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Abstract 

Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) 

pollution at the catchment scale is vitally important for the sustainable development of 

water resources in Ireland. An important element in the process of implementing such 

strategies is the prediction of their impacts on P concentrations in a catchment using a 

reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy 

inference system (ANFIS) has been used to develop a new national P model capable of 

estimating average annual ortho-P concentrations at un-gauged catchments. Data from 84 

catchments dominated by diffuse P pollution were used in developing and testing the 

model. Six different split-sample scenarios were used to partition the total number of the 

catchments into two sets, one to calibrate and the other to validate the model. The k-

means clustering algorithm was used to partition the sets into clusters of catchments with 



similar features. Then for each scenario and for each cluster case, 11 different models, 

each of which consists of a linear regression sub-model for each cluster, were formulated 

by using different input variables selected from among six spatially distributed variables 

including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO), 

groundwater (GW), land use (LU), and soil (SO). The success of the new approach over 

the conventional lumped, empirical, modelling approach was evident from the improved 

results obtained for most of the cases. In addition the results highlighted the importance 

of using information on PDI and RRI as explanatory input variables to simulate the 

average annual ortho-P concentrations. 

 

Keywords: diffuse phosphorus pollution; ortho-Phosphate, empirical modelling 

approach; fuzzy sub-sets; neuro-fuzzy model; k-means fuzzy clustering 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Like many countries, Ireland has continually improved its agricultural output to meet 

local demand for food as well as for exports. Using the land in any intensive agricultural 

activity can cause adverse impacts on the environment unless appropriate measures to 

reduce these impacts are put in place such as water storage facilitates (e.g. De Martino et 

al., 2012; De Paola and Ranucci, 2012). Most of the reviews of water quality in Ireland 

revealed that diffuse transport of phosphorus (P) by surface and sub-surface flows from 

agriculture soil to the receiving waters is one of the major environmental problems (e.g. 

Lehane and O’Leary, 2012; McGarrigle et al., 2002; Toner et al., 2005). Soluble P in a 

form of ortho-P is readily available for plants and always leads to eutrophication in Irish 

Rivers and as a result there is a need for a catchment based management strategy that 

encapsulates all elements contributing to the loss of this form of P (Hutton et al., 2008). 

The EU Water Framework Directive (WFD) (EEC, 2000) provides the legal grounds 

required to develop and enforce such a management strategy. It mandates a thorough 

investigation to predict the impacts which will be produced by each possible management 

alternative. 

 

The Three Rivers project (MCOS, 2002) was one of the early and detailed studies 

conducted in Ireland with the aim of developing catchment based monitoring and 

management systems for the Boyne, Liffey and Suir catchments. A related project was 

the Lough Derg/Lough Ree Project (KMMP, 2001) which addressed the same objectives 

in the Three Rivers project. In addition to the valuable management plans developed by 

these two projects, an important database required for modelling diffuse P loads was 

generated. Daly and Mills (2006) utilised some of this data to develop an empirical model 



described in Appendix I to estimate the annual average ortho-P concentrations from 

diffuse sources at the outlet of a catchment. Using a number of spatial variables derived 

from land use, soil type, stocking densities, fertiliser P use and soil P levels Daly and 

Mills (2006) developed a series of linear regression models relating different 

combinations of these variables with the average annual ortho-P concentration. From 

these models they chose the best empirical model as the one which provided the best 

calibration. In the analysis Daly and Mills (2006) used data from 84 different catchments 

in Ireland which have been selected on the basis of the following criteria: (i) nested 

catchments were avoided; and (ii) diffuse pollution represented the main contributor of 

phosphorus to the stream. Starting with all variables and using a backward-steps 

regression procedure they eliminated the variables that had no significant effect on the 

linear regression model. In their final model only two variables were deemed significant 

and retained in the linear regression equation. These two variables were phosphorus 

desorption index (PDI) and runoff risk Index (RRI). Due to its simplicity and parsimony 

this type of empirical export coefficient modelling approach to predicting diffuse 

contaminant loads has been used widely (e.g. Daly and Coulter, 2000; Davies and Neal, 

2007; Johnes, 1996 ; Lek et al.,1999 ; Meynendonckx et al., 2006; Su et al., 2006). 

Usually models of this type do not incorporate in their structure any representation of the 

actual physical processes involved in the mobilisation and transport of P but instead they 

seek to establish a numerical link between the contaminant load and the catchment 

characteristics which influence it.  

 



Most of the simple empirical annual average P export coefficient models are multiple 

linear regression models that linearly relate the predictors, which are in most cases land 

use types, with the predictand representing the water quality parameter under 

consideration such as P soluble reactive concentration (e.g. McGuckin et al., 1999). 

