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Abstract 

The aim of this project was to investigate the performance of a number of key control strategies in 

the temperature control of batch reactors. A bench scale model was built and a batch production 

system was then implemented on this model. As there was no a priori knowledge of the system a 

number of common system identification methods were investigated.  

The system was controlled using a Mitsubishi FX(2)N Programmable Logic Controller which was 

interfaced with a PC running ICONICS, a Supervisory Control And Data Acquisition software package. 

The system identification methods produced two different models for the system and these models 

were examined against the actual system using Matlab/SIMULINK, a software package used for 

technical computing. Then a number of tuning rules were investigated and implemented on both 

models with the results compared and contrasted.  

The standard Industry criteria were used to compare the performance of the servo response for 

each controller. The PI controller using Zeigler-Nichols tuning rules was set as the bench mark. The 

Cascaded control strategy offered no increase in performance in the servo response in either the 

actual process or the SIMULINK models. However the regulatory response of the Cascaded strategy 

would offer an improvement on the performance of the PI controller. The performance of the Smith 

Predictor was limited due to the minimal time delay relative to the time constant.  

The Integrating method proved to offer an improvement on the two point method in terms of 

system performance and in the time required to identify the initial controller. Also the Smith 

Predictor offered a slight improvement in both the laboratory model and in the Matlab/SIMULINK 

simulations. 
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1. Introduction 

1.1 Background 

The project is based on the automation of a Bench Scale Batch Reactor and the problems associated 

with accurate temperature control. The project is an investigation into an existing problem which 

can be experienced during the initial start up of the reactor, the problem can occur when the 

temperature control is optimized around the nominal operating temperature range and thus the 

large difference between the ambient temperature and the desired setpoint can cause an overshoot 

in the temperature response. The problem can be solved by manually controlling the temperature 

until it is within an acceptable range around the setpoint and then switching in the controller. 

However this is not desirable as manual control depends entirely on the competency of the operator 

and variations between different operators can cause discrepancies between different batches. 

There are a number of aims and ideas explored here, which can be broken up into different sections, 

these being: 

1) A comparison of the commonly used empirical modelling methods to identify an accurate model 

for the process. The modelling methods used here produce a model of the system which is 

either in the form of a First Order Plus Dead Time (FOPDT) or a Second Order Plus Dead Time 

(SOPDT) model.  

2) A comparison of the performance of a number of control strategies in the temperature control 

of a bench scale batch reactor. These strategies will include the most commonly used control 

strategies in the Pharmaceutical Industry where the performance of each control strategy will 

be compared using standard performance criteria. As each control algorithm will be analysed 

using the same process and with similar same conditions an accurate comparison is possible. 

 

3) The process will also be modelled using simulation software; an example of such software is 

MATLAB from MathWorks®, to investigate the difference in the empirical modelling and the 

actual system. 

In spite of innovations in predictive and advanced control techniques the majority of chemical 

industries still use Proportional Integral Derivative (PID) loops. In industrial process control 

applications more than 95% of the controllers are of PID type. The maintenance and operation of PID 
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controllers are well known and are relatively easy to understand. The PID controller is also robust in 

nature when tuned correctly and thus is ideal for a wide range of applications. (1) 

1.2 Aims/ Goals 

There a number of goals proposed, including: 

• Designing, Building and Implementing a Bench Scale Batch production system using the ISA 

S88 Standard. 

• Developing an efficient and transparent SCADA system to control the system. 

• A comparison of PI, Cascaded PI-P, and PI with a Smith Predictor control strategies. 

• An analysis into the effects of a digital implementation of the control strategies. 

• Investigating and analysing the effects of using a 1st order model to estimate an Nth order 

system. 

1.3 Issues 

There are a number of issues that can occur when undergoing a practical project such as the 

scalability issue. This is where the control strategy works for the bench scale but isn’t as efficient 

when scaled up. This problem is down to the high ratio of surface area to the volume of the reactor, 

in a production size reactor the ratio of surface area to reactor volume is much less and hence the 

heating characteristic’s cannot be scaled up. The results obtained here cannot be assumed to be 

directly comparable but they can be used to give an indication as to the expected performance of 

the production scale reactor. 

Also the pharmaceutical industry is a very secretive industry and obtaining any information is very 

difficult, this is down to the highly competitive nature of the business. This practical information can 

be very useful in determining whether an idea or concept is viable.  

There is an issue that exists when starting up some process; this issue is down to the method of 

control and the tuning of same. This is usually overcome using a manual start-up handled by an 

experienced Operator. This problem can occur in batch reactors even in the bench scale so the 

identification of a method that does not need a manual start up is clearly advantageous as it remove 

the manual intervention and the risk of operator error. 
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1.4 Summary of Chapters 

The introduction to the project is given in Chapter 1: Introduction; this chapter gives a brief 

overview of the main concepts and ideas that are subsequently covered in greater depth in latter 

chapters. The goals and aims are also outlined with the reasoning and benefits behind them 

covered.  

The next section is Chapter 2: Literature Review; in this chapter the literature that has been 

published in relation to the project is reviewed. This contains information about who, where and 

how the previous research has been carried out. The information is taken from research papers, 

journal publishing and catalogues. The aim of the chapter is to offer the reader a structured view of 

the current field of study.  

In Chapter 3: Methodology the methods for data capture are covered along with the concepts of 

how the process operates. The process is described here including all the individual components and 

how they are interconnected. Also the method to translate the actual process into a simulation 

model is discussed along with the performance metrics that are used to compare different methods. 

In Chapter 4: Theoretical Background the equations that define the operation of the heat transfer of 

the system are described at a basic level to give an estimation as to the performance of the system. 

The methods of implementation for the different control strategies are also discussed.  

In Chapter 5: Results the findings of both the simulation models and the actual implementation are 

shown. The performance of each method is given and is then compared and contrasted. The results 

are mainly presented in graphical form as this provides a quick and clear indication as to the 

performance of each method. 

In Chapter 6: Conclusion and Discussion the results and findings in this project are discussed and are 

brought together. The area where future work could potentially arise is dealt with in this section. 

And also included is a summary of the project. 
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2. Literature Review 

2.1 Introduction 

There is a large quantity of literature in the area of Control Systems; this is because control problems 

exist in many different industries. The use of control theory occurs in the Medical Industry along 

with the Manufacturing and Pharmaceutical Industries to name but a few.  This means that there is 

huge interest in the development of new methods and in improving existing technology, which has 

led to a situation where there is a vast number of different methods but there is no hard fixed 

acceptance of when to use each method nor has there been an extensive direct comparison of the 

advantages and disadvantages of each method. 

2.2 Feed Back Control 

The process under inspection is a laboratory scale batch-reactor where the production of a batch is 

simulated. The aim is to replicate fully an industrial approach where the temperature needs to be 

maintained and controlled to within certain criteria. There are a number of different control 

methods available to achieve this. The control structure can be off two forms, Open loop and Closed 

Loop. The difference between the two arrangements is the existence of feedback in the closed loop 

system.  

Feedback can be defined as a process through which a signal travels through a chain of causal 

relations to re-affect itself (2). An example of a negative feedback system that can be seen in 

everyday life is the domestic heating system seen in most homes, when the thermostat detects that 

the temperature of your home drops below the desired temperature the heating is turned on.  

As open loop control systems do not contain any feedback they are rarely, if ever, used in industry 

but they can be seen in everyday life in the form of a toaster for example. The toaster operates on a 

timer and when the timer is reached the toast will ‘pop’ no matter how well cooked the toast is i.e. 

there is no sense of well done the toast is.  

There are a number of different types of Closed Loop control systems available and these are 

examined in the next section, where each controller structure is critically examined and the final 

choice of controller is specified. 

In the pharmaceutical sector, accurate temperature control is specified because any variation in 

temperature can adversely affect the yield, quality, purity, efficacy, potency and in general result in a 

compromised product. 
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2.3 System Identification 

The first important step in any control system problem is to find out as much information about the 

process as possible. The information can then be used to determine the model for the system, with 

the most prevalent being the First Order Plus Dead Time (FOPDT) and the Second Order Plus Dead 

Time (SOPDT).   

There are two different types of methods that can be used to identify a model as a representation of 

the actual system, these are defined here as:  

1. Theoretical model  

 The use of a theoretical model requires, even for a simple system, a number of differential 

equations. The development of these equations is not always simple and thus can be largely time 

consuming. For complex processes if the model requires a large number of differential equations 

with a significant number of unknown parameters the equations may be insolvable.  

