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Research Highlights 

 The impact of dipole-dipole interactions on the absorption  spectra of noble 

metals and their nanoparticles is investigated  

 The calculations of the noble metal (Ag, Au and Cu)  micro-characteristics are 

presented  

 The difference in the frequency of the resonant absorption of electron 

oscillators localized in the nanoparticle and the intrinsic frequency of the free 

electrons in the bulk metal is due to resonant dipole-dipole interactions  

 

 

ABSTRACT 

Based on the Drude-Lorentz model, the effect of free and bound electrons on the optical properties of 

noble metals and their nanoparticles is analyzed. It is shown that the shifts of absorption bands of 

plasmons localized in spherical nanoparticles with respect to the zero frequency of free electrons in a bulk 

metal can be estimated on the basis of the theory of resonant dipole-dipole interactions. The calculation 

includes account for differences between the effective and average electromagnetic fields.  It is 

established that the difference in oscillator strength for free electrons in the bulk metal, obtained using the 

Drude-Lorentz model, and the microscopic oscillators in the corresponding spherical nanoparticle, is due 

to background polarization. This occurs at the expense of high-frequency excitation of the bound 

electrons. These results show that interparticle interactions in the noble metals in the quasi-static 

approximation can be regarded as dipole-dipole interactions of point dipoles with a concentration equal to 

the concentration of free electrons. 

 

1. INTRODUCTION 

The investigation of the optical properties of metal nanoparticles of various sizes and shapes has attracted 

a great deal of attention from researchers over the last two decades (see, for example, Refs.  [1-5]). 

Excitation of surface plasmons in these particles has stimulated considerable interest in these materials, 

since their unique optical properties can be exploited in a variety of devices [6-8]. Possible applications 

include highly sensitive chemical and biological sensors [9-11], single particle/molecule detection [12], 

surface enhanced spectroscopy [13,14], waveguiding [4] and lasing [5]. This research has resulted in a 

number of textbooks and comprehensive reviews, some of which are cited above, devoted to the synthesis 

and fabrication of  a variety of composite systems as well as modelling and characterisation of their linear 

and nonlinear optical properties. Modelling of the optical properties of small particles is under active 

development using a modification of the Maxwell-Garnett approximation [2,15] using numerical 

calculation techniques [16]. 
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    A somewhat different approach was undertaken recently, as described in Ref. [17], where the 

influence of dipole-dipole interactions on the spectral properties of noble metal nanoparticles was 

investigated. In addition, the dependence of noble metal nanoparticle spectra on the properties of the 

surrounding medium was explored. In this study, the possibility of using a combination of the theory of 

intermolecular interactions and dispersion of effective field (DEF) approaches for the analysis of the 

effect of resonant and inductive-resonant dipole-dipole interactions on the plasmon absorption frequency 

of materials is investigated. Both granular films and colloidal solutions of gold and silver nanoparticles 

were considered.  It was shown that theoretical calculations, assuming a quasi-static approximation 

applies, are in good agreement with experimental data.  Note that resonant dipole-dipole interactions in 

this context refer to the interaction of similar oscillators in a single-component or composite environment 

[17,18]. Inductive-resonant interactions reflect the influence of a transparent matrix on the spectral 

characteristics of an isolated particle and are apparent in the absorption spectra of dilute composite media, 

see [17] and references therein. Based on this approach, it is shown in present study that the difference 

between the frequency of the Lorentz oscillator, describing the absorption of free electrons in the bulk 

metal, and the absorption frequency of the plasmon, localized within the corresponding spherical 

nanoparticle, is due to interparticle interactions of free electrons. These interactions occur both between 

the electrons and between electrons and positive lattice ions. This latter interaction can be considered a 

dipole-dipole interaction of point oscillators, whose concentration is equal to the number of atoms per 

unit volume in a metal. It will be shown that the differences in the oscillator strength of the free-electron 

oscillators in bulk metal obtained using the Drude-Lorentz model and microscopic oscillators in the 

corresponding spherical nanoparticles are due to background polarization occurring at the expense of 

high-frequency excitation of bound electrons. 

 

2. THEORETICAL APPROACH 

1. Models used for the description of the optical characteristics of metals 

The theoretical basis for the description of the optical characteristics of metals was laid down in the 

classic work by Drude (see, for example, Refs. [1,2,19,20]), who considered the conduction electrons as a 

free electron gas, excluding the effect of interband transitions involving the bound electrons. In order to 

allow for interband transitions, which have a significant impact on the optical properties of metals in the 

near IR, visible and ultraviolet regions of the spectrum, the integrated Drude-Lorentz (DL) [1,2,19,20] 

model was introduced. In this model, the dielectric function of the metal includes two terms. These two 

terms take into account contributions from both conduction electrons and bound electrons involved in 

interband transitions. 

