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Abstract 

Therapeutic ultrasound angioplasty has been investigated, clinically, by a number of researchers and 

represents a potentially promising therapy, for the treatment of atherosclerotic lesions. To date, there has 

been no detailed analysis of the mechanical design and the effect of parameters, such as length and 

damping, for example, on wire waveguide performance characteristics. In this work, an apparatus capable 

of delivering therapeutic ultrasound down small diameter nickel-titanium (NiTi) wire waveguides is 

described. The output peak-to-peak (p-p) displacements at the distal tip of a 1.0 mm diameter wire 

waveguide were measured experimentally, by means of an optical microscope and image analysis software. 

The apparatus was tested for a range of wire waveguide lengths from 118 mm to 303 mm. Wire waveguide 

distal tip displacements as high as 98�m (p-p) at 23.5 kHz were measured. For the range of lengths tested, 

the experimental measurements show the critical relationship between output distal tip displacements and 

lengths of waveguide where resonance occurs. The finite element model developed that can determine the 

resonant lengths and achievable distal tip displacements of the wire waveguide, with the inclusion of a 

validated damping constant, will be a valuable design tool for therapeutic ultrasound angioplasty. This 

numerical model has been validated against the experimental displacement data obtained.  
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Nomenclature: 

l = length of wire waveguide 

c = longitudinal speed of sound in material 

f = frequency of ultrasound  

� = matrix stiffness multiplier 

� = constant damping value 

[M] = mass matrix  

[C] = damping matrix 

[K] = stiffness matrix 

)(
••

u  = nodal acceleration vector 

)(
•
u  = nodal velocity vector  

)(u  =  nodal displacement vector 

)( aF  =  applied load vector. 

 

1.    Introduction 

 The use of ultrasound in medicine is well documented, for both its diagnostic and therapeutic 

capabilities. In cardiology, intravascular diagnostic imaging is used to identify the presence, severity and 

composition of atherosclerotic lesions. Therapeutic ultrasound has been used in the treatment of kidney stones 

and in aortic valve de-calcification [1]. It has been proposed that this technology makes use of the fact that at 

low-ultrasonic frequencies and high-amplitude displacements, inelastic rigid tissue is disrupted, while 

healthier elastic tissue can remain largely unaffected [2].  

 It has been hypothesised that in cardiovascular surgery, this form of energy may prove extremely 

beneficial in the treatment of calcified atherosclerotic plaques [1]. Calcified lesions pose a considerable 

problem to present procedures, such as balloon angioplasty and stent implantation, which both rely on the 

mechanical loading of the plaque to re-open the occluded artery. The rigid behaviour of the calcified plaque 
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can often resist this loading and in many cases, higher balloon inflation pressures have to be utilised. Siegel et 

al [3] propose a link between high balloon inflation pressures and deep vessel injuries and acute 

complications, known as ‘barotraumas’. Topoleski and Salunke [4] have shown that the rigidity of the 

calcified material may require more specific protocols to induce fracture in the material, either prior to or 

during conventional interventions or as a stand alone procedure. 

 The development and in vivo testing of apparatuses that could deliver therapeutic ultrasound to a 

lesion began in the early 1970’s, when Sobbe et al [5, cited in 1] delivered ultrasonic vibrations via a wire 

probe, resulting in the disruption of blood clots in animals. During the mid-1980’s particular design issues 

were addressed by numerous investigators to improve the ultrasound delivery methods [6- 10]. Siegel et al [6] 

and Rosenschein et al [7] describe the generation of ultrasound external of the body by means of a 

piezoelectric transducer and ultrasonic generator. These transducers convert electrical energy to longitudinal 

mechanical displacements and when driven by an ultrasonic generator, can output axial displacements as high 

as 10 �m peak-to-peak (p-p) at between 18-45 kHz. 

 These displacements are then further amplified by means of an acoustic horn attached to the front 

mass of the transducer. An acoustic horn is a solid metal rod, designed to resonate longitudinally, at the same 

frequency as the transducer and is often tapered or stepped to further amplify the ultrasonic waves as they 

travel through the horn. Titanium or aluminium alloys are commonly used in the manufacture of acoustic 

horns and axial displacements as high as 150 �m (p-p) have been documented [7]. 