However, the diffuse P transport process is in fact highly non-linear and the driver 

variables are in general not limited to land use types but they rather extend to include 

other predictors (e.g. soil P sorption capacity, residual soil P amounts, density of 

livestock, climate). Therefore non-linear models are extremely needed in order to 

accurately express the non-linearity in the process. Furthermore the available observed P 

concentration data only covers a small number of years and this necessities the use of 

Monte Carlo simulation techniques to generate synthetic long time series that can be used 

in uncertainty analysis (e.g. McFarland and Hauck, 2001). Thus it will be useful if the 

candidate model can intrinsically account for the uncertainty in the data using the 

available actual data through an embedded modelling mechanism without the need for an 

external procedure to generate synthetic data used in uncertainty analysis. The non-

linearity and the self-uncertainty modelling features can jointly be found in the fuzzy 

inference modelling systems (Jang, 1993). These models have been successfully 

implemented in a number of diffuse pollution modelling studies. For instance Schärer et 

al. (2006) used a fuzzy decision tree to estimate P export at a catchment scale and also 

Shrestha et al. (2007) modelled nitrate dynamics in a catchment using a hybrid 

deterministic–fuzzy rule based model.  

 



The aim in this study is to broaden and strengthen the empirical modelling approach by 

employing an adaptive neuro-fuzzy inference system (Jang, 1993) to develop a new 

empirical P export model. In developing this model the available catchment data is first 

partitioned into a number of clusters based on similarities in their characteristics. A 

hypothesis is made here that there is a physical basis for the clustering and that if a 

separate P export model is calibrated for each cluster, a better prediction of diffuse P 

loads in a catchment would be obtained by combining the outputs of all the cluster 

models in proportion to the catchment’s membership weighting for each cluster. This 

means that the models developed for each cluster contribute to the diffuse P loads 

prediction in a catchment depending on the degree by which this catchment belongs to 

the cluster. The newly developed model is intended to be used as a predictive tool at a 

catchment level across all the River Basin Districts in Ireland and also with the view that 

an analogous approach can be used in other countries. For direct comparison with 

previous models, the new model has been developed and tested with the same data used 

by Daly and Mills (2006) in their model.  

 

2. Estimation of nutrients loads using catchment characteristics 

The level of nutrients, including phosphorus (P) and nitrogen (N), in a stream is usually 

an indicator of the situation in its upland catchment. Therefore in situations where diffuse 

pollution is significant it is always possible to obtain some estimate of nutrient levels 

from empirical models conditioned on catchment characteristics. The particular 

catchment characteristics which result in a robust model may not be known in advance 

and hence a trial and error procedure is usually followed to determine the best catchment 

characteristics. The relationship between the nutrient loads and the catchment 



characteristics in the export coefficient models (e.g. McGuckin et al., 1999) is always 

described by a first order multiple linear regression model as follows: 





nvar

1k

kk0 xbbL         (1) 

where L nutrient load; 

xk the value of the k
th

 catchment characteristic; 

nvar total number of the catchment characteristics; 

b0 constant term of the linear regression model; 

bk coefficient of the k
th

 catchment characteristic of the linear regression model. 

 

The total number of terms in the linear regression model is equal to the total number of 

catchment characteristics which have been included in the model plus one. The constant 

term and the coefficients, (i.e. the model parameters) are estimated using the least squares 

parameter estimation method. To obtain reliable estimates for the parameters it is always 

recommended to use data from as many sites as possible. However it is also 

recommended to select sites from a homogenous region where similar catchment 

characteristics (e.g. phosphorus desorption index (PDI), runoff risk index (RRI) (see 

Appendix II for further explanation of PDI and RRI), soil types, land use types, geology, 

aquifer types) prevail so that the resulting model would be a better representation, but 

only of that region. Hence it is not advisable to use such a model in regions outside the 

one used in estimating its parameters.  

 

Here a new approach has been developed to produce a class of model that can be more 

readily applied in heterogeneous regions. The approach is based on fuzzy inference 



systems already used extensively in hydrological and water quality modelling (e.g. Chen 

et al., 2006; Dixon, 2005; Haberlandt et al., 2002, Jacquin and Shamseldin, 2006; Marce 

et al., 2004; Nayak et al., 2004). These modelling systems integrate the outputs from a 

number of sub-models to estimate a single overall output. Each sub-model can be 

considered as representative of a specific region type where the catchment behaviour is 

assumed homogeneous. The data used in developing the model are for the same 84 

catchments used by Daly and Mills (2006) to develop their national P model. Such a 

national model is a tool of extreme importance in managing diffuse P pollution at a 

catchment level in each River Basin District in Ireland. The newly developed model is 

aimed at providing an improved, albeit more complex, alternative national P model. The 

model is tested by using part of the data set to calibrate the model parameters and the 

remaining part to validate the performance of the resulting model. 

