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Use of Raman Spectroscopy in the investigation of debundling of single 
walled carbon nanotubes  

 
E. Gregan2*, S.M. Keogh1,2, T.G. Hedderman2, G. Chambers2, H.J. Byrne1, 

FOCAS Institute1, School of Physics2, Dublin Institute of Technology, Kevin Street, Dublin 8, 
Ireland. 

 
ABSTRACT 

 
Samples of raw nanotubes are compared to those deposited from solutions to examine separation of nanotube bundles. 
Single wall nanotubes bundles produced by the arc-discharge and HiPco methods were solubilised in toluene, DMF and 
1,2 dichloroethane.  Resonant Raman spectroscopy was used to determine if debundling of the tubes sample occurred. 
The results showed some degree of debundling, best for the 1,2 dichloroethane solvent, which also shows long term 
solubility.    
 
Keywords: Carbon Nanotubes, Raman, HiPco, Arc-discharge, Debundling, Solubility  

1. INTRODUCTION 
 

Carbon nanotubes, long, thin cylinders of carbon, were discovered in 1991 by S. Iijima[1]. These are large 
macromolecules that are unique for their size, shape, and remarkable physical properties. These intriguing structures 
have sparked much excitement in the recent years and a large amount of research has been dedicated to their 
understanding.  
 
Carbon nanotubes are graphene sheets of sp2-bonded carbon arranged in a cylindrical formation. Single Walled 
Nanotubes are classified into two primary groups chiral and achiral.  A nanotube is achiral if the mirror image of the 
nanotube has an identical structure to the original one.  There are two types of achiral nanotubes; armchair and zigzag. 
These are formed by bisecting a C60 molecule at the equator and joining the two resulting hemispheres with a cylindrical 
tube one monolayer thick and with the same diameter as the C60. If the C60 molecule is bisected normal to a five-fold 
axis, the armchair nanotube is formed.  If the C60 molecule is bisected normal to a threefold axis, the zigzag nanotube is 
formed.  A chiral nanotube mirror image cannot be superimposed onto the original tube.  
 
Different types of nanotubes can be described by the chiral vector (n, m), where n and m are integers of the vector 
equation. The chiral vector is defined by [2] 

    
Ch = na1 + ma2                           (1) 

 
An ensemble of possible chiral vectors can be specified by above equation in terms of pairs of integers (n,m) and this 
ensemble is shown in figure 1.  
 
The values of n and m determine the chirality, or "twist" of the nanotube. The chirality in turn affects the conductance of 
the nanotube, its density, its lattice structure, and other properties. For all metallic nanotubes, independent of their 
diameter and chirality, it follows that the density of states per unit length, N(Ef) along the nanotube axis is a constant 
given by[2] 
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where a is the lattice constant and |t| is the nearest neighbour carbon to carbon bond tight binding overlap energy. The 
equation shows the electronic 1D density of states per unit cell of a 2D metallic and semi-conducting graphene sheet.  



The density of states for the nanotubes at the Fermi energy, Ef located at Ef =0, is zero for semi-conducting nanotubes, 
and is non-zero for metallic tubes. The energy gap Eg for semi-conducting nanotubes depends on the reciprocal of the 
nanotube diameter dt, which is independent of the chirality angle, and is given by[3] 
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C-C=a/√3 is the nearest neighbour C-C distance on the graphene sheet. Experimental results have shown that one third of 
all nanotubes are conducting and the remaining two thirds are semi-conducting. At the Fermi energy (the highest 
occupied energy level), the density of states is finite for a metallic tube (though very small), and zero for semi-
conducting tubes as mentioned before. As the energy is increased, sharp peaks in the density of states, called Van Hove 
singularities, appear at specified energy levels, see Fig.2. 
 
