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Abstract 

Rising energy costs are a concern to all businesses but especially to those who have a large 

energy demand. Sports centres with swimming pools have large requirements for heat and 

electricity in order to maintain thermal comfort within the pool and surrounding areas.  

Sports centres which were built in the 1970s were designed at a time when energy was cheap and 

many of today’s control strategies and energy efficiency measures were unavailable.  

This project is an investigation into the electrical and thermal consumption of the Tallaght Sports 

Complex. The Tallaght Sports Complex was built in the 1970s and is lacking in modern energy 

saving technologies. A detailed examination of the energy flows within the building is carried 

out and consumption patterns for all large energy users are identified. Methods of reducing 

energy consumption for the large energy users are discussed, calculated and in some cases, 

implemented. Results from the implemented energy saving strategies are analysed.  

The results of the project show that there is a large potential to reduce the energy demand of the 

Tallaght Sports Complex, mainly through the installation of a cross flow heat exchanger, but also 

through the use of variable speed drives and a building management system.  
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1 Introduction 

1.1 Introduction 

The environmentalist and the businessman may not agree on everything, but they agree that 

energy efficiency is something to strive for. For the environmentalist, green house gas emissions 

can be reduced, while for the businessman, costs can be reduced. Whether the environment or 

money is the primary reason for trying to reduce consumption is irrelevant. 

“In no sector is the case for energy efficiency more compelling than in business, where scale, 

intensity and competitiveness pressures combine to drive energy savings and awareness of 

environmental impacts. Indeed, many businesses, especially the larger energy users, have been 

addressing issues of efficiency in recent years and demonstrating the gains that are possible. In 

2007, some 1,753GWh were avoided by large energy users through participation in the Large 

Industry Energy Network (LIEN). Existing actions are anticipated to provide approximately 

8,200GWh PEE of energy savings in 2020.”  (DCENR, 2009) 

As part of the EU’s 2020 Energy Saving Target strategy all Member states must reduce energy 

consumption by 20% through energy efficiency, decrease CO2 by 20% and increase the use of 

renewable energy by 20% from the 1990 baseline levels. According to UNEP’s report on 

Buildings and Climate Change: Status, Challenges and Opportunities (UNEP, 2007) 30% to 40% 

of worldwide energy consumption occurs in buildings, and this figure is increasing. 

The Energy Efficiency Directive (2012) advises that, to access the potential energy savings, 

Member States should develop programmes to encourage SMEs to undergo energy audits. The 

Energy Efficiency Directive goes on to suggest that energy audits should be mandatory, 

performed regularly for large enterprises and should take into account relevant European or 
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International Standards, such as EN ISO 50001 (Energy Management Systems), or EN 16247-1 

Energy Audits.  

1.2 Main Aim & Objections of Research 

The primary aim of the research is to assess a 1970s sports centre with swimming pool with 

regard to its energy consumption, energy costs and energy efficiency. Once a clear understanding 

of the energy flows within the building is determined, an investigating into possible energy 

efficiency improvement measures can be undertaken.  

The findings from this research may be used by other similar sport centres as a reference point 

when assessing their own buildings. 

1.3 Outline of Chapters 

Chapter 1 introduces the main aims and objectives of the dissertation, the rationale behind the 

chosen topic, the scope and limitations of the dissertation.   

Chapter 2 is a literature review which looks at relevant legislation and good practice guides. 

Chapter 3 gives a detailed insight into the Tallaght Sports Complex including a brief history, a 

description of the building’s services and benchmarking analysis. 

Chapter 4 outlines the results of the audit.  

Chapter 5 is a detailed breakdown of the associated energy costs. 

Chapter 6 investigates possible energy efficiency strategies and outlines the results of 

implemented measures.  
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1.4 Rationale behind Chosen Topic 

Ever increasing energy costs are reducing margins for businesses and buildings with heavy 

consumption have to take a proportionally larger hit. Sports centres with swimming pools are 

large users of energy due to their large heating load and services requirements. Older sports 

centres lack the modern technology and controls which newer centres use to minimise costs.  

An 1970s sports centre with a swimming pool was indentified in the Dublin suburb of Tallaght 

and selected to be researched. It was hoped that inefficiencies would be identified and solutions 

proposed.  

1.5 Scope and Limitations of Dissertation 

This thesis focuses on gas and electrical consumption in the Tallaght Sports Complex, Dublin 24, 

Republic of Ireland. Consumption units and costs are analysed and a study of all large users 

within the building is carried out.  

Smaller electrical loads, such as computers, small fridges, general lighting etc. are not studied as 

the focus was aimed at the larger services specific to swimming pools.  

Information was gathered from a number of sources such as billing information, contacting the 

energy supplier, data loggers, energy meters, thermometers, humidity sensors, interviewing the 

building manager/ maintenance engineer/ staff and many hours spent on site.  
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2. Literature Review  

2.1 European Commission’s Action Plan on Energy Efficiency 

The European Commission published the Action Plan for Energy Efficiency in 2006. It states 

that “Europe continues to waste at least 20% of its energy due to inefficiency” (EC, 2006). 

Following from this, the energy efficiency action plan sets out to assist the European Union in 

achieving its 20% energy saving target by 2020. There are ten priority actions in the document, 

two of which are relevant here;  

Priority Action 5 

Facilitating appropriate financing of energy efficiency investments for small and 

medium enterprises and Energy Service Companies 

Through a number of specific initiatives in 2007 and 2008 the Commission will call 

upon the banking sector to offer finance packages specifically aimed at small and 

medium enterprises and Energy Service Companies to adopt energy efficiency 

savings identified in energy audits. Access to Community financing, such as Green 

Investment Funds, co-financed by CIP36, will be made available for promoting eco-

innovations. (EC, 2006) 

Priority Action 8 

Raising energy efficiency awareness 

Priority areas, besides improved labelling, will include education and training plans 

and programmes for energy managers in industry and utilities. Included will also be 

teaching aids for primary, secondary and vocational educational curricula. These will 

be developed as of 2007 through Community programmes, by recommendations to 

Member Sates and through co-operation with Member State and Community 

educational agencies. (EC, 2006) 
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The 20% energy saving target relates to three main aims, also known as the 20-20-20 targets; 

The European Union has committed by legislation to these targets and proposes the following be 

achieved by 2020;  

 Reduction of 20% for greenhouse gas emissions when compared to the level of greenhouse 

gas emissions of 1990.  

 Increasing to 20% the amount of energy consumption in the EU produced by renewable 

sources. 

 Improvement of the EU's energy efficiency by 20%. 

 

Long term investments in energy efficiency are often avoided due to a lack of information on life 

cycle analysis. As stated in the Green Paper (DCENR, 2006), the most important barrier to 

increasing energy efficiency is a lack of information on costs and availability of new technology; 

lack of information on costs of own energy consumption; lack of training of technicians on 

proper maintenance and the fact that these aspects are not properly taken into account by market 

participants.  

The Green Paper (2006) states a number of tools for project assessment such as; computer 

programmes lifecycle analysis handbooks and investment grade energy audits. 

The paper gives measures to identify options for how any barriers to the targets can be 

overcome. Some of the main actions proposed within the Green paper (2006) are summarised as 

follows; 

 Implementation of energy-efficiency action plans for all member states that might identify 

measures to be taken at all national levels. The action also states that the action plans would 
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need to be monitored to assess their success both in terms of improving energy efficiency and 

their cost effectiveness. 

 The need for all EU citizens to be provided better information, through better targeted 

publicity campaigns and improved product labelling. 

 Identification of the best potential for state resources to provide an incentive to the efficient 

use of energy. 

 Targeting of public procurement to push forward new energy efficient technologies, such as 

more energy efficient transport and electrical equipment. 

 Review of the Energy Performance of Buildings Directive in all member states. 

(McCarthy, 2013)   

 

2.2 Energy Efficiency Directive  

Shifting to a more energy-efficient economy should also accelerate the spread of 

innovative technological solutions and improve the competitiveness of industry in the 

Union, boosting economic growth and creating high quality jobs in several sectors 

related to energy efficiency. (EC, 2012) 

The European Council developed the Energy Efficiency Directive (EED) firstly to ensure the 

2020 energy saving targets are achieved, and secondly to stimulate the growth of employment in 

the energy efficiency sector. The directive was published in 2012 and aims to increase energy 

efficiency in the public and private sectors of all member states and to provide the necessary 

legal measures for the 2020 targets to be achieved (EC, 2012).  
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Energy audits are referred to frequently in the directive. It states that SMEs should be 

encouraged to undergo energy audits while for large enterprises, energy audits should be 

mandatory.  

 

To tap the energy savings potential in certain market segments where energy audits 

are generally not offered commercially (such as small and medium-sized enterprises 

(SMEs)), Member States should develop programmes to encourage SMEs to undergo 

energy audits. Energy audits should be mandatory and regular for large enterprises, 

as energy savings can be significant. Energy audits should take into account relevant 

European or International Standards, such as EN ISO 50001 (Energy Management 

Systems), or EN 16247-1 (Energy Audits) 

(EC, 2012) 

 

Annex VI of the directive sets out the minimum criteria for energy audits including those carried 

out as part of energy management systems, and states that they are to be based on the following 

guidelines:  

(a) be based on up-to-date, measured, traceable operational data on energy consumption and (for 

electricity) load profiles;  

(b) comprise a detailed review of the energy consumption profile of buildings or groups of 

buildings, industrial operations or installations, including transportation;  

(c) build, whenever possible, on life-cycle cost analysis (LCCA) instead of Simple Payback 

Periods (SPP) in order to take account of long-term savings, residual values of long-term 

investments and discount rates;  
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(d) be proportionate, and sufficiently representative to permit the drawing of a reliable 

picture of overall energy performance and the reliable identification of the most 

significant opportunities for improvement.  

Energy audits shall allow detailed and validated calculations for the proposed measures so as 

to provide clear information on potential savings.  

The data used in energy audits shall be storable for historical analysis and tracking 

performance. (EC, 2012) 

Europe is currently on track to miss its energy saving target by more than half. The Coalition for 

Energy Savings suggests that the directive proposed by the European Commission is likely only 

to close 2/3 of the current gap towards the 20% energy saving target for 2020. (CES, 2013) 

2.3 Energy Performance of Buildings Directive 

The Energy Performance of Buildings Directive was published in 2002. The objective of this 

Directive is to promote the improvement of the energy performance of buildings within the 

Community, taking into account outdoor climatic and local conditions, as well as indoor climate 

requirements and cost-effectiveness. (EC, 2002) 

Article 1 of the directive, lists the following areas which the directive lays down requirements to: 

(a) The general framework for a methodology of calculation of the integrated energy 

performance of buildings; 

(b) the application of minimum requirements on the energy performance of new buildings; 

(c) the application of minimum requirements on the energy performance of large existing 

buildings that are subject to major renovation; 

(d) energy certification of buildings; and 
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(e) regular inspection of boilers and of air-conditioning systems in buildings and in addition an 

assessment of the heating installation in which the boilers are more than 15 years old. (EC, 2002) 

 

There is not a single reference to energy audits in the entire directive. The directive was revised 

in 2010, the aim of this revision was to clarify and simplify certain provisions, extend the scope, 

make some more effective, and provide for the leading role of the public sector. The revised 

directive contains one reference to energy audits. 

The energy performance certificate shall provide an indication as to where the owner 

or tenant can receive more detailed information, including as regards the cost-

effectiveness of the recommendations made in the energy performance certificate. 

The evaluation of cost effectiveness shall be based on a set of standard conditions, 

such as the assessment of energy savings and underlying energy prices and a 

preliminary cost forecast. In addition, it shall contain information on the steps to be 

taken to implement the recommendations. Other information on related topics, such 

as energy audits or incentives of a financial or other nature and financing possibilities 

may also be provided to the owner or tenant.(EC, 2010) 

 

2.4 National Energy Efficiency Action Plan 

In order to achieve the 20% energy savings set out in the EU’s Energy Efficiency Action Plan, 

the Irish government developed its National Energy Efficiency Action Plan (NEEAP) in 2007. 

With regards to the role of energy audits, the first NEEAP; Maximising Ireland’s Energy 

Efficiency (2007) only refers to Article 8 of the Energy Services Directive (ESD) that requires 

Member States to ensure the availability of energy audits and energy efficiency improvement 

measures. (McCarthy, 2013).  

The second NEEAP (2012) mentions audits a number of times with regard to public buildings. 
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“We have introduced several pieces of legislationto promote energy efficiencyin the 

public sector – The European Communities (Energy End-Use Efficiency and Energy 

Services) Regulations 2009 (S.I. No. 542 of 2009) transpose Directive 2006/32/EC 

into Irish law. The regulations set out several obligationson public bodies with 

respect to their exemplary role in energy efficiency, putting in place obligations and 

standards for energy-efficient procurement, energy management practices, energy 

audits, the use of energy-efficient buildings and annual reporting on the actions being 

taken to improve energy efficiency”(DCENR, 2012) 

With respect to private buildings, the second NEEAP (2012) only makes one reference to audits. 

On page 76 it describes a free service offered to SMEs which includes “an initial energy audit” It 

is unclear how detailed this audit is or what exactly is audited.  

In the executive summary of the second NEEAP, it states that “final consumption peaked in 2008 

and has fallen 9.6% since” (DCENR, 2012), it goes on to attribute this fall to energy efficiency 

measures driven by government policy. It fails to mention that Ireland’s economy went into 

recession in 2008 and that this a large factor in the reduced national consumption. 

2.5 EU Emissions Trading Scheme 

In 2005, the EU launched the Emissions Trading Scheme (ETS) as their main strategy to 

reducing green-house gas emissions across Europe.  The scheme has created an international 

carbon market by implementing a price on each tonne of carbon emitted.  Companies are issued 

allowances and any emissions emitted above their allowance will result in the company having to 

buy carbon credits or invest in low carbon technologies to reduce their carbon output. Up to 38% 

of the total CO2 emissions released from installations in Ireland are legally obliged to the 

scheme, with an average of 50% across Europe. There are three phases to the scheme; the first 
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phase was for the 2005-2008 period, followed by the second phase from 2008-2013, and finally 

the last phase from 2013 – 2020. 

As noted under the agreement of the ETS (2009) each member state is required to draw up 

national allocation plans for each trading period setting out how many allowances each 

installation will receive each year. (McCarthy, 2013) 

2.6 Voluntary Agreement in Energy Efficiency  

“The Government has committed to reaching energy efficiency savings of 20% by 2020, and 

energy suppliers will play a key role in meeting this goal.” (DCENR, 2012).  

Nine energy suppliers (including Energia) agreed with the Sustainable Energy Authority of 

Ireland (SEAI) to help their respective customers in reducing consumption. The voluntary 

agreement was reached in 2012 and a main advantage to consumers is assistance in performing 

energy audits.  

The agreement sets out annual kWh reduction targets for energy suppliers to achieve by helping 

organisations improve their overall energy efficiency. In their report “Voluntary Agreements in 

the Field of Energy Efficiency and Emission Reduction Review and Analysis of the  Experience 

in Member States of the European Union” (2012), Bertoldi & Rezessy explain that, voluntary 

agreements that rely on taxation usually target energy-intensive industry, and where by 

mandating energy management systems (EMS) and energy audits, an extremely high impact can 

be achieved but may be difficult to quantify in advance in order to establish realistic targets. 