In accordance with the DL model, the complex dielectric permittivity, ε(ω), of the metal can be 

expressed as a contribution of intraband effect (or free electron effect, Drude formula),  εintra(ω), and 

interband effect (or bound electron effect, Lorentz formula), εinter(ω), in the following form [1,2,19,20]  

  

        𝜀(𝜔) = (𝜀𝑖𝑛𝑡𝑟𝑎(𝜔)) + (𝜀𝑖𝑛𝑡𝑒𝑟(𝜔)) = (1 −
𝐹0𝜔𝑝

2

[𝜔(𝜔−𝑖Γ0)]
) + (∑

𝐹𝑗𝜔𝑝
2

[(𝜔𝑗
2−𝜔2)+𝑖𝜔Γ𝑗]

𝑘
𝑗=1 ) .    (1) 

 

Here, ωp   is the plasma frequency and the term 𝐹0𝜔𝑝
2 is related only to intraband transitions of the free 

electrons with oscillator strength Fo and damping constant Гo. Similarly Fj, ωj
  and Гj  represent the 

dispersion parameters of the j-th oscillator, describing the corresponding interband transition for the 

bound electrons. In general, Eqn. (1) does not contain a correction for the local field. This is taken into 

account only when considering the contribution of bound electrons to the dynamic matrix of transition 

metals [19].  In this case, it is assumed that a local (effective) field, Eeff(ω), acting on a free electron in a 

metal is equal to the mean Eav(ω) field in this medium [1]. However, according to the results of Ref. [17], 

it appears that when applying the point-dipole approximation, allowing for the spectral differences 

between the Eeff(ω) and Eav(ω) fields is wholly justified for metals. Indeed, free electrons in a metal are 

under the influence of both the external field and the fields created by other electrons and ions. In order to 

take into account electron-electron and electron-ion interactions, one must take into account the local 

field, which is the electrodynamic equivalent of these interactions in the metal. To a first approximation, 

this can be done on the basis of the Lorentz relation, which gives  

𝐸𝑒𝑓𝑓(𝜔) = 𝐸𝑎𝑣(𝜔)[𝜀(𝜔) + 2]/3,                           
where )()()(

21
 i  represents the spectrum of the complex dielectric constant of a condensed 

medium (which in the case considered here is a bulk metal as well as its nanoparticles).  Since the 

dielectric function of the bulk metal, bulk(ω), which is determined experimentally, experiences the 



influence of several interparticle interactions, it is assumed that their effect on the spectroscopic 

characteristics of the metal can be taken into account using the above expression.   

This assertion is supported by a series of studies by Granqvist et al. (see, for example Refs. 

[18,21]) as well as reports [22,23] published earlier, where a combination of an effective medium 

approach and dipole-dipole interactions considering the local-field effect was applied to the description of 

the optical properties of thin metal films and small metal particles. However, only average local field 

factors were used when considering the differences in the integrated intensities of the spectra of 

nanoparticles of different shapes by introducing the resultant depolarization factors.  

 In this study, it will be demonstrated how interparticle interactions manifest themselves in the 

optical properties of noble metals and their nanoparticles, based on a consideration of the spectral 

differences between Eeff(ω) and Eav(ω) and the theory of dipole-dipole interactions. As a consequence, it 

is clear that the free and bound electrons in these cases have different effects on the characteristics of the 

plasmon absorption bands. 

Attempts have been made recently to more accurately predict the dielectric function of metals 

using various models, including a modified Debye model, a Drude-Lorentz model (DL) and of Brendel-

Bormann (BB) model among others, see, for example, Refs. [24-26]. These efforts are necessary due to 

the escalating use of metal films and particles in various fields of science and technology [3-5,27-29] and 

the consequent requirement for more accurate predictions of their optical constants over a wide spectral 

range. For example, in Ref. [24], DL and BB models and experimental data was used to evaluate the 

dispersion parameters describing the dielectric function for a wide range of different metals, including 

Au, Ag, Cu and Al, over a broad spectral range. In order to analyse the role of dipole-dipole interactions 

on the optical properties of bulk metals and the absorption bands of the corresponding localized 

plasmons, we used parameters from the dispersion oscillator in [24], describing the absorption 

contribution of free electrons to the dielectric function of Au, Ag and Cu. 

The dispersion of the dielectric constant of condensed matter, 𝜀𝑏𝑢𝑙𝑘(𝜈), in general can be 

represented as 

 

𝜀𝑏𝑢𝑙𝑘(𝜈) = 𝜀∞ + ∑
[𝑁𝑒2 𝜋𝑚𝑐2⁄ ]∙𝐹𝑗

𝜈𝑗
2−𝜈2+𝑖𝛾𝑗𝜈𝑗   ,                          (2) 

 

where N is the concentration of the oscillators in cm-3, e and m are the charge and mass of the electron, c 

is the speed of light in vacuum and νj, Fj and γj are the frequency, oscillator strength and damping 

constant of the j-th dispersion oscillator respectively. The sum on the right-hand side of this expression is 

similar to the last term in Eqn. (1). We will use the wavenumber , as used in molecular spectroscopy, 

instead of  below, but will continue to refer to it as frequency, measured in cm-1 and related to  as  = 

/2c.  

