10 sets of 

location and scale parameters. Parameters which correspond to typical truck 

gross vehicle weights and individual, tandem and tridem axle weights are 

chosen. Different combinations are selected so as to give different ratios of one 

parameter to the other. For each set of Gumbel parameters, 10 sets of 100 data 

points are randomly generated and the KDE method applied to each data set for 
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the three different caps. In all cases the cap of 80% of the estimated scale 

parameters gives the best estimates of the true distribution.  

 

3 RESULTS 
To compare the accuracy of the KDE method to current best practice, 10 

datasets, each containing 100 maximum daily truck gross vehicle weights, are 

randomly generated from a Gumbel distribution with a location parameter of 

700 kN and a scale parameter of 80 kN. Maximum daily weigh-in-motion 

(WIM) data is used as a guide for picking these parameters. Based on a five day 

week, this would represent 5 months of WIM data. These datasets are first 

analysed using a conventional approach, i.e., the truck weights are plotted on 

Gumbel probability paper and a Weibull distribution fitted to the data points. 

Fig. 6 shows one of the data sets and the fitted Weibull distribution. The 50 year 

and 1000 year return period characteristic values are then calculated using the 

fitted distribution. The estimated return periods for the 10 sets of data are 

compared with their true theoretical values and a root mean square error 

(RMSE) calculated.  

 

  
(a) Histogram and fitted PDF (b) Gumbel probability paper with 50 and 

1000 year return period levels shown (- -) 

Figure 6. Weibull distribution fitted to data 

 

The KDE method is then applied to the same 10 data sets and the 50 and 1000 

year return period values were again estimated and the RMSE calculated. Fig. 7 

shows the KDE estimate of the distribution for the same data set as Fig. 6. A 

comparison of Figs. 6(a) and 7(a) indicates a better fit with the KDE approach 

but a more realistic theoretical distribution from the conventional approach, as 

might be expected. 
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(a) Histogram and fitted PDF (b) Gumbel probability paper with 50 and 

1000 year return period level shown (- -)  

Figure 7. Kernel density estimate of distribution of data 

 

Table 1 shows the RMSEs for the two approaches. The KDE method achieves 

better estimates for both the 50 and 1000 year return period values with an 

overall reduction in the RMSE of 28%. 

 

Table 1. Root mean squared error of estimated return periods for both methods 
 50 yr RMSE 1000 yr RMSE 

Fitted Weibull 6.12 % 8.51 % 

Kernel Density Estimators 3.99 % 6.49 % 

 

4 CONCLUSION 
Accurate estimation of characteristic loading is critical for both bridge 

assessment and design. This estimation process is highly dependent on the 

extreme upper tail of the distribution of measured data where relatively few data 

points are available. The kernel density estimator method provides a non-

parametric method of interpolating between and extrapolating beyond the data 

in this region. When applied to the 10 data sets of 100 randomly generated truck 

gross vehicle weights in this paper, it achieved a substantial reduction in error 

when estimating the 50 year and 1000 year load events.  
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