(McCarthy, 2013) 

The review by Bertoldi & Rezessy (2010) goes on to note that in Ireland it is assumed that the 

proper design of an EMS, along with the right level of commitment with regards to managerial, 
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human and financial resources, the EMS will deliver results without necessarily committing to 

targets.(Bertoldi, et al., 2010)(McCarthy, 2013) 

2.7 Good Practice Guide 219 and Good Practice Case Study 360 

The Good Practice Guide 219 and the Good Practice Case Study 360 take a different approach to 

reducing energy consumption in swimming pools and sports centres. The Good Practice Case 

Study 360 follows the concept of treating energy management as a management issue, where all 

building occupants have a role to play, as opposed to the Good Practice Guide 219 which focuses 

more on the “engineering problem with an engineering solution” model. Although both these 

texts are dated, they are still relevant today as all the same issues prevail. One area which has 

changed since these texts were first published is the availability of Variable Speed Drives 

(VSDs).  

2.7.1 Good Practice Case Study 360 

The Good Practice Case Study 360 focuses on a number of sports centres in the metropolitan 

borough of Kirklees (UK). One advantage of being part of a large group of facilities is the ability 

to form a purchasing consortium. This means that, as a larger overall consumer, suppliers will be 

eager to get the contract and may be willing to lower unit costs.  

The Kirklees council provide support to the sports centres by way of its energy management unit. 

The unit will undertake building surveys to identify investment opportunities, assess building 

performance, monitor energy consumption and provide building managers with information and 

guidance.  

These are two valuable assets in the drive to reduce costs for sports centres in Kirklees, the 

Tallaght sports complex has neither of these options available to it.  
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“Energy is the second highest expenditure within the budgets of most sports centres, although it 

is often overlooked until the management contract is in crisis, or people are complaining about 

being uncomfortable” (The Department of the Environment, 1997).  

The Kirklees approach has three main themes  

 Communication raises staff awareness and increases their understanding of energy costs 

and consumption. 

 Energy is not “someone else’s problem”; staff must accept that they are responsible for 

how much energy and water they use. 

 Staff often need advice and training to help them understand what they must do 

individually to save energy. 

It is quite obvious that the Kirklees approach has a large emphasis on the personal responsibility 

of all building occupants as opposed to solely placing the task of reducing energy consumption 

on the energy manager.  

Energy awareness is discussed in job interviews; job descriptions for centre managers include 

energy appreciation; there are quarterly training sessions for all staff on energy management and 

the theme of “energy as a controllable resource” is emphasised in staff induction and training. 

Pool supervisors and managers also attend energy efficiency seminars.  

 

Keeping staff motivated can be an issue and the Kirklees approach is to inform all staff about 

energy usage and costs. “Initially staff are surprised to learn just how much it costs for the 

energy needed to keep each centre operating”(The Department of the Environment, 1997). 

Making staff fully aware of the costs involved and keeping them updated as to any savings made 

is a motivational tool used by many organisations. Kirklees also try to promote a pioneering 
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culture by running a monthly competition for the best idea which leads to improvements in 

quality or energy efficiency.  

Another staff led approach is a repairs and faults sheet where staff have the responsibility to 

highlight any problems which they encounter. This is useful as the staff members are moving 

around the entire building everyday and if they are “energy aware” they may observe a problem 

before the energy manager does. Duty managers also carry out visual inspections daily to check 

items such as: doors, windows, pool covers, and pool water and air temperatures. 

The operations manager, Ian Kendall uses the following checklist for swimming pools 

 Use swimming pool covers 

o This reduces evaporation and enables savings to be made in pool heating. 

Equipment running time, ventilation requirements and condensation damage are 

all reduced. Switch off the pool hall ventilation system when the cover is applied 

and switch it on only after the cover is removed. 

 Turn electrical appliances on in stages 

o Equipment should be switched on when required rather then everything being 

switched on all at once. 

 Link the main ventilation system to the energy management system for automatic start up 

and shut down times (and for priority switching) 

o Ensures the main ventilation system operates only when it is needed. If you do not 

have an energy management system, use automatic time switches instead. 

 Check that controls such as thermostats are functioning correctly, and that areas in which 

they are situated are appropriately zoned  
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o Ensures heating is only provided where and to the extent that it is needed. 

Remember to have external frost stats calibrated, as these may override other 

controls and bring on the heating before it is really needed to prevent frost 

damage. 

 Check that time switches are set correctly, and that they are reset for summertime and 

wintertime operation 

o Ensures that heating, hot water and ventilation systems operate only when they 

are actually required. 

 Use heat recovery wherever possible by recirculating air and using run around coils. 

o Examples include venting sauna heat into the pool hall, using waste heat from 

refrigeration wherever it will be useful, and run-around coils on heater flues. 

 Install door closers and draught excluders and check whether building insulation and/or 

glazing can be improved. 

o Reduces draughts and improves comfort for visitors and staff. Cuts heat lost 

through ventilation and losses through the building fabric, and may enable lower 

temperature settings. 

 Ensure there is a programme of planned preventive maintenance. 

o Use schedules or checklists of items to be inspected during weekly, monthly, 

quarterly, half-yearly and annual checks. The centre engineer should complete 

boiler room log sheets weekly. 

 Rely on daylight wherever possible and install energy saving lights with appropriate 

controls. 
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o Use high-efficiency lamps and other diffusers in all areas, with time switches for 

remote area lighting, infrared detectors for lights in sports areas, and photo-

electric control where daylight is available. 

 Check water meter weekly – last thing at night and first thing in the morning – to identify 

leaks. 

o Detect and rectify leaks as soon as possible. Use auto-flush urinals, tap restrictors, 

and showers on 15-second timers. 

(The Department of the Environment, 1997) 

Kirklees began installing an energy management system (EMS) almost 30 years ago in all of 

its council buildings. The system’s central station is housed in the main council office. The 

EMS allows plant operation, in 280 separate buildings, to be monitored from one location. It 

is also possible to log in to the system remotely. This system allows operators to monitor 

plant performance compared with historical data and compared to other buildings. With so 

much data available, there are many possible advantages, for example, the building manager 

in one swimming pool can compare the gas consumption in his building to that of similar 

buildings on a daily basis, and so as weather changes, he can benchmark his performance.  

As part of their energy management strategy, Kirklees initiated two ideas. Firstly they began 

their Reduce Energy Directive (RED) and secondly, they came up with the concept of energy 

link officers. RED is an information and awareness campaign with two main strands;  

 Informing sports centre managers about their energy consumption/trends/patterns to 

assist them in developing an appreciation of their energy use. 
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 Providing publicity and promotional material to enable centre managers to run staff 

awareness campaigns.  

The energy link officer is an onsite employee who is tasked with certain responsibilities and 

works closely with the centre manager to run awareness campaigns with the RED initiative. 

The energy link officer is different from a traditional energy manager in that they are not 

working behind the scenes, but instead are tasked with spreading information and raising 

awareness and motivation. Their specific responsibilities include; 

 monitoring energy consumption monthly; 

 collating and presenting quarterly energy consumption figures at the centres’ monthly 

management team meetings; 

 publicising consumption figures among staff; 

 raising staff awareness and motivation; 

 seeking ideas and suggestions from staff and presenting them to the building’s 

management team for discussion; 

 providing feedback to staff on the responses to their suggestions; 

 meeting the energy link officers from the other sports and leisure centres to identify 

examples of best practice and exchange operating experiences and 

 meeting representatives from the property services consultancy and two area 

engineers quarterly to discuss progress and to plan future initiatives. 

(The Department of the Environment, 1997) 
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Under the RED initiative, energy link officers record any reason why consumption might be 

affected on a particular day. For example, if a pump (say to the heat exchanger for pool water) 

was being replaced, there might be lower electricity consumption that day. At first glance it may 

seem that the daily performance was better than normal. However, the pool’s water temperature 

will drop during the day until the pump is back on line. This day’s data should not be allowed to 

skew the records as it would not be possible to maintain thermal comfort without the pump. For 

this reason, the energy link officer fills in a comments log with any relevant instances. 

Kirklees send an engineer to each building annually to test every major energy system. The 

annual visits alternate between summer and winter. This is viewed as a pro-active approach 

which helps to identify potential problems before system performance is adversely effects energy 

efficiency.  

The Kirklees council installed combined heat and power (CHP) plant in a number of its centres 

including Huddersfield, Spenborough and Dewsbury. Although using CHP does not reduce 

consumption, it shifts the building’s fuel source away from grid electricity to natural gas. This 

has the result of reducing the building’s CO2 footprint. But, more importantly from the 

manager’s point of view, a unit of natural gas is approximately one third of the cost of a unit of 

electricity, hence financial savings can be significant if the CHP is correctly sized.  All of the 

buildings in Kirklees which installed CHP had a reduction in their kg/CO2/m
2
. As the Tallaght 

sports complex does not have a CHP installed but does have a gas supply, it is worth 

investigating this possibility.  
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2.7.2 Good Practice Guide 219 

2.7.2.1 Introduction 

Good Practice Guide 219 focuses on a few key technical solutions to improving energy 

efficiency in swimming pools. These are  

 heating 

o CHP 

o condensing boilers 

 ventilation 

o variable ventilation rates 

o ventilation heat recovery 

 electrical services 

o lighting and controls 

o fans and pumps 

 pool water treatment 

o pool water heat recovery 

 domestic water supply 

o controls and storage 

 Space heating Water heating Fans & Pumps Lighting General power 

Proportion of 

energy used  

53% 25% 10% 6.5% 5.5% 

Cost of energy 

used 

28% 13% 27% 16% 16% 

Table 1: Proportion of energy used and cost of energy used in an indoor pool. (The Department of the 

Environment, 2000) 

Table 1 shows a typical breakdown of energy used and energy costs for an indoor pool. The 

space and water heating use gas, so their percentage cost is lower than their consumption 
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percentage, where-as the fans, pumps, lighting and general power use electricity, so their 

percentage cost is higher than their consumption percentage.  

Lighting and general power have consumption percentages of 6.5% and 5.5% respectively, while 

their cost percentages are both 16%. To explain this, it should also be noted that some electrical 

loads are on mainly during daytime hours (indoor lighting) while others (filter pumps) are on 24 

hours per day. Electricity is cheaper at night, so the 24 hour loads have a cheaper average unit 

price.  

Looking a Figure 1, gives an indication of how well a swimming pool is performing. Assuming 

that all plant is working correctly and all operational procedures and housekeeping are in order, 

the next step in the drive for energy efficiency is an investment measure. If old plant needs to be 

replaced or there is other refurbishment planned, it can be a perfect opportunity for an energy 

efficiency upgrade. 

 

Figure 1: Typical energy use for a sports centre (The Department of the Environment, 2000) 
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Possible projects would be: 

 combined heat and power (CHP) 

 condensing boilers 

 ventilation heat recovery 

 variable ventilation rates 

 pool water heat recovery 

(The Department of the Environment, 2000) 

All of these are relevant to the Tallaght Sports Complex as none of them are installed. When 

calculating the savings and payback periods for each, care should be taken not to overestimate. 

The individual savings do not always add up when two or more projects are combined. For 

example, heat recovery from the pool air could be calculated at current flow rates, while 

installing a variable speed drive to reduce flow rates could be a second project. If both projects 

go ahead, the heat recovered will be less than calculated due to the reduced air flow.  

The Good Practice Guide 219 recommends a two stage approach. In the first stage, the individual 

savings and payback period of each project are calculated and the best option is selected. Each 

remaining project is now recalculated taking into account any changes to parameters made by the 

first project. The next best project is now selected. This process continues until the budget is 

used or when further projects offer little savings. 

2.7.2.2 Fuel  

Fuel selection depends on availability, efficiency and price. As an existing gas supply is present 

at the Tallaght Sports Complex, there will be no need to investigate a change of fuel. 
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2.7.2.3 Heat Production 

The possible methods for converting fuel to heat are: 

 CHP units 

 condensing boilers 

 modern standard boilers 

 standard boilers 

 heat pumps 

(The Department of the Environment, 2000) 

CHP units can offer very high seasonal efficiencies but certain conditions must exist such as, 

long running hours, sufficient electrical load, and year round thermal load. Swimming pools are 

often good candidates for CHP.  

If CHP is not suitable, condensing boilers are another option. “Condensing boilers can be 

particularly effective in pool installations and payback on the extra cost can be achieved in 2-3 

years when compared with conventional non-condensing boilers.” (The Department of the 

Environment, 2000) 

A combination of CHP for the base load and a condensing boiler for peak loads is also possible. 

Heat pumps would not be an option for the main source of heat for such a large load. They main 

however be effective as part of a heat recovery strategy. 

2.7.2.4 Heat Supply 

Getting the heat from its source to where it is needed involves pumps, pipe work, heat 

exchangers, valves, hot water storage, heat emitters and control gear. It is of the upmost 
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importance that the system works as efficiently as possible and any waste be identified. With 

regard to the pool water, “Even a 0.5°C rise will result in a substantial waste of energy, because 

of the high thermal capacity of water. There will also be a significant increase in the rate of 

evaporation, which will, in turn, lead to a need for increased ventilation in order to protect the 

building fabric and maintain a comfortable air temperature.” (The Department of the 

Environment, 2000) 

2.7.2.5 Ventilation and Air Quality 

The pool air is typically kept at 30°C and relative humidity should kept in the region of 50-70%. 

With this air temperature and the warm temperature of the water (29-30°C), there will be a lot of 

evaporation from the pool. Humidity can rise quickly and chemicals from the pool water become 

airborne. Adequate ventilation is essential to maintain comfortable conditions.  Ventilation rates 

can be reduced if there are fewer bathers as there will be less splashing which would reduce 

evaporation.  

2.7.2.6 Heat Recovery 

As mentioned in the previous paragraph, high ventilation rates are required in the pool area. The 

air which is expelled is in the region of 30°C and 60% humidity. This air has an enthalpy of 

approximately 71 kJ/kg. There is considerable scope here for the use of a heat recovery 

technology. 

Three possibilities are: a cross flow heat exchanger, run-around coils and a thermal wheel. 

 Cross flow heat exchanger 

- Capable of recovering 75% of the sensible heat (the most efficient of the three types). 

It is made from a series of parallel plates between the supply and extract ducts which 
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allow heat exchange from the warm extract air to the cooler inlet air. Supply and 

extract routes must be immediately adjacent, if not, extra duct work can be installed. 

- Latent heat is also recovered is the air is cooled past its dew point and condensation 

occurs.  

 Run around coils 

- Capable of recovering 60% of the sensible heat. They offer flexibility as pipe work 

can be used between the extract and supply points. Air to water heat exchangers are 

used at the extract and supply ducts. A fluid is pumped between the two exchangers, 

taking heat from the extract air and transferring it to the supply.  

 Thermal wheel 

- Heat recovery varies but can be as high as 75% under optimum conditions. Air passes 

through a honey comb disc; this disc slowly circulates between the supply and extract 

ducts transferring heat. As there are moving parts, this device requires more 

maintenance than the other types. 