Eqn. (2) for an isolated resonance in the visible or infrared region of the spectrum can be 

expressed in terms of microscopic quantities, taking into account the difference between Eeff and Eav 

fields, leading to its modification in the form of [30,31]: 
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Here fj, νj, and γj are the oscillator strength, intrinsic (or eigen) frequency and damping constant of a 

particular jth microscopic oscillator, N is their concentration,  and ε∞ is the background dielectric constant 

in this spectral region, taking into account high-frequency transitions.  

It is known that the Drude model can be considered a special case of a Lorentz model, in which 

the frequency of the oscillator, taking into account the contribution of the free electrons, is 0 (i.e., ν j = 0 = 

0 in Eqn.(2)) [19] and ε∞ =1 (for the ideal electron gas), which results in term (𝜀𝑖𝑛𝑡𝑟𝑎(𝜔)) in Eqn. (1), i.e. 

in Drude formula. The dielectric function of bulk metal in the low-energy region, where electronic 

intraband transitions dominate, can be described to a good approximation by Drude model with taking 

into account the contribution of intense interband transitions simply by the background permittivity ε∞ 

and, therefore, we can calculate εbulk() as 
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Here ν0=0 is the frequency of the macroscopic dispersion oscillator for free electrons with oscillator 

strength F0, and damping constant γ0. These parameters for Ag, Au and Cu can be taken from the Ref. 

[24].  

 Our calculations show that the spectrum of imaginary part of dielectric function ε2
micro() of 

microscopic oscillator, correspondent to plasmonic resonance  for noble metals, is dominant in the visible 

and infrared range.  Therefore, to a certain extent,  we can assume that the dielectric function for a bulk 

metal,  εbulk(), can be calculated using Eqns. (3) on the one hand, and on the other hand using Eqn. (3a), 

i.e. 
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where fc, νc, and γc are the oscillator strength, intrinsic frequency and damping constant of a particular  

microscopic electronic oscillator, and N is their concentration, corresponding to the number of free 

electrons per unit volume. A comparison of both parts of Eqn. (3b) shows that the strength of the 

microscopic oscillator, fc, is connected with the dispersion oscillator, F0, by the expression 

 

fc  = F0 θav ,                                                    (4)  

 

where           θav =9/(ε∞ + 2)2                                                   (4а) 

 

is the mean value of the Lorentz polarization correction. 

Analysis of Eqn. (3b) also shows that the frequency of the dispersion macroscopic oscillator 0 

and the intrinsic frequency of the microscopic oscillator, c, corresponding to the absorption frequency of 

the localized plasmon, are related by 

𝜈𝑐
2 − [

𝑁𝑓𝑐𝑒2

3𝜋𝑚𝑐2] ∙
𝜀∞+2

3
= 𝜈0

2 = 0 .           (5) 

Note that the above assumptions for comparing two parts in Eqn. (3b) were made only to find simple 

formulas Eqns. (4) and (5) for the relationship between the oscillators’ strength and the frequencies of 

macroscopic and microscopic oscillators, which will be compared later in Tables 1 and 2 using other 

approaches as well.   

It has been shown previously that the origin of the differences between the frequencies and 

intensities of optical macro- and micro-characteristics are the resonant interactions of molecules, or 

oscillating dipoles, in a condensed medium. Accounting for a dispersive effective local field (DEP) 

[32,33], as previously developed by Bakhshiev et al. [34,35], is a convenient technique for the analysis of 

the impact of these interactions on the absorption spectra of condensed media. 

 

2. Accounting for the dispersive effective field in the spectroscopy of dipole-dipole interactions 

in a condensed medium 

The DEP technique is a variant of the effective field method used in the derivation of Eqn. (3a), allowing 

the Lorenz model to take into account the difference in strength between the local and average fields in 

the condensed matter under consideration. This methodology is based on a comparison of the observed 

absorption spectrum of a condensed medium and the corresponding corrected spectrum, interpreted as a 

dielectric loss spectrum of its microscopic counterpart. In recent years, the efficacy of the DEP method 

has been demonstrated in the study of the spectral characteristics of granular metal films [36], as well as 

of condensed matter experiencing spatial restriction [33,37].  

Thus, the DEP method allows the establishment of a connection between the observed 

absorption spectra of condensed matter and the spectral characteristics of the microscopic oscillators 

responsible for this absorption. The effective, or acting, field Eeff () plays the role of an electrodynamic 

equivalent of the total impact on the molecule, or particle, of the external macroscopic field and the force 

field of intermolecular interactions (IMI). The external macroscopic field E() is considered as a weak 

perturbation and so this consideration does not go beyond standard linear molecular optics. 

