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Double quantum dot photoluminescence mediated by incoherent reversible energy transport
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We present a theoretical study of the stationary photoluminescence of two, direct-gap, semiconductor nano-
crystals, taking into account electronic excitation energy-transfer processes due to electrostatic interaction. The
results obtained here allow for the incoherent reversible energy transport that occurs when the intraband
relaxation rate in a quantum dot acceptor is comparable to, or less than, the energy-transfer rate. We investigate
the secondary emission of two different electronic level schemes that can be realized experimentally, obtain
analytical expressions for the luminescence differential cross section, and perform an analysis of its spectrum.
It is shown that when excitation is not in resonance with the levels involved in energy transfer, the energy
transfer is more efficient.

DOI: 10.1103/PhysRevB.81.245303 PACS number�s�: 78.67.Hc, 78.55.�m, 73.21.La

I. INTRODUCTION

A fundamental problem in low-dimensional physics is the
energy transport of elementary excitations in nanostructures
and, in particular, the nonradiative energy transfer between
semiconductor quantum dots �QDs�. The problem is espe-
cially important for structures with a close-packed arrange-
ment of QDs, i.e., when the interdot distance is on the order
of the QD size or smaller. Examples of these structures are
quantum dot molecules,1 chains,2 rings,3 two-dimensional4

and three-dimensional5 arrays as well as dendrites6,7 based
on QDs.

Over small interdot distances, the electrostatic interaction
between QD electronic subsystems is an important factor
that determines the electronic and optical properties of QD
ensembles. This interaction can lead to both incoherent and
coherent energy transfer between QDs, just as in atomic and
molecular systems.8 The presence or absence of coherent ef-
fects in energy transfer from the QD donor to the QD accep-
tor is determined by the relationship between the transfer rate
�DA and the dephasing rate �DA for this transition. If �DA
��DA, then incoherent energy transfer takes place; otherwise
coherent effects will influence the energy transport between
QDs. It is also important to distinguish between the two re-
gimes of incoherent energy transfer that differ from each
other by the relationship between �DA and the intraband re-
laxation rate �A of the QD acceptor. Firstly, if �DA��A, then
all the electron-hole pairs excited in the QD acceptor due to
energy transfer will quickly relax to the lowest energy state
of the QD acceptor and the energy transport will be irrevers-
ible. Secondly, if �DA��A, then some of the electron-hole
pairs of the QD acceptor will return their energy back to the
QD donor because of the energy-transfer process. So, revers-
ible energy transport will take place in this case.

When the highly excited state of the QD acceptor is in-
volved in resonant energy transfer, a significant contribution
to �A and �DA is provided by nonradiative intraband relax-

ation, so the question arises as to whether it is possible to
obtain incoherent reversible and coherent ��DA��DA� en-
ergy transfer in actual QD systems. There are numerous ex-
perimental observations of fast picosecond and even femto-
second intraband relaxation in the literature. In particular,
relaxation occurring over these time scales were observed for
colloidal QDs.9–11 However, there is also evidence of slow
intraband relaxation, on the order of tens of picoseconds12 or
even nanoseconds,13 for similar QDs. Low relaxation rates
have been reported for self-assembled QDs in Ref. 14 �InAs/
GaInP QDs� and in Ref. 15 �InxGa1−xAs /GaAs QDs�. These
findings show that the intraband carrier relaxation rate in
QDs is subject to wide variations from 108 to 1013 s−1, and
depends on the growth process, size, shape, QD material, and
the properties of the environment.

To allow interpretation of experimental results, various
mechanisms for intraband carrier relaxation have been pro-
posed. A reduction in the intraband relaxation rates in QDs as
compared with bulk materials has been predicted in Refs.
16–18. Fast intraband carrier relaxation can be explained by
multiphonon processes involving point defects,19–21 Auger-
type processes,22–24 processes mediated by plasmon and
plasmon-LO-phonon emission,25–27 as well as transitions via
surface ligand states.12,28 Obviously, the dominant relaxation
mechanisms will depend on a number of parameters, includ-
ing QD size and shape, QD and matrix materials, and speci-
men temperature. Since the energy transfer rate �DA can
reach values on the order of 1012 s−1,29 one should expect
that incoherent reversible and coherent energy transfer would
exist in real QD systems, and therefore a study of these pro-
cesses is an important problem.

Resonant energy transfer should be apparent in the optical
spectra of interacting QDs and, in particular, in their lumi-
nescence spectra. The effect has been observed in photolu-
minescence experiments in the frequency domain30–34 and
time domain.30,35–38 Although many theoretical studies have
been devoted to the investigation of a variety of aspects of
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energy transport in QD systems,39–42 a consistent theoretical
description of secondary emission for these systems, taking
into account energy transfer, has not been proposed.

In Ref. 29 the theory of stationary photoluminescence for
double quantum dots with incoherent irreversible energy
transfer has been developed. However, two other regimes,
namely, incoherent reversible and coherent energy transport
were not considered in this study. So, development of a
theory of double quantum dot photoluminescence for these
regimes is of importance.

This study is devoted to an investigation of double quan-
tum dot stationary photoluminescence, taking into account
incoherent reversible energy transport between QDs. Two
distinct types of transitions between QD electronic states
have been considered. These two schemes are sufficient to
describe photoluminescence processes for double QDs. Ana-
lytical expressions for the photoluminescence cross sections
of QD donors and QD acceptors as a function of the interdot
distance and QD relaxation parameters have been derived. A
comparison of the results obtained with calculations carried
out for incoherent irreversible energy transfer29 has been per-
formed.

II. GENERAL MODEL

Let us consider the dynamics of quantum transitions for
double quantum dots, consisting of a QD donor and a QD
acceptor, whose electronic subsystems interact with a classi-
cal optical field and the quantum electromagnetic field of the
vacuum. In addition, we assume that the QDs are coupled to
each other via a screened Coulomb potential.

The Hamiltonian of the two uncoupled QDs can be rep-
resented in the following form:

H0 = HD + HA + HR + HDR + HDL + HAR + HAL,

where

H� = �
i

�	i��i���i��

are the Hamiltonians of noninteracting electron-hole pairs in
the QD donor ��=D� and QD acceptor ��=A� in terms of
their eigenvectors �i�� and eigenvalues �	i�,

HR = �
k

�	kbk
+bk

is the Hamiltonian of the electromagnetic field, bk
+ and bk are

the operators of the creation and annihilation of photons of
the k mode with frequency 	k,

H�R = �
i,k

g�k�i�Vi�,0�
�k� bk�i���0�� + H.c.� ,

H�L = �
i

�
�t�Vi�,0�
�L� e−i	Lt�i���0�� + H.c.�

are the operators describing the interaction of the electron-
hole pairs of the QD donor and QD acceptor with the quan-
tum electromagnetic field and the classical optical field with
frequency 	L, �0�� is the vacuum state of the electron-hole

pairs, g�k=	2�	k /���V, �� is the dielectric constant of the
corresponding QD, V is the normalization volume, Vi�,0�

��

= �i���−er�e�0��, =L ,k, er is the dipole moment operator,
e are the polarization vectors of the photon, 
�t� is the
complex time-dependent amplitude of the classical optical
field.