 

Fig.1 Graphene layer with atoms labelled using (n,m) notation.  Unit vectors of the 2D lattice  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A SWNT is considered metallic if the value n - m is divisible by three. Otherwise, the nanotube is semiconducting. 
Consequently, when tubes are formed with random values of n and m, we would expect that two-thirds of nanotubes 

ould be semi-conducting, while the other third would be metallic, which happens to be the case.  

on nanotube. Given the 
chiral vector (n,m), the diameter of a car nanotub d relationship  

w
 
Each pair of integers (n,m) defines a different way of rolling the graphene sheet to form a carb

bon e can be determine using the 

cca −3 (n + m + nm)  /π2 2 1/2dt =        (4)

here  is the nearest-neighbour C-C distance (bond length)[2]  

5 eV. Wildöer estimated it to be between 2.6 eV - 2.8 eV while at the same time, 
dom[4] estimated it to be 2.45 eV. 

subsequent work showed that the samples were less homogeneous 
an originally thought. The HiPco process, high pressure CO disproportionation, has been shown to produce nanotubes 

Ts had a lattice parameter of 16.52 Å and a density of 1.40 g/cm . The 
ace between the tubes and therefore the binding energy of the bundles is dependent on chirality and the diameter of the 

of tubes were used, one produced by the arc–discharge method and one produced by the HiPco process.  The diameter 
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Currently, the physical properties of SWNT are still being explored and disputed.  What makes it so difficult is that 
nanotubes have a very broad range of electronic, thermal and structural properties that change depending on the different 
kinds of nanotube (defined by its diameter, length and chirality or twist), and this broad range potentially exists in any 
one sample. Nanotubes vary in size, depending on how they are produced (see later) and they aren't always perfectly 
cylindrical. The larger nanotubes, such as a (20, 20) tube, tend to bend under their own weight. The average bond length 
of 1.42 Å was measured by Spires and Brown in 1996 and later confirmed by Wildöer in 1998[3].  The C-C tight bonding 
overlap energy is in the order of 2.
O
 
The first 

nanotubes were discovered while studying the material deposited on the cathode during the arc-evaporation synthesis of 
fullerenes[1]. It was found that the central core of the cathodic deposit contained a variety of closed graphitic structures 
including nanoparticles and nanotubes, of a type, which had never previously been observed. A short time later[5], it was 
shown that nanotubes could be produced in bulk quantities by varying the arc-discharge evaporation conditions. This 
paved the way to an explosion of research into the physical and chemical properties of carbon nanotubes in laboratories 
all over the world.  A major event in the development of carbon nanotubes was the synthesis in 1993 of single-walled 
nanotubes[ 6]. The standard arc-discharge method produces only multiwalled tubes. It was found that addition of metals 
such as cobalt to the graphite electrodes resulted in an extremely fine tube with a single-wall. An alternative method of 
preparing single-walled nanotubes was described in 1995[7] . Like the original method of preparing C60, this involved the 
laser-vaporisation of graphite, and resulted in a high yield of single-walled tubes with unusually uniform diameters. 
These highly uniform tubes had a greater tendency to form aligned bundles than those prepared using arc-evaporation. 
Initial analysis of the tubes produced by this method showed that the samples contained a very high proportion of 
nanotubes with a specific armchair structure however 

Fig.2: Density of States diagram, showing Van Hove singularities for a metallic and semi-conducting tube 

th
of high purity, with current purity of 90% atomic percent SWNT[8,9,10]. The yield and diameter size can be varied by 
controlling the process parameters.   
 
Another problem arises from the fact that nanotubes aggregate in bundles as a result of substantial van der Waals 
attractions between tubes. It has been observed that increased purity in a sample is associated with increased bundle 
size[11]. It is thought that there are fewer small particles present to interfere with the van der Waals attraction between 
neighbouring tubes.  In 1996, Thess[12] measured the properties of "ropes"of carbon nanotubes. On a macroscopic scale 
the bundles mat together.  It was found that the individual SWNTs packed into a close-packed triangular lattice with a 
lattice constant of about 17 Å. In addition it was concluded that the density, lattice parameter, and interlayer spacing of 
the ropes was dependent on the chirality of the tubes in the mat. (10, 10) Armchair tubes had a lattice parameter of 16.78 
Å and had a density of 1.33 g/cm3. Zigzag tubes of the chirality (17, 0) had a lattice parameter of 16.52 Å and a density 
of 1.34 g/cm3. Mats made of (12, 6) chiral SWN 3

sp
tubes in the bundles. Armchair tubes had a spacing of 3.38 Å, zigzag tubes had a spacing of 3.41 Å, and (2n, n) chiral 
tubes had an interlayer spacing value of 3.39 Å.  
 
