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Light Coupling Between a Singlemode-
Multimode-Singlemode (SMS) Fiber Structure and a

Long Period Fiber Grating
Qiang Wu, Yuliya Semenova, Youqiao Ma, Pengfei Wang, Tuan Guo, Member, IEEE, Member, OSA,

Long Jin, and Gerald Farrell

Abstract—We propose a novel optical coupling technique based
on evanescent field coupling between a singlemode- multimode-
singlemode (SMS) fiber structure and a long period fiber grating
(LPFG). By parallel placement of the two fiber sections in close
proximity to each other, the excited multi-cladding modes from the
SMS fiber section can be selectively coupled to the guided mode in
the LPFG, and vice versa. A theoretical analysis based for such
a structure is undertaken and the simulated results are verified
by experiments demonstrating a maximum coupling efficiency of
up to 1.66% (which could be improved to 27.5% in theory) over a
broadband resonance (42 nm with a 3 dB bandwidth).

Index Terms—Long period grating, optical coupler, optical
switch, SMS fiber structure.

I. INTRODUCTION

L IGHT coupling between two parallel long period fiber
gratings (LPFG) written in single mode fibers or an LPFG

and a tilted fiber Bragg grating (FBG) have been widely inves-
tigated recently [1]–[5]. The principle underlying the coupling
technique is based on the fact that either an LPFG or a tilted FBG
can couple light from the guided core mode to a cladding mode
and inversely couple light from a cladding mode to the guided
core mode. When two LPFGs or an LPFG and a tilted FBG are
placed close to each other in parallel, the reciprocal power in-
teraction that occurs between the fibers takes place due to the
evanescent field coupling between the cladding modes excited
by either the LPFG or tilted FBG. Couplers based on the above
technique can be used as band pass filters or optical add-drop
multiplexers in optical communication systems [5].
Compared to an LPFG or tilted FBG, a singlemode- multi-

mode-singlemode (SMS) fiber structure has the advantages of
low cost and ease of fabrication [6]–[14]. The principle of an
SMS fiber structure is that multimode interference takes place
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within the multimode fiber (MMF) section when light is injected
from the singlemode fiber (SMF) into the MMF. At the other
end of the MMF the light is coupled to the output singlemode
fiber (SMF), both core and cladding modes will be excited and
will propagate within the output SMF. Our previous investiga-
tion has proved that the cladding modes can be reflected by an
FBG and re-coupled to guided core mode if the FBG is located
close to the SMS fiber structure [15]. In a fashion similar to
two parallel LPFGs, the cladding modes excited by the MMF
in the output SMF can also be coupled to another SMF if that
SMF is placed close to and in parallel to the output SMF of the
SMS. If one of cladding modes coincides with the resonance
condition of the LPFG, then it will be coupled to a guided core
mode. In this paper we propose using an SMS-LPFG configu-
ration to construct a novel optical coupler to achieve broadband
coupling, which also has the advantage of a relatively low cost
and simple fabrication technique. A theoretical analysis based
on the proposed configuration is provided supported by experi-
mental verification.

II. THEORETICAL BACKGROUND

The proposed coupling configuration between an SMS fiber
structure and an LPFG is shown in Fig. 1.
In Fig. 1, the SMS fiber structure consists of a short section

of MMF spliced between two SMFs at both ends (SMF1 and
SMF2) and LPFG imprinted in SMF 3, positioned in parallel.
When light is injected from SMF1 into MMF, multiple modes
will be excited and transmitted within the MMF. For the mul-
tiplemodes injected fromMMF into SMF2, a portion of the light
is coupled to the guided core mode while the remaining light is
coupled to cladding modes in SMF2. If an LPFG is placed close
(that is a small value of d in Fig. 1) and in parallel to the SMS
fiber structure, the cladding modes will be coupled from SMF 2
to SMF 3 and some selected cladding modes in SMF 3 will then
be coupled to the guided core mode in SMF 3 via the LPFG.
The coupling regions are Sections 1 and 2 as shown in Fig. 1.
Assuming the amplitudes of the core and cladding modes

within the SMF are and respectively and the field
profile within the MMF is which is mth eigenmode of
the MMF, the field after a propagation distance within the
MMF can be written as:

(1)

0733-8724/$26.00 © 2011 IEEE
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Fig. 1. Coupling configuration between an SMS fiber structure and an LPFG.

where is the propagation constant of the mth eigenmode
within the MMF and is the excitation coefficient for each
mode which can be expressed as:

(2)

where is the eigenmode of the SMF. At the interface
between the MMF and the output SMF 2, the light will be cou-
pled to both core and cladding modes within SMF 2 which can
be expressed as:

(3)

where is nth mode within SMF 2 ( represents the
core mode and represents cladding modes). The field of
the cladding modes at a position within the SMF2 can be
written as:

(4)

It is noted that in the above equations, the mode fields are
normalised as

Over the length of coupling Section 1, the evanescent field cou-
pling coefficient between the two parallel fibers can be ap-
proximately expressed as [16]:

(5)

where is the radius of the fiber cladding and (shown
in Fig. 1) is the separation between the two parallel
fibers, and are the modified Bessel functions,

is the relative refractive index differ-
ence between the cladding and surrounding medium .