The dynamics of the quantum transitions of uncoupled
QDs under the influence of the quantum electromagnetic
field and the classical optical field may be described by the
generalized master equation for the reduced density matrix,

�̇i�,j� =
1

i�
�H,��i�,j� + �i�,j��

k�j

� j�,k��k�,k� − �i�,j�
�0� �i�,j�,

�1�

where �i�,i�
�0� is the population relaxation rate of state i, which

is inversely proportional to its lifetime, �i�,j�
�0� = ��i�,j�

�0�

+� j�,j�
�0� � /2+ �̄i�,j�

�0� for i� j is the dephasing rate of the tran-
sition �j��→ �i��, �̄i�,j�

�0� = �̄ j�,i�
�0� is the pure dephasing rate of

the corresponding transition, �i�,j� is the rate of transition
�j��→ �i�� due to interaction with the bath. This approach
implies that the bath is weakly coupled to the dynamic sys-
tem and possesses only a short-term memory.43 So, accord-
ing to Fano,44 the relaxation superoperator is reduced to a set
of constants that determine the dynamics of the diagonal and
nondiagonal elements of the reduced density matrix. We also
assume that these constants are real, i.e., the shift of the
energy levels due to interaction with the bath is ignored.

Coulomb interaction between the QD electronic sub-
systems in the incoherent reversible regime can be taken into
account by a semiphenomenological approach based on the
energy transfer rate �DA, just as has been done for the inco-
herent irreversible regime.29 In this case, additional terms
due to the creation and annihilation of electron-hole pairs as
a result of interdot Coulomb interaction arise in Eq. �1�, de-
scribing the QD donor and QD acceptor evolution. As a re-
sult, instead of independent subsystems of kinetic equations
for the donor and acceptor, we obtain a system of coupled
equations for the double quantum dot. Evidently, the addi-
tional terms arise only for the equations that connect the QD
states involved in the energy-transfer process. For example,
if energy transfer between the iD state of the donor and the
jA state of the acceptor takes place at a rate �DA, the corre-
sponding equations for the density matrix elements, Eq. �1�,
are modified and are given by

�̇iD,iD =
1

i�
�H,��iD,iD + �

p�i

�iD,pD�pD,pD − �iD,iD�iD,iD

+ �DA� jA,jA, �2�

�̇ jA,jA =
1

i�
�H,�� jA,jA + �

k�j

� jA,kA�kA,kA − � jA,jA� jA,jA

+ �DA�iD,iD, �3�

�̇iD,kD =
1

i�
�H,��iD,kD − �iD,kD�iD,kD, �4�
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�̇ jA,kA =
1

i�
�H,�� jA,kA − � jA,kA� jA,kA, �5�

where

�iD,iD�jA,jA� = �iD,iD�jA,jA�
�0� + �DA, �6�

�iD,kD�jA,kA� = �iD,kD�jA,kA�
�0� + �DA/2. �7�

For simplicity, we have neglected a possible degeneration of
the iD state of the donor and the jA state of the acceptor in
Eqs. �2�–�5�.

Using this approach, the energy transfer rate is calculated
quantum mechanically and is of the form

�DA =
2

�2 ��0D, jA�VC�iD,0A��2
�DA

�DA
2 + �DA

2 , �8�

where VC is the screened interdot Coulomb potential,

VC�r,rD,rA� =
e2

��r + rD − rA�
, �9�

rD and rA are the radius vectors of electrons, originating
from the center of the corresponding quantum dot, r is the
vector directed from the center of the acceptor to the center
of the donor, and � is the effective dielectric constant,41

� =
��D + 2�M���A + 2�M�

9�M
, �10�

�D, �A, and �M are the high-frequency dielectric constants of
the donor, acceptor, and matrix, respectively,

�DA = �iD,0D
�0� + � jA,0A

�0�

is the dephasing rate of the interdot transition with energy
transfer, �DA=	iD−	 jA is the detuning between the inter-
band transition frequencies of the QD donor and the QD
acceptor.

We restrict our consideration to a strong confinement
mode for the spherical QD donor and QD acceptor with radii
RD and RA, respectively. Furthermore, we assume that these
QDs are embedded in a dielectric matrix, so we can use an
infinite potential wall model. This approach adequately de-
scribes the electronic structure of spherical semiconductor
QDs formed in organic and aqueous solutions by the hot-
injection method,30,45 as well as in a glass matrix by diffu-
sion phase decomposition of a supersaturated solid solution
of the basic constituents under secondary heat treatment.46,47

Systems formed from such QDs demonstrate energy-transfer
properties and offer considerable promise for biosensor and
light harvesting applications.6,30,48

As before,29 we use the simple two-band approximation
�c is the conduction band and v is the valence band� to de-
scribe the QD states. In this case, the energies and wave
functions of the QD electron-hole pairs are given by the fol-
lowing expressions:

�	i� = Eg
��� + En�l�m�

�c� + En
�� l

��m
��

�v� = Eg
��� +

�2�n�l�
2

2mc
���R�

2 +
�2�n

�� l
��

2

2mv
���R�

2

�11�

and

�i�� = �c,n�,l�,m���v,n�� ,l�� ,m���

= u�c�r��Rn�l�
�r��Yl�,m�

���,
��

� u�v
� �r��Rn

�� l
��

� �r��Yl
�� ,m

��
� ���,
�� �12�

denote the state of the electron-hole pair, where

Rn�l�
�r�� =	 2

R�
3

jl�
��n�l�

r�/R��

jl�+1��n�l�
�

is the radial part of the envelope function, u�c�r�� and
u�v�r�� are the Bloch amplitudes, Yl�,m�

is the spherical har-
monic, jl�x� is the spherical Bessel function, �nl is the nth
root of equation jl�x�=0, Eg

��� is the semiconductor band gap,
mc

��� and mv
��� are the electron and hole effective masses,

respectively, n, l, and m are the principal quantum number,
the angular momentum, and its projection for electron or
hole states. We will use the following notation for the states
of the electron-hole pairs in donors ��=D� and acceptors
��=A�: i�
�cn2l2m2 ;vn1l1m1��.

According to Ref. 29, the matrix element of the screened,
interdot Coulomb potential for spherical QDs based on
direct-gap semiconductors using a two-band approximation
is given by

MDA 
 �0D, jA�VC�iD,0A� =
e2

�r3 �rvc
�D���rcv

�A���̄ , �13�

where

�̄ = I1 sin �D sin �A cos 
 + �I1 − I2�cos �D cos �A,

�14�

rvc
��� is the matrix element of the coordinate operator between

the Bloch functions, expressed using the material parameters
of the bulk semiconductor as follows:

�rvc
���� =

P���

Eg
��� .