Heat recovery is also possible from the pool water. The potential for savings is limited though as 

water is slowly released as fresh water is introduced. During filter backwashing, water is released 

quickly but this is only for a couple of minutes and only happens once a week.  

2.8 Benchmarking 

In order to assess the performance of any building, benchmarking is carried out. There are a 

number of sources of benchmarking values depending on the building type. Benchmarking is 

carried out in section 3.2 Benchmarking using: CIBSE Guide F, Good Practice Guide 219, TM 

46, Carbon Trust’s CTV006 and Energy Consumption Guide 78. 
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2.9 ISO 50001 

ISO 50001:2011 is an energy management standard providing certification for a building or 

organisation. It is based on the common elements of continuous improvement found in similar 

international management system standards. There are no maximum or minimum values 

(kWh/m
2
 etc.) required to achieve certification, however, the standard provides a framework of 

requirements which must be adhered to. 

The requirements have a strong emphasis on record keeping. There must be metering and sub-

metering in place which is recorded at set intervals, the person responsible for this job is clearly 

identified. This is just one example which shows how the framework sets out a list of 

responsibilities so there is no excuse for complacency with regard to energy management.  

Seeking certification to ISO 50001 is voluntary and is sought by organisations for a number of 

reasons. The most obvious reason is the potential financial savings available if a successful 

energy management strategy is implemented. Some companies like to use the certification as a 

badge of honour to show customers and shareholders their commitment to environmental issues.  

The Tallaght Sports Complex does not have ISO 50001 certification nor has it ever applied for it. 

There are advantages to be gained from certification, but there is nothing stopping any 

organisation from implementing their own energy management policy and achieving the same 

results. A question that arises is “Is ISO 50001 worth the hassle?” 

A survey of fourteen organisations in Ireland with ISO 50001 certification, carried out in April 

2013 (Gibbons, 2013) asked several interesting questions. The following is a select of questions 

from the survey with the number of responses.  

“Does your organisation agree that the certification process provides value for money?”  
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Strongly agree 3 

Agree 10 

Neutral 1 

Disagree 0 

Strongly disagree 0 

Don’t know 0 

 

“Overall, how would your organisation rate the certification process?”  

Highly Complex  0 

Fairly Complex 8 

Average  5 

Fairly Simple 1 

Very Simple 0 

Don't know 0 

 

“Does your organisation agree that certification added value to their business?” 

Strongly agree 5 

Agree 9 

Neutral 0 

Disagree 0 

Strongly disagree 0 

Don’t know 0 

 

“Has certification led to an increase in your organisation’s profits?” 

Significant increase 4 

Minor increase 8 

No change 1 

Minor decline 0 

Significant decline 0 

Don't know 1 
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“Does your organisation agree that ISO 50001 certification has been important to their 

customers?” 

Strongly agree 2 

Agree 7 

Neutral 5 

Disagree 0 

Strongly disagree 0 

Don’t know 0 

 

Although the sample of only fourteen organisations is small, a general pattern emerges from the 

statistics. It seems that, although the certification process is considered complex, organisations 

are satisfied with the outcomes and most experienced financial benefits.  
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3. Tallaght Sports Complex 

3.1 Introduction 

The Tallaght Sports Complex is a privately run sports centre with swimming pool in the suburb 

of Tallaght in south-west Dublin. It has a gym with weight lifting facilities, a sauna, a wellness 

centre, a 30 m x 20 m sports hall, a 25 m x 9 m swimming pool, an aerobic room, a crèche and 

various offices, changing rooms and staff rooms. The building is single storey with a total area of 

2252 m
2
. The building is over 40 years old and has had no major refurbishment in that time. 

Financial difficulties have been a major concern in recent years and management were forced to 

reduce the number of staff from 42 to 15. Automatic controls have failed and not been replaced 

or upgraded and increasing energy costs are mounting pressure on the complex. 

In the last twelve months (July 2012-June 2013), the cost for energy has been €104,174. This is 

split between natural gas and electricity. Electricity accounted for 15.16% of the consumed units 

but 37.9% of the energy costs. Gas is used by two boilers for heating the pool water, pool air, 

radiators, and domestic hot water. Electricity is used for everything else: fans, pumps, all 

appliances, lighting, general services and the sauna. Bills for the last twenty-two months are used 

in the following sections. 

 

Figure 2: Electricity and Gas - Consumption and Cost Split 

Consumption 

Gas 

Elec 

Cost 

Gas 

Elec 
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3.1.1 Arial Photo 

 

 

Figure 3: Arial photo of Tallaght Sports Complex 

Figure 3 shows the entire building from above. The sports hall, swimming pool and the plant 

room are the three prominent sections of the building, all other areas are offices, changing rooms, 

corridors etc. 
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Male changing 
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Swimming Pool  
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3.2 Benchmarking 

3.2.1 Good Practice Guide 219 

In the twelve months from July 2012 to June 2013, the total units of gas and electricity were 

1,271,948 kWh and 227,300 kWh respectively. The value of energy per unit area is therefore:  

                 

    
                  

The Good Practice Guide 219 gives the following table 

for benchmarking. As the Tallaght Sports Complex has 

a pool, it falls into the “fair” category, in fact it falls 

66% of the way through the “fair” category, closer to 

“poor” than “good”. 

3.2.2 TM 46 

CIBSE’s TM46 gives separate benchmarks for electrical and thermal consumption for 29 

different types of buildings. The Tallaght Sports Complex used 101 kWh/m
2
 of electricity and 

565 kWh/m
2
 of gas from July 2012 to June 2013. In Table 2 the Tallaght Sports Complex is 

compared with three separate building types.  

   

 
Tallaght Sports 

Complex 

Swimming pool 

centre 

Fitness & health 

centre 

Dry sports & leisure 

facility 

Electrical 101 245 160 95 

Fossil 

Thermal 

565 1130 440 330 

Table 2: TM 46 Energy Benchmarks (kWh/m
2
/year) 

Figure 4: Good Practice Guide 219 - 

Benchmarking 
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Although the Tallaght Sports Complex has a swimming pool, the building could be described as 

being split 50/50 between pool/pool facilities/changing rooms etc and sports hall/changing rooms 

etc. In fact, in TM 46 when referring to a “swimming pool centre”, under column J, it states 

“swimming pool centre without further sports facilities”. This helps to explain why the Tallaght 

Sports Complex scored so well on the benchmark, the total area of the building cannot be 

described as a swimming pool centre.  A more accurate benchmark may be found by averaging 

the benchmarks of the swimming pool centre and the dry sports and leisure facility. The 

averaged values are 170 kWh/m
2
 for electrical and 730 kWh/m

2
 for fossil thermal. Even after 

averaging the benchmarks, the Tallaght Sports Complex scores very well. The Tallaght Sports 

Complex has no CHP, heat recovery, VSDs or automatic controls. This highlights the difficulties 

in benchmarking; it is very difficult to compare many buildings to available benchmarks as they 

do not fit into existing categories.  

3.2.3 Energy Consumption Guide 78  

The Energy Consumption Guide 78 (ECG78) deals specifically with sports and recreational 

buildings. In it, seven reference types are given ranging from a local dry sports centre to a 

regional centre. “Type 4 – combined centre” is the closest match to the Tallaght Sports Complex. 

 

Figure 5: Energy Consumption Guide 78 
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In the ECG78, initial values are given for each type of sports centre for both “Typical” and 

“Good Practice”. The typical value can then change depending on factors specific to the 

building being benchmarked. The typical electricity value starts at 152 kWh/m
2
. As ventilation is 

turned off at night, 12 is subtracted off this value. The use of a pool cover reduces the value by 

another 3, however, as the building is pre-1980, 36 is added. This gives a final value of 173 

kWh/m
2
. The same process for heating fuel give a final typical Value of 462 kWh.  

 Tallaght ECG78 Typical ECG78 Good 

Practice 

Electricity (kWh/m
2
) 101 173 96 

Heating Fuel 

(kWh/m
2
) 

565 462 264 

Table 3: Energy Consumption Guide 78 – Benchmarks 
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This places the Tallaght Sports Complex very close to good practice for electrical consumption 

but well below even the typical rating for gas consumption. This seems like a reasonable 

assessment due to the lack of controls and the overall poor operating conditions of the heating 

system.  

 

Figure 6: ECG78 Benchmarking 
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3.2.4 CTV006 

The Carbon Trust’s guide CTV006 gives a much more straight forward benchmarking guide. 

Figure 7 is taken from the benchmarking section and gives typical and good practice values. 

Using the “Centre with 25m Swimming pool” row, the Tallaght Sports Complex comes in better 

than good practice for both fossil fuel and electricity. 

 

Figure 7: CTV006 - Benchmarking 

3.2.5 Conclusion 

Using four different sources as benchmarking guides has given very different results. This shows 

the difficulty in accurately benchmarking. Grouping buildings can be difficult and like for like 

comparisons are quite often impractical.   

3.3 Description of Services, Operation and Control 

3.3.1 Automatic Control System 

Originally the heating and ventilation for the building was automated and consisted of various 

thermostats, contactors, two and three port valves and a central computer located in the plant 

room sub-board. This whole system has not been operational for a number of years and controls 

are now operated manually. Obviously this creates inefficiencies in the systems and over-heating 

can occur if staff are slow to operate heating valves. 
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3.3.2 Water Services 

The building’s water services consist of hot and cold systems. Hot water is used mainly by the 

showers in the changing areas but also hot taps. Cold water storage is provided by a sectional 

tank located overhead in the plant room. The tank includes a divider to allow cleaning of the tank 

without isolating the water supply.  

A hot water calorifier (approximately 3500 litres) serves the hot water supply requirements of the 

building. It appeared in good condition but is not lagged. The calorifier is heated by a hot water 

circuit from the main hot water header.  

On the cold water supply pipe-work adjacent to the calorifier there is a pump which pressurises 

both the hot and cold water systems. This pump uses 1.35 kW and is single speed with manual 

on/off control. It is sometimes turned off at night but not always as was observed during 

inspections. The pump is in poor condition and is noticeably noisy.   

3.3.3 Pool Water System 

The pool water is treated on a continuous closed loop purification system. The turnover period 

should not be greater than four hours. Two electrically driven end suction pumps connecting in 

parallel draw water from the pool, force it through a sand filter, then through a shell and tube 

heat exchanger (this is where the pool water is heated) and finally back to the pool. These pumps 

use a combined load of 10 kW and run 24 hours/day.  

During the course of the study, one of the pumps failed and had to be replaced. During the five 

day period when only one pump was running, the water temperature in the pool dropped to the 

point where customers were complaining. This was an interesting development as it clearly 

showed the need for the two pumps.  
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While discussing ideas with the building manager, he said that they previously experimented 

with turning the filter pumps off at night. However, after a few days there was a noticeable smell 

from the water and this practice was immediately discontinued.    

The inlet and draw-off system is designed to have uniform circulation to all parts of the pool. 

There are two bottom drainage outlets provided at a minimum of three metres apart at the lowest 

point of the pool. The pool dimensions are 25 m by 9 m by 1 m (average) which gives 225 m
3
. 

For a four hour turnover the flow rate must be              . 

3.3.4 Heating System 

The building’s heating is generated by two parallel connected 550 kW low-pressure, hot-water 

boilers which are sized to meet 70% of the peak load. The boilers were formally oil-fired type. 

These boilers were manufactured by Hogfors ltd and run at a maximum efficiency of 

approximately 80%. Both boilers have been converted to natural gas. The old oil fuel system was 

decommissioned but is still visible.  

The boilers serve a primary header which provides the building’s six hot water circuits with flow 

and return temperatures of 82°C and 71°C.  

There were two main pumps on the heating header but one of these failed a few years ago and 

was not replaced. The remaining pump (heating pump 1) is three-phase and takes 1.2 kW and is 

on 24 hours/day with no speed control. 

The heating circuits serve the building’s air handling units, radiator circuit, calorifier circuit, 

sports hall fan heaters and pool heat exchanger circuit. The heating system is a closed loop 

pressurised system. The circuits are detailed in Table 4. 
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Circuit Type Notes 

No. 1 Sports Hall Fan Heaters  

No. 2 Calorifier  

No. 3 AHU-01   

No. 4 Pool Heat Exchanger  

No. 5 AHU-02 & AHU-03 Circuit not in use  

No. 6 Radiators  

Total Facility Load   

Table 4: Hot water circuits 

The circuits serving the main AHU and the swimming pool heat exchanger have three-port 

valves fitted, however, these are no longer in use. The calorifier circuit has a two-port valve 

which is not in use either. 

The boilers are left on constantly and cycle on/off depending on the return water temperature. 

Control of the various heating circuits is manual. The building manager regularly checks 

thermometers for the pool air and pool water temperatures. If he feels that either/both 

temperature is sufficient and no more heat is required, he walks to the plant room and closes the 

valve to the relevant circuit. Likewise, when the temperature drops, he opens the valve. When 

the hot water circuit to the AHU is closed, the AHU fan remains running at full speed. This 

ensures that humidity does not rise in the pool area but also means that the air temperature will 

drop quickly.  
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The radiator circuit is turned on manually when the staff feel that heating is required. The warm 

air from the pool area escapes into adjacent rooms and provides reduces the requirements of the 

radiators. The radiators do not have thermostatic radiator valves (TRVs) fitted and are controlled 

individually by turning their valves manually.  

There are four fans in the sports hall served by hot water circuit number 1. Again, manual 

operation is used here. When heat is required in the hall, the fans are turned on from the plant 

room sub-board and the valve is opened to circuit 1.  

3.3.5 Ventilation 

The building is served by three AHUs. All three are 100% fresh air, once through type. The first 

air handling unit (AHU-01), supplies air to the swimming pool area through six linear bar supply 

grilles around the perimeter of the pool area.  

AHU-01 is responsible for maintaining the temperature and humidity of the air in the pool and is 

supplied by heating circuit number three.  

The second and third AHUs serve the male and female changing areas. These AHUs are smaller 

than AHU-01 and are located externally on the lower roof. They supply fresh air directly into the 

two separate changing areas via short runs of ductwork. Both have heat exchangers fed from 

heating circuit number five. These AHUs no longer heat the air as the pipe-work supplying them 

has corroded and thus, circuit number five is never turned on.  The following table shows the air 

flow rates for the facility. 
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AHU Serving Volume (m
3
) Ventilation Flow Rate (m

3
/sec) 

AHU-01 

Swimming 

Pool 2400 10 ac/hr 6.5 

    Occupancy     

AHU-02 

Male 

Changing 50 10 litres/person 0.5 

AHU-03 

Female 

Changing 50 10 litres/person 0.5 

Figure 8: Air flow rates 

There are four large extract fans on the roof of the pool area. These no longer work and have not 

been in use for a number of years. Air is still able to escape through these and on inspection, by 

placing a hand close to the fans, the warm air leaving is obvious. There was a heat recovery 

system in place in the past. The four extract fans have heat exchangers and pipe-work connects 

back to a pre-heat coil in AHU-01. The pipe-work for the old run around coil system has rusted 

badly and would need to be replaced if the heat recovery system was to be used again. The pump 

for the heat recovery system is still in place but has been isolated. 