In this study comparison is made of the ability of different solvents to break up bundles of tubes. Two different samples 



distribution of these sample have been previously determined to be 1.2 to 1.4 nm for arc-discharge sample and 0.7 to 1.3 
nm for the HiPco sample [13][14]. Due to the higher purity it is expected that the HiPco samples will have a bigger bundle 

ze than the arc-discharge tubes.  In addition due to the smaller mean tube diameter the binding energy within the HiPco 

d lower sides of the 
580 cm  line, G  and G , due to the curvature of the graphene sheet.  The G  arises from the atomic displacements 
long the tube axi -

si
bundles will be stronger. The average bundle size for HiPco tubes has been found to 15-30nm[15].   
 
Raman spectroscopy has been a very useful tool in the study of carbon nanotubes for some time[2].  The Raman spectrum 
of a single walled tube as seen in figure 3 shows three main regions.  The G-line which originates from the C=C 
stretching mode in graphene, shows peaks around 1580 cm-1.  This peak is doubly split into higher an

-1 + - +1
a s, and G , for modes with atomic displacement along the circumferential direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3: Stokes Raman spectrum of semiconducting nanotube taken at 633 nm with inset of 

metallic nanotube G-line shape  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4: Schematic picture showing the atomic vibrations for (a) G-line and (b) RBM modes 



 
 
The lineshape that results is indicative of the electronic nature of the tube. The semi-conducting tube produces a G-line 
which is Lorentzian in shape[16][17].  In metallic tubes the −

Gω  feature is broadened.  This broadening is related to the 
presen free electrons in nanotubes with metallic character. The metallic nanotube shows a Breit-W er-Fano line 
shape

ce of ign
s sh

owever the lower com  is dependant on tube diamet  decreases in 
frequency in accordance with 

[18,19].  Examination of the G-line features for isolated tube ows that the higher component +
Gω  is essentially 

independent of tube diameter. H ponent −
Gω er and

2
t

GG d
−= +− ωω   (5) 

where d

C

e tube diameter, and C=47.7cm nm  for semiconducting tubes and C=79.5cm nm  for metallic tubes. . 
h G-line for bundles also shows the two features whose spacing depends on the mean diameter of the nanotube 

g the small magnitude of the BWF 
ffect. The BWF effect increases as the tube diameter decreases, causing the ΓG- feature to become more asymmetric and 

efore 
e ratio of G/D line and G*/D line intensities provides a good index for showing the presence of defects decreasing with 

er frequency region the spectrum is dominated by the in-phase mode known as the radial breathing mode 
(RBM), see figure 3. The frequency of the ersely proportional to the nanotube diameter (dt).  For 
bundles   

the spectral shift B being an empirically determined environmental dampin ctor.   For isolated tubes 
 

t is th -1 2 -1 2 [21]

T
bundle[.22].   
 
The linewidths ΓG+ for the G peaks from isolated  SWNTs are usually around 5-15cm-1, and the same range of linewidths 
for ΓG- are found for semiconducting isolated SWNTs [23]. For semiconducting SWNTs in bundles, the linewidths are 
related to the intertube interactions and to the diameter distribution.  Therefore the broadening principally occurs for ΓG-.  
For metallic SWNTs, the broadening is minor for ΓG+ , while for ΓG- a significant broadening occurs, and it is found that 
the linewidth for the BWF line is strongly dependent on tube diameter. For isolated tubes with dt > 2 nm, ΓG- is similar to 
semiconducting SWNTs, and the line mostly looks like a normal Lorentzian, reflectin
e
broad.  Values of ΓG- > 70 cm-1 have been observed for isolated metallic SWNTs [ 24]. 
 