Here P���=�2 /m0�S�� /�z�Z� is the Kane parameter49 and m0
is the free-electron mass. We use a spherical coordinate sys-
tem �Fig. 1� where the z axis is parallel to r, vectors rvc

�D� and
rcv

�A� make angles �D and �A with r, respectively, and 
 is the
difference between their azimuth angles. In Eq. �14�,

Il =
2

�
�
l1=0

lD+lD�

�
l2=0

lA+lA�

CD,l1
�+�

CA,l2
�−� 

0

RD 
0

RA

drDdrArD
2 rA

2
RDRAQl1,l2

l

�15�

are the multipole amplitudes with

C�,k
��� = ��i�k�2k + 1�	2l� + 1

2l�� + 1
Cl�0,k0

l��0 Cl�m�,k0
l��m�� , �16�
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Ql1,l2
l = 2l−3�3/2� rD

r
�l1� rA

r
�l2

�� �2� + l1 + l2 + 1�/2
l1 + 3/2,l2 + 3/2,1 − �l1 + l2�/2 � � F4� l1 + l2

2
,
2l + l1 + l2 + 1

2
;l1 +

3

2
,l2 +

3

2
;
rD

2

r2 ;
rA

2

r2� ,

�� a

b,c,d
� =

��a�
��b���c���d�

, �17�

Cl�m�,k0
l��m�� is the Clebsch-Gordan coefficient, ��a� is the

gamma function, F4�a ,b ;c ,c� ;x ;y� is the Appel’s fourth hy-
pergeometric function,

R� = Rn
�� l

��
� �r��Rn�l�

�r�� �18�

is the radial part of the electron-hole pair envelope wave
function. Here, the unprimed symbols n� , l� ,m� indicate the
initial states while the primed symbols n�� , l�� ,m�� correspond
to the final states of the donor and acceptor.

Assuming that the QDs are made of the same material, we
can simplify Eq. �13�,

MDA =
�̄

�r3� eP

Eg
�2

. �19�

Function �̄, defined by Eq. �14�, is the generalization of the
dipole-dipole orientation factor � to the case of dipole-
forbidden interband transitions. If both transitions in the QDs
are dipole allowed, then I1=1 , I2=3, and Eq. �14� trans-
forms to the well-known expression,8

���D,�A,
� = sin �D sin �A cos 
 − 2 cos �D cos �A. �20�

If at least one interband transition in the quantum dots is
dipole forbidden, then �̄ will depend on the quantum num-
bers of the corresponding QD states and radii, as well as on
the interdot distance. Value of ��̄�2 change from 0 to �I1
− I2�2, depending on the interband dipole moment orientation.
Below, we will consider a maximal value of the matrix ele-
ment, Eq. �19�, since the effects connected with changing the
intraband relaxation and dephasing rates are most apparent

under this condition. The conditions for ��̄�2 to be a maxi-
mum are �1� �D=0, �A=0; �2� �D=0, �A=�; �3� �D=�, �A
=0; and �4� �D=�, �A=�, and we obtain

max�MDA�2 =
�I1 − I2�2

�2r6 � eP

Eg
�4

. �21�

In particular, if the transitions in the QD donor and QD ac-
ceptor are dipole allowed, then �I1− I2�2=4.

In our numerical calculations, we consider quantum dots
formed from the cubic modification of CdSe �Ref. 50�:
mc

���=0.11m0, mv
���=1.14m0, Eg

���=1.736 eV, P=1.48
�10−19 cm3 g s−2, ��=5.8, embedded in a SiO2 matrix with
a high-frequency dielectric constant �M =2.13.51

Let us find the transitions that maximize the square modu-
lus of the energy-transfer matrix element for this case. Figure
2 shows the dependencies of the square modulus of the ma-
trix element on the distance between the quantum dot sur-
faces R=r−RD−RA for several low-energy transitions. We do
not consider the trivial case where the resonant energy trans-
fer occurs between the fundamental transitions of the donor
and acceptor and they have the same radii. Figure 2 shows
that maximal values of the matrix element can be achieved
for energy transfer to �c110;v110�A state among dipole-
allowed transitions and to �c100;v110�A among dipole-
forbidden transitions. A comparison of the matrix elements
for different acceptor states allows us to make the following
conclusions. The optimal case for observation of resonant
energy transfer in nanocrystals of direct-band wide-gap

FIG. 1. Mutual orientation of vector r directed from the center
of the acceptor to the center of the donor and vectors rvc

�D� and rcv
�A�.

(b)(a)

FIG. 2. �Color online� Dependencies of energy-transfer matrix
element on intersurface distance R=r−RD−RA for different inter-
band transitions in a QD acceptor. In this calculation, we use a fixed
donor radius RD=2 nm and consider resonant energy transfer from
the lowest-energy state of the donor. Acceptor radii are obtained
from the resonance condition 	iD�RD�=	 jA�RA�. �a� Dipole-allowed
transitions. Numbers denote energy transfer with creation of the
following electron-hole pairs in the acceptor: 1—c110;v110 �RA

=2.86 nm�, 2—c120;v120 �RA=3.67 nm�, 3—c200;v200 �RA

=4 nm�, 4—c210;v210 �RA=4.92 nm�, and 5—c220;v220 �RA

=5.79 nm�. �b� Dipole-forbidden transitions: 1—c100;v110 �RA

=2.09 nm�, 2—c110;v100 �RA=2.80 nm�, 3—c120;v110 �RA

=2.94 nm�, and 4—c110;v120 �RA=3.61 nm�.
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semiconductors is realized when one of the high-energy ac-
ceptor states is in resonance with the lowest-energy donor
state �c100,v100�D because interband relaxation rates in
these materials are smaller than the intraband rate. Due to
the strong dependence of the matrix element on interdot
distance �polynomial over r� the maximal efficiency of reso-
nant energy transfer is achieved by quantum dots of the
smallest possible radius, i.e., for the lowest-energy excited
state in the acceptor. Therefore, in subsequent calculations
we will use the transitions �c100;v100�D→ �c110;v110�A
and �c100;v100�D→ �c100;v110�A as examples of dipole-
dipole and dipole-multipole resonant energy-transfer pro-
cesses, respectively.

