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Abstract 
Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-

observational information systems in order to capture the true meaning of the associated data sets. Data 

models underpinning these information systems are often too rigid in their data representation to allow 

for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to 

observational data representation reduces the ability of multi-disciplinary practitioners to share 

information in a computable way. 

  

Object oriented techniques typically employed to model data in a complex domain (with evolving 

domain concepts) can unnecessarily exclude domain specialists from the design process, invariably 

leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. 

In many cases, an over simplification of the domain concept is captured by the computer scientist. 

  

This paper proposes that two-level modelling methodologies developed by Health Informaticians to 

tackle similar problems of specific domain use-case knowledge modelling can be re-used within ESS 

Informatics. A proposed methodology to re-use two-level modelling within geo-observational sensor 

systems is described. We show how the Open Geospatial Consortium’s (OGC) Observations & 

Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary 

for two-level modelling), and upon which more volatile domain specific concepts can be defined and 

managed using archetypes. A use-case is presented, followed by a worked example showing the 

implementation methodology and considerations leading to an O&M based, two-level modelling design 

approach, to realise semantically rich and interoperable Earth System Science based geo-observational 

sensor systems.        
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Introduction 

Earth System Science (ESS) portrays the Earth as an intricate network of interrelated entities (NASA 

1986). In ESS, Earth is viewed as a complex, evolving planet that is characterised by continuously 

interacting physical and biological change (Mackenzie 2010). Changes within Earth’s processes occur 

across a wide range of geospatial and temporal scales. Understanding the extent of change between 

interrelated Earth processes in terms of time, space and scale is important for making higher-level 

decisions (for example relating to human populations and biological related industries such as agri/aqua-

culture). Reflecting the multi-faceted nature of the system that they study, Earth Systems Domain 

Scientists comprise a variety of domain specialists. ESS Scientists have a need to combine data from 

many sources and in various ways (ideally computable ways) to synthesize new understanding and 

document new knowledge (Di et al. 2002). 

 

In-situ remote sensor deployments and satellite based Earth Observation (EO) systems monitoring 

environmental phenomena are two important sources of computable data for Earth Scientists (Hart, 

Martinez 2006). Observation systems are often built in isolation, and the data representations and 

associated documentation systems where they exist, are not adequately designed for secondary use and 

higher order knowledge generation.  

 

In 1998 US Vice President Al Gore set out his vision for what he termed “Digital Earth” (Gore 1998). 

Gore’s vision was a challenge to a diverse global community to enable the increasing amount of raw 

geospatial data to be combined and processed into understandable information. To achieve the Digital 

Earth vision, Gore highlighted the need to break into the vast silos of data and make these data sets 

accessible and suitable for secondary use.  

 

In recent times, many countries and jurisdictions have established their own EO systems (Westerbeeke 

et al. 2006) (GEO 2016). NASA’s Earth Observing System Clearing House (ECHO) (Pfister et al., 

2001; ECHO 2005) and the European Earth observation programme Copernicus (EO/Copernicus 2016) 

are good examples of how heterogeneous systems are being developed. In addition to these relatively 

monolithic satellite-based remote sensing systems, there is an even larger number of heterogeneous in-

situ remote sensing systems for capturing and publishing useful data. In general, there are a plethora of 

heterogeneous monitoring systems with different access protocols, syntax, data types, identifiers, coding 

systems and metadata models; that in their current state do not provide any clear mechanism for 

interoperability even at the most fundamental data representation level. Cross-community sharing of 

computable information is therefore difficult to achieve in practice. Barriers to interoperability of this 

type within ESS Informatics means that ESS domain specialists cannot fully exploit the data that may be 

available and this compounds the problem of vast data silos referred to in Gore’s vision. 

 

The challenges of interoperability are well documented and are core elements of many research agendas 

including Geographical Information Science (Yuan et al. 2005). Much of the work done to date within 

the Information Science community has been to enable interoperability through standardisation, 

particularly at the syntactic level. However, Goodchild argues that:  

 

“Standards have the effect of codifying and constraining, whereas geographic information is 

evolving rapidly, demanding a much more flexible approach to metadata that reflects changing 

needs and expanding context.” (Goodchild 2006) 
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Goodchild’s statement is valid for all complex, evolving domains where domain concept models also 

need to reflect that evolution; and traditional meta-data modelling techniques are employed. Grossner et 

al. (2008) refer to this system evolution requirement as extensibility and list it as an essential component 

for a Digital Earth system. Other essential components listed in the context of a Digital Earth system are 

semantic and ontology-based data models and object-level metadata. Object-level metadata refers to the 

need to distinguish and manage observational data and derived knowledge.   