There are a number of small extract fans located in the changing rooms and toilets, however their 

flow rates do not come close to the supply flow rates. As a result, the building is under positive 

pressure. Upon opening doors to the pool area, air is forced outward quite dramatically. This 

outward pressure is also felt at external doors.   
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3.3.5.1 Photos  

 

 

Figure 9: Old extract AHU 

Figure 9 shows one of the four old extract units above the pool. These form part of the disused 

heat recovery system. The panel shown open in the photograph is always open and warm air can 

be easily felt escaping through it. The pressure from the main AHU’s fan easily forces air out 

through all four of the old extract points. The fans in the extract AHUs have been disconnected. 
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Figure 10: AHU-01 air intake point 

Figure 10 shows the air intake point for the main AHU. This is where a cross flow heat 

exchanger could be located.  

 

Figure 11: Changing room AHU 

The two smaller supply AHUs can no longer have hot water supplied to them as their pipe work 

has rusted away. The fans still work and supply fresh air to the pool changing rooms. 
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4. Energy Audit 

4.1 Introduction 

The audit of the Tallaght Sports Complex was conducted over the course of a one year period. It 

consisted of many site visits, collection of billing information and the use of data loggers, 

temperature and humidity sensors. The audit took a lot more work than was initially expected for 

various reasons but the main cause of delay was due to the lack of labelling on the sub-boards. 

The plant room sub-board has MCBs and contactors for fans, pumps, boilers and various other 

loads, none of which were labelled. A number of site visits over the course of a few weeks were 

spent identifying each circuit. This was necessary to gain a full understanding of the loads and 

how they are controlled. 

The data logger used was a Hawk 5000. This is a specialised piece of equipment and can 

measure true power (kW) and apparent power (kVA) along with many other parameters. Some 

cheaper loggers measure current alone and multiply it by a set voltage to produce a spurious kW 

load. This is fine for resistive loads where the power factor is unity or where accuracy is not 

essential. In fact, the second logger used, the Efergy e2, operates by measuring current alone. 

This puts limitations on the applications for the Efergy e2. The sauna, for example, is a purely 

resistive load, so the Efergy e2 worked perfectly there.  

4.2 Relevant Standards and Regulations 

The following standards, regulations and resource guides were revised and taken into 

consideration when providing the consumption analysis and proposed recommendations;  
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 Commission for Energy Regulation (CER) - Distribution Use of System Charges 

(DUoS): 1
st
 October 2012 – 1sr September 2013.  

 Chartered Institute of Building Services Engineers (CIBSE) TM46 Energy Benchmarks 

 CIBSE – Energy Efficiency Guide F 

 CIBSE – TM 46 

 Energy Consumption Guide 78 

 CTV006 

 EN 12464-1:2002 Lux levels 

 EU Proposed Energy Audit Standard En 16247-1 – General Requirements 

 Energy Management Standard ISO 50001  

 International Performance Measurement and Verification Protocol (IPMVP) 

 National Rules for Electrical Installation in Ireland (ETCI) 

 SEAI - Building Energy Manager's Resource Guide 

 SEAI – Energy Map 

 

4.3 Electrical Billing Information 

4.3.1 Introduction 

Electricity is supplied by Energia on a Low Voltage - Maximum Demand tariff.  The bill consists 

into the following sections: 

 Day units (kWh) 

 Night units (kWh) 

http://www.google.ie/url?sa=t&rct=j&q=cibse&source=web&cd=1&cad=rja&sqi=2&ved=0CCsQFjAA&url=http%3A%2F%2Fwww.cibseireland.org%2F&ei=-mJ-Ub_SL-WQ0QX3kIGQBg&usg=AFQjCNHV9eP5nDKQHjq5PJuhUohFE_SeTg&bvm=bv.45645796,d.d2k
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 Service capacity charge (kVA) 

 Low power factor surcharge (kVArh) 

 Electricity tax (kWh) 

 Maximum demand (kW) 

 VAT  

Every second bill is estimated, so accurate information is provided on a two-monthly basis.  

4.3.2 Day Units 

Day units are measured in kWhs which are consumed between the hours of 8 am and 11 pm. Day 

units are the largest portion of the electrical bill at 68.8% of the total. 

 

Figure 12: Day Unit Consumption 

In Figure 12: Day Unit Consumption, the number of day units for each two month period is 

shown. It can be seen that they vary considerably from a minimum of 24,800 kWh (May and 

June 2013) to a maximum of 28,280 kWh (January and February 2012). Although there is some 
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correlation with the seasons visible in the graph, the day unit consumption seems somewhat 

erratic.  

4.3.3 Night Units 

Night units are measured in kWhs which are consumed between the hours of 11 pm and 8 am. 

Night units are the second largest portion of the electrical bill at 15.6% of the total. 

 

Figure 13: Night Units Consumption 

In Figure 13: Night Units Consumption, it can be seen that the night time consumption is 

relatively consistent, this is to be expected, as apart from external lighting, there are no night-

time loads which should vary on a daily or monthly basis. The bills with the higher loads may be 

explained by the sauna, which is manually controlled and sometimes left on overnight 

accidentally.  

4.3.4 Service Capacity Charge and Public Service Organisation Levy (PSO Levy) 

The service capacity charge (also known as the Maximum Import Capacity (MIC)) is a charge 

based on the agreed maximum value of load which the building will use at any time. Currently 
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the agreed MIC is set at 60 kVA. If the maximum demand of the building was to exceed 60 

kVA, then penalties would apply, this however has never happened, so the MIC is not too low. 

There may be scope to reduce to MIC, though this needs to be considered carefully, because if 

that transformer capacity is sold to another customer, it may not be available again if needed. 

The PSO levy is a government charge to cover the higher costs of peat and renewable energy. It 

is similar to the MIC charge in that it is calculated based on the agreed MIC.  

If the MIC can be reduced, a saving will be made on both the MIC and PSO levy. Together they 

represent 6.8% of the electrical bill. 

4.3.5 Standing Charge 

The standing charge represents 5.9% of the total bill. It is not based on consumption, but it is 

relevant when checking other provider’s tariffs.  

4.3.6 Maximum Demand Charge 

The maximum demand refers to the largest electrical consumption, measured in kW, over any 

fifteen minute period. The value given in the bill is the average kW consumption for that fifteen 

minute period. The purpose of this charge is to create an incentive to discourage large variations 

in consumption during the day.  

On the current tariff, the maximum demand charge only applies for two of the six annual bills; 

these are the winter bills of November/December and January/February.  As can be seen in 

Figure 14: Recorded Max Demand, the recorded maximum demand was 44, 45, 46 and 44 kW 

respectively. Overall, the maximum demand charge only represents 1.6% of the total electricity 

bill, and therefore, peak reduction techniques will not offer large savings. It should be noted that 

the maximum demand values are measured in kW, while the MIC is measured in kVA. If, for 
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example, a value of 46 kW was measured while the power factor was 0.9 lag, then the kVA load 

would be 
     

   
          

This concept should not be over looked when making decisions on reducing the MIC. 

Alternatively, the supplier can issue maximum demand in kVA on request. 

 

Figure 14: Recorded Max Demand 

4.3.7 Low Power Factor Surcharge 

The low power factor surcharge represents 0.9% of the total electricity bill. Although this is a 

relatively small value, it is one which can be eliminated with the use of capacitors. The supplier 

allows one kVArh for every three kWh purchased. The number of kVArh above the allowed 

value for each bill is shown below in Figure 15: kVArh. A few points should be noted about this 

graph 

 The large drop in kVArh from the December bill onwards is due to the installation of 

capacitors as part of the author’s project. This is discussed in detail section   
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 6.5 Power Factor Correction. 

 The April bill had zero kVArh and the June bill had 2433 kVArh. This may have been a 

mistake on the supplier’s part. If the 2433 kVArh is averaged out over the two bills, 1216 

kVArh per bill is calculated. This value is more in line with the February bill of 1347 

kVArh.  

 The capacitors were installed one quarter of the way into the December’s billing period, 

which explains why that bill is not in line with the following bills.  

 

Figure 15: kVArh 

4.3.8 Electricity Tax 

The electricity tax is the smallest of the component parts of the electricity bill at 0.3%.  The 

electricity tax is a set charge for every kWh consumed regardless of whether they are day or 

night units. If general consumption is reduced, the electricity tax will reduce also. 

4.3.9 VAT 

VAT is added at a rate of 13.5% to the total. 
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4.4 Data Logger 

4.4.1 Introduction 

The data logger was installed on the main board and each of the two sub-boards for one week to 

record: kW, kVA, kVAr, power-factor and current. kW, kVA, kVAr and power-factor were 

recorded for each phase and total, while current is only recorded for each phase. The data logger 

was also used to gain information about various individual loads throughout the building. The 

data logger’s software was used to generate some graphs, where the desired graph was not 

available, Microsoft Excel was used. 

4.4.2 Main Board 

The data logger was installed on the main board on Saturday 6
th

 October 2012 for one week. It 

was set to log every four minutes. Figure 16: Daily kW profile shows the total kW consumption 

on each of the seven days.  
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Figure 16: Daily kW profile 

The week-days all follow a similar pattern;  

 20 kW night time load 

 at 5 am, the load rises to 25 kW 

 at some time between 6-7 am, the load rises to 34 kW 

 from then until 7 pm, the load varies between 30-40 kW 

 for the hour and a half between 7-9:30 pm, the load peaks at 40-44 kW 

 after 9:30 pm, the load drops back to its 20 kW night load. 

Saturday and Sunday  

 Both have the same night load and 5 am spike as the weekdays 
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 Weekend loads remain lower than weekdays 

 The evening peaks are not present and the load drops back to its night load a lot earlier.  

 On Saturday, the load reduces to 24 kW at 4:30 pm and gradually drops to the 20 kW 

night load. 

 On Sunday, the load drops below 20 kW as early as 3:30 pm. 

Observations 

 The 5-am spike is caused by the manual turning on of the Air Handling Unit (AHU). The 

electrical load in the AHU is a single three-phase fan using 5.5 kW. Hot water is pumped 

through the AHU’s heat exchanger continuously, regardless of whether it is on or not. 

The AHU is turned on to begin heating the air in the pool area. The night security 

personnel carry out this task by walking into the plant room and turning an isolator on the 

plant room sub-board. This 5 am start is regardless of external weather conditions or 

internal air temperature. 

 The next spike, which happens between 6 am (Wednesday) and 7:40 am (Friday), is the 

sauna turning on. This is also manual. A member of staff walks to the sauna, reaches up 

and unlocks a padlock and turns an isolator. The sauna has a load of 5 kW and is left on 

all day. It is turned off manually before staff leave at night but the time varies depending 

on how busy they are and what time they remember to do it. In fact, sometimes in error, it 

isn’t turned off at all, this was proved during the time which the data logger was 

connected to the sub-board and can be seen later in section 4.4.4 Sub-Board 1. It was also 

noted that the sauna was empty on most of the author’s site visits. 

 On the five weekdays, the drop to 20 kW night load varies by an hour and forty minutes. 

This is again due to the manual operation of large loads such as the sauna and the AHU. 
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 On the Thursday, there is an erratic drop in load of approximately 17 kW at 10:36 am. 

The load goes back up at 11:30 am briefly and drops again, before returning to normal at 

12:16 pm. This was caused by a long running fault present in the electrical installation. 

Occasionally when there was rain, an MCB in the plant room sub-board would trip. This 

MCB fed the control wiring for some of the contactors including the two boilers, the 

main pump for the hot water and the AHU. The same fault occurs on Wednesday 17
th

 of 

October while the data logger is monitoring the plant room sub-board. The author 

identified the source of the fault to be a disused belden cable which was connected to the 

circuit. The cable was connected to a thermostat on the roof but was no longer in use. 

Disconnection of this cable has since rectified the fault. 

 

 

Figure 17: Main board – kVA/kW – Wednesday 

Figure 17: Main board – kVA/kW – Wednesday shows two screen shots displaying the data 

logger’s software. On the left hand side, total kVA and each individual kVA are selected, while 

on the right, total kW and each individual kW are. The graphs shown are generated and any 

given day or hour can be selected. The value of kVA is always greater than the value of kW due 
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to the power factor of the circuit. The power factor and kVAr shall be discussed later. Just one 

day is shown here for clarity and Wednesday was selected at random. 

Observations -  

 The 5 am (AHU) spike and the 6 am (sauna) spike are clearly visible.  

 The three phases are reasonably well balanced  

 Peak consumption occurs between 7 – 9:30 pm 

 kW and kVA follow a very similar pattern but kVA is always larger.  

o During the night time, there is 22.5 kVA and 20 kW.  

 This gives a power factor of      
  

   
 

  

    
               

o At the peak (9 pm), there is 47 kVA and 43 kW 

 This gives a power factor of      
  

   
 

  

  
               

o When the power factor falls below 0.95 lag, the building is using excess kVAr 

and if this happens for a prolonged period, penalties will occur. 
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Figure 18: Main Board - kVAr – Wednesday 

Figure 18: Main Board - kVAr – Wednesday shows the kVAr for the same day as above. kVAr is 

wattless energy and is undesirable. During the night time, there is a constant value of 11 kVAr. 

This jumps to 16 kVAr at 5 am when the AHU is switched on. There is no increase at 6 am when 

the sauna turns on as the sauna is a purely resistive load which will increase kW and kVA but not 

kVAr. The large value of kVAr at night time can be attributed to two motors which run 24 hours 

per day. These motors turn pumps which suck water from the pool, through filters, through a 

shell and tube heat exchanger and finally, back to the pool.  
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When kW is plotted against kVAr, as in Figure 19: Main Board - kW vs kVAr – Wednesday, an 

interesting graph is produced in which it is possible to separate certain loads. The inductive load 

of the AHU increases both kW and kVAr so can be seen turning on at 5 am and off at 9:30 pm, 

while the resistive load of the sauna which increases kW but not kVAr, can be seen turning on at 

6 am and off at 11 pm. There are many other loads within the building, but these two are easy to 

identify using the kW vs kVAr graph. 

 

 

Figure 19: Main Board - kW vs kVAr – Wednesday 
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Figure 20: Main Board - Power Factor 

In Figure 20: Main Board - Power Factor two graphs are shown. On the left is the power factor 

for each of the three phases on the Wednesday and on the right is the Thursday. On the 

Wednesday, the power factor never gets up to the 0.95 value required to eliminate penalties.  

What can also be seen is that the power factor drops at 5 am (AHU) and improves at 6 am 

(sauna). 

On the Thursday, there is an interesting feature in the graph. As mentioned previously, there was 

a fault that day at 11:36 am which resulted in the two boilers, the main heating pump, the two 

filter pumps and the AHU shutting down. The power factor goes to almost unity during the fault. 

This is useful information as it shows which loads are causing the poor power factor. 
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Figure 21: kVAr Thursday 

Figure 21 shows total kVAr and the kVAr on each phase for the Thursday. This graph also 

proves that the loads which tripped under the fault are responsible for the large kVArh 

consumption.  

4.4.3 Plant Room Sub-Board 

The data logger was connected to the plant room sub-board from Saturday 13
th

 October 2012 for 

one week. When the plant room board is monitored in isolation, there is a very steady state 

condition observed. At night, there is a steady load of 13.5 kW, this rises to 19 kW at 5 am when 

the AHU is turned on. The load remains constant until the AHU is turned off.  