and
are the normalized parameters

and is the effective refractive index of the nth cladding
mode. Assuming the two parallel fibers are identical, then there
is no mismatch between the propagation constants of the two
fibers and hence the amplitudes of the nth cladding modes
and at position can be expressed as [17]:

(6)

(7)

The coupling over the length of Section 2 has been given by
Chiang as follows [16]:

(8)

where, see (9) at the bottom of the page, where is
the coupling coefficient of the LPFG ( is the indexmodulation
and is the spatial overlapping of LP and the nth cladding
mode) and are the three roots of (10) and
(11)

(10)

(11)

(9)
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Fig. 2. Simulated transmission spectra for LP modes within SMF 2 in
the SMS structure.

where is the detuning from the resonant wave-
length and is the period of the LPFG.
The above equations can all be numerically solved and hence

the light coupling from port 1 to port 4 can thus be calculated.

III. NUMERICAL SIMULATIONS

Unlike a structure consisting of two parallel LPFGs, there are
multiple cladding modes excited by the SMS fiber structure in
our proposed coupling technique. A study was firstly carried out
to investigate the spectral response of different cladding modes
excited by the SMS fiber structure. Fig. 2 shows examples of
the simulated transmission spectra for the guided core mode and
some claddingmodes within SMF 2. In this simulation example,
the MMF has core and cladding diameters of 50.8 and 125 m
and refractive indices of 1.4446 and 1.4271 respectively and the
length of the MMF section is 10 mm. The SMF has core and
cladding diameters of 8.3 and 125 m and refractive indices
of 1.4495 and 1.444 respectively and the surrounding media is
assumed to be air.
Fig. 2 shows that the guided core mode has a minimum loss

of 0.2 dB at a wavelength of 1640 nm, corresponding to the
self-imaging condition for this particular SMS fiber structure
[7], [8]. The cladding modes each have different spectral re-
sponses vs. wavelength, for example, for the LP mode there
is minimum loss of 5.6 dB at a wavelength of 1470 nm. It
should be noted that the positions of wavelengths withminimum
loss for different modes can be adjusted by selecting different
lengths of the MMF section. Of all the cladding modes shown in
Fig. 2 the LP mode has the flattest response in the wavelength
range from 1500 to 1600 nm and has a minimum loss of 7.1 dB.
We firstly investigated in simulation the coupling between an

SMS fiber structure and an LPFG assuming that an LPFG has a
resonance wavelength which corresponds to the LP cladding
mode. Fig. 3 shows the spectral response for coupling from Port
1 to Port 4 at different surrounding refractive indexes and length
of Section 1. In this simulation, the fiber parameters are the

same as those above and the LPFG has a period of 390 m and
length of 15.6 mm (40 periods), and it is also assumed that the
two fibers are in perfect contact .
Fig. 3(a) shows that when the light is injected from port 1,

the light is coupled to port 4 but as the surrounding refractive

Fig. 3. Simulated (a) output spectra from port 1 to 4 for different values
and surrounding refractive index and (b) coupling efficiency vs. surrounding
refractive index at different .

index increases from 1.0 to 1.44, the coupling efficiency in-
creases from to dB when mm. The
influence of the surrounding refractive index on the coupling
efficiency is shown in Fig. 3(b).
Fig. 3(b) shows that as the surrounding refractive index in-

creases from 1.0 to 1.44 (the value close to the cladding re-
fractive index), the coupling efficiency increases significantly
in both cases when and 20 mm; the closer the value
of surrounding refractive index approaches that of the cladding
refractive index of the fiber, the steeper the change in the cou-
pling efficiency. Also for the higher value of , the coupling
efficiency is significantly higher.
The above investigations are based on the assumption that the

contact between two parallel fibers is ideal . However in
practice it is very difficult to consistently achieve such an ideal
contact between two fibers. The spectral responses at different
separation distances and surrounding refractive indexes for

mm are shown in Fig. 4(a) and the relationship be-
tween the coupling efficiency and fiber separation is shown in
Fig. 4(b).
Fig. 4(a) shows that at lower values of the surrounding re-

fractive index , the influence of a change of 1 m in the
separation is significant: the coupling efficiency decreases by
36.3 dB at and by 19.5 dB at respec-
tively; as the surrounding refractive index gets closer to the
cladding refractive index of the fiber, the influence of separation
is much smaller with a decrease in the coupling efficiency
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Fig. 4. Simulated (a) output spectra from port 1 to 4 at different separation
and surrounding refractive index and (b) coupling efficiency vs. fiber separation
at .

of only 2.14 dB at . However Fig. 4(b) shows that
even with a larger surrounding refractive index of 1.44, which
is very close to the value of 1.444 of the cladding refractive
index, larger values of the fiber separation will nevertheless
have a significant influence on the coupling efficiency which
decreases linearly from to dB as fiber separation
increases from 0 to 10 m.