 

3. New neuro-fuzzy national P export model 

Using a single general equation to estimate diffuse P loads from catchment characteristics 

may work well for a single homogeneous region but may not give good predictions 

outside of this region. Thus its use for the whole of Ireland is questionable. The reason 

for this is the wide variability in the behaviour of the catchments used to derive the 

equation. If among those catchments there is a dominant cluster of catchments with a 

homogenous condition then this cluster would influence strongly the parameter 

estimation process. The estimated parameters would fit well for catchments in this cluster 

while its performance for other catchments may not be as good. It is possible to improve 

the model performance if a separate model is defined for each cluster of distinct 

homogenous catchments. However, when grouping the catchments into a number of 



clusters there will always be overlaps between these clusters because some catchments 

may have features in common with more than one cluster and may be difficult to assign 

to a single cluster. In our proposed neuro-fuzzy approach, a catchment does not have to 

be a member of only one cluster, but is assigned a membership weighting relating to all 

clusters. Higher weighting implies stronger association between the catchment and that 

cluster. Our hypothesis is that “if a separate P export model is calibrated for each cluster 

then a better diffuse P loads prediction in a catchment can be obtained by combining the 

outputs of all the cluster models in proportion to the catchment’s membership weighting 

for each cluster”. This means that the models developed for each cluster contribute to the 

diffuse P loads prediction in a catchment depending on the degree by which this 

catchment belongs to the cluster. The newly developed neuro-fuzzy national P model 

uses an annual time step in simulation and its structure is illustrated in Fig. 1. The 

mathematical form of this model, which here describes the relationship between the 

average annual concentrations of ortho-P (resulting from diffuse P loads) and physical 

characteristics for catchment i, is as follows: 
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where ortho-Pi average annual ortho-P concentration at the outlet of catchment i; 

nc total number of catchment clusters; 

wj weight given to the linear regression sub-model of the j
th

 cluster; 

Oj output of the linear regression sub-model of the j
th

 cluster which represents the average 

annual ortho-P load contributed by this cluster; 



nvar total number of independent variables defining the catchment characteristics used in 

the linear regression sub-model of each cluster; 

xk value of the k
th

 catchment characteristic; 

b0j constant term in the liner regression sub-model of the j
th

 cluster; 

bkj coefficient of the k
th

 catchment characteristic in the linear regression sub-model of the 

j
th

 cluster. 

 

Based on the above-mentioned hypothesis the model is a weighted average of a number 

of linear regression sub-models. The number of linear regression sub-models is equal to 

the number of clusters (nc) sufficient to represent homogeneous groupings of the 

catchments, i.e. each cluster consists of a number of catchments with similar 

characteristics. In addition, each cluster is represented by a centre point with properties 

which are assumed to be representative of all catchments in the cluster. The k-means 

clustering algorithm (Hartigan and Wong, 1979) described in the next section is used to 

assign the catchments into nc clusters and also to calculate a centre vector of the spatial 

variables for each cluster. In addition, a standard deviation vector for each cluster can be 

calculated using the resulting centre vector and the vectors of the spatial data for all 

catchments in the cluster. 

 

By assuming that each cluster is a fuzzy set then it is possible to estimate the degree by 

which a catchment belongs to a cluster with a membership function. In the current model 

the most widely used Gaussian function was employed for this purpose (e.g. Jacquin and 

Shamseldin, 2006; Nasr and Bruen, 2008). It has two parameters, the location or the 



centre vector of the cluster (c) and the scale or the standard deviation of the cluster ( ), 

while the spatial data vector (x) is the input variable. The form of the Gaussian function is 

as follow: 

 
 

2

2



cx

exfw




         (3) 

 

This function gives the weights (w) for Eqn. 2 which determine the contribution of a sub-

model to the overall estimation of the ortho-P concentration. Once the weights (w) for 

each cluster are fixed, Eqn. 2 becomes a linear regression model relating the spatial 

variables with the ortho-P concentration. The parameters of the linear model (b0, b1, 

b2,…, bnvar) for all clusters can then be found using the least square method. 