The other problem with identifying a theoretical model is that the assumptions that are needed can 

cause large variations that can create unrealistic systems. The sensitivity of the model to the 

assumptions means that it is not always possible to achieve an accurate model. 

2. Empirical model 

The most simple and widely used method to identify any process is the step test; this is where a step 

is inputted into an open loop system with the output recorded to produce a Process Reaction Curve 

(PRC). An estimation of the system can made from the PRC and a FOPDT model can be obtained in 

the form       
     

    
. 

The process dead time,  , is the time period following an upset during which the controlled variable 

is not yet responding. The time constant,    is a period between the time when a response is first 

detected and the time when the response has reached 63.2 % of its final (new steady-state) value. 

The gain, K, is to change in the controlled variable relative to the change in the controller output. (3) 

The PRC structure to estimate a FOPDT is given in Figure 2.1, where the two point method is used. 
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Figure 2.1 : Model Building using a Process Reaction Curve and the Two Point method (Courtesy of Aidan O’Dwyer, DIT) 

The two point method has been shown to be an improvement on the tangent and point method. 

The accuracy of the model using the two point method is much higher than that of the tangent and 

point, and this is down to the discrepancies between the positioning of the tangent to the slope. The 

two point method is a mathematical method whereas the tangent and point requires a graphical 

reconstruction. 
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There is an alternative method as introduced by Yuwana and Seborg (4) which allows for FOPDT 

model to be estimated from the closed loop step response. The results from 2002 (5) show that the 

FOPDT model obtained using this method is a close representation of the equivalent process. The 

closed-loop methods are often more preferable in industrial applications in comparison to the open-

loop methods this is because they can be executed in the knowledge that the process is under some 

manner of control. This is because closed loop method removes the possibility of process runaway 

that could potentially occur with the open-loop method and also the closed loop method can be 

completed with minimal disruption to the system.  

The online method as described by O’ Dwyer and Kealy (5) is illustrated in Figure 2.2 where the trend 

appears to be in the form of an under-damped SOPDT.  

 

Figure 2.2 : Online tuning method 

The method involves introducing a setpoint change to the existing system with the controller chosen 

either voluntary or involuntarily to exhibit an oscillatory response. This response is then 

approximated as an under-damped SOPDT as described be Mamat and Fleming (6).  

This method can be used in the event of an oscillatory response; however for this method to be used 

there needs to be an existing controller in place. In this project there is no existing controller and 

thus this method cannot be used initially. The focus of this project is on the initial starting point for 

controlling new processes. Thus the system identification methods must come from the PRC. This 

method can be used in retrospect after the initial controller is implemented.  
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The above methods are used to identify a FOPDT model to estimate the system as quite often the 

FOPDT can accurately represent higher orders systems. However there are also a number of 

methods to ascertain a SOPDT in the event that the FOPDT model is unable to give an accurate 

representation of the actual process. 

One such method to indentify a SOPDT (7) is given here: 

 

Figure 2.3 : SOPDT Model Identification method 

The model that is obtained from this method is in the form of  

      
     

              
 

 
( 2.1 ) 

Where: 

 K is the process gain 

  is the dead time  

  ,    are the two time constants 

The length of the segments I1 and I2 are measured and then used to find the time constants from the 

following equations and these are given here: 

  
  

  
  
  
 

  
     

    
 

    

 

 

( 2.2 ) 
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And 

  
  
   

  
  

            
  
  

 

 

 ( 2.3 ) 

 Also the point 
  

  
, 
  

  
 also satisfies the following equation 

  
  

 
  
  

 
  
  

 

 

 ( 2.4 ) 

Thus the two time constants can be derived from the measured line segments giving a SOPDT model 

for the system. The advantage of this method is that there is no additional experimental work than 

the method to obtain the FOPDT model i.e. the same PRC can be used for the FOPDT and the SOPDT 

models. This allows a direct comparison of both methods. It is usually accepted that the FOPDT 

model can be used to approximate higher order processes with accuracy that is sufficient in most 

cases, however the potential advantages of having the accuracy of a higher model have not been 

fully exploited. 

It is found that for open-loop processes that have dynamics of SOPDT, the efficiency of PID control is 

mostly around 65% only. But for FOPDT process, the efficiency is very close to 100%. Thus, compared 

with the optimal simple feedback system, the PID controller is not so efficient for SOPDT 

processes.(8) 

There is also another method that is used to indentify controller parameters using the PRC; however 

this method does not need the full PRC. This method is referred to in this project as the Integrating 

method. The integrating model is used in process’s such a liquid levels in a vessel where when a 

valve is open the level will continue to change in a linear fashion. (9) 

 This method works here by approximating the initial rise in the system’s PRC as an Integrating 

system. Since this method only needs the initial rise it can be done in a much shorter time frame and 

also in a safer manner since the process is only active for such a short time. 

The model produced by this method is seen in Equation ( 2.5 ). 

      
     

 
 ( 2.5 ) 

 



 

Michael Healy  17 

The gain, K, is found in the same manner as the gain for the FOPDT method where 

  
                

               
 and then the time delay is easily identified as the time required for a change in 

the output. The condition for which this method is applicable is that for     the output is zero. 

Also for     the output is equal to                        .  

The Integrating model does not offer a full model for the entire system but rather an approximation 

of the initial rise. However there are methods to deduce controller parameters from the integrating 

model and thus a full model is not needed.  

2.4 Controller Types 

There are number of main controllers that are used in industry and these include the following: 

 The Proportional Integral Derivative (PID) controller, including P only, PI and PD 

 The Cascade control algorithm (usually containing some form of PID control) 

 The Smith Predictor ( or another form of Dead Time Compensator) 

2.4.1  PID Control 

The use of PID controller’s is widespread in process industries which results in extensive solutions to 

the problem of tuning PID controller parameters in single input single output (SISO) systems. The de 

facto tuning rules are those developed by Ziegler and Nichols in 1942 (10). There are other 

important tuning rules such as are those introduced by Cohen and Coon in 1953 which are similar to 

the Ziegler-Nichols rules but can offer a slight improvement in certain situations. The PID control 

used in this project is mainly PI control with the derivative term set to zero. The initial tuning rules 

used here are the Zeigler-Nichols; however these are only the start point. The final part of tuning is a 

manual trial and error process. The efficiency and efficacy of this tuning is greatly increased with 

experience of tuning similar systems. 

2.4.2 Cascade Control 

The cascade control approach to temperature control is used in a number of different industries for 

a wide range of applications. The improvement in system performance based on cascade control 

approach over the conventional one from the point of improved time response and relative stability 

is verified through simulation results. Cascade control is used to improve the dynamic response of a 

feedback control loop to disturbances in the manipulated variable. (11) 

The implementation of a cascade scheme changes the characteristic equation of process control 

system and as a consequence affects its stability. The effect of the cascade control strategy on the 

overall loop stability can be seen by performing a software based simulation. (12)  
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The use of cascade control can also be seen in the control of central air-conditioning system. (13)  

Moreover, when disturbance to the control variable or non-linear final control element are included 

in the system, cascade control can be preferred in order to improve the closed-loop response.  

There is information in the published literature on the tuning methods of cascade controllers (14) 

but it is rather limited. The standard method is to tune the inner loop first and then tune the outer 

loop. Lee and Park (1998) proposed a new method, finding the ideal controller that gives the desired 

closed-loop response and then finding the PID approximation of the ideal controller by Maclaurin 

series. The method, which can be applied to any open loop stable processes, enables us to tune the 

PID controller both for the inner loop and the outer loop simultaneously.  

It is important to decide when to use cascade control, because it requires at least two measuring 

elements instead of one. According to Krishnaswamy, Jha and Deshpande (1990), the criteria to use 

cascade control are: 

1. The inner loop is faster than or as fast as the outer loop  

2. The disturbance affects the inner loop 

3. There a two measured elements available and there is a causal relationship between the two 

The most common cascade controller is chosen as PI-P because it has only three tuning parameters 

and gives a good performance. The inner loop needs to be as fast as possible and thus the 

proportional term alone helps to achieve this and also there is no need to have two integral terms as 

having a integral term in the outer loop will ensure that there is zero steady state error and thus the 

inner integral term is redundant.  