 Most work has concentrated on the delivery of this form of energy through the tortuous vascular 

structure to the lesion location. Rosenschein et al [7] describe the use of a 1.6 mm diameter solid aluminium 

transmission wire coupled directly to the acoustic horn. Fischell et al [8] working on an apparatus developed 

by Siegel and colleagues describes the use of a 0.5 mm diameter titanium wire waveguide. This system also 

appears to have been used by Ariani et al [9] and Demer et al [10]. US Patent 5304115 (1994) claims that a 

wire manufactured from Nickel-Titanium (NiTi) alloy may prove beneficial [11]. In their austenitic phase, 

these alloys appear to be able to, both, transmit ultrasound and due to their superelastic behavior, have the 

flexibility to navigate through the arterial structure. 

 Once coupled to the radiating face of the acoustic horn, the longitudinal ultrasonic waves are 

delivered into the wire waveguide and manifest themselves as a distal tip axial peak-to-peak displacement. 
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This can result in numerous mechanisms thought to be responsible for the disruption of atherosclerotic 

plaques or rigid material. Atar et al [12] concluded that four main mechanisms, as shown in Figure 1, are 

responsible for plaque disruption: 1) direct contact, 2) cavitation, 3) acoustic micro-streaming and 4) 

pressure wave components. All these mechanisms are directly related to the distal tip displacement, amplitude 

and frequency. 

 Ariani et al [9] describe a method for measuring the peak-to-peak output displacement at the distal 

tip of the wire waveguide, by the use of an optical microscope. In this configuration, the microscope is 

focused on the distal tip of the wire waveguide. When the ultrasound is applied to the transmission wire, the 

distal tip is streaked across the image and the output peak-to-peak displacement can be measured.  

 Rosenschein et al [2] and Demer et al [10] reported favourable results when in vivo and in vitro tests 

were performed on calcified atherosclerotic material. It would appear from these results and those of Siegel 

[3] that therapeutic ultrasound angioplasty is capable of ablating calcified and fibrous lesions, while avoiding 

damage to the healthy flexible arterial wall. 

 The majority of work, to date, appears to be focused on assessing the end clinical results of the 

delivery of the therapeutic ultrasound, with little information regarding how the ultrasound is transmitted to 

the distal tip of wire waveguides, or how it is affected by various waveguide parameters. This work seeks to 

further understand how ultrasound is delivered to the distal location and how resonance and damping in the 

waveguide may affect the output distal tip displacements. 

 This is achieved by developing a therapeutic wire waveguide apparatus capable of delivering 

ultrasonic longitudinal displacements at an amplitude and frequency similar to those reported in the literature.  

The apparatus is tested to determine the wire waveguide distal tip displacements (p-p) for a wide range of 

lengths of a 1.0mm diameter waveguide.  

 In addition, the finite element method is used to simulate the wire waveguide behaviour, to 

determine the frequency of operation, resonant lengths and distal tip peak-to-peak displacements. This model 

is validated against the experimental data obtained. 
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2. Experimental Methods 

2.1. Therapeutic Ultrasound Waveguide Apparatus 

 Design requirements were established for the ultrasound wire waveguide apparatus based on work 

reported in the literature [2,3,7 and 9]. These requirements included frequency of operation, achievable output 

displacements and wire waveguide diameter. 

 The actual experimental apparatus consists of a piezoelectric converter and titanium alloy acoustic 

horn that operates with a resonant frequency of approximately 23.5 kHz, as shown in Figure 2. The converter 

is driven by an ultrasonic generator at the resonant frequency, although the generator is also capable of auto-

tuning by sweeping through ± 6 % of this value. This ensures that resonance of the acoustic horn is achieved 

despite minor alterations in the resonant frequency of the system. In addition, the generator has adjustable 

input power dial settings and can display the overall root-mean-square power delivered to the distal tip of the 

acoustic horn. 

 The 1.0 mm diameter wire waveguide is made from a nickel-titanium alloy (56.0 wt % Ni, Balance 

Ti), which exhibits superelastic properties above approximately -10 degrees Celsius. In order to connect the 

waveguide to the acoustic horn, an axial crimp screw is used. The wire waveguide is crimped into the screw 

and both are fixed tightly into the radiating face of the acoustic horn. This ensures a rigid connection between 

the wire waveguide and the horn. 