IV. EXPERIMENTAL VERIFICATION

Experiments to investigate the coupling between an SMS
fiber structure and an LPFG were carried out. A simple SMS
fiber structure was fabricated by fusion splicing with an MMF
length of 10 mm. The SMF used is conventional SMF28 made
by Corning and the MMF has a core diameter of m.
Both fibers have step index profiles. The LPFG is written
in the fiber by a CO laser with a grating period of 390 m
and the grating length of 15.6 mm. The separate normalised
transmission spectra for the SMS fiber structure and LPFG are
shown in Fig. 5.
Fig. 5 shows that the fabricated SMS fiber structure has a sim-

ilar spectral response to that simulated for the LP core mode
shown in Fig. 2 and the LPFG used has a resonant wavelength
at 1552 nm. In order to achieve coupling between the SMS fiber

Fig. 5. Measured normalised spectral responses of the SMS fiber structure and
LPFG.

Fig. 6. Measured spectral response by injecting light from port 1 to 4 with
of 0 and 20 mm.

structure and LPFG, they were physically arranged in close con-
tact in free space over a contact region with a length of 10 cm.
The fibers are pre-strained, aligned parallel with each other and
secured by two V-grooves at either end of the 10 cm contact
region. Since CO laser illumination introduced a strong asym-
metric index distribution which pulls the field of the cladding
mode towards the exposed side of the LPFG, the side of the
fiber exposed during fabrication is positioned to face the SMS
fiber structure to achieve maximum coupling efficiency [5]. The
measured spectral responses of the coupling between SMS fiber
structure and LPFG are shown in Fig. 6.
Fig. 6 shows that the coupling efficiency with mm

is much higher than that with mm and the maximum
coupling efficiency is 1.66% (circa dB). In the case of

mm, the 3 dB bandwidth of the coupled light is 42
nm and the side lobe suppression ratio, defined as the ratio
of the peak coupling efficiency to the side lobe coupling effi-
ciency, is 24 dB. This result indicates that the proposed cou-
pling technique offers potential applications in broadband fil-
ters, signal taps and optical add-drop multiplexers (OADMs) in
coarse wavelength division multiplexed (CWDM) optical com-
munication systems.
We also investigated experimentally the symmetrical trans-

mission characteristics of the coupling technique. For light in-
jected into port 4 and detected at port 1, the coupling has a
very similar spectral response to the case above when injecting
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light from port 1 to port 4, which indicates that the coupling
has symmetrical transmission characteristics. Finally the light
injected from port 2 to port 3 was also investigated and our ex-
perimental result shows that there is no output power at port 3.
This is because in this case a cladding mode only is excited in
the LPFG and transmitted downstream, and while this cladding
mode is coupled from SMF 3 to SMF 2, when light is trans-
mitted through the LPFG, the coupled cladding mode will not
transit through the MMF and therefore will not be re-coupled
to the guided core mode in SMF 2. The coupled cladding mode
in SMF 2 will therefore dissipate due to absorption by contam-
ination at the cladding-air interface and the unstripped polymer
coating of the SMF.
It is noted that due to the limitations of the equipment used in

our experiments, it is very difficult to consistently achieve phys-
ically perfect contact between the SMS fiber structure
and LPFG. Since the fibers separation has significant influence
on the coupling efficiency as shown in Fig. 5(b), the maximum
coupling efficiency achieved in our experiments is 1.66% (circa

dB). The coupling efficiency can be optimized by en-
suring that the mechanical support scheme for the structure pro-
vides for consistent close fiber-to-fiber contact across the length
of the overall structure and also that contamination of both the
fiber surfaces and of the RI matching liquid is minimised. In
theory the maximum coupling efficiency could be 19.5% (circa

dB) for LP mode and this value could be as high as
27.5% (circa dB) for the LP mode as shown in Fig. 2. By
optimizing the parameters of the MMF such as core diameter,
length and refractive index of core and cladding, we believe the
coupling efficiency could be further improved.

V. CONCLUSION

In conclusion, a novel coupling technique based on the
evanescent field coupling between an SMS fiber structure
and an LPFG was proposed and theoretically analyzed. Ex-
periments based on the proposed technique were carried out
which agree well with the theoretical analysis. Experimentally
we have achieved a maximum coupling efficiency of 1.66%
which theoretically can be improved to 27.5% or even higher.
In our proposed configuration the SMS fiber structure can
excite multiple cladding modes and LPFG can act as a mode
selector. By optimising the parameters of the MMF such as
core diameter and length, the spectra of the excited cladding
modes can be effectively tailored, and hence the final coupled
spectra can be shaped. Since there are multiple cladding modes
excited by the SMS fiber structure, it is feasible to extend this
structure to eight ports by using three different LPFGs with
different resonant cladding modes such as LP , LP and
LP to achieve a different spectral response at different output
ports. It is noted that the transmission spectrum of an SMS fiber
structure is dependent on the length of the MMF section. For
the SMS fiber structure used in our experiments, experimental
results show that every 100 micron variation in the MMF length
will introduce a wavelength shift of approximately 25 nm in the

transmission spectrum. However the current technique used to
set the MMF length prior to cleaving can easily achieve better
than one micron accuracy, allowing for the fabrication of SMS
fiber structures with a high degree of reproducibility.
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