 

Recently, Craglia et al. (2012) set out a renewed vision for a Digital Earth leading to 2020, and 

highlighted several grand challenges. Solutions to some of these challenges are emerging through 

semantic interoperability efforts for geo-observational data systems. Standards such as the Open 

Geospatial Consortium's (OGC) Observations & Measurements (O&M) standard (Cox 2006) and 

ontology alignment efforts (Fernandez, Susel, 2013); standard meta-data models and controlled 

vocabularies (GEMET 2012) with the linking of instance data to ontological concepts and terminologies 

for semantic interoperability (Wölger et al. 2011) (Leadbetter et al. 2016) using vocabularies such as 

SeaDataNet (Schaap, Lowery  2010.) available on the NERC vocabulary servers (Leadbetter, Lowry, 

Clements 2012) are all helping to realise the Digital Earth vision. However, this paper argues that 

current solutions do no not go far enough. Particular use-case knowledge and understanding is not being 

provided for in an interoperable and computable way. Domain concepts are constrained early on and are 

too inflexible for practitioner’s needs. The practice of constraining knowledge at an early acquisition 

stage is inherent in object-oriented techniques (Boegl, Adlassnig et al. 2004) and leads to impoverished 

concept descriptions, unrecorded knowledge (Gahegan, Pike 2006) and creeping system obsolescence 

(Beale 2002). Knowledge sharing can be maximised across an interdisciplinary super-domain (such as 

ESS) by empowering domain specialists with the ability to model domain concepts in a computable way 

themselves, and by allowing for the evolution of the domain concepts within the model.  

 

In recognition of the relatively slow pace of evolution of data standards, particularly those that normalise 

information models, and the problem that coded terms or ontologies alone are not sufficient to achieve 

semantic interoperability, for over 20 years, health informaticians have been developing a highly 

sophisticated approach to information modelling that has become known as two-level modelling. Two 

level models (Beale 2002) are designed to facilitate large-scale sharing of high quality, multifaceted, 

flexible and durable documentation. 

 

In order to help realise the paradigmatic shift and enable the realisation of the dynamic Digital Earth 

framework called for by Craglia et al. (2012) the authors have investigated two-level modelling 

techniques as a possible solution to manage how information and knowledge concepts are modelled and 

managed (Stacey, Berry 2015).  Diviacco and Leadbetter (2017) have also recognised the possible 

application of this technique within an Earth Systems Science context. The next section introduces the 

reader to these proposed solutions and highlights how the resulting information and documentation can 

be re-used within the Earth Systems Science domain to aid the development of ESS based geo-

observational systems and progress the vision of a Digital Earth. 

 

A Two-Level Modelling Approach 

Traditional information system design tightly couples information and knowledge concepts. This 

coupling happens early on in the design process, at the point where object and data models are 

developed. Beale (2002) refers to these type of design methodologies as “single-level” models. Beale 
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argues that where the single-model approach is applied to information systems in a constantly changing 

environment, these systems become expensive and difficult to maintain. Beale also notes that these types 

of systems need to be replaced after a number of years. The reason for this is that domain concepts are 

hard-coded into the software. As the domain evolves and changes, the software becomes outdated and 

less useful.  

 

Single-level systems have also been shown to have limited interoperability, as they may not adhere to a 

standardised formal model. Beale postulates the core issue for creeping obsolescence in single-level 

information systems is the constant evolution of the knowledge in a domain. Flexible design 

methodologies are needed to keep up with the non-static nature of the domain. Beale proposes a two-

level solution.  

 

In the two-level approach a traditional object model is still developed. This is referred to as the 

“Reference Model” (RM). Beale refers to this as the first-level model. The second-level model is where 

the formalism of the domain knowledge is captured. The separation of domain concepts can be 

organised as follows 

 

● 1st level: This is the informational level and contains what are described as the non-volatile 

concepts required to be modelled for the system. It is a reduced set of classes that have a very 

abstract meaning, but nevertheless, have features to incorporate data types, terminology or 

ontology bindings. These concepts can be used as "building blocks" according to rules described 

in level 2. 

● 2nd level: This level is the knowledge level where the concepts that will undergo evolution over 

time are captured and can be bound to ontologies as required. These concepts are volatile in 

nature and can evolve over time as knowledge evolves without “breaking” the system. This level 

is captured as a knowledge model using “archetypes” and an Archetype Model (AM). 

 

The separation of (recorded or documented) information and (generally applicable) knowledge in 

information systems design allows a more flexible representation of the domain knowledge (e.g. as part 

of a separate ontology). In a two level model, the reference model contains features to allow individual 

ontological terms to be “bound” dynamically to any point in the information model while keeping a 

rigorous formal definition of the data that is being recorded. 

 

Archetypes 

The capturing of non-volatile or stable concepts in the 1st level, or reference model, can be achieved 

using traditional conceptual modelling approaches. When a reference model has been developed, the 

challenge is then, how are the semantics of the reference model, or the knowledge concepts that have not 

been captured by the reference model to be defined and implemented?  

 

Beale (2002) notes that knowledge level concepts are essentially constraints on the reference level 

concepts. As such, the knowledge level can be captured as a set of constraint statements. Here a set of 

constraint statements are referred to as an archetype. Constraints provide semantic relationships between 

elements based on knowledge. Using archetypes, an archetype-model can be developed that formalises 

the volatile knowledge concepts within the 2nd level of a two-level based information system (Figure 1). 
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A formal language Archetype Definition Language (ADL) (Beale 2007) for defining archetypes exists 

and is maintained by the openEHR foundation (Kalra, Beale, Heard 2005).  ADL is used to constrain 

information models. ADL is not dependant on the reference information model, but is best suited to 

information models that are very generic in nature, and so in principle can be used for ESS modelling. 

 

Two-level Modelling for Health Information Systems 

There are a number of parallel attempts at two-level models in healthcare; openEHR and CEN/ISO 

13606 (ISO/TC 215, 2006, 2008, 2009a,b) are currently the most notable. Both models employ ADL, 

and embed the following data quality enhancing features. 