 As the converter is adapted from sonochemistry applications and the acoustic horn is a tapered 

micro-horn it is necessary to encase the horn and connector to allow for infusion of a fluid to cool and load 

the horn.  The entire apparatus is housed in a lightweight portable unit, with the wire waveguide emerging 

ensheathed in a catheter. 

 

2.2. Experimental Analysis of Apparatus 

 Distal tip peak-to-peak displacements of the wire waveguide were measured experimentally by 

means of an optical microscope (SPS Laboratories), digital colour camera (Vantage) and image analysis 

software (Image Analysis System, Buehler). With a magnification factor of 40, the distal tip of the wire 

waveguide was focused on and energised with the ultrasound. This process results in a streaked image (the 
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distal tip peak-to-peak displacement of the vibrating wire waveguide) being captured and sent to the image 

analysis software where the length of the streak was measured. 

 This process was performed for four input power dials settings of 1.5, 2, 2.25 and 2.5, corresponding 

to acoustic horn distal tip power levels of 10, 13, 15 and 17 Watts (RMS) respectively, on wire waveguides 

over a range of lengths. The lengths of wire tested were from 118 mm to 303 mm in increments of 5 mm. 

 

3. Numerical Methodology 

 The problem sketch for the wire waveguide is shown in Figure 3a, while the corresponding meshed 

model is shown in Figure 3b. The wire waveguide was modelled as a thin rod, using axisymmetric 4 node 

quadrilateral structural elements (Plane42) in ANSYS Multiphysics, and axisymmetric constraints along the 

central axis, to allow movement in the axial direction only and subjected to a sinusoidal input displacement. 

 While nickel-titanium exhibits a highly non-linear super-elastic response, it was assumed that during 

ultrasound transmission and displacements in the range of interest, strains would remain less that .5 % and the 

material would remain in the austenitic phase, with a linear elastic response and modulus of 75 GPa. This 

assumption is evaluated by the model that can predict strains in the waveguide. The input material properties 

for the NiTi (from the manufacturer, Fort Wayne Metals©) wire waveguide are shown in Table1. 

 A harmonic response analysis was performed, as this would allow for the prediction of the 

waveguide resonant response over a range of frequencies. A sinusoidal input axial displacement was applied 

to the model over a set frequency range of 0 – 30 kHz. This input displacement was applied to the proximal 

elements of the wire model. From this harmonic analysis, the peak-to-peak displacements at the distal end of 

the modelled wire could be determined for all frequencies in the range of interest.  

Initially, a mesh sensitivity analysis was performed to ensure sufficient resolution of the wave 

structure, so all resonant frequencies in the frequency range of interest were accurately resolved. Mesh 

density (pattern) is defined as the number of elements in the radial direction (r) multiplied by the number of 

elements in the axial direction (y) and is presented as (r × y) [include]. An insufficient number of elements in 

the axial direction will result in the internal mode shape being poorly resolved while the number of elements 

used in radial direction is adjusted to ensure good element shape and aspect ratios. The predicted resonant 
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frequencies over the frequency range of interest were compared with the analytical solution for the resonant 

frequencies of a thin rod subjected to a sinusoidal input [13]. 

 Once an appropriate mesh structure was chosen, multiple models of wire waveguides, over a range 

of lengths from 118 mm – 303 mm, in steps of 5 mm, were generated to simulate the effects of different wire 

lengths on the distal tip displacements of the wire waveguide. 

 

4. Results and Discussion 

4.1 Experimental Results 

 An example of an image obtained at the distal tip of an energised ultrasonic 1.0 mm diameter wire 

waveguide, with the optical microscope and image analysis software, is shown in Figure 4. The image clearly 

shows the streak of the vibrating tip and the superimposed measurement from the imaging analysis software. 

This process was repeated for a range of lengths of wire waveguide (118 mm – 303 mm) and Figure 5 shows 

the results obtained for the axial peak-to-peak displacements at the distal tip of the waveguide, for various 

acoustic horn distal tip power levels. 

 These experimental results show clear evidence of which wire waveguide lengths exhibit a resonant 

response, and the effect of the wire waveguide length being close to a resonant length on the output 

displacements at the distal tip of the wire can be clearly seen. Experimental results at lengths approaching a 

resonant length could not be measured as it is a characteristic of the generator not to deliver power in this 

region. However, near the wire waveguide resonant length of 188 mm, a distal tip displacement of 98µm (p-

p) at 17 Watts (RMS) input power was observed, while the distal tip displacement was only 46 µm (p-p) at 

the anti-resonant length of 143 mm.  

