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Abstract 
 
The maintenance of highway infrastructure constitutes a major expenditure in many 
countries. This cost can be reduced significantly by minimizing the repair or 
replacement of highway bridges. In the assessment of existing bridges, the strength 
estimate tends to be more accurate than that of traffic loading, due to the more 
variable nature of loading. Recent advances in the statistical analysis of highway 
bridge traffic loading have resulted in more accurate forecasts of the actual loading 
to which a bridge is subject. While these advances require extensive numerical 
computation, they can significantly improve the accuracy of the calculation. This 
paper outlines the recent advances and describes the associated computational 
aspects in detail. 
 
Keywords: bridge, statistics, loading, simulation, predictive likelihood, traffic. 
 
 
 
1  Introduction 
 
As bridge stocks age across Europe and the world, maintenance costs represent an 
increasing proportion of total road infrastructure expenditure. A recent study [1] 
estimates the EU expenditure on the repair, rehabilitation and maintenance of bridge 
structures to be €4–6 bn annually. This figure only includes that of the 15 member 
states up to May 2004. Therefore, in the recently enlarged EU the annual spend on 
bridge maintenance is likely to be at least €6 bn.  

The significant cost attributable to the maintenance of highway bridge 
infrastructure has driven much research in this area over the past number of years. 
The assessment of existing bridges represents an area in which significant cost 
savings are possible. Whilst the assessment of the capacity of an existing bridge is 
not yet highly accurate, the estimate of actual loading is significantly more variable. 
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It is therefore in the area of highway bridge traffic loading that much progress 
towards reducing the maintenance expenditure may be made. 

In recent years statistical methods have been increasingly employed to assist in 
the estimation of the lifetime traffic loading to which a bridge is subject [2]–[7]. 
This paper describes the recent statistical methods used, and their computational 
aspects, to determine the lifetime traffic load effect. A new approach, termed 
predictive likelihood, is also described which calculates the design lifetime 
distribution of load effect directly from simulations of measured traffic data. This 
lifetime distribution of load effect is then used to determine the design value. The 
Eurocode for traffic loading on bridges [8] defines the (design) characteristic value 
to be that value which has probability of exceedance of 10% in a 100 year design 
life. The associated return period is 1000 years. Based upon a fitted distribution, it is 
usual to extrapolate to this return period, giving a single characteristic value. Instead, 
predictive likelihood is used to directly estimate the load effect distribution for the 
100 year design life from which the 90-percentile may be taken. In general, the two 
approaches give differing values of design load effect. As predictive likelihood 
returns more information from the sample, this is considered to be a more accurate 
result. 

In conclusion, the latest statistical models to be applied to the bridge traffic load 
problem are described and extended. The new approach is shown to result in an 
increase in information from the data, and computational methods are integral to 
this. Further, the numerical aspects of the problem are described and the solutions 
discussed. It is concluded that great improvements in the accuracy of bridge traffic 
loading are obtained through the use of statistical computational methods. 
 

 
2  Bridge Traffic Load Simulation 
 
2.1 Measurement and Modelling 
 

The highway traffic data, essential to the bridge traffic load modelling process, 
must be obtained from suitable installations. The measurements taken must enable 
headway, speed and other such pertinent data to be measured. WIM technology has 
been developed to determine vehicle weights but also meets these requirements. 
This work is based on data taken from the A6 motorway near Auxerre, France. The 
site has 4 lanes of traffic (2 in each direction) but only the traffic recorded in the 
slow lanes was used and it is acknowledged that this results in conservative loading 
for a 2-lane bridge.  In total 17 756 and 18 617 trucks were measured in the north 
and south slow lanes respectively, giving an average daily truck flow of 6744 trucks. 
This represents one week of traffic data which, it is acknowledged, is short in 
duration. However, the methodologies presented in this work are general and only 
the absolute quantitative results are affected by this short duration of measurements. 

