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Abstract 
Accurate traffic loading models based on measured weigh-in-motion (WIM) data are 
essential for the accurate assessment of existing bridges. Much work has been 
published on the Monte Carlo simulation of single lanes of heavy vehicle traffic, and 
this can easily be extended to model the loading on bridges with two independent 
streams of traffic in opposing directions. However, a typical highway bridge will have 
multiple lanes in the same direction, and various types of correlation are evident in 
measured traffic, such as groups of very heavy vehicles travelling together and heavy 
vehicles being overtaken by lighter ones. These traffic patterns affect the probability 
and magnitude of “multiple presence” loading events on bridges, and are significant 
for the maximum lifetime loading on the bridge. 

This paper analyses traffic patterns using multi-lane WIM data collected at four 
European sites. It describes an approach to the Monte Carlo simulation of this traffic 
which seeks to replicate the observed patterns of vehicle weights, same-lane and inter-
lane gaps, and vehicle speeds by applying variable bandwidth kernel density 
estimators to empirical traffic patterns. This allows the observed correlation structure 
to be accurately simulated but also allows for unobserved patterns to be simulated. 
The process has been optimised so as to make it possible to simulate traffic loading on 
bridges over periods of 1,000 years or more, and this removes much of the variability 
associated with estimating characteristic maximum load effects from shorter periods 
of either measured or simulated data. The results of this analysis show that the 
patterns of correlation in the observed traffic have a small but significant effect on 
bridge loading.  
 
Keywords:    Bridge, correlation, simulation, traffic loading, weigh-in-motion 
 
 
1.  Introduction 
 
Much work has been done on modelling bridge loading due to two-lane same-
direction traffic. In the work by Nowak (1993), a number of simplifying assumptions 
were made – for example that one in 15 heavy trucks has another truck side-by-side, 
and that for one in 30 of these multiple truck events, the two trucks have perfectly 
correlated weights. A heavy truck was defined as one with a gross vehicle weight 
(GVW) in the top 20% of measured truck weights. As Kulicki et al. (2007) note, the 
assumptions used were based on limited observations, and the assumptions on weight 
correlation were entirely based on judgment, as almost no data were available. Moses 
(2001) presents a simple traffic model for estimating multiple presence probabilities 
as a function of average daily truck traffic (ADTT), and then selects conservative 
values, some being based on subjective field observations, for calibrating load factors 
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for bridge assessment. Sivakumar et al. (2007) refine the definition of side-by-side 
events to include two trucks with headway separation of ± 18.3 m (60 ft), and also 
consider the influence of the bridge length. Sivakumar et al. (2008), citing Gindy and 
Nassif (2006), extend this further by classifying multiple-presence events as side-by-
side, staggered, following or multiple. They present statistics, derived from weigh-in-
motion (WIM) measurements, for the frequency of occurrence of these events for 
different truck traffic volumes and bridge spans. They describe a method for 
estimating site-specific bridge loading which uses multiple-presence probabilities 
calculated either directly from WIM data or estimated from traffic volumes using 
reference data collected at other sites. It is assumed, surprisingly enough, that the 
GVW distribution is the same in both lanes, and that there is no correlation between 
weights in adjacent lanes.  

In the development of the Eurocode for bridge loading (EC1 2003), characteristic 
load effects were estimated by extrapolating directly from results for measured traffic, 
and also by extrapolating from Monte Carlo simulation of traffic, with each lane being 
simulated independently (Bruls et al. 1996; O'Connor et al. 2001). 

Croce and Salvatore (2001) present a theoretical stochastic model based on a 
modified equilibrium renewal process of vehicle arrivals on a bridge and note that 
while existing numerical models are particularly efficient when single-lane traffic 
flow is considered, they are unsatisfactory for multi-lane traffic, and have often 
employed drastic simplifications. In their model, convolution is used to combine load 
effect distributions for traffic in multiple lanes. 

This study is based on WIM data collected at four European sites. A detailed 
analysis of the data reveals that for groups of adjacent vehicles in both lanes, there are 
patterns of correlation and interdependence between vehicle weights, speeds and 
inter-vehicle gaps. A Monte Carlo simulation model has been developed for 
evaluating bridge loading due to traffic in two same-direction lanes. This simulation 
seeks to reproduce the sometimes subtle patterns of correlation that are evident in 
measured traffic while also adding an element of randomness so as to vary the 
loading. This study focuses on short to medium span bridges, up to 45 m long, where 
free-flowing traffic with dynamics is taken to govern (Bruls et al. 1996). 
 