Observations -  

 The AHU is turned on every day at a consistent time (5 am). 

 The AHU was turned off at the following times 

o Sunday – 3pm 

o Saturday – 7:15 pm 

o Monday – 11:12 pm 
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o Tuesday – 10:44 pm 

o Wednesday – 9:24 pm 

o Thursday – 9.40 pm 

o Friday – 10:04 pm 

 These times are similar to the turn off times from the previous week when 

the data logger was connected to the main board.  

 On Wednesday at 6:32 pm, the contactor circuit fault occurs again which is visible by the 

large drop in load until 7:24 pm. 

 10 kW of the night load is attributed to the two pool filter pumps which run 24 hours per 

day.  

 

 

Figure 22: Daily kW profile - Plant Room 

The kVAr consumption on the plant room sub-board is also very steady. It has a total value of 

10.5 kVAr at night and 15 kVAr once the 5 am switch on has occurred. This proves that a 
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considerable portion of the total kVAr is caused by the two 24 hour filter pumps. The AHU adds 

to the instantaneous kVAr, but as it is not on for as many hours, it not responsible for a 

proportionally large monthly kVAr consumption. 

 

Figure 23: Plant Room kVAr - Wednesday 

4.4.4 Sub-Board 1 

Sub-board 1 supplies all circuits in the building other than those in the plant room. The data 

logger was connected to this board for one week from Saturday 20
th

 October. The sub-board 

supplies many loads which switch on and off repeatedly throughout the day and as such the 

consumption profile varies considerably during the day. The sauna is supplied from this board 

and can seen turning on and off by a sudden 5 kW change in kW consumption. It is interesting to 

note the varying times which this happens, as early as 5:44 am on Thursday compared to 7:32 am 

on Tuesday. The weekend switch-on times are later again but there is a different occupancy 
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pattern those days. Switching off on the weekdays varies between 9:40 pm and 10:22 pm. On the 

Sunday, the sauna was accidentally left on all night. This can clearly be seen in the large Monday 

night load in Figure 24: Daily kW profile - Sub-Board 1. This happened during the week that the 

sub-board had the data logger attached but there is no way of knowing how often this happened. 

It was shown earlier in Figure 13: Night Units Consumption that some months have higher night 

time consumption than others and this may be the cause. The manual switching of the sauna 

clearly creates inefficiencies in the system and is addressed in section 6.3 Sauna. 

Observations 

 The night load is mainly external security lighting 

 The peaks and troughs seen on the main-board are caused by sub-board 1 

 Weekend consumption is lower than weekday and evening peaks are not present 

 Night load of 5 – 6 kW is normal, peak is approximately 25 kW 

 The time at which night load conditions are reached varies between the days. 
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Figure 24: Daily kW profile - Sub-Board 1 

 

The kVAr consumption on sub-board 1 is far smaller than that of the plant room sub-board. The 

total varies between 1 and 6 kVAr. This board does therefore not warrant any further 

investigation with regard to power factor correction.  

0 

5 

10 

15 

20 

25 

30 

0
0

:0
0

:0
0

 

0
0

:5
2

:0
0

 

0
1

:4
4

:0
0

 

0
2

:3
6

:0
0

 

0
3

:2
8

:0
0

 

0
4

:2
0

:0
0

 

0
5

:1
2

:0
0

 

0
6

:0
4

:0
0

 

0
6

:5
6

:0
0

 

0
7

:4
8

:0
0

 

0
8

:4
0

:0
0

 

0
9

:3
2

:0
0

 

1
0

:2
4

:0
0

 

1
1

:1
6

:0
0

 

1
2

:0
8

:0
0

 

1
3

:0
0

:0
0

 

1
3

:5
2

:0
0

 

1
4

:4
4

:0
0

 

1
5

:3
6

:0
0

 

1
6

:2
8

:0
0

 

1
7

:2
0

:0
0

 

1
8

:1
2

:0
0

 

1
9

:0
4

:0
0

 

1
9

:5
6

:0
0

 

2
0

:4
8

:0
0

 

2
1

:4
0

:0
0

 

2
2

:3
2

:0
0

 

2
3

:2
4

:0
0

 

kW Sun 

kW Mon 

kW Tue 

kW Wed 

kW Thu 

kW Fri 

kW Sat 



Colin Conway Page 72 
 

 

Figure 25: Sub-board 1 - kVAr – Friday 
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4.5 Significant Electrical Users 

4.5.1 Filter Pumps 

The two filter pumps which are on 24 hours per day have been identified as significant users of 

electricity. The data logger was attached to each to gain data. As these are constant loads, only a 

snap shot reading was required to gain sufficient information. The following information was 

obtained from filter pump 1: 6 kVA, 5 kW, 3.4 kVAr.  

 

Figure 26: Filter pump 1 

Filter pump 2 gave identical results.   Between the two pumps, the annual consumption is (5 x 2) 

kW x 24 hrs x 365 days = 87,600 kWh  

This represents 38.5% of the total 227,300 kWh of electrical consumption for the previous 

twelve months. As the filter pumps run 24 hours a day, a large portion of their consumption is on 
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the night rate and therefore their cost percentage will be lower than their consumption 

percentage. Day units =       
  

  
           , night units =       

 

  
           .  

The two pumps therefore represent 34.85% of the total 157,080 kWh day units and 46.78% of 

the total 70,220 night units. 

The annual kVAr consumption between the two motors is (3.4 x 2) kVAr x 24 hrs x 365 days = 

59,568 kVArh. There was an average of 53,000 kVArh annually in penalties. The building 

consumes a higher value of kVArh than this, but it is allowed a quota dictated by its kWh 

consumption. The value of 53,000 is the amount of kVArh consumption above the quota. If the 

motor’s power factor was improved to unity, the low power factor penalty should be eliminated.  

4.5.2 Main Air Handling Unit (AHU-01) 

The electrical load in the AHU is a single three-phase fan which draws in fresh outside air, 

passes it over a heat exchanger and down into ductwork which supplies the fresh/heated air to the 

swimming pool hall and some adjacent rooms.  Below is a screen grab of the real-time 

monitoring option available with the data logger.  The phase values can be seen on the red, 

yellow and blue columns and the totals are across the bottom of the screen. A total value of 5.5 

kW was measured.  
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Figure 27: AHU-01 - Data Logger 

The AHU is manually operated and turned on at 5 am. The turning-off times vary and were 

discussed in the 4.4.3 Plant Room Sub-Board section.  During the week in which the AHU was 

monitored, it was on for 110 hours. That gives an annual consumption of, 5.5 kW x110 hours x 

52 weeks = 31,460 kWh (13.8% of the 227,300 kWh total) 

4.5.3 Sauna 

The sauna is a purely resistive load which is used seven days per week. It is manually controlled 

by operating an isolator which is locked in a box with a pad lock. The circuit is three-phase, but 

as it is a balanced load, only one phase was monitored using a single phase energy meter. As 

such, consumption has to be multiplied by three to get total values. The energy meter was 

attached from Thursday 1
st
 November to Thursday 8

th
 November. 
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Figure 28: Sauna - Friday 2nd November 

The readings given in the columns above are the kWh consumption for each hour. As these 

values are for one hour, the instantaneous kW consumption is the same value. Therefore, one 

phase of the sauna uses 1.655 kW and the total load is 1.655 x 3 = 5 kW. The consumption for 

this day is given in the bottom left of the screenshot as 23.14 kWh. The total consumption is 

therefore 23.14 x 3 = 69.42 kWh. The total consumption for the week was 441 kWh. This gives 

an annual consumption of 22,935 kWh (10% of the total 227,300 kWh). 

On the week which the sauna was monitored in isolation (November 1
st
 to 8

th
), the switch on and 

off times varied on the weekdays by over an hour. This is due to the manual nature of the 

switching and is addressed is section 6.3 Sauna. 
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4.5.4 AHU-02 & AHU-03 

AHU-02 and AHU-03 supply fresh air to the male and female changing rooms. Both AHUs use a 

single-phase fan which was measured at 0.375 kW each. Currently these fans are left on 24 

hours/day. Annual consumption therefore is                         (2.9% of 

total). 

4.5.5 Pool Lighting 

The circuit for the swimming pool lights was monitored for one week from November 8
th

 to 15
th

 

using the Efergy energy monitor. The lights consume 1.45 kW when they are on and they are 

manually controlled. There is considerable roof glazing in the pool area and daylight is sufficient 

for lighting a lot of the time. From the data gathered, it is clear that the lights are turned off when 

not in use. It is also worth noting that the week in which the circuit was monitored was quite dull 

and therefore the information cannot be extrapolated out accurately for an annual load. 114 kWh 

were consumed over the week which gives 5,928 kWh annually (2.6% of total). 

There does seem to be some erratic night consumption, for example, on Thursday 15
th

, the lights 

were not turned off until after 1 am and were back on at just after 3 am.   

4.5.6 Wellness Centre 

The wellness centre is a single room with six electrical exercise machines. These machines are 

aimed at elderly customers and those who are not very fit. Customers sit or lie on each machine 

and resist the movement of the machine. All of the machines are plugged into a single socket 

circuit. This circuit was monitored for one week. Weekly consumption was 26 kWh. The 

wellness centre attracts a lot of customers and easily pays for itself. 
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4.5.6 Conclusion 

The filter pumps, AHU and sauna account for 58.65% of all the electricity consumed by the 

building. These are the loads which should be focused on initially in the quest for energy 

savings.  

4.6 Gas Billing Information 

4.6.1 Introduction 

Gas is purchased from Energia and bills are issued on a monthly basis. Bills were available for 

the period from June 2012 to June 2013 (13 months). For all annual values given, June 2012 

shall be omitted and June 2013 used as it is more up to date. In the past twelve months, gas has 

cost €64,688 which is 62.1% of the €104,174 total (gas & electricity). Consumption does vary 

with the seasons but not as much as might be expected. As the pool requires heating all year 

round, even the summer months have a demand in the order of 2,500 kWh/day, or 105 kW, 24 

hours per day.  

4.6.2 Monthly Data 

Figure 29 shows the monthly kWh units consumed. Monthly consumption varies between 63,000 

and almost 146,000 kWh.  
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Figure 29: Gas consumption 

The gas bill is broken down into five parts.  

 Gas rate – the charge per kWh of gas consumed. 

 Carbon tax – government levy per kWh of gas consumed – introduced on May 1
st
 

2010 

 Transportation rate – charged per kWh of gas consumed 

 Shrinkage rate - charged per kWh of gas consumed 

 Site capacity charge – Bord Gais Networks calculate a site capacity value 

annually, based on the previous year’s consumption and weather data. The energy 

year starts in October so this value changes each year starting from October. A 

rate is multiplied by the site capacity value on each bill.  As a rule of thumb, the 

annual fee (in euro) is close to double the site capacity (in kWh). 

0 

20,000 

40,000 

60,000 

80,000 

100,000 

120,000 

140,000 

160,000 

Ju
n

-1
2

 

Ju
l-

1
2

 

A
u

g-
1

2
 

Se
p

-1
2

 

O
ct

-1
2

 

N
o

v-
1

2
 

D
ec

-1
2

 

Ja
n

-1
3

 

Fe
b

-1
3

 

M
ar

-1
3

 

A
p

r-
1

3
 

M
ay

-1
3

 

Ju
n

-1
3

 

kW
h

 

Gas Consumption 



Colin Conway Page 80 
 

As the gas rate, carbon tax, transportation charge and shrinkage charge are all based on kWh of 

gas used; a reduction in consumption will reduce all four charges in proportion.  If there is a 

sustained reduction year round, the site capacity charge will reduce on the following October. 

4.7 Monthly Regression Analysis 

Although the consumption of gas on a monthly basis offers an insight into monthly variations, it 

does not give accurate feedback as to the performance of the heating system with respect to the 

weather. Regression analysis shall be used to set up a performance indicator for the heating 

system using degree days as the driver for gas consumption.   

The closest weather station with the available data is Naas. Naas is approximately 20 km from 

Tallaght with a similar inland weather climate so the degree day data should be very similar to 

that in Tallaght. The degree days were obtained from www.degreedays.net using 15.5°C as the 

base temperature. Table 5 shows the heating degree days obtained cross referenced with the 

actual gas consumption for the corresponding month. 

 

HDD Gas (kWh) 

Jul-12 36 74,554 

Aug-12 29 70,523 

Sep-12 114 63,632 

Oct-12 216 105,192 

Nov-12 288 124,538 

Dec-12 326 127,094 

Jan-13 325 126,252 

Feb-13 318 132,379 

Mar-13 379 145,865 

Apr-13 253 121,202 

May-13 168 104,889 

Jun-13 74 75,828 

Table 5: Monthly heating degree days and gas consumption 

http://www.degreedays.net/


Colin Conway Page 81 
 

Using the values in Table 5, an XY scatter diagram was generated with the degree days on the x 

axis and gas consumption on the y axis as shown in Figure 30. By adding a trendline, it can be 

seen that when the monthly values are plotted, they fit close to the line. This indicates that degree 

days are a direct driver of gas consumption. As a result, the equation of the line 

(y=218.4x+60010) can be used to assess both historical monthly performance and future 

performance. This equation gives the base load of the building as 60,010 kWh/month and states 

that there will be another 218.4 kWh consumed for every degree day. These numbers should not 

be considered as 100% accurate be are good indicators of performance.  

 

Figure 30: Gas - degree day XY scatter diagram 

Table 5 can now be expanded to include the predicted gas consumption based on the formula 

from Figure 30. The next column is the difference between the predicted consumption and the 
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actual consumption, a positive number indicates that more gas was consumed than the formula 

predicted and visa versa.  

 

HDD Gas (kWh) Predicted Difference 

Jul-12 36 74,554 67872 6682 

Aug-12 29 70,523 66344 4179 

Sep-12 114 63,632 84908 -21276 

Oct-12 216 105,192 107184 -1992 

Nov-12 288 124,538 122909 1629 

Dec-12 326 127,094 131208 -4114 

Jan-13 325 126,252 130990 -4738 

Feb-13 318 132,379 129461 2918 

Mar-13 379 145,865 142784 3081 

Apr-13 253 121,202 115265 5937 

May-13 168 104,889 96701 8188 

Jun-13 74 75,828 76172 -344 

Table 6: Monthly Performance 

A more user-friendly way to view this information is to plot the difference column against the 

months on a column chart as shown in Figure 31. When the column points upwards, that month’s 

consumption was above what should have been used based on the month’s weather and visa 

versa. It can be seen that most months fall within a plus/minus value of 5,000 kWh. The one 

month of interest is September 2012 which has an under consumption of 21,276 kWh. 

Unfortunately, as no maintenance records are kept it is impossible to say why this month 

performed so well. It should be pointed out that it is possible that the building didn’t perform 

well at all, perhaps a pump failed and hot water couldn’t be pumped to where it was required, 

resulting in thermal comfort being compromised and a loss of customers.  

This performance indicator can easily be updated on a monthly basis to check for under or over 

performance.    
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Figure 31: Gas Performance Indicator 

Simply updating this performance indicator is pointless unless the information is used 

constructively. This is discussed later in section 6.6 Energy Management Policy. 