 

4. k-means clustering algorithm 

Clustering is the partitioning of a data set into sub-sets (clusters), so that the data in each 

sub-set (ideally) share some common characteristics. Some defined distance measure 

such as the Euclidean distance is often used to determine proximity of the data in a 

cluster. The k-means clustering algorithm (Hartigan and Wong, 1979) is one of the 

simplest unsupervised learning algorithms for this partitioning when the number of 

clusters (k) is known a priori. The number of clusters is normally determined based on 

the amount and characteristics of the data which is used in calibrating the model. Using 

many clusters will result on a complex model with many parameters and this requires 

large amount of data to obtain these parameters with any confidence. As will be 

described later the current model was tested with two and three clusters only due to the 



limited amount of data which does not allow the testing of models with more than three 

clusters. 

 

Generally the steps in implementing the k-means clustering algorithm can be summarised 

as follows:: 

(1) The main idea is to start with some initial choice of positions for the k centroids, 

one for each cluster. These initial centroids should be chosen carefully because 

different starting locations generate different results. They should be as far away 

from each other as possible, given the data set. In the current model the available 

catchments were randomly divided into k clusters and then the centroid of each 

clusters was initially defined as the mean values of the catchment characteristics 

for these catchments  

(2) The next step is to take each catchment and associate its catchment characteristics 

with the nearest centroid.  

(3) At this point k new centroids are calculated as the points which represent the 

centres of gravity of the new clusters resulting from the previous step.  

(4) Steps (2) and (3) are repeated until the change in the k centroids is insignificant. 

 

In essence the algorithm aims at minimising an objective function, in this case a squared 

error function (J) in the following form:  

 
2

1 1


 


k

l

n

i

l

j

i cxJ         (4) 



where   2

l

j

i cx   is a distance measure between a data point  j
ix  and the cluster centre 

cl; 

n total number of the data points. 

 

5. Application of the neuro-fuzzy national P model 

Data from 84 different catchments in Ireland (Fig. 2) were used to develop the neuro-

fuzzy national P model. These were split into two sets, the first of which was used for 

model calibration and the second for validation. In the calibration phase, the centre 

vector, the standard deviation vector, and the linear model parameters were calculated for 

each cluster using the calibration data set. Then, the second data set was used to verify 

the performance of the neuro-fuzzy national P model. The strategy of splitting the data 

set (84 catchments) into two parts for calibration and validation is important for the 

credibility of the resulting model. Here we have divided the available data in calibration 

and validation sets in six different ways and taken the mean of the results. Two of these 

cases have an equal number of catchments (42) in both calibration and validation sets and 

four cases have 63 catchments in the calibration and 21 in the validation set. Taking the 

mean of the results is more robust than taking the results from any single case.  

 

6. Variables in the neuro-fuzzy national P export model 

In the neuro-fuzzy national P export model the dependant variable, the annual average 

ortho-P concentration for a particular catchment, can be estimated from values of two or 

more indices representing phosphorus desorption index (PDI), runoff risk Index (RRI), 

Geology (GEO), Groundwater (GW), Land use (LU), and Soil (SO). The PDI and RRI 

described in Appendix II were introduced by Daly and Mills (2006) in their national P 



model to quantify the potential risk of P loss from soil by the desorption process and the 

transport of P by surface runoff respectively. They found a strong correlation between 

both indices and ortho-P concentrations and hence they have been included in the current 

neuro-fuzzy national P model. Each index was obtained by calculating an area weighted 

average of risk categories defined subjectively for each soil type in a catchment (see 

Appendix II). The calculated values of the two indices were considered to be one of four 

risk degrees. These include (i) Low (ii) Moderate (iii) High; and (iv) Very High. The 

range of values in each degree was arbitrarily defined by Daly and Mills (2006). The 

maps of the other spatial variables in each catchment show different categories for each 

variable distributed over the catchment area. Any category which occupies less than 10% 

of the area in any of the 84 catchments was ignored. Table 1 summaries the categories of 

the spatial variables included in the model.  

 

The frequency distribution of the observed average annual ortho-P concentrations in the 

84 catchments is shown in Fig. 2. Some statistics calculated from the data are also 

presented in the same figure. The average annual ortho-P concentrations in the 84 

catchments are found to be varying from a low of 0.004 mgP/l to a peak of 0.12 mgP/l; 

i.e. the range is 0.116 mgP/l. Most of the catchments have average annual ortho-P 

concentration between 0.012 mgP/l and 0.024mg/l. 