2.4.3 Smith Predictor Control 

The concept of the Smith Predictor has received much interest since the idea first came about in the 

1957 and hence has been improved upon for many different applications. The discrete 

implementation of the Smith Predictor is covered well by Vodencarevic (15). The Smith Predictor is a 

dead time compensator and the key idea of the Smith Predictor is to isolate the time delay term 

from the linear component.  

The problem with systems that have a long time delay is that the performance of the PID controller 

is very limited as to the specifications that it can meet. This means that the PID controller is not as 

effective as it could be and this is where the Smith Predictor is advantageous. The problem that the 

time delay introduces is that the gain of the controller has to be detuned as to prevent a massive 
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overshoot and a ringing effect. This reduction in gain prevents this but introduces a sluggish 

response from the system. 

The ideal form of the Smith Predictor is shown in Figure 2.4, where the estimate of the plant is fed 

back and compared to the setpoint to negate the delay. 

 

Figure 2.4 : Ideal Smith Predictor 

2.5 System Implementation 

The implementation of the controllers that are used in industrial applications are operating in 

discrete time while the process is usually a continuous time system, ideally both the controller and 

plant would be continuous time systems. The discrete time controllers are down to the use of 

computers or PLC’s as the basis for implementation of the controllers.    

The continuous controller can be seen in Figure 2.5  where the discrete approximation can be seen 

in Figure 2.6.  

 

Figure 2.5 : Continuous Controller (Courtesy of Carnegie Mellon University) 
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The continuous controller can be approximated by a difference equation created from a zero order 

hold transformation. This is then implemented at a defined interval. 

 

Figure 2.6 : Digital Controller (Courtesy of Carnegie Mellon University) 

The majority of tuning rules assume that the controller is implemented in a continuous time mode 

and this introduces a problem that is caused by the sampling of the continuous process. The 

problem is that the discrete transformation introduces a delay term which is approximately equal to 

half the sampling time. This can be accounted for when designing discrete controllers to negate the 

effect of the sample and hold.  

2.6 Summary 

PI/PID control systems have been widely used in the industrial process control and the performance 

of these control systems are dependent on the dynamics of the open-loop process. Huang and Jeng 

(16) indicate that if the controller in a simple feedback loop has a general form, not constrained to 

the PI/PID controller, then the minimum attainable IAE criteria value for a unit step input is found to 

be 1.38θ. This is the best achievable value with an ideal controller and simple system. This IAE value 

can be used to identify when the system has reached its maximum performance.  

In this chapter the literature describing the system identification methods have been introduced 

along with the different control methods. Also the methods which are used to implement these 

control strategy’s have been expressed. 
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3. Methodology 

3.1 Introduction 

The test rig used for this project was designed and built to simulate an actual batch reactor 

operating environment. The test rig is build exclusively from stainless steel. The use of stainless steel 

in the production of reactor vessels in industrial application is very common due to its high 

resistance to corrosion and good heat transfer characteristic. The heating is supplied by a 3kW 

heating element in separate vessel. The capacity of the reaction vessel is approximately 7 litres while 

the jacket contains 2.5 litres. The heater has a capacity of approximately 6 litres given the overall 

total volume of the heating system at circa 10 litres.  The Piping and Instrument Diagram (P&ID) for 

the system can be seen in Figure 3.1. 
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Figure 3.1 : P&ID for the system 
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The P&ID in Figure 3.1 shows the system with the cascaded control structure. This initial system is 

operating only with the control of the heating element (i.e. Hot Water), while the control of the 

cooling water is added to improve the performance of the system. The initial system can be seen in 

Figure 3.2. 

 

Figure 3.2 : The actual process 

The heating component can be seen on the right of Figure 3.2, where the heating element is 

contained in a separate vessel to that of the actual reactor. This would allow for multiple reactors to 

be connected to the same heating source as would be the case in most industrial applications. 

However there are a number of small changes that would be needed to implement such a system 

the most important change would be to change the final element. The final control element is the 

heating element and this would need to be change to control of the flow with either a modulating 

valve or by using different pumping equipment.  

The temperature probes are contained in both the jacket and in the product enclosure. The probes 

are fully immersed in both cases and give an accurate representation of the temperature. The jacket 

temperature probe is a Resistance Temperature Device (RTD) while the product probe is a 

Thermocouple. The accuracy of both devices is very similar over this temperature range as they are 

very accurately calibrated. They are both operating over the 4-20mA range and are converted to 

digital form using a 12 bit Analog to Digital Convertor (ADC). 
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The agitation in the product vessel is provided by a Permanent Split Capacitor (PSC) motor that is 

designed to run at 3650 RPM. This level of rotation causes the formation of vortexes in the product 

vessel. To counteract this, the motor would ideally be adapted to run at a lower speed however 

accurate speed control on a PSC motor needs a Variable Frequency Drive (VFD). But this is not 

available so the motor will instead be controlled by switching it on and off in a method similar to 

that of a Pulse Width Modulate (PWM) control. The motor will be switch on for 3 seconds and off for 

5 seconds on a repeated loop. This provides consistent agitation and the reactor can be considered a 

continuously stirred batch reactor. 

3.2  System identification 
The first method used to find a suitable model for system is the Step test as described in Section 2.3, 

where the Process Reaction Curve obtained from the system is depicted in Figure 3.3. 

 

Figure 3.3 : The PRC for the system 

The input to the process is 18.75% (or 375 counts/ decimal representation) of the maximum output 

from the controller. The standard two point method is then used to derive the FOPDT transfer 

function in the form of        
  

     
      here in this case we have: 
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This gives the following FOPDT transfer function as a representation of the system (in Minutes): 

       
     

        
      

 

( 3.1 ) 

 

There are a number of other methods to find a model for the process such as that described by 

Oldenbourg and Sartorius (7) which results in a SOPDT transfer function in the form 

      
     

              
 

( 3.2 ) 

To find the SOPDT transfer function the same PRC is used as in Figure 3-1. The Gain of the SOPDT is 

the same as that of the FOPDT, while the dead time is estimated graphically as depicted in Figure 

3.4. The two time constants are inferred from the length of the line segments I1 and I2 which are 

measured from the PRC. 

 

Figure 3.4 : The PRC for the system with the graphical construction to identify the SOPDT 

The resulting SOPDT transfer function was found to be       
          

             
 which can be rewritten 

in the form       
          

         
 with the time constants and delay in terms of minutes. 

There are numerous tuning rules that can now be used to define a controller that will achieve a good 

level of performance from the process. The performance can be measured by a number of ways that 
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allow a direct comparison of different controller types, and these are mainly concerned with the 

servo response of the system, although there are performance indicators for the regulatory 

response of the system.  

 The second set of performance criteria are related to the properties of the closed loop system in the 

frequency domain. These are the phase margin and the gain margin which can be found from the 

bode plot of the open loop system (i.e.                   where subscript “ol” is open loop, “p” 

is process and “c” is the controller). 

3.3 PLC and SCADA System 

The Mitsubishi FX(2N) PLC is used to control the system; it contains a 12 bit Analogue to Digital 

Convertor along with a 12 bit Digital to Analogue Convertor. The Discrete control algorithm is 

implemented with a sample time of 1 second. This is fast enough to detect any changes in the 

temperature of the system. The program is organised using Sequential Function Charts and is 

written in a combination of instruction list and ladder logic. 

The SCADA is designed using Iconic’s Inc. Genesis GraphWorx package and is connected to the PLC 

using the Object Linking and Embedding for Process Control (OPC) from Kepware®. The OPC 

communicates with the PLC via a serial RS-232c connection. The OPC converts the machine code into 

decimal representation and this allows any computer program to interpret the data. 

3.3.1 User Interface Design 

The Visual Design of a user-computer interface affects both the user’s initial impression of the 

interface and the systems longer-term usefulness. Visual design comprises all the graphic elements 

of an interface, including overall screen layout, menu and form design, use of colour, information 

coding, and placement of individual units of information with respect to one another. Good visual 

design strives for clarity, consistency, and attractive appearance.  

If the meaning of an image is readily apparent to the viewer, we have visual clarity.  An important 

way to achieve visual clarity is to use the visual organization of information to reinforce and 

emphasize the underlying logical organization. There are just a few basic visual-organization rules for 

accomplishing this end. (17) 

The visual-organization rules concern similarity, proximity, closure, and good continuation. The rule 

of similarity states that two visual stimuli that have a common property are seen as belonging 

together. Likewise, the rule of proximity states that two visual stimuli that are close to each other 

are seen as belonging together. The rule of closure says that, if a set of stimuli almost encloses an 
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area or could be interpreted as enclosing an area, the viewer sees the area. The good-continuation 

rule states that, given a juncture of lines, the viewer sees as continuous those lines that are 

smoothly connected. 