The intensity of the D-line was thought until recently to be a measure of the amount of impurity in the sample. However 
more recently it is thought to be a measure of the level of defects along the tube itself. There is also some indication that 
the D-line resonance is effected by the electronic nature of the tubes[25] . It has also been shown that the D-line varies in 
both value and amplitude with laser excitation frequency[14]. The D-line and its second harmonic G*-line are highly 
dispersive and observed in isolated tubes and bundles.  However in bundles superimposed on the linear dependence of 
ωD and ωG* on laser energy is an oscillatory feature due to resonance of the laser energy with specific van Hove 
singularities[24]. The D-line intensity is large compared to that of the G-line when the sample has a large number of 
defects while the G*-line intensities always shows a large intensity comparable to the G-line without defects.  Ther
th
increasing order and purity[25]. The width of the D-line is smaller for semiconducting tubes than for metallic tubes. 
 
In the low

 RBM (ωRBM ) is inv

 
g fa

t
RBM d

 
The spectral shape and position of the Raman band associated with the RBM of the nanotubes present in a sample 
provide an estimate of the diameter distribution in the SWNT sample

A '
' =ω  

[26].  It should be noted that tubes which are most 
apparent in a spectrum are those which are resonantly enhanced at the wavelength employed.  This is because of the one 

BA
+=ω (6) 

dt
RBM

(7) 



dimensional density of states bands which are sharp and narrow.  Therefore within a sample only some tubes are 
resonant at a given wavelength and in order to characterise fully a given sample, it is necessary to use a range of 
excitation frequencies. Most recently Wang et al have de  

[27]
veloped a method for assigning resonant scattering peaks in the 

Ra an spectrum . From the radial breathing modes, data of diameters, RBM frequencies and electronic density of 

gularities in isolated tubes over the spacings in bundles thereby allowing the same laser 
xcitation to excite different diameter tubes in the two samples[28].  The net effect of debundling is an apparent up-shift in 

the Raman active RBM’s[29]. 

 f r, a 
ectral resolution of 1cm  per pixel is achievable. The confocal, microscopic system allows measurement of powdered 

m
states have been used to graphically assign these peaks.  

 
Lattice dynamical predictions indicate that isolated tubes should have lower ωRBM values than those in bundles.. 
However it has been observed that the frequencies actually upshift for single tubes in solution due to a decreased energy 
spacing of the Van Hove sin
e

 
2. EXPERIMENTAL 

 
Raman measurements were taken using an Instruments S.A. Labram 1B. The Labram system is a confocal Raman 
imaging microscope system.  Both a Helium-Neon laser (632.8nm) and an external Argon ion 514.5nm laser were used 
as sources.  Both lasers are polarised, enabling measurement of depolarisation ratios and studies of orientation in 
materials. The light is imaged to a diffraction limited spot (typically 1μm) via the objective of an Olympus BX40 
microscope. The scattered light is collected by the objective in a confocal geometry, and is dispersed onto an air cooled 
CCD array by one of two interchangeable gratings, 1800 lines/mm or 600lines/nm, allowing a range of 150cm-1 to 
4000cm-1 to be covered in a single image, or with greater resolution in a combination of images. With the orme

-1sp
samples with no further sample preparation.  Spectral X-Y mapping may be performed with a precision of 0.1μ m.  
 
Solutions of 0.001mg/30mls tubes to solvent ratio were made using arc-discharge and HiPco tubes. This is the 
concentration range where nanotubes in polymer composite solutions are reported to be debundled[30]. Three different 
solvents, toluene, DMF and 1,2 dichloroethane(DCE) were used.  The solutions were sonicated using a sonic tip for 30 
seconds, allowed to settle and decanted.  Samples were then made by drop casting the solutions on glass slides. Raman 

ectra were the taken of these samples as well as spectra of the corresponding untreated raw tubes.  The spectra were 
compared for changes.   
 

ion both 
e arc-discharge and HiPco tubes visibly when to solution.  It should also be noted that several months later the tubes 

ectra va  be 
en that although the relative amplitudes of the peaks varies in the spectra the same tubes are resonant at all times. 

sp

3. RESULTS AND DISCUSSION 
 

The first observation  was the ease with which the tubes dissolved in the 1,2 dichlorethane.  Even without sonicat
th
were still in solution in the DCE whereas they had long since fallen out of solution in the toluene and the DMF. 
 