The traffic model required to simulate bridge load effects must be consistent with 
the measured traffic at the site it claims to represent. Yet, it is important that there is 
the potential for variation from the measured traffic in the model; otherwise the 
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model would only represent multiple sets of the same traffic. By using parametric 
statistical distributions, the traffic model may remain sympathetic to the 
measurements, yet retain the capacity to differ. The recorded WIM data was 
analysed for the statistical distributions of the traffic characteristics of the site for 
each lane as follows: 
• Gross Vehicle Weight: Modelled as tri-modal mixture of Normal distributions; 
• Axle spacings: Modelled as uni- or bi-modal Normal distributions, as 

appropriate to the data; 
• Axle weights for 2- and 3-axle trucks: Modelled as tri- or bi-modal Normal 

distributions, as appropriate to the data; 
• Axle weights for 4- and 5-axle trucks: Axle weight expressed as a percentage of 

Gross Vehicle Weight (GVW) for the first and second axles and for the 
remaining tandem group. In each case, the  percentage is modelled as a Normal 
distribution  

• Composition: The measured percentage of 2-, 3-, 4- and 5-axle trucks is used; 
• Speed: Modelled as a Normal distribution and considered independent of truck 

type and uncorrelated with GVW; 
• Flow rates: For each hour of the day, the average flow rate (ignoring weekend 

days) was used for all the days available; 
• Headway: This is modelled with a number of distributions dependent on flow, 

as described in [9]. 
 

Both short-term variations, such as variations from hour to hour, and long-term 
variations, such as an annual increase in traffic volume, exist in traffic. The major 
consequence of such variations for bridge loading is in the headways between 
trucks: increasing the number of trucks in a given time interval reduces the 
headways, thereby increasing the likelihood of observing two or more same-lane 
trucks on the bridge concurrently. In this work only variations that occur within a 
day are accounted for. Long term traffic growth is not allowed for and so the 
statistical models described are stationary. Further, it is taken that the ‘economic 
year’ is equivalent to about 50 weeks of weekday traffic. Therefore, 250 ‘simulation 
days’ are taken to represent a calendar year. 
 
2.2 Simulation of Bridge Traffic Loading 
 
2.2.1   Generation of Traffic 
 
Based on the models of the measured traffic, a Monte-Carlo simulation process is 
used to generate artificial traffic. In this way, significantly more data is made 
available than can be obtained through site measurements alone. The fundamental 
tool in this generation process is a (pseudo-)random number generator (RNG). 
Rubinstein [10] describes the importance of random number generation in Monte 
Carlo simulation and the fundamentals of computer-based RNGs. 

The RNG initially used in this work was ran2() of Numerical Recipes in C [11]. 
However, as the work progressed, it was discovered that there were some 
inconsistencies with the results got from this algorithm: numbers very close to unity 
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were essentially deterministic (though the machine epsilon of the computer used is 
2.2×10-16). In generating sequences of maxima from a parent distribution, it is 
essential that numbers close to unity are random also. Thus, the virtual pseudo-
random number generator described by L’Ecuyer et al [12] was adopted. This 
generator gives excellent results, even for values very close to unity. This is due to 
its double precision methodology. It can have multiple separate streams, each of 
which is based on the multiple recursive generator MRG32k3a [13] which has a 
period of 257; the seeds of each stream are separated by 2127 steps. This is useful 
when multiple random deviates are required: for example, the Box-Muller transform 
for normal deviates requires two uniform deviates. In this case therefore, two 
separate streams of L’Ecuyer’s RNG are ideal. 
 
2.2.2   Load Effect Calculation and Implementation 
 
The generated traffic streams are placed over the influence lines of interest. Both 
measured[14] and theoretical influence lines may be used, as well as influence lines 
determined from finite element analyses [2]. The use of these measured influence 
lines extends the applicability of the load assessment procedure from mere 
theoretical considerations, to considerations of the actual behaviour of the bridge 
under investigation. The software developed for this research requires an influence 
line to be specified by algebraic equations. For theoretical influence lines, the exact 
expressions are used whilst for measured influence lines, a number of quadratic or 
cubic polynomials are fit to segments of the influence line. 

The main programs developed for this work are written using object oriented 
programming. As an example of the approach, the virtual object for the truck, a 
fundamental element in this work, is explained. The properties of the physical truck 
are programmed into the CTruck class (for example, number of axles, GVW etc.). 
CTruck only allows the rest of the program access to these class members through 
an appropriate interface, reducing logic errors in the program. In addition, CTruck 
has a number of actions it can perform, the class functions. For example, CTruck 
returns its time of arrival on the bridge, writes itself to file, or deletes itself when 
asked to by an external function. Critical to this research, the CTruck class is treated 
as a single piece of data and (large) arrays (C++ Standard Template Library 
<vector> class) of such objects are therefore used to contain the artificial trucks in 
the computer memory. 