4.8 Daily Gas Profile 

To obtain a daily load profile, the gas meter was read every hour over a 24 hour period on 

Thursday 13
th

 June. The information obtained is shown in Figure 32. The consumption increases 

as soon as the AHU is turned on at 5 am and averages around 130 kW. Consumption drops at 

night when the AHU is turned off and the pool is covered.  
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Figure 32: Daily gas profile 
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5. Energy Costs 

5.1 Introduction 

Electricity and gas are currently supplied by Energia. All bills are available in appendices B &C.  

5.2 Electricity 

5.2.1 Day Units 

In Figure 33, the changing price of a day unit of electricity over the twenty-two month period can 

be seen. The price increases over the winter months of November to February, and drops again 

between March and October. This pattern is not guaranteed however and could change at any 

time. The price varied between €0.1354 and €0.1669 per kWh (excluding VAT). 

 

Figure 33: Cost per Day-Unit 
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Figure 34: Day Unit Charge 

In Figure 34, the actual cost of the day units for each two month period is graphed. It can be seen 

that the charge does not directly follow the consumption due to the unit price fluctuation. This is 

illustrated below in Figure 35, the column on the left is the percentage of day unit consumption 

which that bill is responsible for (out of the eleven previous bills), while the column on the right 

is the percentage of day unit cost which that bill is responsible for.  

 

Figure 35: Percentage of consumption and cost 
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5.2.2 Night Units 

In Figure 36: Cost of Night Units, it can be seen that the cost of night units did not change a lot 

in the twenty-two month period, from 7.27c to 7.83c/kWh (a 7.7% increase). 

 

Figure 36: Cost of Night Units 

Figure 37: Charge for Night Units shows that the night unit charge is usually fairly consistent 

varying between €864 and €1005.  
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Figure 37: Charge for Night Units 

5.2.3 Service Capacity Charge and Public Service Organisation Levy (PSO Levy) 

Figure 38: MIC and PSO Levy cost per unit shows the changing cost per unit for both MIC and 

PSO charges. Both values are multiplied by the agreed 60 kVA to calculate the charge. Any 

reduction in MIC would reduce both charges. 
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Figure 38: MIC and PSO Levy cost per unit 

5.2.4 Standing Charge 

The standing charge represents 5.9% of the total bill. It is not based on consumption, but it is 
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of the total electricity bill (€1,013 over twenty-two months) and therefore, peak reduction 

techniques won’t offer large savings. 

 

Figure 39: Max demand cost per kW 

 

Figure 40: Recorded Max Demand 
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5.2.6 Low Power Factor Surcharge 

The low power factor surcharge over the twenty-two month period totalled €569 (0.9% of the 

total).  Capacitors were installed one quarter of the way into the December’s billing period as 

part of the project. Figure 41 shows the kVArh from each billing period. 

 

Figure 41: kVArh 

From October 2012, the cost per kVArh has increased from 0.8c to 1c per kVArh (a 
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6.5 Power Factor Correction.  

 

Figure 42: Low Power Factor Costs 
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The electricity tax is the smallest of the component parts of the electricity bill at 0.3% (€209 over 

the twenty-two month period).  The electricity tax is a charge of 0.05c/kWh regardless of 

whether they are day or night units. If general consumption is reduced, the electricity tax will 

reduce also. 

5.2.8 Summary 

Day units are by far the largest cost on the electrical bill at 68.9% of the total. Figure 43 gives a 

breakdown of each component of the electrical bill. 
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Figure 43: Electrical bill - 12 month breakdown 

5.3 Gas 

A breakdown of the five sections of the bill is shown below Figure 44. All values are 

excluding VAT.  

 

Figure 44: Breakdown of annual gas bill 
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As the gas rate, carbon tax, transportation charge and shrinkage charge are all based on kWh of 

gas used, a reduction in consumption will reduce all four charges in proportion.  If there is a 

sustained reduction year round, the site capacity charge will reduce on the following October.  
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6. Discussion of methods to reduce energy use and costs 

6.1 Heat Recovery 

With over €65k annually used to heat the building and pool, and no heat recovery being used, 

this is the largest area for potential savings. There are a few methods for heat recovery but the 

two best options will be considered here: run around coils and cross flow heat exchanger. The 

following calculation shows the financial savings based on a one degree rise in air temperature, 

regardless of heat recovery method. 

Information for calculation: 

 Main AHU volume flow = 6.5 m
3
/sec 

 Density of air = 1.2 kg/m
3
 

 Average weekly AHU operation = 110 hours 

 Gas unit cost (total for gas charge, transportation, shrinkage, carbon tax and VAT) = 3.5 

c/kWh 

 Specific heat capacity of air = 1.02 kJ/kg.K 

 Boiler efficiency = 80% 

Annual financial saving for every one degree increase in air temperature 

 Mass flow of air =     
  

   
     

  

              

 Load reduction =     
  

   
      

  

    
            

 Load reduction (input to boiler) = 
    

   
         

 Annual load reduction =                                         

 Financial saving =                           

It can be seen above that for every one degree increase in air temperature from heat recovery, an 

annual saving of €1,992 is possible.  
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There are a few points worth noting here:  

1. As the hot water flow to the main AHU (circuit no.3) is controlled manually, using a heat 

recovery method will only realise savings if the circuit is regulated appropriately. Ideally, 

as part of any heat recovery strategy, there should be a thermostat and humidity sensor 

installed in the pool area which controls the hot water flow in circuit no.3. As a 3-port 

bypass valve exists on this circuit, re-commissioning this would not only get the most 

from heat recovery but would increase efficiency in its own right, as the current manual 

method allows for frequent overheating. 

2. This calculation is based on current gas prices and flow rates. If a VSD is installed on the 

AHU fan, the values will change. 

3. There are other factors to consider such as extra costs to run pumps/fans etc. 

4. Air currently escapes through many openings in the building. This should be reduced as 

much as possible to capitalise on savings.  

In order to calculate the potential savings from both heat recovery methods, actual performance 

data was used as opposed to theoretical values. RPS Engineering Services provided performance 

certificates for an installed run-around coil system and an installed cross-flow (plate) heat 

exchanger. The performance certificates can be seen in Appendix D. 
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6.1.1 Cross flow heat exchanger 

This type of system has never been used in this building. It would require the installation of 

ductwork from an extract point(s) to the main AHU intake point.  The four existing disused 

extracts would be the obvious choice.  

Air temperatures from the performance certificates are given for two outdoor air temperatures, -

5°C and 0°C. 

    Sample 1 Sample 2 

Exhaust air  (°C) 23 23 

Supply air (into unit)   (°C) -5 0 

Supply air (leaving unit) (°C) 12.6 14 

Supply air temp. Increase (°C) 17.6 14 

Max. Possible temp. Increase (°C) 28 23 

Efficiency (%) 62.9 60.9 

Table 7: Plate heat exchanger- performance data 

Efficiency decreases as external air temperature increases. In this case, efficiency has decreased 

by 2% with a 5°C increase in external air temperature. That averages out at 0.4% decrease per 

°C. This value shall be used to estimate efficiency at other external temperatures, although this 

method is not exact, it should yield reasonably accurate results.  

 

The following example explains the calculations in Table 8 

If the external temperature is 5°C, then the heat exchanger’s efficiency has dropped to 58.9%. 

The internal temperature is always kept at 30°C. Therefore, the maximum temperature rise 

possible is 25°C. The actual temperature increase is (25°C * 0.589) 14.7°C. This brings the air 

temperature to (5°C + 14.7°C) 19.7°C before it enters the AHU heating coil. 
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External  Percentage  Internal  Maximum  Supply air Air temp. 

temperature efficiency temperature 

temp 

increase 

temp. 

increase 

to heating 

coil 

(°C) (%) (°C) (°C) (°C) (°C) 

-5 62.9 30 35 22.0 17.0 

-4 62.5 30 34 21.3 17.3 

-3 62.1 30 33 20.5 17.5 

-2 61.7 30 32 19.7 17.7 

-1 61.3 30 31 19.0 18.0 

0 60.9 30 30 18.3 18.3 

1 60.5 30 29 17.5 18.5 

2 60.1 30 28 16.8 18.8 

3 59.7 30 27 16.1 19.1 

4 59.3 30 26 15.4 19.4 

5 58.9 30 25 14.7 19.7 

6 58.5 30 24 14.0 20.0 

7 58.1 30 23 13.4 20.4 

8 57.7 30 22 12.7 20.7 

9 57.3 30 21 12.0 21.0 

10 56.9 30 20 11.4 21.4 

11 56.5 30 19 10.7 21.7 

12 56.1 30 18 10.1 22.1 

13 55.7 30 17 9.5 22.5 

14 55.3 30 16 8.8 22.8 

15 54.9 30 15 8.2 23.2 

16 54.5 30 14 7.6 23.6 

17 54.1 30 13 7.0 24.0 

18 53.7 30 12 6.4 24.4 

19 53.3 30 11 5.9 24.9 

20 52.9 30 10 5.3 25.3 

Table 8: Plate heat exchanger- calculated performance 

To try to put a financial value on the savings is difficult as the weather fluctuates, however, a 

rough estimate can be found if it assumed that the external temperature varies between 0°C and 

20°C throughout the year. The average supply air temperature increase for these external 

temperatures is 11.52°C. (The average of the underlined values) 
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It was shown in the previous section that an annual financial saving of €1,992 could be expected 

for every one degree increase in supply air temperature to the AHU. The annual saving therefore 

is (11.52°C * €1,992) €22,948 

Another issue to be considered is the pressure drop created by the plate heat exchanger and 

additional duct work. A new fan may be required to help draw the air out of the new extract duct.  

 

6.1.2 Run around Coils 

Run around coils were used previously in this building. There are four extract points above the 

pool where the air passed through air to water heat exchangers. The water was pumped through 

pipe-work to a pre-heat coil in the main AHU. This raised the air temperature before it reached 

the heating coil and therefore reducing the heating load. The old pipe-work, pump and heat 

exchangers are still in place but in poor condition and would need to be replaced.  

Data on air temperatures from the run-around coil performance certificate are summarised 

below. 

    

Sample 

1 

Sample 

2 

Exhaust air  (°C) 23 23 

Supply air (into unit)   (°C) -5 0 

Supply air (leaving unit) (°C) 7.1 9.9 

Supply air temp. Increase (°C) 12.1 9.9 

Max. Possible temp. Increase (°C) 28 23 

Efficiency (%) 43.2 43.0 

Table 9: Run-around coils- performance data 
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The performance of the run around coils is far inferior to the plate heat exchanger. The run 

around coil system also requires a pump to circulate the heat transfer fluid while will have a 

reasonably large electrical load.  

6.1.3 Conclusion 

Cross flow (plate) heat exchangers offer the best solution for heat recovery in this building. 

Installation will require new duck-work from the old extract points above the swimming pool, to 

the air intake point for the main AHU. There is ample space to locate the heat exchanger on the 

flat roof. For optimum performance, the recomissioning of the 3-port valve for the AHU heating 

circuit is recommended. The 3-port valve should be controlled automatically using temperature 

and humidity sensors in the pool area.  

6.1.3.1 Payback Period 

An estimate of costs for supply and fit of all duct work, heat exchanger and control gear was 

given by RPS Engineering Services as €50,000. This is only a rough estimate as the proposed 

system was described during a phone conversation and RPS Engineering Services did not 

conduct a site visit. 

An annual saving of €22,948 was calculated, however, this shall be reduced to €20,000 to allow 

for heat losses in ducts and other inefficiencies.  

A simple payback period of 2.5 years is expected.  

6.1.3.2 CO2 Reduction 

Reduction in kWh gas consumption = 
       

      
             

CO2 reduction = 655,657 kWh * 0.2047 kgCO2/kWh = 134,213 kgCO2 per annum 
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CO2 Emission factors for gas and grid electricity are taken from SEAI. (SEAI, 2011) 

http://www.seai.ie/Publications/Statistics_Publications/Emission_Factors/ 

6.2 Heat Generation 

6.2.1 High Efficiency Boilers 

The existing boilers are in the region of 80% efficient. Replacing the existing boilers with two 

new high-efficiency natural gas fired modulating condensing boilers selected to operate at 

80/60°C flow/return temperatures would give an annual efficiency of approximately 95%. 

The previous twelve month’s gas consumption was 1,271,948 kWh. That gives an output of 

                           . If the boiler’s efficiency was 95%, the consumption would 

have been = 
         

    
               

A reduction of 200,834 kWh, at a value of €7,029 

6.2.1.1 Payback Period 

Replacing the boilers is an expensive solution. A quote of €40,000 was supplied by RPS 

Engineering Services. This gives a simple payback period of 5.7 years. A better option would be 

to leave the current boilers in place, but replace with high efficiency boilers when they need to be 

replaced. 

6.2.1.2 CO2 Reduction 

CO2 reduction = 200,834 kWh * 0.2047 kgCO2/kWh = 41,111 kgCO2 per annum 

 

http://www.seai.ie/Publications/Statistics_Publications/Emission_Factors/
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6.2.2 CHP 

6.2.2.1 Introduction 

In section 4.8 Daily Gas Profile, it was shown that in June, the gas consumption averaged 135 

kW from 5 am to 11 pm. Assuming the boilers are 80% efficient, this gives a heat output of 108 

kW. As this is a summertime load, it can be considered the base heating load. A common method 

used to size CHP plant is to select the CHP to match the base load, therefore it can be used on 

full load year round and the existing boilers can be brought in when the required load exceeds 

the CHP’s maximum output.  

The running hours of the CHP will be 8 am to 11 pm Monday-Friday, 8 am – 6 pm Saturday and 

8 am to 4 pm Sunday. These times were selected to match the measured loads in the building, the 

8 am start is to coincide with the start of day-time electricity units. 

The CHP plant selected for the feasibility study is the ENER-G 70 which has a heat output of 

109 kW, an electrical output of 70 kW and a fuel input (HHV) of 226 kW. The CHP data sheet 

can be seen in Appendix E. 

 Annual hours of operation = [(15*5) + 10 + 8]*52 = 4,836 hours 

 Cost per unit of gas (gas rate + carbon tax + shrinkage + transportation) = €0.0355 

 Average annual electricity day unit = €0.1524 

 Average annual electricity night unit = €0.078 
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6.2.2.2 Electrical Savings 

Day Units 

During operation, the CHP will supply the entire electrical load. On Saturday and Sunday, after 

the early shutdown, the electrical load is 20 kW (see Figure 16: Daily kW profile). The only day 

units purchased from the gird will be at the weekend with an annual value of          

                                  

                          

Night Units 

There will be no change to night units as the CHP will not be on during night time hours. The 

last twelve months saw 70,220 kWh consumed at night at a cost of €5,481. 

Electricity Tax 

The electricity tax will reduce as fewer units are purchased. Day units purchased = 12,480 kWh, 

night units = 70,220 kWh, therefore the total units = 82,700 kWh. 

Electricity tax = 82,700 kWh * €0.0005 = €41.35 

MIC & PSO Levy 

The maximum demand should reduce to 20 kW. The MIC could be reduced to 25 kW. 