The rules are applied to improve menu organization. The best menu uses proximity to form groups 

and similarity of indentation to show the two-level logical structure. Consistent application of visual-

organization rules and coding, and consistent combination of visual elements into higher-level 

graphic objects and icons, constitute another important element of visual design. (17) 

Visual elements can be thought of as letters in a graphic alphabet, to be combined into words whose 

meanings should be obvious to the viewer. Consistency must be maintained among as well as within 

single images; a consistent set of rules must be applied from one image to another. In coding, for 

example, it is unacceptable for the meaning of dashed lines to change from one part of an 

application to another. For placement consistency, keep the same information in the same relative 

position from one image or screen to the next, so that the user can locate information more quickly.  

Visualization provides an ability to comprehend huge amounts of data; it also enables problems with 

the data itself to become immediately apparent.  Visualization often reveals things not only about 

the data itself but also about the way the data is collected with an appropriate visualization, errors 

and patterns come to the fore. Visualization allows understanding of both the bigger picture and the 

finer details. (17) 

3.3.2 SCADA Components 

The SCADA was designed using the rules as defined in the previous section. The automated valves 

used in the system are depicted as seen in Figure 3.5 and Figure 3.6 whereas the pump used is 

depicted in Figure 3.7 and in Figure 3.8. Also the colour code to represent the state of operation 

used here is indicated in the following images. 

 

Figure 3.5 : Valve Off 

 

Figure 3.6 : Valve On 

 

Figure 3.7 : Pump Off 

 

Figure 3.8 : Pump On 

The colour code follows an intuitive and easy to understand pattern. The colour green is associated 

with ”GO” (as used in the traffic light system) and here it is used to represent a “running” or “open” 

element. This same colour scheme applied to all the elements contained in the process.  
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When the element is not “ON” the colour changes to a “Greyed out” appearance which is a clear 

contrast to the vibrant green. The Grey colour symbolises that the element is not in use and is not 

running.  

 

Figure 3.9 : Cold Product 

 

Figure 3.10 : Hot Product 

 

The temperature of the jacket and product are important parameters and thus are animated to give 

a clear indication as to their status. This is shown by using a colour scheme; the colours chosen are 

the simplest representation of temperature and also the most common. The colours are blue for 

cold and red for hot. This is shown in Figure 3.9Figure 3.9 Figure 3.10 where the temperature of the 

product can be seen with the need to review the temperature reading. This animation provides a 

very simple but important status update on the product temperature. 

The overall SCADA homepage can be seen Figure 3.11, where the SCADA is designed to represent 

the actual process as closely as possible. 

 

Figure 3.11 : SCADA image 
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3.4 Simulation Software (Matlab) 

To simulate the continuous time domain transfer function in the discrete time domain we need to 

make some approximations, the first of these is the estimation of the time delay (also known as 

dead time). This dead time exists because no measurement or response to a process can be truly 

instantaneous. Although all systems have some degree of dead time, too much dead time can lead 

to problems with system response. If the dead time is not appropriately accounted for, the lag in 

data readings can have detrimental effects on the implementation of control (18). 

 The transfer function for the time delay is given here as: 

          ( 3.3 ) 

  

Among the many methods to estimate time delay, Pade approximations are the most frequently 

used methods to estimate dead-time by a rational function (19). The 2nd order Pade approximation 

in particular is the most widely used, although hider orders can be used (20). It can be seen that the 

Pade-approximations give a somewhat accurate expression for the time-delay, but in this project it 

will only be used where the exact transfer function      cannot be used directly.  

The majority of ordinary differential equation numerical integrators, such as Matlab, require pure 

differential equations that have no time delays.  As the system consists of differential equations with 

time delays, the Pade approximation can be used to convert them to delay-free differential 

equations, which can then be numerically integrated. 

The time delay term can be written as (21): 

          ( 3.4 ) 

    

Where the first order Pade Approximation can be written in the form: 

     
  

 
   

  
 
   

 ( 3.5 ) 

While the more accurate 2nd order approximation can be seen below: 
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 ( 3.6 ) 

Where   = Dead Time 

The comparison of the 1st and 2nd order Pade approximations can be seen in Figure 3.12 where they 

are plotted against a pure time delay for a simple step test. As can be seen the difference between 

the two approximations are very minimal and should not have any major impact in any of the further 

simulations.  

 

Figure 3.12 : Pade Approximation vs. pure time delay 

Also in Figure 3.12 it can be seen that the first-order approximation has an inverse response initially, 

while the second-order approximation has a double inverse response. This is due the single positive 

zero for the first order approximation, and there are two positive, complex-conjugate zeros in the 

numerator of the second order transfer function. 

The time delay can also be easily handled in SIMULINK with the added advantage that no 

approximation is required. The first phase of the analysis is to produce a step test to compare the 

two process defining transfer function namely the FOPDT and the SOPDT. The SIMULINK model can 

be seen in Figure 3.13, where the delay term is implemented as a transport delay.   



 

Michael Healy  30 

 

Figure 3.13 : SIMULINK model for the open loop step test comparing the FOPDT and the SOPDT 

The simulation is basically a PRC implemented using SIMULINK where the initial temperature is at 

17°C as this is a typical temperature found in the laboratory. The result of the simulation can be seen 

in Figure 3.14. 

 

Figure 3.14 : FOPDT vs. SOPDT step test 
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The next step is to compare the Step Test (or PRC) from SIMULINK with that of the actual process to 

verify the accuracy of the models. To do this the above image is transposed onto the PRC in Figure 

3.3 to give a direct comparison, this can be seen in Figure 3.15. 

 

Figure 3.15 : Comparison of the FOPDT and SOPDT models with the PRC for the actual system 

The FOPDT approximation emerges to be more accurate than that of the SOPDT as depicted in 

Figure 3.15. The difference between the SOPDT model and the actual PRC is very large and it appears 

that the two time constants are not large enough, while the FOPDT appears to be moderately 

accurate although there are still some discrepancies that could be attributed to both noise in the 

measured output and also to inaccuracies in the model. 
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The response of the integrating model that is also used to identify controller parameters can be seen 

in Figure 3.16. 

 

Figure 3.16 : Open Loop step test comparison 

The Integrating model is a very accurate approximation for the initial rise of the system and there is 

similarity between all three of the models.  

3.5 Performance Criteria 

There a number of performance indicators that can be used to determine the best controller, the 

criteria used here are: 

1. Percentage Overshoot (%OS)  

2. Settling Time (    ) 

3. Rise Time (10-90%) 

4. Steady State Error (SSE) 

5. Gain Margin (GM) 

6. Phase Margin (PM) 
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The criteria for the temperature control regulation of this system is to have a maximum overshoot of 

4% with zero steady state error, the 10-90% Rise time should be less than 15 minutes and the 2% 

settling time of under 50 minutes. 

Also the Gain Margin should be between 1.7 and 4 with the Phase Margin required to be between 

45° and 65°. These values are requested as they represent a system which is stable and within a safe 

region of stability. The aim is to ensure that the system is tuned effectively but also to be stable. 

The first and most important requirement is to have a maximum overshoot of 4%; this is defined in 

Figure 3.17 where the largest deviation is used to calculate the percentage overshoot. 

 

Figure 3.17 : Percentage Overshoot 

There is a simple formula that is used to convert the overshoot to a percentage and it is given here 

as: 

     
       

   
       

 

( 3.7 ) 

This enables different input step sizes to be directly compared to each other and can give a good 

indication to the overall performance of the controller.  
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The next indicator of the performance of the system used here is the settling time which is defined 

in Figure 3.18. 

 

Figure 3.18 : 2% Settling Time 

The Settling time gives a good indication as to how quickly the system meets the required value. The 

2% envelope is a typical value that is used and this allows for slight variation around the setpoint.  

Also is it important that there is zero steady state (S-S) error, this is where the output tracks the 

input exactly as required. This specification can be met by using a controller that has an integral 

term. The 
 

 
 term will eventually bring all systems to the required steady state value as long as the 

system is stable. 