The results described in this paper are based on simulations of a 1000-day sample 
period of two-lane bi-directional truck traffic. The resulting load effects are 
determined for bridge lengths in the range 20 m to 50 m. The particular load effects 
considered are: 
• Load Effect 1: Bending moment at the mid-span of a simply supported bridge; 
• Load Effect 2: Left support shear in a simply-supported bridge; 
• Load Effect 3: Bending moment at central support of a two-span continuous 

bridge. 
To minimize computing requirements only significant crossing events were 
processed and are defined as multiple-truck presence events and single truck events 
with Gross Vehicle Weight (GVW) in excess of 40 tonnes. When a significant 
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crossing event is identified, the comprising truck(s) are moved in 0.02 second 
intervals across the bridge and the maximum load effects of interest for the event 
identified. 
 
 
 
3  Analysis of Extremes 
 
3.1 Basis 
 
An extreme value analysis is performed on the load effect data collected from the 
simulation process. Many authors [15]–[17] describe the basic forms of an extreme 
value analysis but in this work an extension to the method is used. When the 
extremes of interest are generated from a single statistical generating mechanism, 
the three Fisher and Tippett [18], [19] families can be expressed in a single form; the 
Generalized Extreme Value distribution (GEV) [17]: 
 

 
1/

( ) exp 1 xG x
ξ

μξ
σ +

⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 (1) 

 
where [ ] max( ,0)h h

+
=  and the parameter vector is ( ), ,θ μ σ ξ=  – the location, 

scale and shape parameters of the distribution respectively. The probability density 
function (PDF) is: 
 

 ( ) ( )
1/ 1

1; ; 1 xg x G x
ξ

μθ θ σ ξ
σ

− −
− ⎧ ⎫−⎛ ⎞= ⋅ +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 (2) 

 
In the case of bridge traffic load effect, a loss in accuracy results when traffic 

loading is taken to be a single statistical generating mechanism. Bridge traffic 
loading is a multi-mechanism phenomenon. Currently, it seems adequate to consider 
the mechanisms of loading caused by different numbers of trucks concurrently 
present on the bridge [2], [19]. That is, the distribution of load effect caused by two-
trucks on the bridge differs from that caused by three trucks on the bridge. In [2], 
[19] it is shown that the exact distribution of load effect may be arrived at by 
considering the distribution associated with each mechanism as well their relative 
frequency of occurrence.  

Considering there to be tn  event types and dn  loading events per day, and using 
the law of total probability, the exact distribution of daily maximum load effect S  is 
then given by: 
 

 
1

( )
d

t
nn

j j
j

P S s F s f
=

⎛ ⎞
⎡ ⎤≤ = ⋅⎜ ⎟⎣ ⎦

⎝ ⎠
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In which the cumulative distribution function and frequency of the jth event type is 
( )jF ⋅  and jf  respectively. In practice these quantities are difficult to ascertain and 

in [19] it is shown that the exact distribution may be asymptotically approximated 
by: 
 

 ( ) ( )
1

tn

C j
j

P S s G s G s
=

⎡ ⎤≤ = =⎣ ⎦ ∏  (4) 

 
where ( )jG ⋅  is the GEV distribution of the jth event type and ( )CG ⋅  represents the 
composite distribution statistics (CDS) approach. Thus it is necessary to note each 
loading event according to its truck composition and to order the loading events 
separately, noting the maximum event of each type for each day of simulation. 
 
 
3.2 Computational Aspects 
 
Given the data for each loading event type, maximum likelihood estimation is used 
to estimate the parameters of the GEV distribution that best represents the 
observations. Maximum likelihood requires maximization of the log-likelihood 
function of the distribution of interest. Optimization techniques often deal with 
minimizing functions; hence minimization of the negative log-likelihood is usually 
performed. The log-likelihood function for the GEV distribution is [17]: 
 

 ( )
1

1 1

1, , ; log 1 log
n n

i i
i i

l x n y y ξμ σ ξ σ
ξ = =

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
∑ ∑  (5) 

where 1 0 for 1, ,i
i

xy i nμξ
σ
−⎛ ⎞= − > =⎜ ⎟

⎝ ⎠
… . 