 

● A strong recognition that the model is intended for documentation of phenomena, rather than for 

producing a general model of reality (Beale 2003). The latter is the role of an ontology (Peirce, 

1935) but in the healthcare community; this is not considered to be the same as documentation. 

As mentioned previously, ontological information is “bound” into the information model, which 

focuses on documentation. 

● Use of commonly agreed identifiers and related mechanisms to uniquely identify phenomena that 

are the subject of documentation or provide context for the document. 

● Use of an evolved temporal model and time-based data types to allow different aspects relating 

to time to be recorded accurately and satisfactorily. 

● Embedded or “bound” ontological codes at appropriate points in the two level model for 

referring to commonly agreed concepts and terms. 

● Employment of a general and reusable reference model, composed of building block concepts 

that can be used in many different documentation scenarios. These models are quite similar in 

intent to the OGC’s O&M model. As previously noted, this reference model corresponds to the 

first of the "two levels". Figure 2 shows a simplified EN 13606 reference model. 

● Development of a consensus-based library of archetypes. 

 

Two level models and archetypes go beyond the idea of "recording measurements" to developing 

community-standardised "documentation" that is designed by consensus of the members of the 

community themselves. The process of developing these archetypes is a slow one, but the benefits are 

considered to be worth the great effort. 

 

Two-level Modelling in non-Health Systems 

The separation of information and knowledge in information systems design allows a more flexible 

representation of the knowledge on one level while keeping a rigorous formal definition of the data on 

the informational level. The two-level model allows for the development of more flexible and scalable 

systems. It encourages the future proofing of systems; “cradle to grave”. The main goal of the two-level 

approach is that it acknowledges the reality of, and thus supports knowledge evolution within a given 

domain. These characteristics of an information system are not just desirable within Health but have 

wide applicability, especially within ESS informatics. Until recently, two-level modelling approaches 

have been the preserve of Health Informaticians. However, Lezcano et al. have shown how the semantic 

integration of sensor data with disaster management systems can be facilitated using a two-level 

modelling approach (Lezcano, Santos, Garcia-Barriocanl 2003). Stacey and Berry (2015) along with 

Diviacco and Leadbetter (2017) have noted the potential benefits of a two-level modelling approach for 

geo-observational systems. While proposing a migration of the two-level modelling approach from 
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Health to other domains, it is necessary to be cognisant of the differences that exist.  

 

Within healthcare informatics, the primary subject of documentation is the patient. The prevailing 

consensus within health informatics is that the patient should remain the dominant subject of 

documentation for shared electronic health care documentation. This is a primary difference between 

healthcare informatics and geomatics. The subjects of documentation in geo-information and 

documentation in Earth System Science are diverse. Diviacco et al.’s (2015) work with boundary objects 

highlights this diversity, and shows the current efforts within the geo-sciences community to tackle 

automatic semantic and dynamic knowledge representation. Beaulieu et al (2016) also highlight the 

growing need and the current state-of-art in cyberinfrastructures to support collaborative processes and 

semantic communication amongst a diverse set of domain specialists. This automatic recording of 

information is much more prevalent in the geo-sciences than in health. It could be argued that healthcare 

documentation is "a matter of life and death" for the subject of documentation. This is usually not the 

case in geospatial measurement and documentation. The patient safety, quality of care issue imposes a 

strong need for rigour in healthcare, and a certain conservatism about changing processes and systems. 

 

In translating two-level models from the healthcare domain to the ESS domain then, the following 

technical tasks would need to be performed: 

1. Develop a generalised identity model. 

2. Develop functioning binding to ESS coding. 

3. Develop a reference model. 

4. Development of two-level information communication and processing for resource constrained 

devices. 

5. Formation of a suitable community of supporters. 

6. Development of consensus-based ESS archetypes. 

 

Of course, those technical tasks would need to be supported by the same vigorous type of community-

wide engagement and dissemination that has characterised the adoption of two level models in the health 

domain. 

The remaining sections of this paper detail the on-going work of translating two-level models to the ESS 

domain, specifically for use in geo-observational sensor systems design. Acknowledging that the OGC’s 

O&M standard is fundamental to our discussion, we firstly examine O&M as a core component of any 

proposed solution.  

Two-level Modelling use for Geo-Observation Sensor Systems 
(Beale 2002) comments that one of the main problems with “standard” models is that “they embody no 

single point of view”. Standard models do not deal with change very well and invariably 

implementations tend to wander to accommodate the peculiarities of the particular implementation.  

O&M is part of the OGC’s Sensor Web Enablement (SWE) architecture (Botts et al. 2008) and is a 

semi-structured model. However, as noted by Beale (2002), while semi-structured models are an 

improvement on standard models, they introduce additional problems; strong typing is typically lost, 

while the model is still partially concrete as assumptions about the information are made and encoded.  
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As interoperability at the knowledge level is a key requirement for future ESS observational Systems 

and the realisation of a Digital Earth system, it is proposed that stable domain concepts be captured 

using the OGC’s O&M standard and concepts with the potential to evolve, or “volatile concepts”, be 

captured using techniques derived from a two-level modelling approach (ultimately archetypes). 