The next specification is the Rise Time where again typical values are used i.e. 10-90% rise time, this 

is depicted in Figure 3.19. 
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Figure 3.19 : Rise Time 

The rise time gives a good indication as to how quickly the system can respond to a setpoint change.  

The Phase Margin and Gain Margin are determined as defined in Figure 3.20. 

 

Figure 3.20 : Bode Plot to determine PM and GM 

The Bode plot shows the frequency response of the system, where there is a both a phase and a gain 

component. The Gain and Phase margin give an indication as to the stability of the system, where 
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the Gain Margin is the Gain at a phase of -180° while the Phase margin is the Phase angle at the 

point where the Gain crosses the 0dB point. 

3.6 Summary 

In this chapter the methodology of both the experimental and simulated work is defined with an 

explanation of the crucial areas. The different methods used to define a model of the system are 

described and are implemented giving two different transfer functions. There is a FOPDT and a 

SOPDT function that both describe the actual process. These are then used to obtain tuning values 

for the controller using a number of different methods as described here.  

The method in which these controllers will be implemented on the PLC and how they will be 

displayed on the SCADA system are illustrated. The approach to building a SCADA system is 

expressed in a generic way that can be implemented on any process for any purpose. These are 

followed to ensure that the SCADA is as streamlined as possible and remains fully in control of the 

process. 

The simulation software is also examined in this chapter to ensure that simulations undertaken give 

repeatable results and also to ensure that any problems or issues are dealt with. The method in 

which Matlab deals with time delays can cause problems but the approximation is accurate enough 

in this instance to prevent any errors. 

As the performance of the controllers is under scrutiny there is a need to define the metrics in which 

the different systems and controllers can be compared. These are detailed in this section and the 

desired specifications are asserted.  
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4. Theoretical Background 

4.1 Introduction  

This section covers the necessary mathematical equations and derivations that are used in this 

project. The heat transfer calculations are included with the aim to identify the correlation between 

the model for the system and the actual system. The heat transfer equations derived can be used to 

give an indication as to the expected time to heat the product.  

The implementation of the control strategy’s on the PLC means that they need to be converted to 

their discrete counterpart. The difference equations to describe the controllers can then be 

converted to ladder logic or statement list which can be implemented on the PLC. 

4.2 Heat Transfer 

Heat transfer is one of the most important industrial processes.  Throughout any industrial facility, 

heat must be added, removed, or moved from one process stream to another.  There are three basic 

types of heat transfer which are conduction, convection, and radiation.  The two most common 

forms encountered in the chemical processing industry are conduction and convection.  

Any overall energy balance starts with the following equation: 

           
     

    
     ( 4.1 ) 

Where: 

Q = heat transferred in thermal unit per time (Btu/h or kW) 

M = mass flow rate 

T = temperature 

Cp = heat capacity or specific heat of fluid 

 

When we fill in the values we find that: 
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In theory, the heat given up by the hot fluid is never exactly equal to the heat gained by the cold 

fluid due to environmental heat losses.  In practice, however, they are generally assumed to be 

equal to simplify the calculations involved.  Any environmental losses are generally minimized with 

insulation of equipment and piping. (22) 

The time required to heat the vessel to the required temperature can be derived using first 

principles. (23) These can be used to verify that the system is performing as expected. 

The first step is to translate the fact that the heat lost by the utility liquid in the jacket is equally to 

the heat gain by the content of the vessel. This can be seen in Equation ( 4.2 ) where W is the flow 

rate of the liquid in the jacket, U is the Overall Heat transfer coefficient, A is the area, T1 is the Jacket 

inlet temperature and T2 is the jacket outlet temperature. 

                
     

   
       
       

 
  

( 4.2 ) 

 

The next step is to solve for the unknown jacket outlet temperature   , which can be seen in 

Equation ( 4.3 ). 

            
   

   
           

( 4.3 ) 

 

The next stage involves the rate of temperature change of the contents of the vessel and is given 

here as seen in Equation ( 4.4 ). 

   
  

  
   

 

( 4.4 ) 

The process temperature can be written as a function of time as seen in Equation ( 4.5 ) and this is 

found by substitution in Equation ( 4.2 ) and ( 4.3 ). 

                

       
   
   

     

   
     

 

( 4.5 ) 

 

The final step is to re-arrange Equation ( 4.5 ) to give the time (t). 
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( 4.6 ) 

 

Where Tf is the final temperature and T0 is the initial temperature. 

When the corresponding values are identified and filled into the expression in Equation ( 4.6 ), the 

expected time for the contents to reach the required temperature is circa 30 minutes. However this 

is an estimation and is only used to give an indication as to the expected performance of the 

process. As these expressions are based on a number of approximations the theoretical analysis of 

this system will not be investigated further as this is not the focus of this project. 

4.3 Discrete FOPDT Transfer Function 
The transfer function for a FOPDT in given here as: 

       
  

     
      

( 4.7 ) 

 

The FOPDT transfer function depicted in Equation ( 4.7 ) is the standard continuous-time transfer 

function where the parameters are the same as those previously defined.  

A discrete equivalent of the continuous plant is needed to simulate the PLC based sampled-data 

system. In the PLC system the controller is discrete while the plant is continuous. The discrete-time 

equivalent of the system needs to be obtained to simulate the entire system as a discrete-time 

system. 

The trapezoid rule can be used to approximate the continuous time term ‘s’ with a discrete time 

term ‘z’. Under trapezoid rule, the discrete-time system is stable if and only if the continuous-time 

system is stable. The use of this approximation introduces an additional time delay which is 

approximately equal to half the sample time (24). In this instance the effect will be negligible as the 

sampling time is much smaller than the time constant of the system so the additional time delay will 

be absorbed without any noticeable effect on the overall performance. 

  
 

  

     

     
 

 

( 4.8 ) 
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The Tustin Rule (also known as Trapezoidal Rule) is given in Equation ( 4.8 ), the first step is then to 

substitute for ‘S’ in the continuous-time transfer function with the transform in Equation ( 4.8 ). This 

can be seen in Equation ( 4.10 )  where the transfer function is expressed as the Output Y (Z) divided 

by the Input U (Z). 

               
     

 
           

  
   

   
  

 

( 4.9 ) 

 

The expression in Equation ( 4.9 ) is the Zero Order hold method to convert the continuous time 

expression into the discrete time equivalent. 

       
    

    
 

      
  

 
          

         
 

 
          

        

 ( 4.10 ) 

 

Then the equation can be rearranged by cross multiplication to give Equation ( 4.11 ) : 

      
        

  

        
 

 

 
        

  

        
             

    

 

( 4.11 ) 

 

 

     
        

       
  

  
     

       
    

 
        

  

        
             

    
( 4.12 ) 

 

 

     
        

       
            

          
   

  
     

       
    

 

            
    

( 4.13 ) 
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( 4.16 ) 

 

 

                   
               

   

          
       

       
           

 

      
          

      

( 4.17 ) 

 

 

                                             

      
           

       
              

 

      
             

         

 

( 4.18 ) 

 

                 

                                 
     

      
       

              
       

        

     
        

( 4.19 ) 
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( 4.20 ) 

 

 

     
 

           
                                 

     

       
              

             
         

 

( 4.21 ) 

 

So  

                               

                                  

 

( 4.22 ) 

Where: 

  
 

            
 

      

            

      
  

The expression shown in Equation ( 4.22 )  is the output of the discrete First Order System only. The 

delay term is given in Equation ( 4.23 ). As can be seen the delay component is dealt with in the 

same manner as the First Order system. The difference equation seen in Equation ( 4.25 ) is used to 

implement the delay term in the discrete implementation using the PLC. 

             ( 4.23 ) 

 

               
     

 
           

     

 
  ( 4.24 ) 
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( 4.25 ) 

 

The expressions given in Equation ( 4.22 ) and in Equation ( 4.25 ) are used to implement the 

Discrete Smith Predictor. 

4.4 Discrete PI Controller 

The Proportional Integral controller that is implemented in the PLC can be seen in the block diagram 

in Figure 4.1. 

Kp

Kp/Ti

Gp(n)R(n) C(n)+
-

E(n) M(n)+
+

 

Figure 4.1 : Discrete PI controller block diagram 

The Continuous time domain PI controller can be approximated by a discrete time equivalent 

algorithm which can be easily implemented in a PLC as it only contains basic mathematic operations. 