 Experimentally determined anti-resonance occurred at lengths of 143 mm, 218 mm and 288 mm (see 

Figure 5) and can be compared with the analytical solution for a thin rod subjected to a sinusoidal input [13]. 

This solution gives lengths, ln, where resonance (n = 1, 3, 5…) and anti-resonance (n = 2, 4, 6...) occurs for a 

rod subjected to an input frequency, f, according to Equation 1. 

 

     
f

nc
ln 4

=      (1) 
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where c is the speed of sound in the material. 

 For the material properties given in Table 1 and a constant input frequency of 23.5 kHz, the 

comparison between analytical results and the experimental results is given in Table 2. The location of the 

analytical anti-resonant lengths is also included in Figures 5, 7 and 8. 

 Despite the fact that the acoustic horn tip displacement, which is the input to the wire waveguide, 

cannot be measured directly, as an image with the optical microscope cannot be obtained within the casing, it 

is possible to infer the displacements applied by the distal tip of the acoustic horn to the wire waveguide for 

various input powers by observing the anti-resonant displacements achieved at these power levels. For 

example, the acoustic horn distal tip power level of 10 Watts (RMS) infers an applied peak-to-peak 

displacement of 32 µm to the proximal end of the wire waveguide and is shown as the line AA in Figure 5.  

 These results will form the input axial displacement to the harmonic numerical model. Also, the 

amplitudes near resonance and shape of the resonant peaks will allow for the determination of a damping 

value for the wire waveguide at the observed operating frequency of 23.5 kHz. 

 

4.2 Numerical Results 

 The numerical results from a harmonic response analysis of a 1.0 mm diameter wire waveguide of 

303 mm length, are shown in Figure 6, for a frequency range from 0 – 30 kHz and for an input displacement 

of 30 µm peak-to-peak. Two models with different mesh densities are shown and compared with the 

analytical solution of the resonant frequencies of a rod subjected to a sinusoidal input displacement [13]. It 

can be seen from Figure 6 that an insufficient mesh density (1 × 10) results in the inaccurate determination of 

the higher resonant frequencies. The higher mesh density model (3 × 303) shows excellent comparison with 

the analytically determined resonant frequencies and is shown in Table 3. 

 Multiple models with this validated mesh density were developed to simulate a range of wire 

waveguide lengths from 118 mm – 303 mm and the distal tip peak-to-peak displacement results are shown in 

Figure 7. All results are taken at a frequency of 23.5 kHz and have input values of 32µm (p-p). These 

simulations were repeated for a number of constant damping values (4%, 4.5% and 5% shown). 
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 The constant damping value is to account for all damping phenomena in the wire waveguide. This 

inputted damping value � is used to calculate the variable matrix stiffness multiplier � according to: 

 

     
fπ

ζβ =      (2) 

 

where f is the harmonic frequency range. This value is used by the finite element model to calculate the 

damping matrix [C] according to: 

  

     [C] = (�) [K]     (3) 

 

where [K] is the structure stiffness matrix. The damping matrix is used in the general equation of motion for 

the structural system that is solved during an harmonic analysis: 

 

    )()]([)]([)]([ aFuKuCuM =++
•••

   (4) 

 

where [M] is the structural mass matrix, )(
••

u is the nodal acceleration vector, )(
•
u is the nodal velocity vector, 

)(u is the nodal displacement vector and )( aF is the applied load vector. 

 The numerical results show the effect of resonance on the distal tip displacement of the wire 

waveguide and the lengths corresponding to resonance and anti-resonance compare favourably with those 

obtained from the analytical solution. The effect of damping is also noted and any model that is to be 

comparable with the actual experimental behaviour of the wire waveguide must have input peak-to-peak 

displacement, damping value and frequency of operation similar to the experimental apparatus. 

 In order to compare the experimental measurements with the numerical model of the wire 

waveguide, a number of models for a range of wire waveguide lengths (118mm - 303mm) were simulated for 

input displacements, frequency and damping as determined from the experimental results. Output distal tip 

displacements (p-p) were taken at a frequency of 23.5 kHz for two input displacements (p-p), 32µm and 
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46µm, corresponding to the acoustic horn distal tip power levels of 10 Watts (RMS) and 17 Watts (RMS) 

respectively. 