It should be noted that these considerations can be attributed not only to the individual molecules 

but also to the corresponding nanoparticles and clusters. Their absorption will be determined by the 

spectroscopic characteristics of their constituent molecules in the absence of any influence from the 

medium polarization.  In Refs. [33,37] it has been shown that the dielectric loss spectrum in this case can 

be conveniently presented as  

 



𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) = 𝜀2(𝜈)𝜃(𝜈) ,      (6) 

 

where  𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈)  and 𝜀2(𝜈) are the spectra of the imaginary part of the complex microscopic and 

macroscopic permittivity of the dielectric material particles, respectively. From here, we will consider the 

latter to be equal to the dielectric permittivity of the bulk medium 𝜀2
𝑏𝑢𝑙𝑘(𝜈). In this case, the Lorentz 

correction factor, θ(), for an isotropic homogeneous medium, expressed as a function of frequency,  has 

the following form 

θ(ν) =│Е(ν)/Еeff(ν)│2   =  9/│(ν) + 2│2                                        (6а) 

Here )()()(
21

vivv    is the spectral behaviour of the complex dielectric permittivity of the 

condensed matter in the region of the absorption band considered. The maximum of the function θ(), and 

hence of 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈), is situated near the frequency F satisfying Frohlich’s condition Re(F) = -2 [38]. 

Note that νF is sometimes referred to as Fröhlich’s frequency.   

The DEP method demonstrates good agreement between the frequency maxima of 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈)  

spectra and the intrinsic frequencies of the lattice vibrations, calculated from the elastic characteristics of 

the crystal [39,40]. When the local field is taken into account using the Lorentz model, it results in an 

oscillation frequency of spherically shaped micro-regions of crystal with dimensions far larger than the 

lattice constant, but much smaller than the wavelength of the probe radiation. As shown in [33], this 

conclusion applies to all dielectric media, including liquids. Thus, it can be concluded that expression (6) 

corresponds to the spectrum of individual spherical particles, having their own spectral characteristics 

different from the characteristics of bulk samples of the same material. These particles can be considered 

"meso-oscillators" or meso-particles (see Refs. [33,37]), the optical properties of which, in the long-

wavelength limit (d << λ), originate in spectral differences between the macroscopic and microscopic 

electromagnetic fields. In this case, the applicability of the concepts underlying the DEP method has been 

confirmed by results of an analysis of the influence of dipole-dipole interactions on the absorption spectra 

of granular films of noble metals and their colloidal solutions [17]. 

 

3. DISCUSSION AND RESULTS 

As shown in Ref.[17], allowing for the dispersion of the effective field in the quasi-static approximation 

enables linkage of the spectral characteristics of small metal particles with the optical properties of bulk 

metals. The dielectric loss spectrum of the strongly diluted composite medium, consisting of spherical 

metal particles with a diameter d << λ and a transparent matrix with a permittivity of h, can be 

represented by an expression analogous to Eqn. (6) 

𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) = 𝑞 ∙ 𝜀2

𝑏𝑢𝑙𝑘(𝜈)𝜃(𝜈) ,           (7) 

where 𝜀2
𝑏𝑢𝑙𝑘(𝜈) is the dielectric loss spectrum of the bulk metal and q its bulk concentration. The local 

field factor θ() is given by 

θ(ν) = 9/│𝜀2
𝑏𝑢𝑙𝑘(𝜈) + 2εh │2         (8) 

where εh is the dielectric constant of the surrounding medium. Note that expression (7), with q << 1 is 

consistent with Maxwell-Garnett's formula underlying modern effective media theory. For q = 1 and h = 

1 it coincides with Eqn. (6). The spectrum 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) in the general case can be considered as a spectrum 

characteristic of plasmons localized on an isolated spherical metal particle in a medium with permittivity 

h. From an understanding of IMI spectroscopy [32] used in Ref. [17], the oscillator strength of the j-th 

quantum transition in a condensed medium can be represented as 

𝑓𝑐 =
2𝑚

𝑁𝑒2 ∙ 𝜈𝑐 ∫ 𝜀2
𝑚𝑖𝑐𝑟𝑜 (𝜈)𝑑𝜈 =

2𝑚

𝑁𝑒2 ∙ 𝜈𝑚𝑎𝑥𝜃𝑎𝑣 ∫ 𝜀2
𝑏𝑢𝑙𝑘 (𝜈)𝑑𝜈 = 𝐹𝑚𝑎𝑐𝑟𝑜𝜃𝑎𝑣 .    (9) 

 

Here fc is the strength of microscopic oscillators for this transition, N is their concentration, θav is the 

average value of the effective field factor, equal to the ratio of the integrated intensities of the spectra 

𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) and 𝜀2

𝑏𝑢𝑙𝑘(𝜈) and c and max are their respective frequency maxima. The average value of θav 

can also be determined if, in Eqns. (6) and (7), the spectral value of 𝜀2
𝑏𝑢𝑙𝑘(𝜈) is replaced by the average 

background value of the dielectric constant in this spectral region, εbg, and εh is set equal to 1.  