The output from the PI controller (M (n)) is a combination of the Proportional segment and the 

Integral term as illustrated below: 

               ( 4.26 ) 

The error signal is generated by subtracting the process feedback from the Setpoint as seen in 

Equation ( 4.27 ). 

               ( 4.27 ) 

The proportional component is calculated by multiplying the error by the proportional gain as 

depicted below: 

             ( 4.28 ) 
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The integral component of the controller is the addition of the previous integral term and the term 

containing the integral time, the sampling time, the proportional gain and the error term as 

illustrated below in Equation ( 4.29 ): 

            
          

  
 ( 4.29 ) 

 

Then the total controller output can be rewritten in terms of its individual components as can be 

seen in Equation ( 4.30 ) : 

                     
          

  
  ( 4.30 ) 

This is calculated at each 1 second interval, which gives an adequate resolution as the time constant 

for the process is in the order of minutes. The overall effect of using a time sampled approach 

should not have any negative impact on the system as long as the time interval is small enough to 

give good resolution. 

The PID controller that is implemented on the PLC also has an anti-windup constituent to overcome 

the problem of integrator windup. The problem occurs when for example a valve is 100% open and 

then the controller tries to open more but this is not physically possible. So the integration value 

continues to rise even thought the valve is already fully open. The problem is that when the 

controller value falls to say 50% but the integration value is above where it should be and thus has to 

integrate down past the value where it should be at when the valve was at 100%. This causes a 

sluggish response to system as the integration value is too high. (25)  

So to overcome this problem an anti-windup component is included in the control strategy, this is 

where the integration is stopped when the controller output reaches either 100% or 0% and thus the 

integral term cannot windup to an unrealistic value. 

4.5 International Society of Automation (ISA) standard 
The introduction of the S88 batch standards came about as a way to improve the automation 

industry and to create a single template that each automation project could be designed around.   

The standard helps to modularize processes and provide frameworks for recipes; how much is 

automated may depend on the type of process you are trying to control and does not have any 

effect on the s88 approach.  
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“S88 is a generic term for an international standard relating to batch systems, IEC61512. It was 

begun as part of the ISA’s standardization activity started in 1988”   

The introduction of S88 came about as a solution to a number of problems such as:  

1. There was no accepted form of batch control  

2. Customers found it difficult to explain to vendors what they would like to do with batch 

processes 

3. Batch control systems required considerable specialised labour 

4. Combining control systems from several manufacturers into one system was very difficult  

This lead to numerous benefits including a cost reduction due to standardisation and recyclable 

code, easier technology and integration of different suppliers was made simpler.    

“One of the goals of the S88 batch system design standardization is for anyone to able to design a 

batch system within the same framework by adopting this modelling concept” (26) 

 

4.6 Summary 
In this chapter the mathematical equations that define the operating principles have been 

examined, leading to an approximate description of the process. These expressions are used to give 

an indication as to the operating principles which are used to help develop efficient and effective 

control strategies.  

The discrete expressions for the PI controller are used to implement the controller on the PLC. There 

are also a number of components to the control strategy that are not included here but are 

accounted for in the PLC such as the Anti-Integral windup.  

The discrete representation of the FOPDT model is used in the implementation of the Smith 

Predictor on the PLC and is broken into two parts. The first is the description with the delay and the 

second is the delay. This is then implemented as described in Figure 2.4 where the ideal smith 

predictor is shown. The FOPDT model is used as it is the simplest and offers a good representation of 

the actual process. 
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5.  Results 

5.1 Introduction 

This section covers the results found from the laboratory testing of the system and from the Matlab 

simulations.  As previously stated there are 2 models for the system and the initial aim here is to 

identify which one is more accurate and then decide if its accuracy is close enough to allow the 

simulation software be used to experiment to determine the best possible controller algorithm and 

then the parameters that can be used to achieve the best performance.  

The initial heating stage is used to obtain the response of the system with the relevant controller; 

this stage involves a step input to the setpoint. For the purpose of a consistent analysis a setpoint of 

50 °C is used throughout the experimental stage. The performance of the different controllers at this 

setpoint gives a valid indication as to the overall performance of the controller.  

The performance of each controller at maintaining the required setpoint is relatively consistent 

between each controller and in this instance does not require further investigation. There are slight 

differences but the majority of controllers used here have good steady state tracking.  

The disturbance rejection of the system gives an indication as to the response to the system in the 

event of an unexpected change in the operating conditions and is also an important aspect in the 

analysis of the performance of the controller. This can be implemented in the simulations by using 

the step response of first order system as an additional input into the process or plant.  

However in the actual bench scale process the effect of any disturbance is minimised by the high 

surface area to volume ratio and thus any small disturbances are easily absorbed and have no 

adverse effect on the performance of the controller. The only disturbance is an unexpected change 

in ambient temperature and this has a slow response. The main difference between each controller 

at this scale in this model is the initial heating phase and hence receives the most attention.   

5.2 System Performance 

The first step in the testing stage was to determine a FOPDT model (namely model 1 which 

is       
          

        
) from the Process Reaction Curve. The initial controller used here is a 

Proportional Integral (PI) controller with the parameters chosen using the Zeigler-Nichols tuning 

rules. The controller is in the form as seen in Equation ( 5.1 ). 
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( 5.1 ) 

 

Where    is the Proportional Gain and    is the Integral Time 

There are two models that can be used to describe the physical process; the first model is a FOPDT 

of the form        
          

        
 which will be referred to as Model 1. While the second model is of 

the SOPDT type namely        
          

           
 and will be referred to as Model 2.  

The Zeigler-Nichols rules suggests a gain value of         and an integral time of         

minutes, so to implement these on the PLC the integral time has to be converted to seconds which 

gives a value of   =3996 seconds. The integral time can also be referred to as the integral gain 

   
 

  
 . The initial temperature of the reactor is room temperature which is not under control so 

there will be very slight variances between runs as the room heats up or cools down.  

5.2.1 PI Control 

The SIMULINK model that is used to simulate the PI controller can be seen in Figure 5.1. 

 

Figure 5.1 : SIMULINK model of PI controller 
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This controller is in the Ideal PID format but with the D term at zero. Also incorporated in the 

controller is the Integral Anti-Windup which prevents the integral term from winding up when the 

controlling element saturates. The model is designed to match the actual system as closely as 

possible and so the saturation block matches the maximum output in the actual system.  

The Anti-Windup implementation as seen in Figure 5.2 is identical to the method used in the PLC 

code. The Integral term is only allowed to accumulate when the controller is below the maximum 

output. When the controller output is greater than the maximum allowed the integral term does not 

increment and stays at its previous value. 

 

Figure 5.2 : Integral Anti-Windup element 

There a number of different methods to prevent Integral Windup such as the parallel or series form. 

However this method was chosen as this matches the method used in the actual process. Also this 

method requires no additional tuning while other methods do. 
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The result from the heating stage of the process can be seen in Figure 5.3 where the Setpoint is 50°C 

and the controller is implemented using the Zeigler-Nichols rules (applied to Model 1). 

 

Figure 5.3 : Step Test on the Actual System 

As expected there is a delay between the change in the setpoint and a change in the temperature of 

the product. The delay is an inherent property of the system and thus even the perfect controller 

cannot remove this delay. The overshoot in the response is quite large however the time to return to 

the setpoint is relatively quick and there is no ringing response which is desirable.  

The simulation of Model 1 was completed using SIMULINK with the same controller and the 

response is shown in Figure 5.4. 

 

Figure 5.4 : Step Response obtained from SIMULINK simulation 
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As can be seen in Figure 5.4 the response has an overshoot and ringing response. The Integral of the 

Absolute Error (IAE) is 2145 and the system is stable. This is quite different to the response shown by 

the actual system. The settling time is extensive due to the oscillating response, while the initial 

overshoot is quite large. 

The next step is to simulate Model 2 using the same controller as above and the result is shown in 

Figure 5.5. As can be seen the systems response contains a substantial overshoot and is very 

oscillatory. The system is not stable and this is further depicted in the bode plot of the system.  

 

Figure 5.5 : Step Response obtained from Matlab simulation 

Thus there are no criteria met using this controller with regards to Model 2. 

The Bode plot in Figure 5.6 shows the frequency response of the system where Model 1 is depicted 

as Go1st and Model 2 as Go2nd. 
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Figure 5.6 : Bode Plot 

The gain margin for the two models is also depicted and the difference between the two models 

does not look to be that significant however the effect of this difference has a massive effect on the 

performance of the controller.  