 

7. Formulation of different neuro-fuzzy national P export models 

Because of the limited number of catchments with sufficient data available to calibrate 

the linear model parameters for all cluster sub-models in the neuro-fuzzy national P 

model described above, only 2 and 3 clusters per catchment have been investigated to 



date. The amount of data available places an upper limit on the number of parameters 

which can be calibrated. This in turn places an upper limit on the number of catchment 

characteristics (independent variables) and the number of clusters that can be used. Using 

many catchment characteristics each with a number of categories is not practicable if the 

resulting total number of parameters for the linear regression sub-models (for the case of 

2 and 3 clusters) is larger than the number of data points in each of the six calibration-

validation scenarios. Here we limit the investigation to a maximum of 3 clusters and also 

investigate a range of combinations from 2 to 4 independent variables (Table 2). When 

sufficient information from more than the 84 catchments used in the current study 

becomes available, a wider range of model structures can be tested. Running the k-means 

algorithm on the calibration data for the 2 clusters case has produced 21 catchments in 

each cluster. Then for the 3 clusters case it placed 12 catchments in cluster 1, 17 

catchments in cluster 2 and 13 catchments in cluster 3. A scatter plot between the PDI 

versus the RRI was used to show the relative location of the centroid of each cluster with 

respect to the other catchment members of this cluster. Figures 4 and 5 show this scatter 

plot for the 2 and the 3 clusters cases respectively. No attempt was made in this study to 

analyse for geographic relationships between the catchments in each cluster.   

 

8. Analysis of Results 

The 11 candidate neuro-fuzzy national P export models listed in Table 2 were assessed 

for the 2 clusters and 3 clusters cases on the basis of the coefficient of correlation (R
2
) 

between modelled and measured average annual ortho-P concentrations for both 

calibration and validation data sets. The results are shown in Table 3. For each model, the 

no-clustering case with a structure similar to the one of Daly and Mills (2006) was also 



tested and presented as a base case against which the performance of the models with 

clustering is compared. Thus both the differences in performances achieved by adding 

additional explanatory variables and/or model complexity can be determined. 

 

Calibration: The calibration R
2
 values range from 0.43 for the no-cluster model to 0.86 

for one of the 3-clusters cases (Table 3). Note the use of 2 clusters always gave R
2
 values 

better than the no-cluster case and that 3-clusters were better than 2 clusters for all 

models. Compared to model_1 the performance of all other models showed an 

improvement in both the 2 and 3 clusters cases. The R
2
 value for model_11 with 3 

clusters is the best. Although in many modelling cases, it might be expected that the more 

complex model should do better than the simpler model in calibration, for the type of 

model considered here, the more complex model does not necessarily contain the simpler 

model as a special case, because the clustering may be different. Hence it is possible for 

the simpler model to perform better in calibration than a more complex one. 

 

Validation: As shown in Table 3 the validation results are not as good as the calibration 

results, with 0.56 being the best value. In general the results for the 2 clusters were better 

than the 3 clusters case in 6 cases, were worse in 2 and equal in one case. However the 2 

clusters case was better than the no-clusters case for 9 of the 11 cases, supporting the use 

of clustering. As for which are the best combinations of independent variables, model_3, 

which has a Groundwater index (GI) in addition to the RRI and PDI variables of model_1 

was the best for the no cluster, 2 clusters and 3 clusters cases. 

 



9. Discussion 

The neuro-fuzzy national P export model is expected to provide a powerful tool which 

can facilitate the prediction of the annual amounts of diffuse source P from a catchment 

using only the catchment characteristics as inputs. Such predication is required during the 

design of any management plan to reduce the amount of P loss from land to water. The 

model has been calibrated using data from 84 catchments from different regions in 

Ireland. A split sample technique has been used, in which some data is used in calibrating 

the model and the remaining data used to validate the calibrated model. This independent 

validation result is important to judge the possibility of generalising the use of the model 

for predictions in other catchments not included in the calibration. 

 

Calibration of the models has been performed for six different random divisions of the 

available data into calibration and validation sets. For each of the six calibration-

validation scenarios 11 different models have been formulated to determine from among 

the six spatial variables (PDI, RRI, GEO, GW, LU, and SO) the appropriate ones which 

can be used as predictors to the average annual Ortho-P concentrations. All models have 

been run for the cases of 2 and 3 clusters or sub-models. Then performance of each 

model was assessed based on the mean of R
2
 values for the six scenarios. Generally the 

results of R
2
 during calibration indicated that for all models the use of 3 clusters is better 

than 2 clusters. This finding is expected since the use of 3 clusters or sub-models 

increases the number of parameters in the model and this in turn increases the degree of 

freedom in the model and hence better calibration results can generally be expected. 

Nevertheless the use of many parameters may not result in a good performance during 

validation if the model has been over-parameterised.  