For a strong, isolated absorption band, it is a good approximation, however, to use the value of 

the dielectric constant in the high frequency region of the spectrum, ε∞, as its average value, following 



from Eqn. (4a). The strength of the microscopic oscillator in Eqn. (9), which is directly dependent on the 

square of the matrix element of the transition dipole moment (f = (m/e2)·│dμ/dq│2), can be determined 

from the integrated intensity of the spectrum of the imaginary part of the microscopic dielectric 

permittivity 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈), which is related to  𝜀2

𝑏𝑢𝑙𝑘(𝜈) by Eqn. (6).  It can be assumed that, for metals, these 

microscopic oscillators are electrons, forming a plasmon localized in a spherical nanoparticle. Thus, if we 

know the value of the average dielectric constant of the metal at frequencies ν much larger than the 

frequency of the localized plasmon, then the strength of the microscopic oscillator is not difficult to assess 

using Eqn. (4). These evaluations were made using data from dispersion analysis for Au, Ag and Cu, 

reported in Ref. [24].  

From the data reported in [17] it follows that similar results can be obtained by analysing the 

influence of the dielectric permittivity of  the surrounding medium,  εh, on the frequency of the isolated 

plasmons in accordance with Eqn. (7). It has been shown that the shift (Δνind-res) of the frequency 

maximum, max, of the plasmon absorption band of isolated nanoparticles due to the influence of εh can be 

estimated using 

 

Δνind-res   = νmax( )(
micro

2
 ; εh =1 ) – νmax( )(

micro

2
 ;  εh >1),         (10) 

where the first term on the right-hand side of Eqn. (10) is the peak position of spectrum 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) at εh 

=1, while the second term in this equation is the peak position of that spectrum at εh >1. According to 

[17], for the analytical determination of the shift of the plasmon absorption spectra of highly dilute 

composites of small metal particles caused by inductive-resonant interactions, one can use the following 

expression 

                       ∆𝜈𝑖𝑛𝑑−𝑟𝑒𝑠 =
(𝜀ℎ−1)

6
∙ [

𝑓𝑒2

(4𝜋𝑚𝑐2𝜈𝑜𝑅3)
] = 𝐷 ∙ 𝐴 ,     (11)       

 

where the factor in the square brackets is determined by the electronic oscillator strength, f, in this 

plasmon, m is the electronic mass, c is the speed of light in vacuum, νo is the frequency maximum of the 

absorption band and R is the effective radius of the IMI, which correlates with the size of the volume 

attributable to one electronic oscillator. The concentration of these oscillators is assumed to be equal to 

the concentration of free electrons in the bulk metal. 

From Eqn. (11), it follows that the frequency shift, Δν, is proportional to the strength of the 

electronic oscillator and increases linearly with the εh of the environment surrounding the particle, a result 

of the increase in the dielectric factor D = (εh -1)/6. This is supported by results from calculations of the 

absorption spectra of an isolated plasmon for Au and Ag, performed in [17], based on Eqns. (7), (10) and 

(11) as well as by experimental data from Refs. [41,42]. From Eqn. (11), the quantity A = Δνind-res /D, 

defining in this case the strength of the electronic oscillator of the plasmon, does not depend on the nature 

of the nanoparticle’s environment. Indeed, the calculated value of A in the case of gold and silver, with an 

increase in the εh values from 1.7 to 9, deviates from the mean value by not more than 10%. Similar linear 

relationships (Δind-res = AD) over a narrower range of εh values were also obtained for many other 

metals, and will be published elsewhere. The average values of A for gold and silver, calculated in [17] in 

this manner from data on the optical constants given in Ref. [43] are AAu = 4610 cm-1 and AAg  = 15100 

cm-1 respectively.  We note that results for the value of A for gold and silver were recently updated using 

experimental data on the optical constants of Au [44] and Ag [45]. The values obtained are AAu = 4900 

cm-1 and AAg = 15000 cm-1 (see Table 1). These updated results for Au and Ag deviate by less than 5% 

from our previously calculated values of A, based on n() and k() from Ref. [43]. Calculations for Cu 

were also performed based on tabulated data from Ref. [43], resulting in a value of ACu = 3040 cm-1 with 

calculated spectra  𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) shown for different h values in Fig. 1a and the dependence of A vs D 

demonstrated in Fig. 1b. We note that more recent results on the optical constants for Cu, published in 

Ref. [46] (specifically Figure 2 in the paper) seem to be in relatively good agreement with results from 

[43] over the spectral range investigated. 

It follows from Eqn. (11) that an expression for the strength of the electronic oscillator in an 

isolated plasmon can be expressed as 

f =Am4π2c2νoR 3/e2 .    (12)  

Since the concentration of free electrons in nanoparticles of Au, Ag and Cu is equal to the concentration 

of atoms in the bulk metal and assuming that the radius of the volume, V, per electron and the effective 

radius R of IMI are similar, expression (12) can be transformed to 

                                      f = 3Am π c2νo/ N e2                    (13) 



where    N= 1/V =  3/4πR3. 

The results of a comparison of electronic oscillator strength for localized plasmons in 

nanoparticles of gold, silver and copper obtained from Eqn. (13) and corresponding values from Eqn. (4) 

are shown in Table I. Also shown are results from Ref. [24] on the strength of dispersion oscillators, F0, 

describing the oscillations of free electrons in the corresponding bulk metals and average values of the 

effective field factors, θav, calculated using Eqn. (4a). 