So from the viewpoint of the accuracy of the two models compared to the actual process it is clear 

that Model 1 is more accurate than Model 2. This will be further investigated to determine the true 

accuracy of the process models.  

Integrating Model tuning rules 

The next step is to implement the tuning rules that can be inferred from the integrating model of the 

process. The PI controller that is suggested by the Integrating model has a gain         and an 

integral time of                . As this is calculated on a second basis by the PLC the integral 

time used is                . The result from the experiment can be seen in Figure 5.7. 
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Figure 5.7 : Actual System response to a Setpoint Change 

The response has an overshoot of 8.6% which is double the maximum acceptable value and is thus 

not satisfactory. However the return of the temperature to the setpoint after the initial overshoot is 

quite swift and this is desired. There is a slight oscillation but these are well within the allowed 

tolerances.  

 

 

Figure 5.8 : Response to a Setpoint change as obtained from Matlab simulation 
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The controller used on the actual process above is then implemented on the two models using 

SIMULINK. The result from the simulation can be seen in the Figure 5.8 above where both Model 1 

(FODPT) and Model 2 (SOPDT) are plotted.  The response from both models is of an oscillatory 

nature with a considerable overshoot. The reaction of Model 1 is much better than Model 2 as can 

be clearly seen. Also Model 2 appears to be unstable as it maintains a large oscillation. The initial 

response of Model 2 is also slower than that of Model 1.  

Again the Bode plots for the two process models are compared. The gain margin is of particular 

interest and is labelled in Figure 5.9. 

 

Figure 5.9 : Bode Plot 

The result from this part of the experiment suggests that Model 1 is the closest representation to 

the actual process. The simulation with Model 1 appears to have more severe oscillations than that 

which occurs in the actual process. However it is worth noting that the Gain margin and Phase 

margin are from ideal and thus the controller would need further adjustment. 
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The next step in the testing phase is to use the controller parameters that are defined using the 

SOPDT tuning rules. The result from using the SOPDT defined controller on the actual system can be 

seen in Figure 5.10 

 

Figure 5.10 : Actual System response to a Setpoint Change 

The performance of the controller in Figure 5.10 is quite sluggish however the rise time appears to 

be quite good and there is no overshoot. But the settling time in comparison to the other controllers 

is very poor. This controller is then applied to the two models and the result from the simulation can 

be seen in Figure 5.11. 

 

Figure 5.11 : Response to a Setpoint change as obtained from Matlab simulation 
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The bode plot for the two process can be seen in Figure 5.12. 

 

Figure 5.12 : Bode Plot 

The tuning rules should give a better response from Model 2 than Model 1 as they are derived from 

Model 2. The controller values found from this method achieve a better response from Model 2 

than before. But the response from Model 1 is still more desirable. This is because the methods to 

control a SOPDT system are not as developed as the FOPDT models. 
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The final phase is to identify the best possible controllers for the two models; the aim is to have as 

little overshoot as possible while retaining a short settling time. This fine tuning is done using Matlab 

where both models can be tuned simultaneously. The tuning involves a trial and error adjustment of 

the Proportional Gain and the Integral Time. This is the only method available as there are no tuning 

rules that can be applied to the criteria.  

After a number of runs the controller parameters for both controllers are dialled in and the resulting 

system response can be seen in Figure 5.13. 

 

Figure 5.13 : Response to a Setpoint change as obtained from Matlab simulation 

As can be seen there is a slight difference between the performances of the two models but both 

responses appear to have the desired shape. There is very little overshoot and also there is very little 

‘ringing’ or oscillations, both of which are necessary to meet the specifications.  

The Bode plot can be seen in Figure 5.14 where the Gain margins for both Model 1 and Model 2 are 

shown. As can be seen the two models are relatively similar at lower frequencies. The difference 

between both the Magnitude and Phase of the two models can be seen to differ greatly at higher 

frequencies. This gives an indication that Model 2 is slightly more robust with regards to higher 

order disturbances. 
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So from the performance of the Systems response and from the Bode plot, these controllers appear 

to be the best controllers to meet the desired specification. 

 

 

Figure 5.14 : Bode Plot 

The next step is to test the controller values that are used in Figure 5.13 on the actual system and 

since there are two controllers with similar values the average of the two is used to implement on 

the actual process. The result can be seen in Figure 5.15. 
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Figure 5.15 : Actual System response to a Setpoint Change 

The performance of the controller is quite sluggish although it does not overshoot the setpoint. The 

controller appears to need an increase in the gain or a decrease in the integral time as the 

temperature has such a slow response. 

The performance of the controller in Figure 5.13 is very similar to that as seen in Figure 5.15, for 

example the time to reach 45 °C in both cases is roughly 100 minutes. This shows that there is some 

correlation between the Empirical model and the actual system. 

5.2.2 Smith Predictor Control 

The next stage of testing involves the design of a Smith Predictor algorithm to try to improve the 

response of the system. 

The best PI controller (integrating method) as achieved in the previous section is compared against 

the Smith Predictor with the same PI controller. The Smith Predictor is implemented using the 

difference equations as defined in Section 4.3. This is coded in the PLC using ladder logic and 

requires a large piece of memory.  

The servo response of the Smith predictor can be seen in Figure 5.16, where the corresponding 

response from PI controller is also shown. 
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Figure 5.16 : Comparison of the Smith Predictor and PI control using the same controller on the actual system 

The Smith Predictor is then applied to Model 1 with the performance of each controller tuned to 

give optimal performance. The response can be seen in Figure 5.17. 

 

Figure 5.17 : Response to a Setpoint change as obtained from Matlab simulation 

The SIMULINK model used to simulate the two controllers can be seen in Figure 5.18.  

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Temp (C)

Time (min)

Comparison of Smith Predictor and PI Control

Smith Predictor

PI

Setpoint



 

Michael Healy  60 

 

Figure 5.18 : SIMULINK Model 

The next step was to simulate Model 2 to investigate the performance of the Smith Predictor against 

the best PI controller achieved in the previous section.  

 

Figure 5.19 : Response to a Setpoint change as obtained from Matlab simulation 
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The SIMULINK model used to simulate the Smith Predictor and the PI controller can be seen in Figure 

5.20. 

 

Figure 5.20 : SIMULINK Model 

As can be seen the Smith Predictor is of the standard form where again the approximation is 

assumed to match the process exactly without any modelling error.  

The Smith Predictor is applied to the two models and this is compared to the optimal controller as 

achieved in the previous section. This shows that the Smith Predictor offers an increase in 

performance even in process where the dead time is small compared to the process time constant, 

this also verifies the result seen in the experiment involving the laboratory model. 
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Table 1: Comparison of tuning rules and system performance 

Parameter Estimation 
Method 

Controller  Model 1 Model 2 Actual Process 

Zeigler-Nichols 
(FOPDT Rules) 

              
 

      
  

%OS 61.2% 

Unstable 

8.8% 

10-90% Rise Time 17.2 mins 16.3 mins 

2% Settling Time 241 mins 57.5 mins 

Steady State Error 0% 0% 

   

IAE 2152 18302* 

GM 1.6245  

PM 28.14°  

      

Integrating Method               
 

     
  

%OS 85.2% 

Unstable 

8.6% 

10-90% Rise Time 14 mins 15.5 mins 

2% Settling Time 246 mins 60.3 mins 

Steady State Error 0% 0% 

   

IAE 2204 17939* 

GM 1.295  

PM 17°  

      

SOPDT Rules             
 

   
  

%OS 19.1% 56.9% 0% 

10-90% Rise Time 27.4 mins 27.5 mins 19 mins 

2% Settling Time 132 mins 398 mins 136 mins 

Steady State Error 0% 0% 0% 

    

IAE 2346 2346 22182* 

GM 2.53 1.47  

PM 50.4° 28.4°  

      

Fine Tuning based on 
Model 1 

            
 

       
  

%OS 1.3% 2.79% 0% 

10-90% Rise Time 54.8 mins 54.8 64.42 mins 

2% Settling Time 111 mins 136 mins 206 mins 

Steady State Error 0% 0% 0% 

    

IAE 2696 2873 32953* 

GM 4.19 3.42  

PM 66.77° 61.2°  

      

Fine Tuning based on 
Model 2 

            
 

    
  

%OS 3.59% 2.48% 0% 

10-90% Rise Time 59.4 mins 54.8 mins 66.9 mins 

2% Settling Time 173 mins 147 mins 223  mins 

Steady State Error 0% 0% 0% 

    

IAE 3121 2946 35102* 

GM 3.643 3.253  

PM 60.12° 62.83°  
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5.3 Summary  
In summary this chapter has covered all the results from the laboratory testing and from the 

simulations. It can be seen that the model of the system does not represent the actual process as 

closely as we would desire. Also the implementation of the different control strategies on the PLC 

shows that the ideal controllers are hard to realise in real life.  