Using spatial variables other than the PDI and RRI as predictors has been examined by 

comparing the value of R
2
 for model_1 with the values of the other models for the 2 and 3 

clusters cases. The calibration results suggested that there is a benefit for the model in 

additional spatial variables as well as PDI and RRI. However, the validation results do 

not always show the same trend except for few models and this suggests that adding more 

variables to the PDI and RRI in a model may result only in a slight improvement. The 

variety in performance in the validation results emphasises the variability in the degree 

by which the spatial variables influence the processes which affect the mobilisation and 

transportation of P from land to water.  

 

Figures 6 and 7 compares the observed average annual ortho-P concentration with the 

estimated values for the models which resulted in the best R
2
 values during validation for 

the cases of 2 and 3 clusters respectively. In the two figures the points which represent 

the actual and the estimated values are closely scattered around the 1:1 line and this 

indicates a reasonable matching between the observed and the estimated values. 

However, an underestimation of all values larger than 0.05 mgP/l by the models is 

noticeable.  

 

To investigate the usefulness of the neuro-fuzzy national phosphorous model, the best 

model for each scenario was compared with a model that used same input variables and 

had a structure similar to the Daly and Mills (2006) model. The comparison of the models 

was based on the R
2
 values (shown in Table 4). It is obvious from the table that, in all 

scenarios, the neuro-fuzzy national phosphorus model was better than the original Daly 



and Mills (2006) model. However, Table 4 also shows that in all scenarios, except for 

Scenario 4, no single neuro-fuzzy model order was found to be the best for both 

calibration and validation. 

 

10. Conclusions  

The concept of fuzzy modelling was applied to develop a national model of annual 

average ortho-P concentrations using catchment characteristics as independent variables. 

Data from 84 catchments from Ireland were used in developing and testing the new 

model. The k-means clustering algorithm has been used to determine 2 and 3 clusters of 

similar catchments. For each clusters case 11 different models have been formulated by 

using different input variables selected from among 6 candidate spatial variables (PDI, 

RRI, GEO, GW, LU, and SO). The following conclusions can be drawn from the results 

of the model application: 

(1) The new fuzzy clustering model performs better than the no cluster case at 

predicting the annual average ortho-P concentrations at a catchment level. Such a 

model is quite general and can be used in a wide range of applications related to 

the implementation of the WFD in Ireland. For instance in assessing any proposed 

land use management option to minimise the P loss in a catchment the model can 

be used to estimate the P load in the catchment under current land use conditions 

and thereafter to predict the change in P load post the implementation of the 

proposed land use management option in the catchment. This could inform 

economic analyses on the effectiveness of land use change measures. The model 

can also assist in identifying the most critical combinations of land use and soil 

type from the point of view of P export. 



(2) The best calibration results were obtained for the more complex models (i.e. many 

spatial variables) and those using 3 clusters. However the validation results 

indicated that the best models mostly have 2 clusters and fewer (2 or 3) spatial 

variables.  

(3) PDI and RRI are the essential variables but not the limited variables in predicting 

annual average ortho-P concentrations. The use of other spatial variables, 

particularly groundwater (GW), can improve the prediction and also their use is 

recommended if the resulting model is to be used for studying the effect of 

different catchment management options. In fact the model with only PDI, RRI 

and GW performs best in validation, regardless of the number of clusters used. 
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Appendices 

Appendix I: Summary of Daly and Mills (2006) model 

 A dataset of 84 sub-catchments were used to build a linear regression model that 

relates the flow weighted average ortho-P (fwOrtho-P) with a number of 

catchment characteristics. 



 Each sub-catchment represents water quality monitoring station with daily mean 

flow and phosphorus data covering the period between 1998 and 2001. Also in all 

sub-catchment point source pollution was not known to cause an influence on 

water quality. 

 Sources of data for the catchment characteristics include: Digital Elevation Model 

(DEM), Soil Map, General Soil Map, Land Use/Cover Map, GIS layer of National 

Soil Test P (STP), District Electoral Divisions (DED) Map, Central Statistics 

Office (CSO) data, Habitats Indicators Map 

 Correlations was firstly performed between fwOrtho-P number of variables and 

the results of coefficient of correlation (R
2
) are given in the table below: 

Variable R
2
 Source of data 

% of sub-catchment mapped as acidic soil 0.36 Soil Map 

% of sub-catchment mapped as peat soil -0.31 Soil Map 

Phosphorus Desorption Index (PDI) 0.42 Soil Map and STP GIS 

layer 

Runoff Risk Index (RRI) 0.41 General Soil Map 

Un-improved Pasture 0.53 Land Use/Cover Map 

Improved Pasture 0 Land Use/Cover Map 

Soil Phosphorus Test category 1 (SP1) 

representing Morgan’s P 0–6 mg/l 

-0.38 STP GIS layer 

Soil Phosphorus Test category 2 (SP2) 