For parameter combinations where 0iy <  (which occurs when a data point ix  
has fallen beyond the range of the distribution) the likelihood is zero and the log-
likelihood will be numerically ill-defined. Solution of (5) is done by numerical 
means – there is no analytical solution. Based on the elements of the Hessian matrix 
of Equation (5), Prescott and Walden [21] propose a Newton-Raphson technique 
which is generally found to converge quickly. Hosking’s algorithm based on this 
[22] is commonly used for GEV estimation. Good starting values for the 
minimization of the negative log-likelihood function of the GEV distribution are 
obtained from the method of probability weighted moments (PWMs) described by 
Hosking et al. [23]. The results of published data sets [17] are used to verify the 
output. Significantly, it is found, however, that there are cases in which Hosking’s 
algorithm does not converge, or does not achieve the same minimum function value 
as other methods. As a result a more robust optimization method is implemented. 

The Nelder-Mead (NM) optimization algorithm [24] is also known as the amoeba 
algorithm [11] because of its slow robust movement across the k-dimensional 
surface of a function, where k is the dimension of the optimization problem. The 
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NM algorithm is based on a simplex – a geometric shape with 1k +  corners. 
Lagarias et al [25] describe, in detail, the operations of the algorithm. 

In the statistical processing undertaken in this work, the PWM method is used to 
initiate both the Hosking and NM algorithms – processing time is not substantial in 
any case. The program checks to see if the Hosking algorithm has a smaller negative 
log-likelihood than that of the NM algorithm. If not, the results of the NM algorithm 
are used. While good results can be obtained with manual re-injection of the 
Hosking algorithm, in general this is not possible for this research – the number of 
individual GEV fits is substantial for each run. 
 
3.3 Comparison of Methods 
 
To compare the CDS distribution of Equation (4) to the single distribution approach 
of (1) a representative set of load effect distributions are stipulated and given in 
Table 1. The distributions of daily maximum load effect obtained from a 1000-day 
simulation were “back-calculated” using a reverse application of the stability 
postulate [17]. These distributions are then the parent distributions that would result 
in the set of observed daily maximum distributions of load effect. Further, the 
parameters of the distributions are normalized to reflect the underlying relationship 
between the mechanisms regardless of load effect and bridge length. Given this set 
of stipulated distributions and frequency data, Equation (3) can be used to determine 
the exact distribution of daily maximum load effect and consequently the exact 
distribution of load effect for the 100 year design life. 
 

Parameter 1-truck 2-truck 3-truck 4-truck 
ξ  0.06 0.09 0.28 0.21 
σ  1.41 2.37 9.99 22.76 
μ  71.93 100 67.42 21.92 

d jn f  3102 2566 517 19 
 

Table 1: Parameters of mechanisms for comparison study. 
 

For the comparison, 1000 daily maximum data points are generated from the 
known distributions. Both the single and CDS methods are used to determine the 
distribution of daily maximum load effect and to extrapolate to determine the 100 
year load effect value. This procedure is repeated 100 times to arrive at a distribution 
of 100 year load effect for both the single distribution and CDS approaches. GEV 
distributions are fit to the return level points of both the single distribution and CDS 
approaches and these two distributions can be compared directly to the exact 
distribution, as shown in Figure 1. 

It can be seen that, due to the reasons outlined, the single distribution method 
underestimates the return level. The difference between the single and CDS 
distribution modes is not large. It is the skewed nature of the CDS distribution that is 
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significant: its 90-percentile is similar to that of the exact distribution. Thus the 
increased fidelity offered by the CDS approach is reflected in more accurate 
extrapolations. 
 

115 120 125 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized Load Effect

P
ro

ba
bi

lit
y 

D
en

si
ty

CDS

Conventional
Exact

 
 

Figure 1: Distributions of 100 return level values. 
 
 
4  Prediction 
 
4.1 Basis 
 
The predictions made from a data set are clearly variable, as may be seen from the 
results of the previous section in which the underlying distributions were exactly 
known. Therefore, in practical applications where the underlying statistical 
mechanisms can only be approximated, even more variability of the prediction must 
result. In the literature on bridge traffic load effects, few authors have considered the 
variability of the prediction [2]. In this work a recent statistical method termed 
predictive likelihood is used to estimate the distribution of the prediction [26]. 