 

Archetypes provide a mechanism for avoiding the pitfalls of over-codification within a singular-model 

and offer more advantages over semi-structured models. It has been noted that a two-level model is 

explicitly designed to work alongside a common terminology (in the form of ontologies) to support the 

creation of archetypes. An ontology is an explicit specification, which formalises a conceptualisation of 

a body of knowledge, in some area of interest (Gruber 1983). Within ESS domains there are many 

advanced domain vocabularies and ontologies, examples include, the Semantic Sensor Network 

Ontology (SSNO) (Compton, Barnaghi et al. 2012) and Semantic Web for Earth and Environment 

Technology ontology (SWEET) (Raskin, Pan 2005), which may be used to provide semantic support to 

a two-level approach. Whereas, a reference model is a collection of coherent information models and 

should capture the stable non-volatile concepts within a domain, ontologies are typically organised into 

levels. Foundation concepts, which are general across many domains, are captured in an upper-level 

ontology. Foundation concepts tend to not change over time and are used to produce more specialised 

domain concepts in sub-ontologies. Reference Models therefore should use concepts from upper-level 

ontologies or knowledge concepts from the foundation/principles level in a multi-level knowledge space 

(Figure 3).  

 

Work done by Probst and Florian (2006) on developing an ontological representation of O&M allows us 

to assess O&M in terms of an ontological hierarchy. O&M as an ontology would not be classified an as 

an upper-level ontology in the strict sense (Cox 2015a) (Cox 2015b). Examining the Descriptive 

Ontology for Linguistic and Cognitive Engineering (DOLCE) (Masolo 2003) UltraLite (which is an 

upper-level ontology) and the Semantic Sensor Network Ontology (SSNO) alignments highlights this. In 

fact, upon closer examination the definitions of Observation in both O&M and SSN show that 

definitions of Observation within these two ontologies are not semantically equivalent, but merely a 

close match (Figure 4). Despite O&M’s ontological representation at a sub-ontology level, O&M is 

considered stable within its given domain. A pragmatic decision would be to consider O&M concepts as 

a principles ontological level from which content, organisational and storage concepts can be derived 

within a geo-observational sensor system (Figure 3). 

 

Archetyped O&M 

Ideally, any reference model should be formed using level-0 principles concepts (Figure 3). When 

proposing O&M as a valid reference model, one must question whether O&M represents level-0 

principles. DOLCE UltraLite could serve as a level-0 principles concepts-based reference model for this 

purpose. In that scenario, O&M could act as a basis for discovering content level concepts. For this 

work, the stability of O&M concepts is assumed to be sufficient to act as a set of level-0 knowledge 

concepts and hence as a basis for a reference model.  Another question arises here, what principle 

concepts represented as classes within an O&M aligned reference model can and should be archetyped? 

An observation consists of: phenomenon, location, value, time, producing sensor; or 

OM:ObservedProperty, OM:FeatureOfInterest.location, OM:Result, 

OM:Observation.phenomenonTime. OM:Procedure. These principle concepts can be used to construct 

content level domain concepts. ObservedProperty allows for content level domain concepts to be further 
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defined e.g. Temperature. The authors have examined O&M’s suitability as a reference model and found 

that O&M does not contain all the necessary base and container types or appropriate aggregation 

patterns that are required for two-level modelling. Keeping in mind to ensure the core O&M standard is 

maintained, while still enabling O&M’s use as a reference model in a two-level modelling approach, a 

recommended augmentation of an O&M aligned reference model design pattern has been developed. 

The proposed augmented O&M model is presented next. 

 

An Augmented O&M Model 
Within the two level modelling approach, the only way in which data instances can be created is from 

the reference model. Any two-level modelling reference model must provide a means of representing 

entities that are not concretely modelled. Using a compound/element pattern (highlighted in green, 

Figure 2) within a reference model allows the creation of recursive aggregation of domain specific 

concept objects from the non-volatile concepts captured within the reference model.  

 

A proposed augmented O&M model incorporating the necessary compound/element patterns to 

facilitate domain specific concept creation is shown in Figure 5. The compound/element pattern needed 

within any reference model, and noted in Figure 2 can be clearly seen in Figure 5 (also highlighted in 

green). GeoData_Composition represents a meaningful aggregation level. At this level within our 

representation, a basic flexible identity model is provided for (see IDENTITY_ABSTRACT in Figure 

5). However, the question of a generalised identity model within ESS information systems remains an 

open question. Chen’s (2016) work on generalised identity models for healthcare may provide a way 

forward within the ESS domain. The GeoData_Composition pattern provides a mechanism for domain 

practitioners to extend the model and create document level knowledge representation of specific use 

case domain concepts. Note that O&M currently represents a model of reality, the augmented O&M 

model provides for a model of recording in addition to the model of reality, this is a well-established 

design principle in health informatics (Beale 2003).  

 

The structure of the document provides for three levels of meaningful aggregation from which concepts 

can be created at the necessary ontological levels i.e. Storage, Organisational and Content (Figure 6). 

The reference model itself captures the principle ontological level, or the stable concepts within the 

domain. 

 

The Art of Archetyping  
One of the core principles of the two-level modelling approach is that it should enable domain 

practitioners to capture specific domain knowledge concepts and to manage them as they evolve over 

time. The 1st level, or reference model, is still developed by Informaticians. The 2nd level, or the 

knowledge level, is developed by a mixed group of authors, that include the domain practitioners 

themselves and who now have greater influence on the evolution of models within a community 

environment.  