From Table I, the oscillator strength of electrons in a spherical nanoparticle or in a localized 

plasmon for gold, silver and copper, determined from Eqn. (13) and following, according to Eqn. (4), 

from the dispersion analysis data of Ref. [24], are well correlated (cf. columns VI and VIII). We conclude 

that the difference in the oscillator strengths of free electrons in the bulk metal and electrons in a spherical 

nanoparticle in the long-wavelength limit is due to background polarization, occurring at the expense of 

high-frequency excitation of bound electrons.  

 

Let us now consider the spectral differences in the macro- and micro-characteristics of the metals. 

 

From an analysis of Eqns. (3b) and (5), it has been shown that the basis of the difference in the 

frequency maximum of the absorption bands for macro- and micro- characteristics in the case considered 

may be resonant dipole-dipole interactions in the metal environment.  As shown in [17], the difference 

between the dispersion and intrinsic frequencies characterising the macro- and micro-characteristics of 

condensed matter is determined by the resonant frequency shift, dyn, of the microscopic oscillator with 

respect to the frequency maximum of the absorption band of the bulk media: 

          Δ𝜈𝑑𝑦𝑛 = 𝜈𝑚𝑎𝑥(𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈)) − 𝜈𝑚𝑎𝑥(𝜀2

𝑏𝑢𝑙𝑘(𝜈)) .                           (14)             

It is obvious that the resonant shift with respect to the metal, as described by the oscillator model and the 

dipole approximation, and according to Eqns. (5) and (14) equal to the intrinsic frequency of the plasmon 

νc, can be represented as          

∆𝜈𝑑𝑦𝑛 = 𝜈𝑐 = √
𝑁𝑓𝑐𝑒2∙(𝜀∞+2)

3𝜋𝑚𝑐2∙3
  ,   (15) 

 

where fc = F0() is the strength of the microscopic oscillator, characterising the absorption of free 

electrons, νc is the intrinsic frequency, corresponding to the maximum of the 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) spectrum and N, e 

and m are the concentration, charge and effective mass of a free electron. 

The spectra of experimental optical constants n() and k() of Au, Ag and Cu according to [43-

45], as well as the calculated spectra of the plasmon absorption 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈)  from Eqn.(6), the local field 

factor, θ() from Eqn. (6a), and  𝜀2
𝑏𝑢𝑙𝑘(𝜈) = 2𝑛(𝜈)𝑘(𝜈),  are presented in Figs. 2a,b,c. The spectra of 

optical constants, calculated from the Eqn. (3a) by means of parameters 0, F0 and 0 from Ref. [24] for free 

electrons, are denoted as n0() and k0(). Using these spectra, the calculated values of the macroscopic 

and microscopic dielectric permittivities are 𝜀1
0(𝜈), 𝜀2

0(𝜈) and 𝜀2
0𝑚𝑖𝑐(𝜈) respectively. These spectra are 

shown in Figs. 2d,e,f.   

The peak positions of spectra 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) (denoted as c), 𝜀2

0𝑚𝑖𝑐(𝜈) (denotes as 𝜈𝑐
0) as well as the 

frequency shift of the localised plasmon from the frequency of the free electrons in the bulk metal, 

calculated using the theory of resonant interactions by Eqn. (15), are shown in Table 2. Also given are the 

parameters of dispersion oscillator of absorption band for free electrons from Ref. [24] (column II) and 

experimental peak position (exp) of absorption band of spherical nanoparticles (column III) from different 

sources [2,49-51].  

These data show that the calculated frequency shifts are close to the frequency of localized 

plasmons, obtained using Eqns. (5) and (6), as well as being close to experimental data on the absorption 

spectra of colloidal solutions and granular films of noble metals [17,36,41,42]. Note also that the values 

of the frequencies of localized plasmons, compared with the frequency maximum of the spectrum 

𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈), coincide with a spread of not more than 5% with other calculated and experimental data [2] 

obtained for particles with diameters of 1-20 nm (listed in column III of Table 2), for which the 

contribution of dynamic polarization to the frequency shift is close to zero.  

The primary role of free electrons in the plasmon absorption of metal nanoparticles can be 

identified by comparing the experimental spectral characteristics of bulk silver, gold and copper obtained 

in [43-45] and calculated by Eqn. (3a) using dispersion oscillator parameters, modelling the contribution 

of free electrons to the corresponding dielectric loss spectra.  



As can be seen from figures 2a,b,c, the optical characteristics of solid metals in the region of 

plasmon absorption are strongly influenced by absorption due to low frequency excitation of bound 

electrons. Nevertheless, the plasmon absorption band of gold and silver nanoparticles, calculated 

according to Eqn. (5), appears at a frequency close to that observed experimentally (see column III in 

Table 2). Furthermore, it is close to satisfying Fröhlich’s condition Re(νF) =  2, in accordance with the 

frequency maximum of function θ(ν), see Table 2. If we neglect the low-frequency electron interband 

transitions, with the contribution of high frequency transitions taken into account via ε∞, in accordance 

with Eqns. (3a), it is clear that the frequency maximum of the plasmon absorption band, caused solely by 

free electrons, is only insignificantly shifted toward the low-frequency part of the spectrum (Figs. 2d,e,f). 