 
2.  Observed traffic 
 
2.1.  WIM data 
 
The WIM data used as the basis for this study were collected at four European 
motorway sites, as summarized in Table 1. At each site, traffic in two same-direction 
lanes was measured. As would be expected, the volumes of truck traffic in the fast 
lane are much lower than in the slow lane, with the percentage of trucks travelling in 
the fast lane varying from 3.8% in Slovenia to 7.7% in the Netherlands. A notable 
feature of the data at all sites is the number of extremely heavy vehicles. 
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Table 1 – Summary of WIM data 
 
Country Netherlands Czech Republic Slovenia Poland 
Time 
period 

Feb to Jun  
2005 

May 2007 to 
May 2008 Sep to Nov 2006 Jan to Jun  

2008 
Lane Slow Fast Slow Fast Slow Fast Slow Fast 
Total 
Trucks 596 568 49 980 684 345 45 584 142 131 5 621 398 044 31 636

ADTT* 6 545 557 4 490 261 3 158 135 3 708 314
Maximum 
GVW 165.6 75.2 129.0 128.0 131.3 58.4 105.9 69.9

No. over 
60 t 1680 36 322 54 15 0 584 3

No. over 
100 t 238 0 10 2 1 0 1 0

* Average daily truck traffic per lane on week days 
 
2.2.  Patterns in measured traffic 
 
There are distinctive patterns observable in the measured traffic. Similar patterns 
occur at each site, to a greater or lesser degree, and the challenge of reproducing these 
site-specific patterns in simulation is the focus of this paper. For short to medium span 
bridges, loading events featuring one truck in each lane are particularly important. To 
assess if there is any dependence between the weights of these vehicles, each fast-lane 
truck in the measured data is notionally paired with the nearest truck in the slow lane, 
and the gap is measured in seconds between the front axles of the two vehicles. At all 
sites, many fast-lane trucks are within 2 seconds of a slow-lane truck – 75% in the 
Netherlands, 72% in the Czech Republic, 55% in Slovenia and 46% in Poland. The 
differences between sites may be attributable to driver behaviour at each location. The 
average GVW of the truck in the fast lane and of the nearest truck in the slow lane are 
plotted against the inter-lane gap for the Netherlands in Figure 1(a). There is a 
significant peak in the fast lane GVW when the gap is around zero – i.e. when the 
trucks are very close – and a similar pattern is evident in the Czech Republic. It 
appears that a heavy truck in the fast lane tends to be associated with a nearby truck in 
the slow lane, i.e. it is passing another truck. In Poland (Figure 1(b)), there is a peak in 
the fast-lane GVW and also in the slow-lane GVW when the trucks are close, 
suggesting that both the passing truck and the truck being passed are heavier than 
average. The Slovenian data suggest that the passing truck tends to be lighter than the 
average for the fast lane. The graphs in  show results for both the observed 
data and for simulated traffic where the simulation uses the methods outlined in this 
paper. At all sites, the simulated traffic reproduces the observed site-specific patterns 
very well. 

Figure 1

There is also some correlation between the weights of successive trucks in the 
same lane, particularly in the slow lane where most trucks are found. The coefficient 
of correlation between the GVW of all leading trucks and all following trucks is 
typically in the range 5% to 10%. The correlation tends to increase as the weights of 
both trucks increases. In Figure 2, pairs of successive trucks are selected if both their 
weights are above a certain threshold (25 t, 30 t, etc.), and the correlation coefficient 
calculated for all such pairs is plotted against the threshold value. The trend is 
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particularly pronounced in the Czech Republic (Figure 2(a)) and in the Netherlands. 
In Slovenia (Figure 2(b)) and Poland, the trend is present, but less obvious. There are 
widely-used techniques for modelling correlation in Monte Carlo simulation, such as 
that described by Iman and Conover (1982), and the use of copula functions (Nelsen 
1999). In the authors’ experience, it is very difficult to simulate the correlations 
evident in Figure 1 and Figure 2 using these techniques. The simulation method 
described in this paper successfully reproduces the observed correlations.  
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(a) Netherlands (b) Poland 
Figure 1 – Inter-lane GVW correlation  
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(a) Czech Republic (b) Slovenia 
Figure 2 – Slow-lane GVW correlation 
 