III. FREQUENCY DOMAIN SPONTANEOUS
LIGHT EMISSION

Based on the model developed in the previous section, we
can investigate frequency domain spontaneous light emission
from double quantum dots. It is necessary to distinguish two
cases that differ each other by the photoexcitation conditions.
The first case occurs when incident light at a frequency 	L
creates electron-hole pairs in the lowest-energy state �1D� of
the QD donor �Figs. 3 and 4�. In order to describe this pro-
cess it is sufficient to use a so-called 2-3 scheme, i.e., a
two-level model for the QD donor and a three-level model
for the QD acceptor. Three relaxation channels for photoex-
cited electron-hole pairs are possible. The first channel in-
volve the interband relaxation to the QD-donor ground state
�0D� at a rate �0D,1D. The second channel involve the radia-
tive recombination of the QD-donor electron-hole pairs at a
rate W1D and emission of photons at a frequency 	1D,R. The
third channel involve the nonradiative recombination of the
QD-donor electron-hole pairs and transfer of their energy at
a rate �DA due to interdot Coulomb interaction between the
QD donor and the QD acceptor creating electron-hole pairs
in the high-energy state �2A� of the QD acceptor, which is in
resonance with the �1D� state. Since the electron-hole pair

states �1D� and �2A� are resonant with each other, the inci-
dent light can create electron-hole pairs in the �2A� state of
the QD acceptor if this state is allowed for optical transitions
�Fig. 3�. It is important to keep in mind that the dynamics of
the electron-hole pair in the �2A� state of the QD acceptor
will be the same regardless of the excitation method, whether
by energy transfer from the QD donor or direct optical gen-
eration. The electron-hole pair in the �2A� state can relax
directly to the QD-acceptor ground state �0A� at a rate �0A,2A.
It can recombine radiatively at a rate W2A, causing emission
of photons of frequency 	2A,R. This pair can recombine non-
radiationally with energy transfer at a rate �DA to the QD
donor. Finally, the pair can relax to the lowest-energy state
�1A� of the QD acceptor due to intraband transition at a rate
�1A,2A. This rate is determined by both radiative52 and
nonradiative12,19,23,26,28 intraband transitions. In the final
stage of the scenario under consideration, there are two chan-
nels of the �1A�-state relaxation. The first channel includes
the interband relaxation to the QD-acceptor ground state �0A�
at a rate �0A,1A and the second includes the radiative recom-
bination of the QD-acceptor electron-hole pair at a rate W1A
and emission of photons at a frequency 	1A,R. Note that, in
this case, the total spontaneous secondary emission signal
from the double QD will consist of three components,
whether or not energy transfer takes place. Indeed, the inci-
dent light will directly excite both the QD donor and the QD
acceptor. As a result, spontaneous light emission with rates
W1D, W1A, W2A and photon frequencies 	1D,R, 	1A,R, 	2A,R
will be observed experimentally. The presence of the energy-
transfer process will only change the relative contributions of
these components to the total signal. Another scenario will
be realized if the �2A� state of the QD acceptor is forbidden
for optical transitions �Fig. 4�. In this case, the QD acceptor
can be excited by the energy-transfer process only. As a re-
sult, a one-component signal of double QD spontaneous sec-
ondary emission from the QD donor will be observed if the
energy-transfer rate �DA is negligibly small, e.g., when the
distance between QDs is sufficiently large. If the energy-
transfer rate is high enough, two-component spontaneous
light emission with rates W1D, W1A and photon frequencies
	1D,R, 	1A,R from the QD donor and QD acceptor will be
observed experimentally. Thus, in contrast with the previous
scenario, the presence of spontaneous secondary emission
from the QD acceptor is direct evidence of energy transfer
between the QD donor and QD acceptor. For the second

FIG. 3. �Color online� 2-3 scheme of double quantum dot for the
allowed optical transitions in QD acceptor. �0D,1D, �0A,1A, �0A,2A are
the interband relaxation rates for the QD donor and QD acceptor.
W1D, W1A, W2A are the spontaneous light emission rates for the QD
donor and QD acceptor. �1A,2A is the intraband relaxation rate for
the QD acceptor. �DA is the energy-transfer rate. 	1D,R, 	1A,R, 	2A,R

are the spontaneous light emission frequencies. 	L is the incident
light frequency. �0D�, �0A� and �1D�, �1A� are the ground and
lowest-energy states of the QD donor and QD acceptor. �2A� is the
high-energy state of the QD acceptor.

FIG. 4. �Color online� 2-3 scheme of double quantum dot for
forbidden optical transitions in QD acceptor. Symbols are the same
as in Fig. 3.
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scenario, the components of the spontaneous light emission
can be distinguished easily because their spectral positions
	1D,R and 	1A,R are quite different.

It is well known �see Refs. 53 and 54� that resonant spon-
taneous secondary emission consists of resonant scattering
and resonant luminescence signals which differ from each
other by their magnitudes and spectral widths. This is the
case for the W1D and W2A contributions to the double QD
spontaneous light emission described by the 2-3 scheme
�Figs. 3 and 4�. Experimentally measured spontaneous sec-
ondary emission at the incident light frequency is difficult to
analyze and interpret since it consists of the superposition of
stray light with W1D and W2A components, both determined
by scattering and luminescence. These difficulties do not
arise for the W1A contribution to the double QD spontaneous
light emission, consisting of the luminescence signal spec-
trally shifted from the incident light frequency.

Another case of double QD photoexcitation occurs when
the incident light, at a frequency 	L, creates electron-hole
pairs in the high-energy state �2D� of the QD donor �Figs. 5
and 6�. As before, we consider situations when energy trans-
fer takes place between the lowest-energy state �1D� of the
QD donor and the high-energy state �2A� of the QD acceptor,
which are in resonance each other. In addition, we assume
that the incident light cannot excite the QD acceptor directly
because of a lack of a suitable electron-hole pair state in the
QD acceptor. Evidently, spontaneous light emission in this

case may be described using a 3-3 scheme, when three-level
models are used for both the QD donor and the QD acceptor.
In this process, there are additional steps as compared with
the previous case, namely, the intraband relaxation from the
high-energy state �2D� of the QD donor to its lowest-energy
state �1D� at a rate �1D,2D, the direct interband relaxation to
the QD-donor ground state �0D� at a rate �0D,2D, and the
radiative recombination of the QD-donor electron-hole pairs
at a rate W2D and emission of photons of frequency 	2D,R. In
contrast with the first case, the total signal due to double QD
spontaneous secondary emission will consist of either three
or four components, depending on whether the electron-hole
pair state �2A� of the QD acceptor is forbidden or allowed for
optical transitions. In the first scenario, when the �2A� state is
optically allowed �Fig. 5�, spontaneous light emission with
rates W1D, W2D, W1A, W2A and photon frequencies 	1D,R,
	2D,R, 	1A,R, 	2A,R can be observed experimentally. In the
second scenario, when the �2A� state is optically forbidden
�Fig. 6�, spontaneous light emission at rates W1D, W2D, W1A
and photon frequencies 	1D,R, 	2D,R 	1A,R will take place.
Obviously, additional contributions to the secondary emis-
sion arise due to interband transitions from the resonantly
excited high-energy state of the QD donor. It is significant
that for both scenarios, QD-acceptor emission of light results
from energy transfer from the QD donor to the QD acceptor
since the incident light cannot excite the QD acceptor di-
rectly. Thus, in contrast with the first case, the presence of
spontaneous secondary emission from the QD acceptor is
direct evidence of the energy transfer between the QD donor
and QD acceptor under both scenarios. When studying the
energy-transfer process, the contribution of light emission
from the high-energy state �2D� of the QD donor to the total
spontaneous secondary emission signal is of no interest, be-
cause its rate, W2D, is independent of the energy-transfer rate
�DA. Fortunately, it can be easily distinguished from other
components of the secondary emission since its spectral po-
sition 	2D,R differs appreciably from their spectral positions
	1D,R, 	1A,R, 	2A,R. We will not discuss this contribution to
the total spontaneous secondary emission signal any further
here. Note that the residual components of the secondary
emission are the luminescent signals spectrally shifted from
the incident light frequency.