representing Morgan’s P 6–10 mg/l 

0.32 STP GIS layer 

Soil Phosphorus Test category 3 (SP3) 

representing Morgan’s P above agronomic values 

0 STP GIS layer 

Soil Phosphorus Test Index (SPI) 0.29 STP GIS layer 

Livestock Unit Density (LUD) 0 DED Map and CSO Data 

Fertiliser P input and central statistics data; 0 DED Map 

% of sub-catchment areas with Topographic 

Wetness Index (TWI) >12 

0 DEM 

% of sub-catchment areas with Dry Grass 0.43 Habitats Indicators Map 



% of sub-catchment areas with Wet Grass 0 Habitats Indicators Map 

% of sub-catchment areas with Grass Peat 0 Habitats Indicators Map 

 

 A backwards-stepwise regression model was computed for fwOrtho-P 

concentrations using all of the available catchment data, namely, the land-cover 

classes, PDI, RRI, soil P, livestock density and fertiliser P indices. The final step 

in the regression model retained Unimproved Pasture, Arable, SPI and PDI that 

accounted for 41.4% of the variation in the fwOrtho-P data. 

 Full report describing the model can be accessed in the following web-link: 

http://www.epa.ie/downloads/pubs/research/water/epa_eutrophication_from_agric

ultural_sources_ertdi42_final.pdf 

 

Appendix II  

Phosphorus Desorption Index (PDI) 

Daly and Styles (2005) conducted a study to derive a desorption weightings for the peat 

and mineral Irish soils based on phosphorus sorption isotherms analysis carried out on a 

number of soil samples. The samples ranged in properties such as %OM and pH over a 

range of Morgan’s Soil P Test values. The result of this study was used by Daly and Mills 

(2006) in order to define risk rank for the peat and the mineral soils based on desorption 

rates over similar ranges of Soil P Test and sorption capabilities. Thus, mineral soils with 

high sorption capacities and desorption rates were ranked as highest risk whilst peat soils 

were ranked as lowest risk. Further analysis on the mineral soils indicated that non-

calcareous soils displayed the highest sorption capacities and the highest desorption rates 

compared to calcareous mineral soils. Following this analysis desorption in non-

calcareous and calcareous soils was expressed relative to lowest desorption values in peat 

soils and calculated as a ratio to generate a phosphorus desorption index (PDI) that could 

http://www.epa.ie/downloads/pubs/research/water/epa_eutrophication_from_agricultural_sources_ertdi42_final.pdf
http://www.epa.ie/downloads/pubs/research/water/epa_eutrophication_from_agricultural_sources_ertdi42_final.pdf
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be used to weight each soil group in terms of risk of P loss by desorption. The risk 

weights are defined arbitrary as follows;  

Soil categories Risk weights 

Non-calcareous mineral 3.2 

Calcareous mineral 1.9 

Peat 1 

  

Runoff Risk Index (RRI) 

The percentage of gley in a soil has been used as a detrimental factor to the potential 

runoff risk. Therefore threshold levels for the percentage of gley in a soil were decided 

upon and soils were divided into runoff risk categories and weighted against each other in 

terms of potential runoff risk based on values shown in the table below. The weightings 

were derived subjectively and are not based on measured data. For each sub-catchment an 

area-weighted runoff risk index (RRI) was generated by multiplying the area of each 

category by its assigned weight. 

Runoff Risk Class %Gley in Soil Risk Weights 

RR1 5-10 1 

RR2 15-25 2 

RR3 50 3 

RR4 >75 4 
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Figure 1. Neuro-fuzzy national P export model 

 

 

 

 

 

 

 

 

 

 

 

 

Clusternc Cluster1 

Data of Catchment i 

{x1,x2, ....,xnvar} 

MF1 Sub-model1 MFnc Sub-modelnc 

w1 O1 wnc Onc 

Ortho-Pi = (w1*O1+.....+wnc*Onc)/(w1+.....+wnc)  

where Oi= b0 + (b1*x1+.....+bnvar*xnvar)) 

Ortho-Pi: estimated value of average annual orthoP concentration for catchment i;  

MF: fuzzy membership function; 

nc: total number of clusters; 

Oj: output of the jth sub-model; 

w: weight given to the output of each sub-model; 

b0: constant term in the linear regression sub-model; 

bk: coefficient of the kth catchment characteristic in the linear regression sub-model  

x: catchment characteristic value; 

nvar: total number of  catchment characteristics used in the linear regression sub-model. 