Other patterns evident in the observed data include a relationship between speed and 
GVW, with heavier trucks tending to travel at slightly lower speeds. There is some 
evidence of larger gaps behind heavier trucks. It is also apparent that successive inter-
vehicle gaps are not independent, particularly at lower traffic volumes where 
platooning causes small gaps to occur in clusters. The simulation of the spatial layout 
of traffic in two same-direction lanes requires the correct modelling of three inter-
dependent gap distributions – the in-lane gaps in each of the slow and fast lanes, and 
the inter-lane gaps. If the in-lane gaps are simulated independently for both lanes, the 
resulting inter-lane gap distribution will be a poor match for the observed. Similarly, 
if the slow-lane and inter-lane gaps are simulated based on the observed data, the 
resulting fast-lane gaps will not match the observed.  
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3.  Simulation of traffic 
 
The principle of bootstrapping is to draw random samples repeatedly from the 
observed data (Efron and Tibshirani 1993). In this case, the samples used are “traffic 
scenarios”, with each scenario consisting of between five and eight slow-lane trucks 
in succession, with any adjacent fast-lane trucks. In preparation for simulation, the 
WIM data are analysed and all scenarios are identified. The parameters recorded for 
each scenario are flow rate, gaps, GVWs and speeds. The flow rate is represented by 
the number of slow-lane trucks in the current hour, rounded to the nearest 10 
trucks/hour. The gaps needed to define the scenario are the gaps within each lane, and 
one inter-lane gap which positions the first fast-lane truck relative to the leading slow-
lane truck in the scenario, as shown in . The number of parameters needed to 
describe a single scenario (i.e. the dimensionality of the problem) varies with the size 
of the scenario, but in the typical scenario shown in Figure 3, a total of 21 different 
parameters are needed – the GVWs and speeds of seven trucks, six gap values and a 
flow rate. Correlations between parameters are implicitly included in each scenario. 

Figure 3

Figure 3 – Traffic scenario 
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In the simulation of traffic, the traffic flow rate at any time is based on the measured 
average hourly flow rate. Traffic scenarios appropriate to the current flow rate are 
drawn randomly from the observed traffic. This bootstrap process would be expected 
to produce bridge loading very similar to the measured traffic. Variations from the 
observed scenarios are introduced in a number of ways. Each time a scenario is 
selected in the simulation, the GVWs, gaps and speeds that define it are modified 
using variable-bandwidth kernel density estimators, as described below. When a 
GVW has been selected for a particular vehicle, the number of axles is randomly 
chosen from the measured distribution for that weight. The axle spacings, and 
distribution of the GVW to individual axles, are also generated randomly from 
measured distributions for vehicles with different numbers of axles. 
The term “kernel density estimator” describes the use of kernel functions to provide a 
better estimate of a probability density function from sample data (Scott 1992). A 
simple histogram gives an estimate of the density at discrete points, but is influenced 
by the choice of the bin size and origin. Replacing each data point by a kernel 
function and summing these functions gives a better estimate. Different kernel 
functions can be used – they are typically symmetric unimodal functions such as the 
Normal density function. In Monte Carlo simulation, the “smoothed bootstrap” 
method – re-sampling the observed data and adding some noise – is the same as 
generating random variates from the kernel density estimate, but without needing to 
compute the estimated density. In this study, the smoothed bootstrap is applied to 
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three variables – GVW, gaps and speeds. Each value xi taken from the observed traffic 
scenarios is modified by adding some noise: 

[ ])( iii xhKxX +=            (1) 

where K is a kernel function, centred at zero with a variable bandwidth h which 
depends on the value of xi. For each random variable being modelled, a suitable 
bandwidth must be chosen – if the bandwidth is too small, not enough variability will 
be introduced to the empirical data, whereas too large a bandwidth will oversmooth 
the data, as shown for example in (a). Scott (1982) discusses adaptive 
smoothing where the bandwidth of the kernel function is varied and cites the approach 
developed by Abramson (1982): 

Figure 4

Figure 
4

Figure 4 – Kernel bandwidth 

( )
( )i

ii xf
hxh =                      (2) 

where f(xi) is the empirical density function. This approach is adopted here, and 
allows for additional smoothing where the observed data are sparse, as illustrated in 
Figure 4(b) for fast-lane gaps in the Czech Republic. The choice of bandwidth h is 
somewhat arbitrary, and is based on the avoidance of oversmoothing (as in 