We require explicit expressions for the population relax-
ation rates and dephasing rates of the transitions in the QD
donor and the QD acceptor in order to explore this further.
We assume a simplified relationship between them, summa-
rized by Eq. �22�,

�1�,1�
�0� = �0�,1�, �22a�

�2�,2�
�0� = �1�,1�

�0� + �1�,2�, �22b�

�̄1�,0�
�0� = a�T + b�n̄LO

����T� , �22c�

�1�,0�
�0� = �1�,1�

�0� /2 + �̄1�,0�
�0� , �22d�

�2�,0�
�0� = �1�,0�

�0� + �1�,2�/2, �22e�

where a� and b� for �=D ,A are experimentally obtained
constants, n̄LO

����T� is the Bose-Einstein function for

FIG. 5. �Color online� 3-3 scheme of double quantum dot for the
allowed optical transitions in the QD acceptor. �0D,2D is the inter-
band relaxation rate for the QD donor. W2D is the spontaneous light
emission rate for the QD donor. �1D,2D is the intraband relaxation
rate for the QD donor. 	2D,R is the spontaneous light emission fre-
quency. �2D� is the high-energy state of the QD donor. Other sym-
bols are the same as in Fig. 3.

FIG. 6. �Color online� 3-3 scheme of double quantum dot for the
forbidden optical transitions in the QD acceptor. Symbols are the
same as in Figs. 3 and 5.
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longitudinal-optical phonons at a frequency 	LO
��� and T is the

temperature. As mentioned earlier, in our numerical calcula-
tions we will consider quantum dots formed from the cubic
modification of CdSe embedded in a SiO2 matrix. In this
case aD=aA=1.5�1010 s−1 K−1, bD=bA=2.3�1010 s−1,
�	LO

�D�=�	LO
�A�=26 meV, and �0D,1D=�0A,1A=108 s−1.29

A. Double QD luminescence for the 2-3 scheme

Consider spontaneous secondary emission from a double
QD for the 2-3 scheme of QD electron states �Figs. 3 and 4�
which is suitable for the study of both irreversible and re-
versible incoherent energy transfer. Considering a stationary
external excitation 
�t�=EL=const and using Eqs. �1�–�5�,
one can obtain the luminescence differential cross section
�LDCS� per unit solid angle � and per unit of frequency
	i�,R, where i=1,2 and �=D ,A. Performing a calculation in
the lowest order of perturbation theory by interaction with
the external classical optical field and with the quantum elec-
tromagnetic field of the vacuum, one can obtain the follow-
ing expressions for the differential cross sections of the do-
nor and acceptor luminescence for incoherent reversible
energy transfer for the optically allowed transition �0A�
→ �2A� �Fig. 3�

d2�1D
�2–3�

d�d	1D,R
= C�	1D,R��V0D,1D

�R� �2LDA
�1D,0D

�1D,0D
2 + �1D,R

2

� ��V1D,0D
�L� �2

2�2A,2A�̄1D,0D + �DA
2

2��1D,0D
2 + �1D,L

2 �

+ �V2A,0A
�L� �2

�DA�2A,0A

�2A,0A
2 + �2A,L

2 � , �23�

d2�1A
�2–3�

d�d	1A,R
= C�	1A,R��V0A,1A

�R� �2
�1A,2ALDA

�1A,1A
�0�

�1A,0A
�0�

�1A,0A
�0�2 + �1A,R

2

� ��V1D,0D
�L� �2

�DA�1D,0D

�1D,0D
2 + �1D,L

2

+ �V2A,0A
�L� �2

�1D,1D�2A,0A

�2A,0A
2 + �2A,L

2 � , �24�

d2�2A
�2–3�

d�d	2A,R
= C�	2A,R��V0A,2A

�R� �2LDA
�2A,0A

�2A,0A
2 + �2A,R

2

� ��V1D,0D
�L� �2

�DA�1D,0D

�1D,0D
2 + �1D,L

2

+ �V2A,0A
�L� �2

2�1D,1D�̄2A,0A + �DA
2

2��2A,0A
2 + �2A,L

2 � � , �25�

where C�	i�,R�=4	i�,R
4 / ��c4�2�, LDA= ��1D,1D�2A,2A

−�DA
2 �−1, �i�,L=	i�−	L, and �i�,R=	i�−	i�,R are the detun-

ings of the frequency of the exciting and emitted light from
the frequency of the electronic transition in the state i�. It is
easy to see that the first and second terms in the curly brack-
ets of Eqs. �23� and �24� correspond to QD-donor and QD-
acceptor excitation by the incident light, respectively. As
noted above, secondary emission from double QDs contains
contributions from the resonant scattering signals. Using our
approach, one obtains the following expressions for the dif-
ferential cross sections of the donor and acceptor resonant
scattering

d2�1D,sc
�2–3�

d�d	1D,R
= C�	1D,R��V0D,1D

�R� �2�V1D,0D
�L� �2

�0/2
�0

2/4 + �L;1D,R
2

1

2��1D,0D
2 + �1D,L

2 �
, �26�

d2�2A,sc
�2–3�

d�d	2A,R
= C�	2A,R��V0A,2A

�R� �2�V2A,0A
�L� �2

�0/2
�0

2/4 + �L;2A,R
2

1

2��2A,0A
2 + �2A,L

2 �
, �27�

where �L;1D,R=	L−	1D,R, �L;2A,R=	L−	2A,R, and �0 is the
spectral width of the initial state.55 When the incident light
intensity is low, �0 is determined by the inverse lifetime of
the photons and �0��i�,i�. Comparison of Eqs. �23� and
�25�–�27� reveals important differences between the lumines-
cence and scattering spectra. If the incident light frequency
	L is off resonance with corresponding electronic transitions
�i.e., 	L�	1D ,	2A�, the peak position of the scattering spec-
trum will coincide with 	L, whereas the peak position of the
luminescence spectrum will coincide with 	1D or 	2D. The
spectral width of the scattering band is narrower than that of
the luminescence band. At the same �i�,L, the maximal value
of the scattering spectrum peak is far greater than that of the
luminescence spectrum peak, and hence the scattering signal

can mask the luminescence signal strongly. The lumines-
cence and scattering signals have a different dependence on
the energy-transfer rate. Since the scattering signals, Eqs.
�26� and �27�, depend on �DA only via the resonant denomi-
nators �1D,0D