Also, comparison of the data presented in Figs. 2a,b,c and 2d,e,f shows that low frequency interband 

transitions lead to a drastic reduction in both the amplitude and linewidth of both the θ(ν) function and the 

plasmon band 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈). 

It is interesting to note that Fröhlich’s condition does not apply to Cu, as evidenced in Table 2 

and the experimental spectra 𝜀1
𝑏𝑢𝑙𝑘(𝜈) for Cu, see, for example, Fig. 2 in Ref. [46]. A quantitative 

explanation for the deviation from the 𝜀1
𝑏𝑢𝑙𝑘(𝜈𝐹) = 2 condition was given already (see, for example, Ref. 

[2] page 36]). It is ascribed to a large and strongly frequency-dependent contribution from 𝜀2
𝑏𝑢𝑙𝑘(𝜈), due 

at least partially to the location of interband transitions close by. The approach used here clearly 

demonstrates that if the bulk dielectric constants (𝜀1
0(𝜈) and 𝜀2

0(𝜈)) are calculated based on optical 

constants (n0() and k0()),  obtained from the dispersion parameters for a Drude oscillator at 0 = 0 from 

[24], then Fröhlich’s condition is satisfied for Cu as well as for Au and Ag (see column VI in Table 2 and 

Figs. 2d,e,f) . 

 

 

 

 

4. CONCLUSIONS 

In conclusion we would like to emphasise that the calculations of noble metal micro-characteristics 

presented here are made in the quasi-static approximation, which is valid for spherical particles with 

dimensions much smaller than the wavelength of the electromagnetic radiation. The actual particle size is 

not taken into account and calculated values are normalized to the number of free electrons per unit 

volume, which in a nanoparticle is assumed to be equal to the concentration of atoms per unit volume of 

the metal. The results obtained lead to a conclusion that, using a point-dipole approximation, electron-ion 

interactions in the noble metals can be considered as the interaction of virtual dipoles, which, against the 

background of the spectral manifestations of all other energy states, determine the optical characteristics 

of metals in the visible and IR regions of the spectrum. Support for this conclusion comes from modelling 

the absorption of free electrons by a dispersion oscillator using the Drude-Lorentz model [5,24]. From this 

data, the intrinsic frequency of the virtual dipole oscillators practically coincides with the frequencies of 

the maxima of the plasmon absorption bands of the corresponding spherical particles with a diameter less 

than 20 nm. The shift of these intrinsic frequencies from the frequency of the macroscopic dispersion 

oscillator for free electrons (ν0 = 0) agrees well with estimates made using the theory of resonant dipole-

dipole interactions. Relevant characteristics of plasmon absorption bands appear under confinement 

conditions, where particle sizes are much smaller than the wavelength of electromagnetic radiation. Under 

these conditions, effects of optical polarization on the frequency of the probe radiation, and, consequently, 

the resonant dipole-dipole interactions, are virtually absent.  

Clearly, the difference in the frequency of the resonant absorption of electron oscillators localized 

in the nanoparticle and the intrinsic frequency of the free electrons in the bulk metal is due to resonant 

dipole-dipole interactions. Differences in the corresponding oscillator strengths are determined by the 

background polarization, arising from the excitation of bound electrons in the high frequency region of the 

spectrum. 

We would like to mention that despite the fact that the results and interpretations given here relate 

only to the particular case of small spherical particles of Au, Ag and Cu, they indicate the generality of the 

spectroscopic manifestations of resonant dipole-dipole interactions, not only in liquids and dielectric 

crystals, but also in metallic media. Our purpose was simply to draw attention to the fact that interesting 

results can be obtained based solely on considerations from classical physics and by extending molecular 

spectroscopy approaches to non-molecular structures. Nevertheless, the rather surprising results obtained 

with simple approaches require further in-depth theoretical study, to which we want to draw the attention 

of researchers working in the area of theoretical physics. 
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Figures 

Figure 1. Dielectric-loss spectra 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) of plasmon absorption in spherical particles of Cu in various matrices, 

calculated in the quasi-static limit from Eqns. (7),(8) with variation of εh of the ambient medium: 1 (a), 2.4 (b), 3.5 

(c), 5 (d), 7 (e), 9 (f). b)  Linear dependence of the inductive-resonant dipole–dipole frequency shift of the absorption 

maximum by a plasmon in Cu vs dielectric factor D=(εh-1)/6. The obtained slope, A=Δ/D, is equal to 3040 cm-1. 

The numbers in brackets in Figure a) correspond to the numbers shown beside the relevant curves; the data for curve 

(1) is multiplied by a factor of 7 and is also shown with curves 2 and 3 in the insert for clarity. 