(a)). 
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(a)  Oversmoothing of speed – 

Netherlands – Slow lane 
(b)  Variable bandwidth, Fast lane 

gaps – Czech Republic 

 
 
4 Results 
 

To assess the effects of correlation, an uncorrelated simulation model was also 
developed in which GVWs, slow-lane gaps, inter-lane gaps, and speeds are drawn 
independently for each truck from the observed distributions. In order to compare the 
simulation models, comparison is made between bridge loading by measured traffic 
and by simulated traffic on bridges of different lengths – 15, 25, 35 and 45 m. Daily 
maximum values are calculated for each loading event type for three load effects – 
mid span bending moment on a simply supported bridge (LE1), support shear at the 
entrance to a simply supported bridge (LE2), and for bridges which are 35 m or 
longer, hogging moment over the central support of a two span continuous bridge 
(LE3). Loading events are classified according to the number of trucks present in each 
lane on the bridge when a maximum load effect occurs. 

For comparison purposes, the two simulation models – smoothed bootstrap and 
uncorrelated – were run for 2000 days, and the simulated and measured results plotted 
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on Gumbel paper. An example is shown in (a) for events with one truck in 
each lane on a 35 m bridge in the Netherlands, and this illustrates that the smoothed 
bootstrap gives a significantly better fit to the measured data. An analysis of all spans, 
load effects and event types described above shows that in general the smoothed 
bootstrap gives a better fit to the measured data for multi-truck events. For one-truck 
events, both methods perform equally well. 

Figure 5

Figure 5 – Daily and annual maximum load effects – Smoothed bootstrap (SB) vs. 
uncorrelated (UC) models 
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(a) Goodness of fit (b)  Lifetime loading – 35 m bridge, 

Czech Republic  

 
To see what effect the different modelling assumptions have on the characteristic 

maximum loading, both methods were used to simulate 2500 years of traffic. In the 
Eurocode for bridge loading (EC1 2003), the value with a 5% probability of 
exceedance in 50 years is specified for design which is approximately the value with a 
return period of 1000 years. Sample results are plotted in Figure 5(b) which shows 
simulated annual maxima on a 35 m bridge in the Czech Republic with high lateral 
distribution. Three event types are shown –one truck in each lane (1+1), two trucks in 
the slow lane (2+0), and one truck in the slow lane with two trucks in the fast lane 
(1+2). For single-truck events (not shown), both models give the same results, but for 
events involving two or more trucks there are significant differences between the two 
simulation models, with the smoothed bootstrap method giving more conservative 
results than the uncorrelated model. The increases in characteristic maximum load 
effects due to correlation in models were calculated for the four spans and three load 
effects considered at the sites in the Netherlands and the Czech Republic. Correlation 
effects were found to account for an increase in 1000-year loading of up to nearly 8%, 
with typical values of around 5%, particularly when lateral distribution is high. 
Confidence intervals estimated using a parametric bootstrap indicate that these 
differences are statistically significant. 
 
 

5 Conclusions 
 
There are subtle patterns of correlation evident in measured traffic data. This inter-
dependence between weights, speeds and inter-vehicle gaps for adjacent trucks affects 
the estimation of lifetime maximum bridge loading. A multi-dimensional smoothed 
bootstrap approach is presented here which re-samples observed traffic scenarios and 
uses kernel functions to introduce additional variation. The traffic scenarios are 
defined so as to capture patterns that may be significant for bridge loading, and to 
maximise variability in the simulation. The method is relatively simple to implement 
for any new site, and could be extended to three or more lanes. It is effectively the 

B. Enright & E.J. OBrien  - 7 -
  



8  B. Enright & E.J. OBrien 

same as sampling from empirical distributions (for GVW, gaps and speed), but with 
correlation and some additional smoothing and randomness. It potentially could be 
used to model congested or partly congested traffic, if sufficient data were available. 
The choice of bandwidth for the kernel smoothing functions is somewhat arbitrary, 
although results for characteristic bridge loading are, within reason, not too sensitive 
to this choice. The model presented provides a better fit to measured data across the 
range of key loading event types than is obtained with a model which does not include 
any correlation effects. The effects of correlation on characteristic maximum loading 
may be as high as 8% for the range of bridge spans considered. 
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