2 +�1D,L
2 and �2A,0A

2 +�2A,L
2 , information about the

energy-transfer process can be obtained by recording the ex-
citation spectra of resonant scattering. The excitation spec-
trum is the dependence of the differential cross section, Eq.
�26� and �27�, on the incident light frequency 	L at a fixed
value of �L;1D,R or �L;2A,R. Evidently, the experimental exci-
tation spectrum will consist of two bands with peak positions
at 	L=	1D and 	L=	2A. The full widths of the bands at half
maximum are equal to 2�1D,0D and 2�2A,0A, i.e., they depend
on �DA directly �see Eqs. �26� and �27��. Thus, the experi-
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mental data should be analyzed by two Lorentzian fitting. An
alternative approach to investigate the energy-transfer pro-
cess is to examine the dependence of the resonant scattering
differential cross sections �RSDCS� on the value of �DA,
which is varied by changing the interdot distance r, or the
specimen temperature T. When 	1D=	2A=	L, the RSDCS
maxima are determined by the following expressions:

max
d2�1D,sc

�2–3�

d�d	1D,R
=

C�	1D,R�
�0�1D,0D

2 �V0D,1D
�R� �2�V1D,0D

�L� �2, �28�

max
d2�2A,sc

�2–3�

d�d	2A,R
=

C�	2A,R�
�0�2A,0A

2 �V0A,2A
�R� �2�V2A,0A

�L� �2, �29�

and 	1D,R=	2A,R=	L. Using the function A /�1D,0D
2

+B /�2A,0A
2 to fit the experimental data, one can obtain the

dependence of �DA�r ,T� on the interdot distance or tempera-
ture. However, this is more difficult than analyzing the spec-
tral width of the excitation spectra, since it requires either a
measurement of the absolute values of the RSDCS to obtain
�DA�r�, or a knowledge of the explicit temperature dependen-
cies of the QD material and relaxation parameters for finding
�DA�T�. For resonant luminescence �see Eqs. �23� and �25��,
one can obtain information about �DA from the width of the
luminescence spectra recorded at fixed values of the incident
light frequency 	L, because the LDCSs as compared with the
RSDCSs have the additional resonant denominators �1D,0D

2

+�1D,R
2 and �2A,0A

2 +�2A,R
2 . In this case, two Lorentzian fitting

to the experimental data allows �1D,0D and �2A,0A and hence
�DA to be obtained. Of course, one can use the excitation
spectra of resonant luminescence in order to obtain �DA in a
similar manner to the procedure used for resonant scattering
considered above. As before, for resonant scattering, one can
investigate the dependence of the LDCS maxima on the
value of �DA�r ,T�,

max
d2�1D

�2–3�

d�d	1D,R
= C�	1D,R��V0D,1D

�R� �2
LDA

�1D,0D

� ��V1D,0D
�L� �2

2�2A,2A�̄1D,0D + �DA
2

2�1D,0D
2

+ �V2A,0A
�L� �2

�DA

�2A,0A
� , �30�

max
d2�2A

�2–3�

d�d	2A,R
= C�	2A,R��V0A,2A

�R� �2
LDA

�2A,0A

� ��V2A,0A
�L� �2

2�1D,1D�̄2A,0A + �DA
2

2�2A,0A
2

+ �V1D,0D
�L� �2

�DA

�1D,0D
� . �31�

Finally, consider the QD-acceptor secondary emission due
to the optical transitions �1A�→ �0A� �Fig. 3�. This signal
is the thermalized luminescence, Eq. �24�, since it arises
following intraband relaxation in the QD acceptor. Like
the RSDCSs, the LDCS for the thermalized luminescence
depends on the resonant denominators �1D,0D

2 +�1D,L
2 and

�2A,0A
2 +�2A,L

2 . Therefore, to obtain information about �DA
from the spectral width of the luminescence band, one
should record the excitation spectra of the thermalized lumi-
nescence. As before, one can study the dependence of the
LDCS maxima on the value of �DA�r ,T�,

max
d2�1A

�2–3�

d�d	1A,R
= C�	1A,R�

��V0A,1A
�R� �2

�1A,2ALDA

�1A,1A
�0� �1A,0A

�0� ��V1D,0D
�L� �2

�DA

�1D,0D

+ �V2A,0A
�L� �2

�1D,1D

�2A,0A
� . �32�

The luminescence and resonant scattering differential
cross sections for the case when the transition �0A�→ �2A� is
optically forbidden �Fig. 4� are obtained from Eqs. �23�–�32�
if the matrix elements V2A,0A

�L� and V0A,2A
�R� are equal to zero. In

this case, the resonant scattering, Eq. �27�, and resonant lu-
minescence, Eq. �25�, from the QD acceptor disappears,
while the expressions for the LDCS, Eq. �23�, for the QD
donor and one of the LDCS, Eq. �24�, for the QD-acceptor
thermalized luminescence are simplified drastically. This al-
lows experimental data to be analyzed using single Lorentz-
ian fitting.

Neglecting second-order terms in the energy-transfer rate
��DA

2 →0� and the contribution of reverse transfer to the
dephasing and lifetime of the QD-acceptor states ��2A,0A
→�2A,0A

�0� and �2A,2A→�2A,2A
�0� �, one can obtain the LDCSs for

incoherent irreversible energy transfer from Eqs. �23�–�25�
�see Ref. 29�.

The expressions for the LDCS and RSDCS obtained
above, however, cannot be directly compared with experi-
mental data since they were obtained under the assumption
of infinite frequency resolution of the photon detection sys-
tem. For stationary excitation, expressions that allow for the
finite frequency resolution of real photon detection systems
can be obtained from Eqs. �23�–�27� by convoluting them
with a filter frequency function gF�	F�. Following Ref. 56
we consider the spectral filter as a Fabry-Perot interferom-
eter, so the filter function has the following form:

gF�	F� =
1

�

�F/2
��F/2�2 + 	F

2 , �33�

where �F is the spectral bandpass of the filter. The observ-
able values of LDCS and RSDCS are given by the following
convolution:

DCSi���i�,L,�i�,F� = 
−�

+�

d�i�,Rg��i�,F

− �i�,R�DCSi���i�,L,�i�,R� . �34�

Here �i�,F=	i�−	F is the frequency setting of the filter. Cal-
culation of expressions similar to Eq. �34� in our case is
straightforward: the widths of Lorentzians with �i�,R in the
denominator should be increased by �F and all detunings
�i�,R should be replaced by �i�,F. Note that detuning be-
tween the radiation and laser frequency can be expressed as
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�L;i�,R=�i�,R−�i�,L, so it should be replaced by �L;i�,F
=�i�,F−�i�,L. In most cases, the spectral bandpass of the
filter is described by the expression below with dephasing
rates �i�,0� and a spectral width of the initial state �0,

�0/2 � �F/2 � �i�,0�,

so we can neglect �0 /2 in RSDCSi� and �F in LDCSi�. Thus,
consideration of the finite frequency resolution of a Fabry-
Perot interferometer can be done by the following replace-
ments in Eqs. �23�–�27�,

�0/2
��0/2�2 + �L;i�,R

2 →
�F/2

��F/2�2 + �L;i�,F
2 ,

�i�,0�

�i�,0�
2 + �i�,R

2 →
�i�,0�

�i�,0�
2 + �i�,F

2 .