3  
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Figure 2. Distribution of the 84 catchments used in the neuro-fuzzy national P 

export model 
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Figure 3. Frequency distribution of the annual average ortho-P concentrations in 

the 84 catchments used in the neuro-fuzzy national P export model 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4. Clustering results for the 2 clusters case 
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Figure 5. Clustering results for the 3 clusters case 
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Figure 6. Observed vs Estimated average annual ortho-P concentrations for 

validation – model_3 of the 2 clusters case 
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Figure 7. Observed vs Estimated average annual ortho-P concentrations for 

validation – model_3 of the 3 clusters case  
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Table 1. Spatial independent variables tested in the neuro-fuzzy national P model  

Variable Categories Source of Data 

P desorption 

index  (PDI) 
(1) Low (2) Moderate (3) High Daly and Mills (2006) 

Runoff index 

(RRI) 

(1) Low (2) Moderate (3) High (4) Very 

high 
Daly and Mills (2006) 

Geology (GEO) 
(1) Sand and Gravels (2) Carboniferous 

limestone (3) Ordovician (4) Rhyolite 
Geology map 

Groundwater 

bodies (GW) 

(1) Gravel (2) Karstic (3) Poorly 

productive bedrock (4) Productive 

fissured bedrock 

Aquifer map 

Land use (LU) 

(1) Agricultural areas (2) Forest and 

semi-natural areas (3) Wetlands (4) 

Artificial surfaces 

Derived from land use map 

(CORINE, 1989) 

Soil (SO) 

(1) Deep well drained mineral (2) 

Shallow well drained mineral (3) Deep 

poorly drained mineral (4) Poorly 

drained mineral soils with peaty topsoil 

(5) Peats (6) Miscellaneous 

Soil map  

(Gardiner, and Radford, 

1980) 
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Table 2. Potential neuro-fuzzy national P export models tested  

Model  Variables of the model 

Number of 

parameters 

for each 

sub-model 

Total No of 

parameters – 

case of 2 

clusters 

Total No of 

parameters – 

case of 3 

clusters 

Model_1 PDI + RRI 3 6 9 

Model_2 PDI + RRI + GEO 7 14 21 

Model_3 PDI + RRI + GW 7 14 21 

Model_4 PDI + RRI + LU 7 14 21 

Model_5 PDI + RRI + SO 9 18 27 

Model_6 PDI + RRI + GEO + GW 11 22 33 

Model_7 PDI + RRI + GEO + LU 11 22 33 

Model_8 PDI + RRI + GEO + SO 13 26 39 

Model_9 PDI + RRI + GW + LU 11 22 33 

Model_10 PDI + RRI + GW + SO 13 26 39 

Model_11 PDI + RRI + LU + SO 13 26 39 

 

Table 3. R
2
 values for 11 candidate neuro-fuzzy models  

Model 

Calibration Validation 

No 

cluster 

2 

clusters 

3 

clusters 

No 

cluster 

2 

clusters 

3 

clusters 

model_1 0.43 0.48 0.58 0.48 0.43 0.45 

model_2 0.45 0.66 0.70 0.47 0.56 0.52 

model_3 0.54 0.64 0.73 0.50 0.56 0.55 

model_4 0.61 0.71 0.79 0.21 0.28 0.32 

model_5 0.54 0.69 0.75 0.33 0.45 0.42 

model_6 0.56 0.76 0.79 0.46 0.53 0.45 

model_7 0.64 0.74 0.81 0.23 0.28 0.28 

model_8 0.56 0.78 0.85 0.37 0.28 0.30 

model_9 0.68 0.78 0.83 0.25 0.41 0.24 

model_10 0.62 0.75 0.83 0.38 0.45 0.25 

model_11 0.63 0.77 0.86 0.22 0.28 0.54 
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Table 4. Summary of the neuro-fuzzy national phosphorus models which achieved 

the best R
2
 values vs the Daly and Mills (2006) model  

Scenario 

Calibration Validation 

Neuro-fuzzy national P 

model 

Daly 

and 

Mills 

model 

Neuro-fuzzy national P 

model 

Daly 

and 

Mills 

model 

Cluster 

case 

Best 

Model 
R

2
 R

2
 

Cluster 

case 

Best 

Model 
R

2
 R

2
 

1 3 Model_8 0.90 0.73 3 Model_4 0.38 0.32 

2 3 Model_11 0.97 0.63 2 Model_3 0.65 0.5 

3 3 Model_10 0.84 0.72 3 Model_9 0.60 0.38 

4 3 Model_10 0.79 0.63 3 
Model_8, 

Model_10 
0.68 

0.52, 

0.49 

5 3 
Model_8, 

Model_10 
0.87 

0.41, 

0.45 
2 Model_3 0.76 0.66 

6 3 Model_9 0.87 0.70 3 Model_1 0.65 0.56 
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