Spectra were obtained for a given laser line from many different points across the raw samples to see if the resulting  
sp ried. Most variation in the resulting spectra was observed in the RBM regions.  From figure 5 below it can
se
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: Stokes spectra of the RBM region for a number of spots across a HiPco sample at 514nm 



 
 
 
 
 
 
 
 
The spectra for the solvent treated samples were examined.  Some parameters were measured from spectra and tabulated 

 table 1 and table 2.  
 
 

Raw Tube Toluene DMF DCE 

in

Intensity 
G-line  Solvent Sample/ Raw 
Sample  

- 3.85 4.2 15 

G-line/D-line ratio 1 1  9 11.75 0.38 .99 5.47 
G*-line/D-line rat 1.77 2.21 io 2.76 2.8 
ΓG (cm-1) 38 36 36 35 

 
 
 

 Raw Tube Toluene DMF DCE 

Table 1: From Stokes spec am nm tra of HiPco s ples at 633
 

 Intensity
G-line  Solvent Sample/ Raw 
Sample  

- 1.1 3.0 9.9 

G-line/D-line ratio 1 3 11.93 6.4 .17 2.74 
G*-line/D-line ratio 0.66 9.10 0.89 4.5 
ΓG (cm-1)  49 30 46 46

 

iggest for the 
CE samples and smallest for toluene.  This most probably results from a dispersion of the tubes into a less compact 

values these spectra show little 
eviation from the spectra of the raw tubes, (see figure 6), implying little debundling.  So it can be concluded that in 

ter of semiconducting and metallic tubes. However 
 the treated samples this has become predominantly metallic. This would point towards the DCE having preferentially 

 
 
It can be seen that for all solvents there was an increase in the intensity of the spectra for both types of tubes as 
evidenced in the G-line ratios above.  This pattern was repeated for the 514nm spectra.  The increase was b

Table 2: From Stokes spectra for arc-discharge samples at 633nm 

D
form. This can be simply a density effect or it could be a due to reduced damping as a result of debundling. 
 
The G/D and G*/D ratios, which are a measure of the level of order/impurity in the samples show varying results.  Worth 
noting are the large increases in the values for the arc-discharge toluene samples.  This can be explained by the effect of 
the toluene on dissolving tubes allowing the other impurities to precipitate resulting in a reduction in the intensity of the 
D-line.  No such increase is seen for the HiPco tubes, consistent with their inherent purity. Notably when the spectra for 
both the toluene samples are examined more closely apart from changes in intensity 
d
toluene, bundles are solubilised, precipitating impurities, but no real debundling occurs. 
 
The spectra for arc-discharge and HiPco tubes in DCE at 633 nm are shown in figure7 and figure 8 below. In both cases 
there is evidence of an upshift in the spectra of the treated samples indicating some level of debundling.  In the case of 
the HiPco tubes this is about 3-4cm-1.  The profile of the RBM region in the case of the arc-discharge tubes has altered. 
The peaks are more distinguished and spread out indicating that the tubes are less bound together allowing greater 
freedom of vibration resulting in more resolution of the resonant tubes.  The profile of the G-line in the arc-discharge 
samples has also changed.  In the raw tubes it shows a mixed charac
in
dissolving the metallic tubes rather than the semiconducting tubes.   
 
In the case of the HiPco tubes, previous studies have shown little evidence of metallic tube resonances at either 633 nm 
or 514 nm. There is thus little change in the G-line profile in those processed with DCE (figure 8).  The RBM region 



similarly shows little difference to that of the raw sample.  In the sample primarily consisting of semiconducting tubes, 
while the shift in the G-line may indicate some degree of debundling, there are few differences between the raw sample 
and the processed sample.  The HiPco samples do however remain in solution over prolonged periods of time and thus it 
must be concluded that DCE dissolved the HiPco bundles.  It is to be expected that due to their higher purity and smaller 

iam bundles. It 
erefore follows that it will be easier to break up the arc-discharge bundles than the HiPco as evidenced in the spectra. 

d eter size the binding within the HiPco bundles will be stronger than the binding within arc-discharge 
th
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Stokes Raman spectra for arc-discharge and DCE / arc-discharge samples at 633nm 
with inset of expanded RBM region 

Fig. 6: Stokes Raman spectra HiPco and Toluene/ HiPco samples at 633nm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 8: Stokes Raman spectra HiPco and DCE/ HiPco samples at 633nm inset of expanded 
 RBM region 
 
 
 
 
 

Fig. 9: Stokes Raman spectra arc-discharge and DCE / arc-discharge samples at 
514nm inset of expanded RBM region 



 

Fig. 10: Stokes Raman spectra of HiPco and DCE / HiPco samples at 514nm 
inset of the expanded RBM region

 
 
   
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the arc-discharge raw and treated samples are excited by the 514nm line (figure 9) there is no change to the profile 
of the G-line but again there is a significant change to the RBM’s consistant with debundling.   
 