In predictive likelihood, the observations are taken as the only incontrovertible 
known. All subsequent processing is taken to introduce variability and predictive 
likelihood accounts for this. Such processing uncertainty is the reason why 
conventional approaches are not generally repeatable – for the amounts of data 
normally simulated, there is considerable variation in repeated runs using the same 
algorithms. Predictive likelihood ranks predicted values, or predictands, based upon 
their likelihood given the data. It does this by calculating a distribution that 
maximizes the joint likelihood of observing both the data, yL , and the predictand, 

zL , jointly: 
 
 ( ) ( ) ( )| sup ; ;P x zL z x L x L z

θ
θ θ=  (6) 
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Therefore, different postulated predictands will yield different values of predictive 
likelihood. This enables the predictands to be relatively ranked by likelihood. In 
Error! Reference source not found., a range of possible values of predictions is 
shown along with the absolute data and a number of fitted distributions. The relative 
likelihood of each predictand is also shown. It can be seen that this process results in 
a distribution of predictand. Also, this process accounts for processing variability, as 
subsequently described. 
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Figure 2: Sample predictive likelihood analysis. 
 
 

 
4.2 Theory 
 
Two modifications are required to the predictive likelihood of Equation (6) [27], 
[28]. The first accounts for the confidence in each parameter vector for each 
predictand; the second is a constant required to transform the problem into the 
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correct domain. Allowing for these modifications, the modified profile predictive 
likelihood ( MPL ) is given as: 

 ( ) ( )

( )

| ;
| P z

MP
z

z

L z x
L z x

θ
θ θ
θ

=
∂
∂

I
 (7) 

 
In this Equation, the square root of determinant of the Fisher information matrix, 

( )zθI , (the Hessian matrix of the likelihood function) represents the confidence 

(information) about the parameter values. It is an inverse relationship: larger 
determinants represent less information and vice versa. Also, the parameter 
transform modification zθ θ∂ ∂  is required so that the problem is in the domain of 
the ‘free’ parameter vector, θ , which is reliant only upon the data. 

The likelihood of the data for the CDS distribution is defined in this work to be 
the combined likelihood of each of the mechanisms of the CDS distribution: 
 

 
( ) ( )

( ),
1 1

log ; ;

log ;
j

y y

nN

j j j i
j i

L x l x

g x

θ θ

θ
= =

⎡ ⎤ =⎣ ⎦
⎧ ⎫⎪ ⎪⎡ ⎤= ⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑
 (8) 

where jn  is the number of data points for each event type; ,j ix  is the ith data point 

of event type j, and; ( ), ,j j j jθ μ σ ξ=  is the parameter vector for each ( )jG ⋅ . The 

CDS distribution of a maximum of m sample repetitions, ( ),Z CG ⋅ , is: 
 

 
( ) ( )

( ) ( ) ( )
,

1
,

m
Z C C

m
Z C C C

G z G z

g z m g z G z
−

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⋅ ⋅ ⎣ ⎦
 (9) 

 
in which ( ),Z Cg ⋅  is its PDF. Therefore, the likelihood of the predictand, given the 
initial distribution is: 
 

 
( ) ( )

( ) ( ){ }
,

1

log ; log

log

z Z C

m
C C

L z g z

m g z G z

θ
−

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅ ⋅ ⎣ ⎦
 (10) 

 
To determine the points of the predictive distribution, ( );

PLf z x  (which correspond 
to each predictand examined), firstly the log modified predictive likelihoods are 
defined: 
 
 ( ) ( )| log |MP MPl z x L z x⎡ ⎤= ⎣ ⎦  (11) 
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and the maximum value of ( )|MPl z x  obtained from the set of predictands is: 
 

 ( ) ( ){ }ˆ | sup log |MP MP
z

l z x L z x⎡ ⎤= ⎣ ⎦  (12) 
 
The curve of likelihood ratios is determined as: 
 

 ( ) ( ) ( ){ }* ˆ; exp | |
PL MP MPf z x l z x l z x= −  (13) 

 
This curve is then normalized to the predictive distribution: 
 

 ( ) ( )
( )

*

*

;
;

;
P

P

P

L
L

L

f z x
f z x

f z x
=
∫

 (14) 

 

Butler [29] points out that the parameter transform zθ θ∂ ∂  is constant. Therefore 
the normalization of the area under the curve of Equation (14) amounts to the 
evaluation of zθ θ∂ ∂ . Therefore all terms in ( )|MPL z y  are known, yielding the 
predictive density. 
 