 

Figure 7 shows the separation of the two levels and highlights the mapping of volatile concepts at the 

Storage, Organisational and Content ontological levels to the stable concepts within the domain at the 

principles ontological level. As noted previously, all data instances are of the reference model. However, 

these principle concepts are constrained at runtime using the knowledge model, or archetypes. 

Archetypes are constraint statements and an archetype model represents a rich knowledge level model of 
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domain concepts. Information instances are created at runtime from the reference model. These 

instances also adhere to the constraints defined within the archetype model (Figure 7).  

 

Community development of Archetypes is a complex task that is performed by domain specialists. 

Within health a sophisticated framework of tools have evolved over the past number of years to facilitate 

the development, management and evolution of domain specific Archetypes (Sundvall et al. 2008) 

(Maldonado, Moner et al. 2009) (Chen, Klein 2007). Figure 7 shows a holistic but simplified view of the 

architecture necessary to support the use of archetypes within a geo-observational sensor based 

connected system. 

 

Archetyping in an Earth Systems Science Domain 

The authors have undertaken a proof-of-concept archetype development exercise using the proposed 

augmented O&M model (Figure 5). As this is a novel exercise, there are currently no existing tools to 

fully aid archetype development outside of the Health domain. However, there are a number of health 

informatics based tools that can be used to aid initial development in other domains such as ESS. The 

Biomedical Informatics Group at the ITACA Institute at the Universitat Politècnica de València have 

developed the LinkEHR platform (Maldonado, Moner et al. 2009). The LinkEHR platform includes an 

Archetyping Editor tool that allows for the development of Archetypes from any reference model. 

EHRFlex (Blobel et al. 2010) provides a flexible tool that may be used to further two-level modelling 

outside of the health domain. Currently EHRFlex only supports CEN/ISO 13606; support for any 

archetype-based standard is planned in the future. The OpenEHR Java reference implementation allows 

for further development of existing tools for non-health domains (Chen, Klein 2007). Using LinkEHR, 

the authors have demonstrated how a serialised XML form of the augmented O&M model can be used 

to develop archetypes. The LinkEHR editor provides a visual development tool for the creation of 

archetypes or reference model constraint statements. This visual approach to archetype development 

enables domain specialists, who may be non-technical or expert in information modelling, to produce 

the required content models. Once the serialised (XML for example) form of the reference model is 

available, the visual modelling tool approach can then be used by domain practitioners to meet their 

needs. Once domain modelling has been agreed upon using the visual interface, LinkEHR will output an 

ADL representation of the archetype model so that it may be machine readable within a supporting 

system (as shown in Figure 7).  Listing 1 shows an example of an ADL representation of an archetype 

developed using the LinkEHR editor. In this particular use-case, the authors attempt to model a marine 

data buoy. The augmented O&M reference model is constrained for the particular use-case using the 

archetype model (i.e. the constraint statements).  

 

It is important to note that archetypes or constraint statements for particular use-cases are agreed upon 

by the community, domain experts or practitioners using visual tools. It is this ability to derive 

community agreed standards through the consensus of empowered domain practitioners that offers the 

real benefits in terms of knowledge interoperability of systems. Archetype models evolve progressively 

and “naturally” as the community’s knowledge and understanding of the domain advances. The 

community evolution of archetypes is in contrast to the more traditional development of information 

models and standards; which happens on a longer time cycle, in a more top-down approach. In any use-

case, it is acknowledged that there is a need to have a general agreement on the basic structural elements 

of the information; this is the role of an O&M based reference model. However using two-level 

modelling it is also possible to acknowledge the need of specific practitioners within an ESS community 
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to agree on specific data sets for particular purposes that can be easily changed with evolving 

requirements and understanding. In this simplified use-case that is nevertheless useful for the purposes 

of illustration, the ESS group or community could be an expert oceanic group or international research 

project wishing to share information & knowledge from a set of globally deployed data buoys.     

 

The archetype shown in Listing 1 captures a storage level concept Weekly_Buoy_Data, which is a 

constraint on the principles level concept GeoData_Composition. As GeoData_Composition exists in the 

reference model, it is assumed that it is stable and generic to the point of being usable as a base concept 

for the derivation of all other information concepts.  

 

 
archetype (adl_version=2.0.5) 1 
 TPOT-OM-GeoData_Composition.Weekly_Buoy_Data.v1   2 
concept 3 
 [at0000]  4 
language 5 
 original_language = <[ISO_639-1::en-ie]> 6 
description 7 
 original_author = <["organisation"] = <"tPOT">> 8 
definition 9 
 GeoData_Composition[at0000] matches {                -- Weekly_Buoy_Data 10 
  archetype_node_id existence matches {0..1} matches {*} 11 
  ... 12 
  details cardinality matches {1..*} matches{....}   13 
  observation_set cardinality matches {1..*} matches{ 14 
   OBSERVATION_SET[at0002] matches { 15 
    ... 16 
    details cardinality matches {1..*} matches{...}   17 
    observation existence matches {1..1} cardinality matches {1..*} matches{ 18 
     OBSERVATION[at0004]occurrences matches {1..*} matches {   19 
      .... 20 
      observedproperty existence matches {1..1} matches {....} 21 
      featureofinterest existence matches {1..1} matches {....} 22 
      .... 23 
      results existence matches {1..1} matches { 24 
       RESULTS[at0007] cardinality matches {1..*} matches{ 25 
        result occurrences {1..1} matches{ 26 
         RESULT [at0008] matches{ 27 
          ... 28 
          details cardinality matches {1..*} matches{ 29 
           ... 30 
 } 31 
ontology 32 
 terminologies_available = <....> 33 
 term_definitions = < 34 
  ["en-ie"] = < 35 
   items = < 36 
    ["at0000"] = < 37 
     text = <"Marine_Data_Buoy_Weekly_Report"> 38 
     description = <"Marine Data Buoy Weekly Report"> 39 
    .... 40 
 constraint_definitions = <....> 41 
 term_binding = <  42 
  ["nerc"] = < 43 
   items =< 44 
    ["at0005"] = <[nerc::TEMPPR01]>  45 
    .... 46  