For the HiPco at 514 nm there is some upshift in the RBM’s but not as dramatic as for the arc-discharge samples.  One 
interesting comment on the HiPco 514 nm samples; the G-line in the raw sample although predominantly 
semiconducting in character shows some metallic contribution in the  feature. In the DCE treated sample at 514 nm 
this metallic contribution seems enhanced further giving evidence to the DCE favouring metallic tubes. 

−
Gω

 
The results from anaysis of the DMF treated samples show changes in the spectra intermediate between that of the DCE 
and the toulene.  
 

4. CONCLUSION 
 

There is evidence that DMF and DCE solubilise SWNT samples and produce some degree of debundling.  Toulene 
shows no evidence of debundling however it does purifiy the arc-discharge tubes.The results from the DCE samples 
show the most promise.  DCE seems to solubilize both tube types easily as evidenced from visual observation.  However 
the degree of debundling is biggest for the arc-diacharge  tubes. Furthermore the there is evidence that the DCE favours 
metallic tubes.  Further work would look at decreasing the tube to solvent ratio to see if the level of debundling can be 
improved. Some form of microscopy is needed to measure the actual bundle size in each of the samples which can then 
be matched with the measured Raman shifts.  Initial investigations using AFM have showed promise. 
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	When the arc-discharge raw and treated samples are excited by the 514nm line (figure 9) there is no change to the profile of the G-line but again there is a significant change to the RBM’s consistant with debundling.  
	For the HiPco at 514 nm there is some upshift in the RBM’s but not as dramatic as for the arc-discharge samples.  One interesting comment on the HiPco 514 nm samples; the G-line in the raw sample although predominantly semiconducting in character shows some metallic contribution in the   feature. In the DCE treated sample at 514 nm this metallic contribution seems enhanced further giving evidence to the DCE favouring metallic tubes.
	The results from anaysis of the DMF treated samples show changes in the spectra intermediate between that of the DCE and the toulene. 
	There is evidence that DMF and DCE solubilise SWNT samples and produce some degree of debundling.  Toulene shows no evidence of debundling however it does purifiy the arc-discharge tubes.The results from the DCE samples show the most promise.  DCE seems to solubilize both tube types easily as evidenced from visual observation.  However the degree of debundling is biggest for the arc-diacharge  tubes. Furthermore the there is evidence that the DCE favours metallic tubes.  Further work would look at decreasing the tube to solvent ratio to see if the level of debundling can be improved. Some form of microscopy is needed to measure the actual bundle size in each of the samples which can then be matched with the measured Raman shifts.  Initial investigations using AFM have showed promise.
	REFERENCES
	[6] S. Iijima and T. Ichihashi, Nature,363, 603 (1993)
	[24] Pimenta, Hanlon, Marucci, Corio, Browne, Empedocles, Bawendi, G.Dresselhasu, M.Dresselhaus, Brazilian J.Phys.30 423 (2000)
	[25] M.Dresselhaus, Jorio, Souza, G.Dresselhaus, Saito Physica B 323 15-20 (2002)
	[26] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams,S.Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus and M.S.Dresselhaus, Science, 275, 187 (1997). 
	[28] Rao, Chen, Richter, Schlecht, Eklund, Haddon, Venkateswaran, Kwon, Tománek, Phys.Review Letters 86 17 (2001)
	[29] Duesberg et al Phys. Review Letters 85 5436 (2000)
	[30]Coleman, Fleming, Maier, O Flaherty, Minnett, Ferreira, Hutzler, Blau, J Phys.Chem.B.108,3446 (2004)