 

Figure 2.  Experimental and calculated spectra of optical characteristics of noble metals. Calculations of spectra 

𝜀2
𝑏𝑢𝑙𝑘(𝜈) = 2𝑛(𝜈)𝑘(𝜈), 𝜃(𝜈) (using Eqn. (6a)), and 𝜀2

𝑚𝑖𝑐𝑟𝑜(𝜈)  (using Eqn. (6)) are based on experimental 

spectra n() and k() taken from a) Ref. [44] for Au, b) Ref. [45] for Ag and c) Ref. [43] for Cu. The real 𝜀1
0(𝜈)   

and imaginary 𝜀2
0(𝜈) parts of dielectric function 𝜀𝑏𝑢𝑙𝑘(𝜈), calculated by Eqn.(3a) for the bulk metal based on 

parameters 0, F0 and 0 from Ref. [24] for zero oscillator, and calculated by Eqn. (6)  using these functions, 

spectra  𝜀2
0𝑚𝑖𝑐(𝜈) for Au (d), Ag (e) and Cu (f). The peak position of spectrum 𝜀2

0𝑚𝑖𝑐(𝜈), and the intersection 

with spectrum of  𝜀1
0(𝜈), correspondent to Fröhlich’s condition Re(νF) =  2, are shown by number beside each 

spectrum and by arrow in figures d), e), and f).  For clarity of presentations, some of the spectra are multiplied 
by a specific factor shown in the legends.  
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Table 1. Comparison of the electronic oscillator strength for localized plasmons in nanoparticles of Au, 

Ag and Cu, reported in Ref. [24] and obtained from Eqn. (14) for free electron oscillators, and calculated 

from experimental optical constants of bulk metal using Eqn. (13).  

Metal  

Nx1022,  

cm-3 

  

 

 

av 

Eqn.(4a) 

 
F0 

 

 

 

f = F0av 

Eqn. (4) 

 

 A,  cm-1 

 

f 

Eqn. (13) 

c, сm-1 

peak position 

of 𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈) 

at εh=1 

I II III IV V VI VII VIII IX 

Au 

 

5.9  

9.5a 

0.068 0.76b 

0.77c 

0.0517 

0.0524 

4610d 

4900e 

0.0512d 

0.0551e 

19610 

19840 

Ag 5.86 3.7 [48]  

0.277 

0.845b 

0.821c 

0.234 

0.227 

15100d 

15000f 

0.241d 

0.242f 

28170 

28250 

Cu 8.49 12.07 

[47] 

0.0454 0.575b 

0.562c 

0.026 

0.0255 

3040 0.022 18180 

 

 
a ε∞ = 9.5 corresponds to the average value calculated using data from Refs. [26,47,48]  
b Parameters of Drude-Lorentz dispersion oscillator from Ref. [24]       
c Parameters of Brendel-Bormann dispersion oscillator from Ref. [24]  
d Calculated using optical constants from [43] 
e Calculated using optical constants from [44] 
f Calculated using n() and k() from [45] 

 

Table 2.  Comparison of peak positions of isolated plasmons of Au, Ag and Cu, obtained in the quasi-

static approximation using experimental optical constants (n() and k()) from Refs. [43-45], as well as 

from dispersion parameters for the absorption band of free electrons from Ref. [24] and the theory of 

intermolecular interactions using Eqn. (15).   

 

     

Metal 

Parameters of dispersion 

oscillator of absorption 

band for free electrons from 

Ref. [24]    

Exp. peak 

position of 

abs. band of 

spherical 

nano-

particles, 

νexp, cm-1          

max , peak 

position of  

𝜀2
𝑚𝑖𝑐𝑟𝑜(𝜈)

см-1 

(Eqn. (6) 

and data 

from [43-

46])  

Peak 

position of 

abs. spectra 

of free 

electrons 

Eqn.(15)  

c, cm-1 

 

Fröhlich’s frequency c
0, of 

spectra  

𝜀2
0𝑚𝑖𝑐(𝜈) 

obtained 

for 0-os-

cillator, 

cm-1 

 

 

From 0-          

oscillator    

for 1
0(F), 

F
0, cm-1  

 

From bulk 

for 

1
bulk(F), 

F
bulk, cm-1 

I II III IV V VI VII VIII 

 0
a F0 Г0

a       

Au 0 0.76 0.053 19530b 

19417c 

19380e 

<19442>* 

19610 

[43] 

19840 

[44] 

 

 

18560 

18720  

 

19763 

[44] 

18720 

Ag 0 0.845 0.048 27027b 

24875d 

28248e 

<26717>* 

28170 

[43] 

28250 

[45] 

 

 

28380 

27970  

 

28249 

[45] 

27980  

Cu 0 0.575 0.03 17857b 

18148e 

18180 

[46] 

16200 17680 27420 

[46] 

17650 



<18003>f 

 
a Data from Ref. [24] in eV. 
bData from Ref. [49] (see also Fig. 4.13 from Ref.[2]). 
c Data from Ref. [50]. 
d Data from Ref. [51] (see also Ref. [2], Fig. 2.42).  
e Calculation data from Ref. [2] (see Appendix A, pages 452-455).  
f Average value from the data above. 
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