 
 

Listing 1. ADL snippet representation of an archetype developed using the LinkEHR editor 
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Listing 1 serves to illustrate how constraint statements are captured in a machine-readable format. ADL 

is used in this instance as the representation; however the archetype may be represented in any 

serializable format such as XML or JSON. Listing 1, shows that this archetype provides a metadata 

description for a record of Weekly_Buoy_Data, which is a specialisation of the reference-model based 

concept GeoData_Composition. TPOT-OM refers to the augmented O&M reference model developed 

by the towards People Oriented Technologies (tPOT) research group at the Dublin Institute of 

Technology, of which the GeoData_Composition is a member. Weekly_Buoy_Data is a domain specific 

volatile concept, defined here in the 2nd knowledge level. Weekly_Buoy_Data is assigned the reference 

[at0000] and is defined further in Listing 1. Also of note, is the possibility to bind concept definitions to 

ontologies.  

 

Again emphasising that an archetype is developed using a community consensus approach, we can see 

in Listing 1 (which is a simplified version) the archetype model allows a community to agree and 

document the domain specific use-case implementation specialisms needed on top of the reference 

model. This ability to document specialisms in this way enables the efficient management of the 

evolution of any system using archetypes. Grossner et al. (2008) refer to this ability as the extensibility 

requirement of a Digital Earth system. To-date any variance or specialisation needed during use-case 

implementation of O&M, has not been managed in any structured way. Also missing from the 

specialisation of O&M is a well-established general community consensus mechanism (INSPIRE 2007) 

(Klein 2009). This resultant unmanaged variance in the implementation of standards, although often 

done for valid reasons, is a barrier to semantic interoperability of systems, especially at the knowledge 

level.   

 

Archetypes and Information Objects “in the Wild” 

For a system to capture, store and serve data that adheres to the community knowledge model, the 

archetype is applied as a set of constraints to guide the production of the information objects at run-time. 

The archetype describes the structure and detail of instantiated records of information. At run-time, 

archetypes may be represented in memory in an archetype-enabled kernel. Archetypes are intended to 

be maintained using a Web based management, review, validation and publishing library system. 

Communities of domain experts access and contribute to the archetype management system, taking part 

in the review and validation process.   

 

For the purposes of illustration, let us assume that a community of domain experts have agreed on, and 

validated the archetype TPOT-OM-Geo_Data_Element.Weekly_Buoy_Data.v1. Any geo-observation 

system serving data to the community implements the reference model, i.e. all data objects are produced 

from the underlying RM. In this case, a system would use the augmented O&M reference model as the 

basis for data object instantiation. As the RM would be considered stable and not subject to change over 

time, the core system software does not need to change over time. At run-time, the system constrains the 

data objects based on the constraints defined in the archetypes. Constraining of RM based data objects 

takes place at run-time through the processing of the machine-readable ADL file, using the archetype-

enabled kernel. As the needs and understanding of the community of domain experts changes and 

evolves over time, the two-level based system also adjusts how it creates the data objects based on the 

evolution of the corresponding ADL file that encodes the archetype constraints.  
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[{ 
    "id":"identity_model_ref_ID", 
    "geoData_Composition":{ 
     "archetype_node_Id":"TPOT-OM-GeoData_Composition.Weekly_Buoy_Data.v1", 
 "name":"Marine_Data_Buoy_Weekly_Report", 
 "details_COMPOUND":[{ . . . .}], 
 [{"geoObservation_Set" :{    
  "archetype_node_Id":"[at0002]", 

"name":"Buoy_Instrument_Readings",  
"meaning":"Interval Triggered Buoy Multi Instrument Read", 

  "details_COMPOUND":[{ . . . .  }], 
  [{"Observation":{ 
   "archetype_node_Id":"[at0004]", 

"name":"observation_measure",      
   "observedProperty":{ 

"details_COMPOUND":[{ 
"details_ELEMENT":{ 

"archetype_node_Id":"[at0005]"    
"DETAILS_VALUE" : "temperature" 

   . . . . 

"featureOfInterest":{ 
"details_COMPOUND":[{ 

"details_ELEMENT":{ 
"archetype_node_Id":"[at0006]"    
"DETAILS_VALUE" : "Sea Surface" 

. . . . 
   "type":"Measurement",  
   "results": [{  
    "archetype_node_Id":"[at0007]"  

"result":[{ 
    "archetype_node_Id":"[at0008]"  

"DATA_VALUE" : "10.23" 
"details_COMPOUND":[{ 

"details_ELEMENT":{ 
   "archetype_node_Id":"[at0009]"    

"DETAILS_VALUE" : "celsius" 

. . . . 
"Observation":{ . . . "name":"observation_time_series", .... }]} 

}]}     
[{"geoObservation_Set":{...}}]  

 }] 

  
Listing 2. JSON representation of an information instance. The resulting information instance from the 

compound/element patterns within the augmented O&M reference model (Figure 5) highlighted in green. 
GeoData_Composition is the realisation of the inclusion of a model of recording/documentation within the 
O&M based reference model. The archetype_node_id attribute is inherited from the LOCATABLE class in 

Figure 5 and allows bindings to occur between instance data and the AM. 
 