 These results are shown in Figure 8 for a constant damping value of 4.5% and appear to fit the 

experimental data for both the wire waveguide distal tip peak-to-peak displacement and for the location of 

lengths where resonance and anti-resonance will occur and can simulate the overall behaviour of the wire 

waveguide over the range of lengths tested. 
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5.    Conclusions 

 The therapeutic ultrasonic wire waveguide apparatus described satisfies the design criteria and is 

comparable with those described by other authors. Experimental measurements confirm that high amplitude 

peak-to-peak displacements of 98µm (p-p) can be delivered to the distal tip of the 1.0mm diameter NiTi wire 

waveguide at an operational frequency of 23.5 kHz. 

 The experimental work, in addition, shows the interrelationship at the lengths investigated between 

acoustic horn distal tip power, wire length and the wire waveguide distal tip peak-to-peak displacement. In 

particular, the experimental measurements show the critical effect of wire length on the output peak-to-peak 

displacements achieved as the wire waveguide length moves between resonant and anti-resonant lengths.  

 The numerical model that has been developed predicts this critical relationship and can determine 

wire waveguide resonant lengths and the peak-to-peak displacements over the range of lengths modelled. 

This model has been validated against experimental measurements, by the inclusion of a constant damping 

value for the NiTi waveguide of 4.5 %, and can be used to predict the behaviour of the apparatus over the 

range of wire waveguide lengths tested. The numerical model will prove a valuable design tool in the further 

development of therapeutic ultrasound waveguide technology. 
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Figure 1: Location of disruption mechanisms of atherosclerotic plaque around ultrasonic vibrating 
distal-tip of waveguide in catheter 
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Figure 2: Schematic Diagram of therapeutic ultrasound wire waveguide apparatus 
showing ultrasonic generator, converter and wire waveguide 
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Figure 3b: Proximal end of waveguide model, showing radial and axial orientation. 
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Figure 3a: Problem sketch of wire waveguide, of length L, subjected to harmonic input 
displacement 
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Figure 4: Image of vibrating distal-tip of the 1.0mm diameter wire waveguide 
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Figure 6: Numerical harmonic response results for output distal-tip displacement (p-p) for a 
frequency sweep of 0-30 kHz and an arbitrary constant damping value of 1.5%. Also shown are the 
analytically determined resonant frequencies. 
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Figure 7: Numerical results of the output distal-tip displacements (p-p) for waveguides of various 
lengths (118- 303mm) for an input of 32 �m (p-p) at 23.5 kHz. Also shown are the analytically 
determined non-resonant lengths 



19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Displacement Vs. Wire Length

0
10

20
30
40
50

60
70
80

90
100
110
120

130
140

100 150 200 250 300

Wire Length (mm)

O
ut

pu
t p

ea
k-

to
-p

ea
k 

D
is

pl
ac

em
en

t (
µm

)

Numerical Results (32µm)

Numerical Results (46µm)

Experimental Results (10
Watts (RMS))

Experimental Results (17
Watts (RMS))

Analytical Non-Resonant
Lengths

Figure 8: Comparison of numerical and experimental output distal tip peak-to-peak displacements 
for various wire lengths, at a frequency of 23.5 kHz and a damping value of 4.5%. Also shown, are 
the analytically determined anti-resonant lengths. 



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.32 
 

Poisson’s Ratio 

6450 (kg/m3) Density 

75 (GPa) Young’s Modulus 

(Units) Property 

Table 1: Material properties for NiTi wire waveguide. 
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0.55 288 289.6 (n=8) 

0.36 218 217.2 (n=6) 

1.24 143 144.8 (n=4) 

Percentage Error (%) Experimental Lengths (mm) Analytical Lengths (mm) 

Table 2: Comparison of analytical and experimentally observed anti-resonant lengths of wire 
waveguide for f=23.5 kHz 

0.03 25,324 25,314 (n=9) 

0.03 19,695 19,688 (n=7) 

0.95 14,067 14,204 (n=5) 

0.029 8,440 8,438 (n=3) 

0.96 2,813 2,840 (n=1) 

Percentage Error (%) Numerical Resonant 
Frequencies  (Hz) 

Analytical Resonant 
Frequencies (Hz) 

Table 3: Comparison of analytical and numerically predicted resonant frequencies of wire 
waveguide for l =303 mm 
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