Separation of the photoluminescence from the total sec-
ondary emission signal in experimental spectra can be per-
formed by one of the following procedures. If �i�,0���F,
the resonant scattering peak can be excluded by decreasing
the spectral resolution. As a result, one can obtain an ap-
proximation of a luminescence contour without a sharp peak
due to resonant scattering �see Fig. 7�a��. When the measured
widths of the resonant scattering and the luminescence are of
the same order, i.e., �i�,0���F, luminescence and resonant
scattering can be separated by taking a sufficiently large de-
tuning of the incident photons �L��F. The resonantly scat-
tered photons will have a frequency 	L, whereas the lumi-
nescence signal will be observed at 	i�,R�	L. The spectrum
of the donor QD in this case is depicted in Fig. 7�b�.

It should be noted that the consideration of reverse
energy-transfer processes allows us to avoid the limitation
�DA��2A,2A

�0� and the validity of our model is limited only by
the requirement to have no coherent processes occurring

�DA � �DA.

This inequality imposes a limitation on the minimal tempera-
ture and interdot radius. In particular, for �1D,1D

�0� =108 s−1,
�2A,2A

�0� =3�1010 s−1, R=1 nm, RD=2 nm, for acceptors
whose radii satisfy the resonance conditions 	1D�RD�

(b)(a)

FIG. 7. �Color online� Methods of separation of photolumines-
cence signal from the secondary emission spectrum of donor QD
�T=4 K, RD=2 nm, and �F=2�1010 s−1�. �a� Elimination of nar-
row scattering signal from the wide luminescence contour ��i�,0�

��F� with a roughened spectral resolution in case of resonant ex-
citation, R=3 nm. Solid line depicts the calculated spectrum of
donor, Eq. �34�, round point positions have been obtained with step
of calculation larger than �F. �b� Separation of resonant scattering
and luminescence signals by using nonresonant excitation. Here
detuning energy ��L=−1 meV, R=10 nm, and �0D,1D��F. The
luminescence component is defined by the solid and the resonant
scattering component by the dashed line. FIG. 8. �Color online� Dependencies of maxima of LDCS on

intersurface distance for dipole-allowed energy transfer
�c100;v100�D→ �c110;v110�A. The donor relaxation rate is
�1D,1D

�0� =108 s−1. �a� T=300 K, �2A,2A
�0� =3�1012 s−1, �b� T

=300 K, �2A,2A
�0� =3�1010 s−1, �c� T=300 K, �2A,2A

�0� =3�108 s−1,
�d� T=90 K, �2A,2A

�0� =3�1012 s−1, �e� T=90 K, �2A,2A
�0� =3

�1010 s−1, and �f� T=90 K, �2A,2A
�0� =3�108 s−1.

FIG. 9. �Color online� Dependencies of the maxima of the
LDCS on intersurface distance for dipole-forbidden energy transfer
�c100;v100�D→ �c100;v110�A. The donor relaxation rate is
�1D,1D

�0� =108 s−1. �a� T=300 K, �2A,2A
�0� =3�1012 s−1, �b� T

=300 K, �2A,2A
�0� =3�1010 s−1, �c� T=300 K, �2A,2A

�0� =3�108 s−1,
�d� T=30 K, �2A,2A

�0� =3�1012 s−1, �e� T=30 K, �2A,2A
�0� =3

�1010 s−1, and �f� T=30 K, �2A,2A
�0� =3�108 s−1.
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=	2A�RA�, and for strong resonance �DA=0, we obtain the
following minimal temperature values: Tmin

�dd��53 K for
dipole-dipole transfer �c100;v100�D→ �c110;v110�A, and
Tmin

�dm��24 K for dipole-multipole transfer �c100;v100�D
→ �c100;v110�A. When the temperature is relatively low,
there is a limitation on the minimal interdot distance that
guarantees the absence of coherent processes. For example,
for the dipole-dipole energy-transfer process, mentioned ear-
lier, at T=30 K, the minimal intersurface distance will be
Rmin

�dd�=2.44 nm.
Let us discuss the dependencies of the luminescence dif-

ferential cross sections on interdot distance, environmental,
and relaxation parameters. Figures 8 and 9 show the depen-
dencies of the maxima of the donor and acceptor LDCS
spectra on the distance between the surfaces of the quantum
dots for dipole-allowed and dipole-forbidden optical transi-
tions in the QD acceptor at various temperatures. Three dif-
ferent values for the acceptor’s relaxation rate are consid-
ered. These functions can be divided into three regions. In
the first region, where the donor’s signal begins to decrease
and the acceptor’s signals begins to increase, we have inco-
herent irreversible energy transfer ��DA��2A,2A

�0� �. The second
region is characterized by the signals at frequencies 	1D and
	2A becoming equal, so the contribution of the reverse pro-
cesses is comparable with that of the forward processes
��DA��2A,2A

�0� �. In the third region, we observe a rapid de-
crease in the luminescence signals for all frequencies under
consideration. According to Eqs. �23�–�25�, this occurs be-
cause the energy-transfer rate �DA becomes greater than the
pure dephasing rate of the corresponding levels within the
quantum dots ��̄1D,0D and �̄2A,0A�, and begins to provide the
main contribution to the total dephasing rates ��1D,0D and
�2A,0A�. If �DA��DA, the behavior of the system are deter-

mined primarily by coherent processes,40 and Coulomb inter-
action leads to entanglement of the donor’s and acceptor’s
electron-hole pairs and removal of their degeneracy. This
situation lies beyond the area of validity of our present
model, so it is not considered in this study.

The contribution of reverse energy-transfer processes can
be estimated by calculating the ratios of the donor and ac-
ceptor cross sections using two different approximations: re-
versible and irreversible energy transfer. Figure 10 depicts
the dependencies of these ratios on intersurface distance for
two different values of the acceptor’s relaxation rate �2A,2A

�0� .
In the first case, when �2A,2A

�0� =3�1010 s−1, the acceptor’s
photoluminescence cross sections do not change significantly
due to reverse processes. The situation changes significantly
when the acceptor’s relaxation rate becomes comparable
with that of the donor. From Fig. 10�b�, consideration of
reverse energy-transfer processes raises the donor’s photolu-
minescence by more than 500 times and lowers the accep-
tor’s signal by 25%.