 

Listing 2 above depicts how an information instance may be represented. The O&M JSON encoding 

OM-JSON (Cox 2015) is used as the basis for our example. OM-JSON provides a number of schemas 

where validation of specialisations of O&M may be performed. In the methodology proposed in this 

paper, the base O&M schema would still be captured (reference model) but the specialisations (volatile 

quasi-static concepts) would be captured in the archetype model. Validation is one of the primary 

runtime uses of archetypes. Archetype-validation tools and frameworks are currently available (Chen et 

al. 2008). Using this approach the full power of the community consensus approach and associated tools 

would be available to evolve and manage specialisations. The authors believe that this approach is in 

keeping with, and helps to realise the vision of the dynamic Digital Earth framework set out by Craglia 

et al. (2012). Upon examination of Listing 2, it is of note that there is some overhead associated with this 

approach. It is necessary to record which archetype was used for data construction, this appears as 

archetype_node_id. Archetypes themselves are separate from their data and need to be stored in an 
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accessible repository (Figure 8). We can see that there are actually three levels of information in our 

example, wholly-static concepts that are captured in the reference model, quasi-static concepts which 

are agreed in each of the archetypes and dynamic data or instance information. A pragmatic approach to 

managing the growing volume of the dynamic data instance shown in Listing 2, is to identify additional 

static information from the information instance of dynamic data that may reside in the archetype, and 

remove this from the information instance. In reality any observational system should only need to 

report timestamped DATA_VALUES and the particular archetype to which the instance is bound, and to 

which it may be validated against. Presentation layer applications using data instances can then re-

constitute the semantically rich information using a similar knowledge framework as shown in Figure 8. 

 

The challenges of constrained in-situ remote sensor systems are not considered at this point; it is 

assumed that the sensor system has the resources necessary to support the archetype-template runtime 

environment and associated kernel. Figure 8 shows a number of separate supporting systems. 

Development of a library of community-derived archetypes is supported by the online management 

system and archetypes are available through an online repository. For any specific use-case, the system 

builder and associated domain specialists use the necessary subset of archetypes available with the 

library. These archetypes are further specialised for the particular use-case and are combined to produce 

a set of Operational Templates (OPT) (Leslie 2008). The hypothetical in-situ remote sensor system 

shown in Figure 8 uses these OPTs locally to instantiate information instances, such as the one shown in 

in Listing 2. Information instances may then be transmitted to a supporting data-store for persistence.  

 

As information-instances are created using the reference model which in this case adheres to the O&M 

specification, our observation system can now conceivably publish semantically rich, interoperable data 

and information, which evolves as the knowledge community evolves. As the system also adheres to a 

core standardised information model, such as O&M (in this case), syntactic interoperability is 

maintained, and it becomes a relatively rudimentary task to make observations available to an OGC 

standardised Sensor Observation Service (SOS) (Bröring et al. 2012).   

 

As archetypes have a predictable structure, derived from the underlying reference model, enhanced 

querying can be achieved using the Archetype Query Language (AQL) (AQL 2015). AQL is a fusion of 

SQL, and XPath style paths, derived from the archetype. Archetype paths transcend the archetype in to 

the instance data, in the form of archetype node identifiers (Listing 2). This ensures conformance of 

archetype path structures as data nodes are constructed at runtime, and allows data nodes to be extracted 

using complex queries.   

 

Discussion  
The authors believe that the approach presented here can enable a wide and diverse set of domain 

experts (within the Earth System Science community) to contribute directly to the creation and evolution 

of content models, while ensuring the provision of high quality and accurate shareable knowledge 

amongst a diverse super-domain. These characteristics indicate that the solution is worth considering for 

realisation of a Digital Earth system. For example, the provision of Web based “social network” style 

management, review and publishing of Digital Earth Knowledge Artefacts in the form of archetypes, 

would foster greater semantic interoperability and fulfil the need for an integrated authority list, a 

feature that was listed as an essential component for a Digital Earth system (Grossner et al. 2008). This 

continuous process of model evolution is in contrast to the relatively lengthy renewal cycle of ISO 
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standards. Templates and OPTs offer additional flexibility outside of the community-agreed archetype 

model for local uses. This provides for situations where disparate domain expert groups may disagree, 

and can lead to archetype alignment issues as the approach matures within the domain. Again, as the 

development community is richly supported, techniques to overcome this potential for divergence are 

emerging (Bisbal and Berry 2009).   

 

Software tools to realise a two-level modelling methodology are complex to implement. Currently no 

toolset exists that is readily useable outside of the health domain. There are number of barriers to clinical 

based tool reuse; for instance, clinical domain modelling tools assume a static singular identity model, 

that of the Patient. However, as the authors have demonstrated in this work, open source two-level 

modelling tools and components can be re-used to aid ESS-facing tool development. 