The annual MIC charge = 25 kW * €5.03 * 6 bills = €754.50 

The annual PSO Levy = 25 kW * €1.98 * 6 bills = €297 

Low Power Factor & Standing Charge 
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No change 

Maximum Demand 

Annual MD Charge = 20 kW * €5.55 * 2 bills = €222 

Table 10 shows the breakdown of the electrical bill with and without the CHP installed. The 

values on the “without CHP” column are taken from the previous 12 months bills. 

 

Charge Without 

CHP 

Charge With 

CHP 

 

€ € 

Day units 23961 1901 

Night Units 5481 5481 

Electricity Tax 114 41.35 

MIC 1785 754.5 

PSO Levy 662 297 

Low PF 225 225 

Standing charge 2054 2054 

Max Demand 508 222 

Total ex. VAT 34790 10975.85 

Total inc. VAT 39487 12458 

 

    

 

Annual Saving =  27029 

Table 10: CHP - Annual electrical savings 

6.2.2.3 Thermal Savings 

The CHP plant has a heat output of 109 kW. For the boilers to produce this heat, they would 

have to consume 
      

   
           of gas (taking the efficiency of the boilers as 80%). 

The CHP plant therefore will offset the gas consumed by the boilers by (4,836 hours * 136.25 

hours) 658,905 kWh. The value of the offset gas is 658,905 kWh * €0.0355 = €23,391 

When VAT is added, the total is €26,549 
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6.2.2.4 CHP Gas Cost 

The CHP plant consumes 226 kW of gas. Annual consumption is therefore 226 kW * 4,836 

hours = 1,092,936 kWh. 

Gas for the CHP costs 1,092,936 kWh * €0.0355 = €38,799 

When VAT is added, the total is €44,037 

6.2.2.5 Maintenance Cost 

A maintenance charge is levied per kWh of electricity generated. This covers all maintenance 

and also provides a service where the CHP plant is monitored remotely by an onboard computer 

which helps predict breakdowns. The charge is €0.013/kWh. 

Although the CHP is capable of generating 70 kW, the data logger shows that 50 kW is a more 

realistic value. Maintenance charge = 50 kW * 4,836 hours * €0.013 = €3,143  

6.2.2.6 Financial Summary 

 Electrical savings  €27,029 

 Thermal savings  €26,549 

 CHP gas cost  €44,037 

 Maintenance   €3,143 

This gives an annual saving of €6,398 

6.2.2.7 Payback Period 

CHP unit    €100,000 

Installation   €30,000 

Annual Saving   €6,398 
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Simple Payback Period 
       

    
            

With such a long payback period, a discounted cash flow would have to be used which will push 

the increase the payback period. This project is deemed unfeasible. 

6.2.2.8 CO2 Reduction 

Using the CHP, electrical day-units reduce from 158,180 kWh to 12,480 kWh. A reduction of 

145,700 kWh. Gas consumption will increase by (1,092,936 kWh - 658,905 kWh) 434,031 kWh. 

CO2 reduction = (145,700 kWh * 0.4886 kgCO2/kWh) - (434,031 kWh * 0.2047 kgCO2/kWh) = 

-17,657 kgCO2 per annum 

This value suggests that the CO2 emissions will actually increase.  

6.2.2.9 Conclusion 

The annual saving is disappointing and would take over twenty years to payback as installation 

alone costs approximately €30,000. One reason for the poor payback is because, if the electrical 

output is lower than maximum electrical output, then the CHP will consume less than the stated 

226 kW of gas. This lower value of gas consumption is not known and cannot be worked into the 

equation, leaving the cost of the gas consumed by the CHP in the equation, higher than the actual 

cost. This may also explain the calculated increase in carbon emissions. 

For the installation of a CHP to be financially successful, there must be a large shift from 

electrical consumption to gas. As the electrical consumption of the building is relatively low, this 

shift is limited and the financial savings are therefore limited too.  
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6.3 Sauna 

The sauna is rated at 5 kW and has an annual consumption of 22,935 kWh (see section 4.5.3 

Sauna). 5% of its consumption is night units while 95% are the more expensive day units.  

The average cost over the last twelve months for day and night unit is 15.24c/kWh and 7.8c/kWh 

respectively. The annual running cost of the sauna is calculated below as €3,870. 

    

 
Units Cost/Unit Cost 

 
kWh € € 

Day units 21788.25 0.1524 3320.53 

Night Units 1146.75 0.078 89.45 

   
3409.98 

    Total Including VAT 

 

€3870.32 

Table 11: Sauna running costs 

The manual nature of the switching results in the sauna being left on while not in use and needs 

to be addressed. If there was a building management system (BMS), linking the sauna to a timer 

would be an ideal solution. As there is no BMS, it was decided to replicate the automatic 

switching using a contactor and a domestic heating timer. The three-phase cable supplying the 

sauna was connected through the contactor and the contactor is controlled by the timer. 

Following a discussion with the building manager, the following switching times were agreed to 

coincide with usage. 
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Sauna Times 

Mon 07:00-15:30 17:30-21:00   

Tue 07:00-11:30 16:00-20:00   

Wed 07:00-11:30 13:00-15:30 18:30-21:00 

Thu 07:00-11:30 16:00-20:00   

Fri 07:00-11:30 13:00-15:30 17:30-21:00 

Sat 09:00-14:30     

Sun 10:00-14:30     

Table 12: Sauna switching times 

This time-table has 5 hours on the night rate and 54 hours on the day rate. With this time table, 

the annual running costs are reduced to €2,544. The contactor and timer cost a total of €70. That 

gives a payback period of less than one month and an annual saving of €1,327. 

 

Hours Rating Units Cost/Unit Cost 

  

kW kWh € € 

Day Units 54 5 270 0.1524 41.148 

Night Units 5 5 25 0.078 1.95 

     

43.10 

  

Total Weekly Cost Including VAT 48.92 

  

Total Annual Cost Including VAT 2543.64 

Table 13: Sauna - New running costs 

 

 

Figure 45: Sauna timer circuit 

The sauna is supplied from a three-phase MCB in a small board attached to sub-board 1. Figure 

45 shows the board before and after the contactor and timer were fitted (shown with arrows). 
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Also visible is the energy monitor used to monitor the circuit. Figure 46 shows two screen shots 

from the energy monitor’s software. On the left is the consumption for Monday 5
th

 November 

and on the right is Monday 10
th

 December. It can be seen that the consumption for one phase has 

dropped from 26.8 kWh to 19.45 kWh. This equates to a 22 kWh reduction for the sauna for one 

day.  

 

Figure 46: Sauna – before and after timer 

Although this simple control method was considered a success, there were some problems 

encountered. Occasionally staff wanted the sauna turned on at a time outside of the agreed hours. 

This was possible by either pressing the boost button or by switching to 24 hour on mode. 

Problems arose because too many different people were interfering with the controls and 

sometimes leaving it on all night. As the concept of the timer was an experiment to replicate a 

BMS, this problem would be solved with the use of a BMS as the controls are not available to all 

staff.   

6.3.1 CO2 Reduction 

Day units have dropped from 419 kWh/week to 270 kWh/week. This equates to a reduction of 

7,748 kWh per annum.  

CO2 reduction = 7,748 kWh * 0.4886 kgCO2/kWh = 3,785 kgCO2/annum 
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6.4 AHU 

The main AHU’s fan is fixed speed and has an annual consumption of 31,460 kWh. It is 

manually turned off at night and back on at 5 am. The fan runs at a constant speed regardless of 

the pool air temperature or humidity. It is proposed that the fan motor should be fitted with a 

variable speed drive (VSD) linked to a temperature/humidity sensor in the pool area. This 

arrangement will slow the fan down when pre-set conditions have been met and speed the fan up 

when more air is required. As part of the project, an old ABB VSD was borrowed and the supply 

cables for the AHU were wired through it. 

 

Figure 47: VSD installation 

Figure 47  shows the VSD fixed to the wall to the left of the plant room sub-board. The data 

logger can be seen sitting on top of the sub-board with its three leads going into the board to 

monitor the AHU’s consumption. Sitting on top of the VSD is a single phase energy meter which 

is monitoring one phase of the AHU.  
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For the experiment, the speed of the fan was reduced by 0.5 Hz (1%) each day and the pool air 

temperature and humidity were monitored. It was found that the frequency could go as low as 26 

Hz and thermal comfort conditions were met.  

However, on certain days when the external temperature was dropped, the fan would have to be 

turned up to maintain internal conditions. The outside air temperature was in the region of 6-

10°C for most of the time during the experiment (February). 

Using the data logger, the power consumption at every frequency from 50 Hz to 25 Hz was 

determined. Figure 48 shows how the fan’s load decraeses as its speed decreases. The largest 

decrease in load per 1 Hz frequency reduction happens when the frequency changes from 50 Hz 

to 49 Hz. Each further 1 Hz frequency reduction reduces the load slightly less each time. 

 

Figure 48: AHU power vs. Frequency 
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The formula for calculating the power at any given frequency is; 

    
  

 
  

  
 
     

Where,  P1 = power consumed at full speed (kW)  

  P2 = power consumed at reduced speed (kW) 

  F1 = frequency at full speed (Hz) 

F2 = frequency at reduced speed (Hz) 

Using the above formula, the theoretical power consumption for each frequency from 50 Hz to 

25 Hz was calculated and compared to the actual measured values. The result is shown in Figure 

49. It can be seen that the actual consumption is lower than that calculated in the formula. The 

difference however is small and both follow the same slope. 

 

Figure 49: Actual vs. calculated consumption 
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The AHU is on for 110 hours per week, split between 21 night-time hours and 89 day-time 

hours. Average unit costs are 15.24 c/kWh and 7.8 c/kWh for day and night units respectively. 

Annual day units cost                                        , and annual 

night units cost                                      . 

The total running cost including 13.5% VAT is                                    . 

The same calculation was carried out for the reduced power consumption for every frequency 

from 50 Hz to 25 Hz. For example, at 40 Hz, the AHU load is 3.15 kW which gives an annual 

running cost of €2,826 (a saving of €2,180). 

Simple payback periods were then calculated against a capital cost of €1,250 for a new correctly 

sized VSD. For a one year payback, 45 Hz is required, for a six month payback, 40 Hz is 

required.  

 

Figure 50: AHU payback period 
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6.4.1 CO2 Reduction 

At 40 Hz, the power reduces from 5.58 kW to 3.15 kW, a reduction of 2.43 kW. This gives an 

annual reduction of                               13,899.6 kWh. 

CO2 reduction = 13,899 kWh * 0.4886 kgCO2/kWh = 6,791 kgCO2/annum 

6.4.2 Conclusion 

The installation of a VSD proves to be a very attractive option. At 40 Hz, a six month payback is 

possible, and it was shown during experiments that no thermal discomfort is experienced at this 

speed. It should also be noted that if the air speed in the AHU is reduced, then the rate of heat 

extraction from the hot water circuit will reduce, which will have a thermal saving.  
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6.5 Power Factor Correction 

There are two main ways in which capacitors can be used for power factor correction. The first is 

to connect all the capacitance required at the main board. This requires a unit with an on board 

computer to constantly monitor the power factor and to switch capacitors in/out of circuit to 

match the given load. Although this is the easier of the two methods, the units are very expensive 

and the payback can run into years. The second method involves identifying the individual loads 

which are causing the problem and 

connecting correctly sized capacitors 

to each. Although this method takes 

more time, it is far cheaper and was 

performed as part this project. Figure 

51 shows the data logger connected to 

one of the two filter motor pumps.  

As discussed in section 4.5.1 Filter 

Pumps, each filter pump motor 

consumes 3.5 kVAr and is on 24 hours/day, and if the two motors had their power factor 

corrected to unity, the low power factor surcharge should be eliminated.  

Three-phase delta connected capacitors can be purchased rated by their kVAr. As 3.5 kVAr 

capacitors are not available, it was decided to use a 5 kVAr and a 2.5 kVAr to give a total of 7.5 

kVAr. 

Figure 51: Monitoring the filter motor pumps 
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The capacitors were wired with three 2.5mm
2
 cables and connected in parallel with the motors 

on the load side of the relevant contactors. By doing this, the capacitors are only connected when 

the motor on which prevents over correction.  

  

Figure 52: Capacitor connection 

Figure 52: Capacitor connection shows two photographs. On the left is the plant room sub-board 

before the capacitors were connected. The arrow points to the two contactors which control the 

filter pump motors. The arrow in the photograph on the right shows the two capacitors.  
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Figure 53: Before and after power factor correction 

Figure 53 shows the kW (red) and kVAr (yellow) readings on the plant room sub-board for 24 

hour periods before (left) and after (right) the capacitors were installed. The on/off times are 

irrelevant; the values while on and off are important. The kW values haven’t changed; 13.5 kW 

at night and 19 kW during the day in both cases. The kVAr value however has dropped from 15 

kVAr to 10 kVAr (daytime) and from 10 kVAr to 5 kVAr (night-time).  

The 5 kVAr drop is less than the 7.5 kVAr installed so the low power factor surcharge will not 

be eliminated; only reduced. Figure 54 shows the number of kVArh units above the allowed 

quota on each two-month bill.  
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Figure 54: kVAr penalties 

The capacitors were installed one quarter of the way into the December billing period. The 

average value of the seven bills before the capacitors were installed is 8766 kVArh. That gives 

an average instantaneous value of
          

                
          . 

The 5 kVAr reduction is 24hours/day; therefore, the new average instantaneous value should be 

1.09 kVAr. This gives a bi-monthly value of                            

          . 

This calculation does correspond to the values appearing on bills since installation. It is believed 

that the value of zero kVArh on the April bill was an error and that the value of 2433 kVArh on 

the June bill covers to two billing periods. 
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Billed 

units Avg. Reduction Charge Saving 

  kVArh kVArh kVArh €/kVArh € 

Dec-12 3127 8765 5638 0.009875 55.68 

Feb-13 1347 8765 7418 0.009875 73.25 

Apr-13 0 8765 8765 0.009875 86.55 

Jun-13 2433 8765 6332 0.009875 62.53 

     
278.01 

      

   
Total Saving Inc. VAT €315.54 

 

The capacitors cost €50 and have generated a saving of €315.54 in the 7.5 months since 

installation. This gives a payback period of just over one month and an annual saving of over 

approximately €500. 
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6.6 Energy Management Policy 

There is currently no specific energy management policy in the Tallaght Sports Complex. A 

clearly defined policy which involves and informs all staff of energy consumption and costs will 

generate savings. The value of the possible savings can’t be calculated but anywhere from 5-10% 

could be possible. The final details of the energy management policy would have to be 

determined by the building manager as he knows his staff and their work culture best, but the 

main aspects of the policy should include the following recommendations.  

 Appoint an Energy Manager 

o The current maintenance engineer should have the role of energy manager added 

to his title. This could involve one hour of every working day dedicated to energy 

management. 

o Responsibilities would include 

 setting up, updating and monitoring energy performance indicators for all 

large energy consuming plant. An energy performance indicator for gas 

consumption was constructed in section 4.7 Monthly Regression Analysis. 