B. Double quantum dot luminescence for 3-3 scheme

Let us consider this scheme, when the excited light is not
in resonance with the donor transition involved in the non-
radiative energy-transfer process �see Figs. 5 and 6�. In the
case of �2A� state is dipole allowed �Fig. 5�, the LDCS ex-
pressions for frequencies shifted from the laser beam have
the following form:

d2�1D
�3–3�

d�d	R
= C�	R��V0D,1D

�R� �2�V2D,0D
�L� �2

�1D,2D�2A,2ALDA

�2D,2D
�0�

�0D,1D

�0D,1D
2 + �1D,R

2

�2D,0D
�0�

�2D,0D
�0�2 + �2D,L

2 , �35�

(b)(a)

FIG. 10. �Color online� Ratios of LDCSs calculated for the ap-
proximation of incoherent reversible d�� and irreversible d��� en-
ergy transport as functions of the intersurface distance at room tem-
perature. �a� �2A,2A

�0� =3�1010 s−1 and �b� �2A,2A
�0� =3�108 s−1. FIG. 11. �Color online� LDCS maximum as a function of inter-

surface distance for dipole-dipole energy transfer �c100;v100�D
→ �c110;v110�A. The external excitation is in resonance with the
electron-hole pair �c110;v110�D. �a� T=300 K, �2D,2D

�0� =�2A,2A
�0� =3

�1012 s−1; �b� T=300 K, �2D,2D
�0� =�2A,2A

�0� =3�1010 s−1; �c� T
=300 K, �2D,2D

�0� =�2A,2A
�0� =3�108 s−1; �d� T=90 K, �2D,2D

�0�

=�2A,2A
�0� =3�1012 s−1; �e� T=90 K, �2D,2D

�0� =�2A,2A
�0� =3�1010 s−1;

and �f� T=90 K, �2D,2D
�0� =�2A,2A

�0� =3�108 s−1.
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d2�1A
�3–3�

d�d	R
= C�	R��V0A,1A

�R� �2�V2D,0D
�L� �2

�1D,2D�1A,2A�DALDA

�2D,2D
�0� �1A,1A

�0�
�0A,1A

�0�

�0A,1A
�0�2 + �1A,R

2

�2D,0D
�0�

�2D,0D
�0�2 + �2D,L

2 , �36�

d2�2A
�3–3�

d�d	R
= C�	R��V0A,2A

�R� �2�V2D,0D
�L� �2

�1D,2D�DALDA

�2D,2D
�0�

�0A,2A

�0A,2A
2 + �2A,R

2

�2D,0D
�0�

�2D,0D
�0�2 + �2D,L

2 . �37�

If �2A� state is dipole forbidden �Fig. 6�, the signal, Eq. �37�,
is absent. These expressions are simpler than Eqs. �23�–�25�
for a 2-3 level scheme since the laser radiation excites the
donor state only.

Figures 11 and 12 depict the dependencies of the LDCS
peak heights on the intersurface distance for different com-
binations of donor and acceptor relaxation rates. A compari-
son of Figs. 8 and 9 with Figs. 11 and 12 reveals a major
difference between these two schemes. The 3-3 scheme does
not exhibit a rapid decrease in the photoluminescence signal
for very short interdot distances and for small acceptor re-
laxation rates. The primary reason for this is that the donor’s
transition due to light absorption is uncoupled with the
energy-transfer transitions �see Figs. 5 and 6� and �DA does
not contribute to the dephasing rate of electron-hole pair gen-
eration in the donor. Thus, the 3-3 level scheme in close-
packed structures of quantum dots allows more effective
resonant energy transfer than the 2-3 scheme. Nevertheless, a
comparison of LDCS ratios from Fig. 13 shows that reverse
energy-transfer processes cause major changes in the photo-
luminescence signal for low acceptor relaxation rates. In the
case of the 3-3 scheme, the increase in the donor signal is

nearly two times lower than that for the 2-3 scheme �see
Figs. 10�b� and 13�b��.

IV. CONCLUSION

We have developed a theoretical description of the sta-
tionary secondary emission from a double quantum dot, tak-
ing into account resonant energy transfer due to Coulomb
interaction. Our results allow for the incoherent reversible
energy transport that occurs when the intraband relaxation
rate in the quantum dot acceptor is comparable to, or less
than, the energy-transfer rate. Analytical expressions for the
luminescence differential cross section have been obtained
for two different level schemes that can be realized experi-
mentally. The first case �2-3 scheme� occurs when the exter-
nal optical excitation is in resonance with the QD-donor tran-
sition involved in the energy-transfer process. The second
case �3-3 scheme� occurs when the excitation creates
electron-hole pairs in highly energetic donor states which
does not take part in energy transfer.

We performed an analysis of the luminescence differential
cross-section dependencies on the dimensional and relax-
ation parameters of the double quantum dot system: viz.,
interdot distance, dephasing, and relaxation rates of the do-
nor and acceptor. It has been shown that incoherent revers-
ible energy-transfer processes can have a large impact on
the optical properties of QD systems with a close-packed

FIG. 12. �Color online� LDCS maximum as a function of
intersurface distance for dipole-forbidden energy transfer
�c100;v100�D→ �c100;v110�A, scheme 3-3, �1D,1D

�0� =108 s−1. �a�
T=300 K, �2D,2D

�0� =�2A,2A
�0� =3�1012 s−1; �b� T=30 K, �2D,2D

�0�

=�2A,2A
�0� =3�1010 s−1; �c� T=300 K, �2D,2D

�0� =�2A,2A
�0� =3�108 s−1;

�d� T=30 K, �2D,2D
�0� =�2A,2A

�0� =3�1012 s−1; �e� T=30 K, �2D,2D
�0�

=�2A,2A
�0� =3�1010 s−1; and �f� T=30 K, �2D,2D

�0� =�2A,2A
�0� =3

�108 s−1.

(b)(a)

FIG. 13. �Color online� Ratios of LDCSs calculated for the ap-
proximation of incoherent reversible d�� and irreversible d��� en-
ergy transport as functions of the intersurface distance at room tem-
perature. �a� �2D,2D

�0� =�2A,2A
�0� =3�1010 s−1 and �b� �2D,2D

�0� =�2A,2A
�0�

=3�108 s−1.
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arrangement. Comparison of the luminescence differential
cross-section dependencies for different level schemes al-
lows to conclude that the 3-3 scheme results in a better effi-
ciency of resonant energy transfer than the 2-3 scheme when
reversible processes are significant, e.g., in the cases of low
temperatures, high intraband relaxation rates in acceptor and
low interdot distances.
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