 

A key differentiator of two-level modelling compared to other approaches is that is allows domain 

experts to be the primary drivers of Digital Earth Artefacts, while also ensuring that technical validity is 

maintained in one highly accessible and integrated process; leading to a key extensibility component in a 

Digital Earth system. This view has also been expressed by domain experts (Clinicians) in the health 

domain following work with archetypes (Garde et al. 2007). Also of note from health domain 

experiences of two level models are reports of reduced complexity of software and a greater focus on the 

realisation of useful applications (Chen et al. 2009); arising from a reduced demand for software model 

authoring tools. Any increased focus on the more convenient realisation of useful applications in ESS 

only further helps to realise the functionality actions provided by a Digital Earth system as compiled by 

Grossner et al. (2008).  

 

Development of a mature, consensus-based repository of community derived archetypes is a non-trivial 

task, and requires established processes within any domain to ensure proper governance (Wollersheim et 

al. 2009) (Garde et al. 2007). However, with over 15 years of development experience, the technique is 

well supported by a strong theoretical and methodological framework. The true benefits of two-level 

modelling and archetypes are certainly realised when a large community consensus approach is 

employed, but Hoy et al. (2007) show how smaller local communities can also begin seeing early 

dividends from two-level modelling, without a large archetype repository. This offers a way forward for 

new domains in terms of a parallel introduction of the technique. Should two-level modelling take hold 

as a preferred mechanism for the development of standard content models, migration of valuable ESS 

legacy systems to an archetype based representation is possible due to the rich expressive power of 

archetypes (Chen et al. 2009). Adoption of a common format for content models leads to rapid and 

convenient installation and configuration of new metadata. Employment of two-level modelling 

techniques could potentially facilitate a nationally or conceivably an internationally standardised 

representation of all ESS content, as is alluded to in the health domain (Bernstein 2009). This approach 

is ultimately about facilitating the pooling of high quality data between Earth System Scientists and 

helping to develop critical Digital Earth based decision support systems.  

 

Conclusion 

Current interoperability efforts solve many problems with ESS data interoperability. However, 

interoperability at a knowledge level to date has not been fully realised. Two-level modelling provides 

the basis for achieving interoperable knowledge based systems through the provision of tried and tested 

methodologies and constructs developed for the Health Informatics domain. With additional design 
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patterns, O&M can serve as the basis for a two-level modelling reference model. Care must be taken in 

relation to the context of use of O&M. In certain circumstances, O&M concepts may be better employed 

in helping to realise content level archetypes, with upper ontologies such as DOLCE UltraLite informing 

the reference model. This needs further exploration. The evolution of two level models in the health 

informatics domain has been consensus-based and slow, with support from the community gradually 

gathering pace. Community consensus is an important element of the approach. The health informatics 

community has learned valuable lessons in this time. The two-level modelling experience should be of 

interest to Earth System Scientists who wish to share interoperable information that is trusted across 

measurement platforms and sub-domains.  

 

A significant body of knowledge and experience has developed over the last two decades in health 

informatics, which provides many approaches that are useful for solving knowledge interoperability 

problems within Earth Systems Science. Many of the solutions developed using the two-level modelling 

approach have parallel applicability for helping to realise a Digital Earth system and accrue the 

associated benefits. Further exploration of the applicability of a two-level modelling approach to ESS 

Information systems through the development of appropriate software tools is recommended.    
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List of abbreviations 

 

ADL Archetype Description Language 

AM Archetype Model 

AQL Archetype Query Language 

CEN European Committee for Standardization (Comité Européen de Normalisation) 

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering 

ECHO Earth Observing System Clearing House 

EHR Electronic Healthcare Record 

EO Earth Observation 

ESS Earth System Science 

GEMET General Multilingual Environmental Thesaurus 

INSPIRE Infrastructure for Spatial Information in Europe 

ISO International Organization for Standardization 

JSON JavaScript Object Notation 

NASA National Aeronautics and Space Administration 

NERC Natural Environment Research Council  

O&M Observations and Measurements 

OGC Open Geospatial Consortium 

OPT Operational Templates 

RM Reference Model 

SOS Sensor Observation Service 

SSNO Semantic Sensor Network Ontology 

SWEET Semantic Web for Earth and Environment Technology 

TC Technical Committee 

tPOT Towards People Oriented Technologies 

XML Extensible Markup Language 
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Fig.1 Two-Level Model separation of stable concepts from volatile domain concepts 

 

 

 

 

Fig. 2 A portion of the EN 13606 Reference Model. Compound/element patterns are highlighted in green 
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Fig. 3 Ontological levels. Within a two-level model, O&M as a reference model should only capture stable 
concepts i.e. at the principles level. They should be true for all instances and all use contexts. Typical of 

Upper Level Ontologies (Beale, 2002). Here we map higher-level domain concepts derived from O&M 
principle level concepts onto the Beale’s (2002) multi-level knowledge space 

 

Fig. 4 DUL, SSN, O&M Alignment 
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Fig. 5 Augmented O&M model. Compound/element patterns are highlighted in green.  
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Fig. 6 Document Structure  

 

Fig. 7 An Archetype Model (AM) is used to constrain Reference Object Model (ROM) instances at runtime  
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Fig. 8 Architecture of a proposed geo-observational in-situ sensor system to support the implementation 
of a two-level modelling approach.  
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