 
4.3 Computational Aspects of Predictive Likelihood 
 
4.3.1   Composite Distribution Predictive Likelihood Algorithm 
 
Save for Davison [30], the statistical literature on predictive likelihood [26] does not 
generally consider its implementation. The algorithm used is presented here and 
aspects related to the numerical computations are examined. 

For each value of the predictand, Equation (7) is maximized with the terms given 
by Equations (8) and (10). As up to four event types are involved in a typical bridge 
traffic loading problem, the maximization has a set of up to 12 parameters. 
Sequential quadratic programming optimization is used in this work to minimize the 
negative of the predictive likelihood function. A MATLAB toolbox is developed for 
this purpose as part of this work. 

In each optimization, each GEV parameter vector must only operate on the data 
corresponding to its event-type. Therefore parameter bounds are used to enforce this 
requirement. The bounds used in this work are based on deviations from the 
ordinary maximum likelihood estimates, and are taken as: 
 

 { } { }; where , , ;  1.4,1.4,1.1  and 1,2,3i
i i i

i

iλ λ ψ λ λ μ σ ξ ψ
ψ

≤ ≤ = = =  (15) 

 
Whilst seemingly restrictive, the optimized parameter values are found to remain 
within these bounds. Also, the different bounds reflect the sensitivity of the fit to 
each of the parameters. 
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For each predictand considered an optimization is required to determine the 
parameter values that maximize Equation (6). Usually the range of predictands are 
equally and relatively closely spaced. In this work 100 predictands were considered. 
The start and end values of predictands are taken as 90% and 110% of the 
conventional extrapolation prediction. In optimization problems it is common to 
seed each optimization with the results of the previous one. However, in this work, 
even though the predictands are closely spaced, it is found necessary for each 
optimization to start on the initial maximum likelihood estimate, rather than the final 
parameter estimates of the previous predictand optimization. Though more 
computationally expensive, each optimization is therefore independent, and the risk 
of divergence of the solution is reduced. However, there remain situations in which 
an optimization can diverge from solution. Therefore, for each predictand, an 
intermediate optimization is carried out to provide initial parameter estimates – the 
function is constrained to return the predictand it is optimizing for: 
 
 ( )1 ; 0C zz G p θ−− =  (16) 
 
where zp  is the probability level for the predictand, z. Having obtained the 
parameter vector that solves this constraint function, the second optimization is 
commenced with this parameter vector as the start point. 

The solution that results for each predictand is then processed using numerical 
derivatives to determine the (up to 12×12-dimension) Hessian matrix of the solution 
– the observed Fisher information matrix. Also, the maximized value of predictive 
likelihood is brought forward to the analysis for the distribution of predictive 
likelihood. 

 
4.3.2   Fitting the Predictive Distribution 
 
As only discrete values of MPL  are calculated at discrete intervals of predictand, the 
resulting distribution needs to be smoothed. Therefore, for this work, a GEV 
distribution is fitted through the discrete points that result after normalization of the 
area under the points to unity. A least-squares fit through these points is not 
appropriate as it unduly weights the larger relative likelihoods by assigning a weight 
of unity to all points. A number of weighting functions are possible but the one 
adopted in this work is to use a weight of unity for all points below the mode of the 
distribution, and to use a weight equal to the reciprocal of the predictand for points 
above the mode. 
 
4.3.3   Effect of Data Scale and Sample Size 
 
Due to the small order of numbers involved in predictive likelihood, numerical 
problems can arise from the state of the information matrix. An example is the 
numerical differentiation involved in calculating the information matrix. A useful 
measure of its stability with respect to numerical computations is the matrix 
condition number [31]. In this work, it has been found necessary to scale the input 
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data to the predictive likelihood algorithm so that its order is less than 10. Higher 
order numbers exhibit severe ill-conditioning of the matrices with resultant effects 
on the modified predictive likelihood distribution. Inherent random variation of the 
data clearly affects the conditioning of the matrices. However, sample size has a 
more considerable effect. Significant variability remains in the determinant but the 
condition number is stable for sample sizes above about 150. 
 
4.4 Application 
 
The load effects resulting from a 1000-day simulation of traffic are analysed using 
predictive likelihood and the results are given in Table 2. The information matrices 
exhibited considerable numerical instability and consequently the modification for 
parameter variability is not made. This modification has been found to be generally 
slight in any case [2]. 
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Figure 3: Characteristic load effect prediction (see text for details). 
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Two predictive distributions of 100-year lifetime-maximum load effect are 
presented. The GEV fits to the predictive distribution are also shown. The load 
effect with 10% probability of exceedance in 100 years is also indicated, both for the 
predictive likelihood points (PL RL) and the GEV fit to these points (GEV PL fit). 
Also given in each figure is the 1000-year maximum likelihood estimate of the 
return level (CDS RL), derived from the CDS distribution. 