Due to these two imperfections the control of the actual process requires some manual tuning and 

also some experience to achieve a desired level of performance. This manual tuning is uneconomical 

especially where the process time constant is large.  

The direct comparison of the three identification methods and the associated tuning rules can be 

seen in Figure 5.21. It can be seen that differences between the three methods are small with the 

FOPDT method providing the best performance.  

 

Figure 5.21 : Comparison of the different System Identification Methods 

This can then be compared to the implementation of the actual system which can be seen in Figure 

5.22 where the performance of the integrating methods appears to have the best performance of 

the three. 
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Figure 5.22 : Comparison of the System Identification methods as implemented on the system 

  

The SOPDT method appears to be overdamped and takes a considerable length of time to reach the 

setpoint.  

So in summary the FOPDT method appears to achieve the best performance in the simulation, while 

the performances of the SOPDT and Integrating method are not far off the FOPDT’s performance. 

However when the three methods are implemented on the actual system the performance of the 

Integrating method appears to be the best with the FOPDT method offering a similar level of 

performance. The performance of the SOPDT method is not satisfactory due to its sluggish response. 
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6. Conclusions and Discussion 

6.1 Introduction 
This section describes the conclusions and achievements that can be drawn from this project. The 

results have been expressed in the previous section and they will be discussed further here. There 

were a number of aims for this project initiating from the commissioning of a Bench Scale Batch 

Reactor leading to the comparison of a number of temperature control algorithms. The process is 

then simulated using Matlab and SIMULINK. The goal for the project is to investigate if the 

correlation between the simulation and the discrete implementation is accurate enough to provide 

an aid to improving temperature control. If the models are accurate enough then the controller can 

be tuned using the simulation software before transferring to the physical plant. This would save 

valuable down time and also be more cost effective as tuning on the plant is hugely time consuming. 

6.2 System Performance  

There are two sections of the project the first being the system identification methods, while the 

second is the control of the actual process and the simulation experiments using SIMULINK. 

6.2.1 Discussion on the system identification methods 

There are a large number of methods that can be used in the empirical modelling of process, and 

these can be arranged into either on-line or off-line methods. 

The off-line methods can also be referred to as open loop modelling. This is because the controller is 

disconnected and the process is in open loop, then the controller output is set to a constant value 

and the controlled variable is measured. There are both advantages and disadvantages associated 

with this method. The advantages of this approach are that it is simple to implement and it does not 

require any special code or software. Also there has been a lot of research carried out in this area 

which means that it is well known. Nonetheless there are disadvantages which include the risk that 

the process could go into an unsafe mode of operation because there is no control acting on it. 

However the problems and limitations of this approach are well documented and thus can be easily 

avoided. The open loop is still used quite open and it is necessary when a new process is being 

initialised. 

The on-line methods, in the simplest form, use the controller to drive the systems to the edge of 

stability to identify a model for the system. The Zeigler-Nichols Ultimate Cycle is one of the most 

common online tuning methods however this does method does not return a model of the system. 
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The Ultimate Cycle method is used to derive controller parameters directly from the gain and period 

of oscillation of the process. There are also more advanced methods that can be used to derive 

controller parameters although they are not examined here, due to lack of state of the art software 

and hardware, they do exist and can be used to derive accurate control on the touch of a button. 

Having said that the advanced methods do not always provided accurate control as they have 

physical limitations. 

There are methods to identify a model as described by Yuwana and Seborg (4) from an online 

approach but this is implemented in a different manner and can be used to define an accurate 

model for the system as shown by Kealy and O’ Dwyer (5). 

All of the online methods require a controller to be already in place and this is not always possible 

for example, when a new system is installed then the first step is to identify a controller and for 

which the open loop methods are crucial.  

6.2.2 Discussion on the performance of the control algorithms 

There are number of controller algorithms chosen for analysis in this project and these are namely 

PI, Cascaded PI-P and the Smith Predictor.  

The PID controller is used as the benchmark controller here as it is the most common. It offers a high 

level of performance for minimal tuning. However the fine tuning need to meet the required 

specification is largely time consuming as it is a trial and error process. But as the PID controller is so 

common there is a large quantity of knowledge on how to tune the controller efficiently and this can 

be used to reduce the time and effort required to tune the controller.  

The cascaded control structure is also a very common control strategy, and as it (in most cases) 

contains two PID loops offers similar level of performance to the single loop. However the cascade 

control does not offer any improvements in the servo response of the system. The cascaded control 

strategy offers large improvements in the regulatory response of the process over the single loop 

controller. The cascaded control structure is easily implemented as it is essentially two PID 

controllers combined. The cascade controller implemented here did not offer an improvement even 

when it is tuned correctly which also is largely time consuming. 

The design of the original process was expected to have a large delay due to the capacitance of the 

Stainless Steel structure. In which case a dead time compensator would offer a large improvement 

over single loop control. However when the initial experiments were implemented it was evident 

that the time delay was not enough due to the large time constant. However the implementation of 
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the dead time compensator showed that despite the large time constant it could offer slight 

improvements in performance.  

The improvement in performance was first analysed using Matlab/SIMULINK, where it was shown to 

offer some improvement. This was then implemented on the laboratory model and the 

improvement in performance was very minimal. In this case the effort required to implement a 

Smith Predictor was not rewarded with a large increase in controller performance. 

6.3 Conclusions 

The main conclusion that can be drawn from this report is the fact that the use of more advanced 

control strategies does not necessarily offer an improvement. Also the empirical modelling method 

for the systems leaves a lot to be desired as the accuracy cannot be depended upon to produce 

models that can be used for tuning.  

The conclusion is that the Integrating method can be used instead of the previous methods with 

minimal if any loss in performance while reducing the time needed to obtain controller parameters. 

The use of the Smith Predictor can be seen to improve the performance of the system however this 

improvement is limited due to the ratio of time delay to the process time constant. The 

improvements offered by the smith predictor are not just limited to the system performance but the 

structure can also negate some of the modelling errors. 

6.4 Future Work 

There are a number of areas closely linked to this title that could lead to future work; this is because 

this project has covered a number of ideas. The main area in which future research is warranted is 

the initial system identification and tuning methods for discrete controllers that can be implemented 

efficiently on a PLC structure.  

The area of controller tuning has been covered very well in published papers however the initial 

start up procedure can cause some problems which are not researched to the same extent. These 

problems are caused by the large initial offset which leads to an undesirable overshoot. The simple 

method to overcome this problem is to tune the controller to be more efficient and constraint at the 

start up phase however the consequences of doing this is a deterioration in the performance of the 

controller at the desired operating region.  

Also the identifications methods (a few of the many available are covered earlier) used to model the 

system are not as accurate as desired. The models produced are not accurate to tune the controller 
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to meet the specified criteria. The lack of accuracy in the model means that there is some fine tuning 

that has to be completed in order meets the criteria. A method to reduce the time consuming trial 

and error tuning could be developed to work specifically on batch reactors. 

 

6.5 Summary 

In summary the project has been completed with a number of findings and achievements. The final 

product is a bench scale batch reactor that is fully automated and is also operating with optimal 

efficiency. The laboratory testing of the different strategies proved to be hugely time consuming 

compared to the simulation. However the laboratory testing is necessary to highlight the 

performance of the actual system. The PLC is a very common method to implement the controllers 

described in this project.  

The results found in the simulations cannot be expected to be found when the controller is 

implemented on a PLC on the actual process; this is down to a number of reasons. The first of which 

is the fact that the controller is implemented in a discrete time manner while the plant is of a 

continuous time nature. This approximation leads to discrepancy between the simulated version and 

the physical controller. The next reason is down to the fact the model of the physical plant is at best 

a loose approximation and thus the tuning rules obtained from the model can only have a limited 

degree of accuracy. 

This project has shown a number of different identification methods that can be used to describe a 

process while also the differences between the control methods and the tradeoffs that exist 

between the different approaches. 
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