Maximum and minimum limits should be agreed. If the consumption falls 

above or below these limits, then the Energy Manager is required to 

investigate as to why this happened. 

 monitoring energy consumption monthly and collating and presenting 

figures  

 publicising consumption figures among staff 

 raising staff awareness and motivation 

 seeking ideas and suggestions from staff and presenting them to the 

building’s management team for discussion 

 providing feedback to staff on the responses to their suggestions 

 spearheading energy saving initiatives  



Colin Conway Page 121 
 

 Annually checking rates with other suppliers 

 Make staff energy awareness and motivation a priority 

o Communicate with staff the costs of energy on site 

o Have quarterly meetings showing any progress and any on-going projects 

o Explain how each staff member can make a difference and seek suggestions  

o Explain that energy efficiency is everyone’s responsibility 

 Set up Sub-metering 

o Sub-metering on each of the two sub-boards can help to identify when 

consumption rises above normal which helps to rectify any problems quickly. 

  



Colin Conway Page 122 
 

6.7 Supplier and Tariff  

Several suppliers (Vayu, Bord Gais, Electric Ireland and Energia) were contacted to see if a 

cheaper tariff was available. Using the previous twelve month’s consumption as a template, all 

tariffs were compared. The cheapest was the current supplier, however, a saving can be made by 

switching to a 12 or 24 month contract. By doing so, the day units are cheaper but the night units 

are more expensive. All other charges remain constant. The results are summarised below. 

Energia Quote 

   variable kWh c/kWh cost 

Summer day 

units 103540 0.1458 15096 

Winter day 

units 53540 0.1696 9080 

night units 70220 0.0783 5498 

  

 

total plus VAT 33681 

    saving 0 

12 Month kWh c/kWh cost 

Summer day 

units 103540 0.1428 14786 

Winter day 

units 53540 0.1486 7956 

night units 70220 0.0855 6004 

  

 

total plus VAT 32626 

    saving 1055 

24 Month kWh c/kWh cost 

Summer day 

units 103540 0.1425 14754 

Winter day 

units 53540 0.1482 7935 

night units 70220 0.0851 5976 

  

 

total plus VAT 32535 

    saving 1146 
Table 14: Energia quote 

Vayu’s quote can be seen in Appendix F. 



Colin Conway Page 123 
 

6.8 Summary of Results 

Table 15 shows a summary of results from chapter 6. It should be noted that these values are not 

cumulative, for example, if a cross flow heat exchanger and new high efficiency boilers were 

installed, the total savings would not be equal to the two individual savings combined. 

  

Annual 

Saving 

Simple Payback 

Period 

Energy 

Source Reduction CO2/kWh 

CO2 

Reduction 

  € Years Type kWh kg kg 

Cross flow heat exchanger 20,000 2.5 Gas  655,657 0.2047 134,213 

High efficiency boilers 7,029 5.7 Gas  200,834 0.2047 41,111 

CHP 6,398 20.3 See section 6.2 -17,657 

Sauna automatic switching 1,327 0.05 Elec. 7,748 0.4886 3785 

VSD on AHU's fan (40 Hz) 2,180 0.5 Elec. 13,899 0.4886 6,791 

Power factor correction  500 0.1 N/A N/A N/A N/A 

Change to 12 month 

contract 1,055 N/A N/A N/A N/A N/A 

Change to 24 month 

contract 1,146 N/A N/A N/A N/A N/A 

Table 15: Summary of results 
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7. Conclusion 

The investigation into the consumption of energy at the Tallaght Sports Complex has revealed 

that the electrical consumption is in line with that expected from this type and size of building. 

The gas consumption, however, is well above that expected for good practice. (See section 3.2 

Benchmarking). 

The main cause of inefficiency is that there is no heat recovery system in place which means that 

a large volume of air at 30°C and 60% humidity is being expelled from the building for 110 

hours per week. This problem is compounded by the main AHU's fan which has been shown to 

supply air at a rate well above that required. Furthermore, air can easily escape from above the 

pool area through the four disused extract AHUs.  

The proposed remedy for this situation is to install duct-work from the old extract AHUs to bring 

the air to the supply point of the main AHU. At this point, a cross flow heat exchanger should be 

installed to preheat the supply air. A VSD should also be fitted to the AHU's fan along with 

automated controls which respond to pool air temperature and humidity. These two features 

alone should pay back in under three years and reduce energy costs by approx 20%. 

No action needs to be taken with the current boilers, but when they fail, they should be replaced 

with high-efficiency condensing boilers. At that point, the flow and return temperatures should 

be reduced to maximise efficiency. 

A BMS would be advantageous. It can provide automatic switching to many various loads. It 

was shown in section 6.3 Sauna, that automatic switching is far more efficient than manual. 
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Lastly, an energy management policy should be put in place. This would give responsibility for 

various energy management tasks to specific people. A good energy management policy, when 

implemented with commitment, has been proven to keep consumption from creeping back up 

after initial gains. 
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Appendices  

Appendix A – Management of the Project 

Appendix A1 – Original Project Proposal 

Introduction  

 The subject of the project and thesis is the Tallaght Sports Complex, located in Tallaght, 

a suburb in South/West Dublin, Ireland. This building has an annual spend of over €90,000 

between natural gas and electricity. The building is over 40 years old and has had no major 

refurbishment in that time. Financial difficulties have been a major concern in recent years and 

management were forced to reduce the number of staff from 42 to 15, automatic controls have 

failed and not been replaced or upgraded and increasing energy costs are mounting pressure on 

the complex. 

 The sports complex has a swimming pool, sauna, weights room/gym, aerobic room, 

wellness centre, large multipurpose hall and a number of changing rooms and offices.  

Background to the Project 

 The author selected this building as it is over 40 years old and as it has a swimming pool; 

it is likely to have large energy consumption. Being old, the building is more likely to be 

operating inefficiently, improving the potential to find areas for improvement. The author 

approached the manager of the Tallaght Sports Complex asking for unrestricted access to the 

building, in return, the author would present all findings to the manager for consideration. After a 

meeting, the manager gave his approval and said he hoped that some real savings would 
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materialise from the research. He also indicated that funds to carry out any proposed projects 

were at a minimum and therefore no-cost and low-cost options were the most viable.  

Aims and Broad Objectives 

The main aim of the project is to perform an in-depth energy audit of the premises to identify 

where, when and why energy is being used, how it is controlled and to identify possible 

improvements to reduce consumption/costs.  

Objectives 

 Gather all relevant data for energy audit 

 Carry out a literature survey to support background knowledge in this area. 

 Carry out some of the recommendations to check how the theory compares to 

reality. 

 Access the current energy management strategy and energy awareness amongst 

staff. 

 Set up a new energy management strategy 

Methods to be Adopted 

Consumption on main electrical boards will be monitored using a Hawk 5000 data logger.  

Consumption of individual circuits will be monitored using Efergy energy monitors.  

Temperature/humidity sensors will be used to access thermal comfort within the various spaces.  

A lux meter will be used to determine artificial and natural lighting levels.  

Past utility bills will be used for historical data. 
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A questionnaire shall be used to access awareness/motivation levels of staff in relation to energy.  

Time-Plan with specific dates for submission of future forms 

A Gantt chart outlining the estimated time to completion with critical submission dates is 

attached. 

Deliverables or Specific Outcomes 

 Identification of trends in energy consumption 

 Identification of significant energy users 

 Identification of control systems 

 Identify areas of waste 

 Propose list of recommendations ranging from no-cost to high-cost 

 Carry out some of the recommendations and compare before and after energy 

consumption and monitor other relevant parameters 

 Presentation of analysed data in a concise manner 

Appendix A2 – Original and Final Gantt chart 

 

Figure 55: Original Gantt chart 
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Figure 56: Final Gantt chart 

 

Appendix A3 – Review of Project Management 

When comparing the two Gantt charts, it is obvious that I was over ambitious with respect to the 

finish date for the project. I got started in early September 2012 by making contact with the 

sports centre’s manager and convincing him to agree to allow me access to the building. There 

were some initial delays as I had no insurance, either through Brunel or my employer. In the end 

I signed a disclaimer and I was able to begin.  

I borrowed a 3-phase data logger from a technician in Dublin Institute of Technology. I had 

some difficulty in using it as there is a number of settings required when configuring the data 

logger before connecting it. On my first connection, after one week, I downloaded the recorded 

data but all values were zero. I figured out that I should have set the current amplification factor 
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to 1000 and set the voltage factor to 1. Although a week was wasted, I learned how to use the 

equipment correctly eventually and I used it on the three main boards and on various loads. 

Physically connecting the data logger's clips proved difficult at points as the clips are quite large. 

On the main board, I had to open trunking and pull the main cables out slightly. Another problem 

was the sheer volume of data generated by the logger. Although it was tempting to use every 

graph available, I had to limit the use of data to that which was relevant to the project's 

objectives.  

Historical data from bills proved very useful. In order to access these, I contacted the supplier, 

and after they verified that I had permission from the building manager, I had access to an on-

line account with a limited number of previous bills.  

When I focused my attention on the plant room sub-board, I ran into a problem. None of the 

MCBs or contactors were labelled and no one knew which was which. Not only that, but as the 

board is over forty years old, there was spurious connections, disused circuits and the board was 

in general disarray. I needed to monitor the power going to each load so I had no choice but to 

start working on the board. This took a few visits and many hours work. The manager had also 

informed me of an electrical fault where an MCB would trip when it rained and asked if I could 

fix it. I felt obliged as they had granted me access to their building. This took more time but they 

were delighted when the fault was fixed after being there for a few years and the board is now 

clearly labelled. 

One interesting aspect of the project developed when I realised that there was an issue with low 

power factor. I knew the theory of connecting capacitors but I had never actually done it and no-

one that I spoke to had either. Sourcing the capacitors was an endeavour in itself but after many 
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phone calls I managed to located them. I calculated the micro-farad rating required of each 

capacitor from the kVAr value which I measured on the data logger, as that is what I had been 

thought in class years ago. However, the sales man gave me a funny look and just asked for the 

kVAr rating.  

It was a little disappointing that the installed 7.5 kVAr only reduced the load by 5 kVAr. I 

checked both capacitors and they are both working. If I was to do it again I would over-size the 

capacitance connected. It was very satisfying however, to see the low power factor charge 

reducing on subsequent bills. 

Gathering data on the gas consumption was a lot more difficult as I had no access to any logging 

equipment. The building's gas meter and the gas bills were the only sources and in order to get a 

daily profile, I had to check the meter every hour over a 24 hour period. I completed this task 

with the help of the night security man and some other staff members. Ideally I would have liked 

to do this on a number of days throughout the year but it would have been too much to ask the 

staff.  

I had to determine a cut off point with regard to gathering data on the many connected loads in 

the building. There are many loads not considered in the thesis as they were deemed too small 

and not specific to sports centres/swimming pools. For example, there are five vending machines 

near the front door. I had considered experimenting with these but ultimately decided to leave 

them out. There are also small fridges, computers, printers, general lighting, outdoor lighting, 

general power etc. which all fell into the "too small/not specific to sports centres" category. By 

cutting these items out, it allowed me to focus more on the larger, more relevant loads. 
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From my first visit to the pool area, I guessed that the supply air was excessive. As soon as a 

door onto the pool area was opened slightly, air was forced out at a high speed. I believed that 

the main AHU's fan could be slowed down without a drop in thermal comfort. I wasn't content 

with calculating this, I wanted to prove it. I had considered buying a VSD, but the cost for one 

with the correct kW rating was €1,250. Through pure luck, I mentioned this to a friend who said 

he could get a loan of an old one for me. Connection of the VSD proved that the fan could be 

slowed considerably. The building manager is now considering purchasing their own one. 

The technical aspects of the project went without too many problems and good progress was 

made up to Easter 2013. For a few months after that, other aspects of my life brought the project 

to a halt. I proceeded again in late June. Although I would have loved to continue gathering data, 

at that point I decided to begin writing. As the document progressed, certain questions arose and  

I needed to return for more site visits. This resulted in some parallel work between writing and 

data gathering but it was unavoidable.  

The writing of the thesis was not easy for me. I could connect meters, take readings, generate 

graphs, perform calculations and install equipment all day, but I need to force myself to sit down 

and type. I was also under pressure during this time as my wife gained employment and I 

couldn't concentrate with my two young children constantly attacking me. My parents came to 

the rescue by offering to take them for three hours each weekday. So I had to make the most of 

that time.  
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The original objectives set out in the proposal were largely met.  

 Gather all relevant data for energy audit 

o This was achieved through bill data, data loggers, meters etc (Section 4) 

 Carry out a literature survey to support background knowledge in this area. 

o This was achieved and focuses mainly on Good Practice Guides.  I also read a 

number of papers on solar-thermal collectors for swimming pools but I 

decided to stay away from this and focus on the existing installation. (Section 

2) 

 Carry out some of the recommendations to check how the theory compares to reality. 

o This was achieved in the case of the sauna (section 6.3), the power factor 

correction capacitors (section 6,5) and the installation of the VSD on the main 

AHU (section 6.4).  

o The theory vs. reality was interesting in the cases of the capacitors and the 

VSD. For the capacitors, 7.5 kVAr was installed, but only a 5 kVAr drop 

resulted. For the VSD, Figure 49: Actual vs. calculated consumption, showed 

the difference actual consumption and calculated consumption for each 

frequency from 50 Hz to 25 Hz.  

 Access the current energy management strategy and energy awareness amongst staff. 

o As for the current energy management strategy, there isn't one.  

o With regard to energy awareness among staff, I spoke to staff members in an 

informal way but I didn't carry out a proper survey. This was an omission on 

my part. However, from our conversations, I can tell that the staff have a 

reasonable understanding of energy matters. 
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 Set up a new energy management strategy 

o Section 6.6 Energy Management Policy, lays out some specific points for an 

energy management policy for the Tallaght Sports Complex. I will continue 

working with the complex in the near future to help setting this up as 

requested.   

 

The "Deliverables or Specific Outcomes" section of the proposal had the following points. 

 Identification of trends in energy consumption 

 Identification of significant energy users 

 Identification of control systems 

 Identify areas of waste 

 Propose list of recommendations ranging from no-cost to high-cost 

 Carry out some of the recommendations and compare before and after energy 

consumption and monitor other relevant parameters 

 Presentation of analysed data in a concise manner 

I believe all points have been achieved. 

 

Conclusion 

In retrospect I am reasonably happy with how I managed the project. I got started early and did 

most of my data gathering in the first half of the academic year. The months from March to June 

was probably the busiest of my life because of too many commitments and the project had to be 

put on hold. I got working on it again in late June and stayed consistent from then on. My 
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original time frame was idealistic and did not take the real world into account. If I was to do a 

similar project again, I would start as early as possible and try to from a broad view of the end 

document; chapter headings etc.  

As I type the last few words of my document, I can feel a huge weight beginning to lift and I 

look forward to spending more time with my children again. Thank you for taking the time to 

read.  

Slán agus beannacht, 

Colin Conway. 
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Appendix B – Gas Bills 
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Appendix C – Electrical Bills 
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Appendix D – Performance Certificates 
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Run Around Coils
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Cross Flow Plate Heat Exchanger 
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Appendix E – CHP Data Sheet 
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Appendix F - Vayu Quote 
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