Some of the GEV fits to the raw predictive likelihood points are not obtained 
through objective means. In such cases, the upper tail is fit more closely than either 
the lower tail or the mode. In any case, the results have been derived from both the 
fits and the raw distributions and may be seen to be comparable from Table 2 – the 
maximum difference is about 3% for Load Effect 2, 40 m bridge length. 

Given the differences between the predictive likelihood result (100-year with 
10% probability of exceedance) and the conventional CDS result (1000-year return 
period), it is apparent that these two definitions of probability level are not 
equivalent when allowing for sources of variability. This has implications for the 
specification of acceptable probabilities and the manner in which practitioners 
estimate the associated design levels. 

 
 

Characteristic Load Effect Percentage differencea

Load 
Effect 

Bridge 
Length 

(m) PLb GEV PLc CDSd GEV CDS 

20 4074 4073 4067 0.0 -0.2 
30 7830 7827 7852 0.0 0.3 
40 10814 10801 10701 -0.1 -1.0 

1 
(kNm) 

50 14150 14173 13893 0.2 -1.8 
20 1074 1074 1067 0.0 -0.6 
30 1636 1641 1643 0.3 0.4 
40 2841 2854 2921 0.5 2.8 

2 
(kNm) 

50 3825 3839 3785 0.4 -1.1 
20 927 926 922 -0.1 -0.6 
30 969 969 963 0.0 -0.6 
40 1153 1187 1079 2.9 -6.5 

3 
(kN) 

50 1235 1253 1185 1.4 -4.0 
a Relative to numerical PL results;  

b 90-percentile of 100-year distribution based on predictive likelihood points; 

c 90-percentile of 100-year distribution GEV fit to predictive likelihood points; 

d 1000-year return level based on CDS extrapolation. 

 
Table 2: Predictive likelihood and conventional results. 
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5  Conclusions 
 
In this paper the importance of the accurate assessment of bridge traffic loading is 
discussed. It is proposed that this is an area in which significant savings may be 
made by avoiding unnecessary repair and rehabilitation of existing bridges. 

The bridge traffic load effect simulation process is described. In particular, 
measured Weigh-In-Motion data is statistically modelled to characterize the traffic 
at the site of measurement. Monte Carlo simulation of the modelled traffic is used to 
synthetically extend the amount of traffic data available. This simulated traffic is 
passed over bridge lengths and influence lines of interest, to determine the load 
effects that result. The resulting load effect data forms a population upon which a 
statistical analysis is carried out.  

The composite distribution nature of bridge traffic loading is also described. This 
distribution of bridge traffic loading is a mixture of different types of loading events. 
For example, 1-truck presence events are very common, while 4-truck presence 
events are rare, but significant for loading. A statistical model that takes account of 
this mixture is presented and compared to theoretical examples. The computer 
implementation aspects of the model are also discussed. 

The method of predictive likelihood is presented and applied to the bridge 
loading problem. An extension of predictive likelihood is presented which caters for 
composite distribution statistics problems. Predictive likelihood includes many 
sources of variability within the predictive likelihood distribution. The results of this 
approach are compared to a more conventional approach. The differences in lifetime 
load effects are considerable, yet within reason. As predictive likelihood accounts 
for sources of uncertainty in its estimation, it is to be preferred. 

Of particular importance, the implementation of the predictive likelihood 
approach is described in detail. The numerical computations necessary for its 
implementation are described. A strategy for the implementation of predictive 
likelihood is described. The algorithm has several features that maximize its 
robustness. However, situations in which numerical problems arise are also 
identified and discussed. 

It is also shown in this paper that predictive likelihood results differ from the 
more usual return period method. This will have implications for practitioners and 
code definitions. Also, it is shown that the predictive likelihood distribution 
represents a considerable increase in the information gained from a sample. Thus 
there is more confidence about the result in comparison with the return period 
approach. Overall, predictive likelihood is a valuable tool in estimating distributions 
of extremes of stochastic processes and its implementation is therefore presented 
here. 
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