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Abstract— The aim of this paper is to perform a probabilistic 

risk assessment of power quality variations and events that may 

arise due to high photovoltaic distributed generation (PVDG) 

integration in a low voltage distribution network (LVDN). Due to 

the spatial and temporal behaviour of PV generation and load 

demand, such assessment is vital before integrating PVDG at the 

existing load buses. Two power quality (PQ) variations such as 

voltage magnitude variation and phase unbalance together with 

one PQ abnormal event are considered as the PQ impact metrics. 

These PQ impact metrics are assessed in terms of two PQ indices, 

namely site and system indices. A Monte-Carlo based simulation 

is applied for the probabilistic risk assessment. From the results, 

site overvoltage shows a likely impact to observe as the PVDG 

integration increases. The probability of 20% of customers 

violating 1.1 p.u at 100% penetration level is 0.5. Integration of 

PVDG reduces the voltage unbalance as compared with no or low 

PVDG penetration. There is a higher probability of observing deep 

sag at the site as PVDG integration increases. This probabilistic 

approach can be used as a tool to assess the likely impacts due to 

PVDG integration against the worst-case scenarios.  

Index Terms— Distributed generation, photovoltaic, power 

distribution planning, overvoltage, voltage unbalance, voltage sag, 

Monte Carlo methods, temporal, spatial. 

I. INTRODUCTION 

urrently, most PVDGs are integrated either in passive or 

reactive approach. Both passive and reactive integration 

approaches suffer potential deterioration of the LVDN and 

subsequently create the requirement of oversizing the LVDN 

[1]. Again, the reactive integration approach may have resolved 

some of the critical issues at the operational stage, but 

difficulties persist in coping with the curtailment of energy from 

PVDG and the associated network losses. To overcome such 

potential deterioration of the network, an active planning 

approach can be envisaged for the given specific network. Such 

an active planning approaches include an exhaustive 

assessment of the risk associated with increased integration of 

PVDG in the LVDN.  

Increasing integration of non-firm single phase PVDG in 

LVDN may degrade the power quality of supply, possibly 

beyond general limits [2]. Notably, the increased integration of 

PVDG impact the level of transients due to large current 

variations, on observed voltage fluctuation due to intermittent 

sources [3], on phase unbalance due to dispersed integration of 

single phase PVDG and on voltage sags due to increased short 

circuit currents[4]. According to [2], there is two types of power 

quality (PQ) impact metrics which are distinguished by the 

method of measurement. They are i) PQ variations which are 

recorded at predefined instants and ii) incidents triggering 

cascaded PQ events in the network. These two PQ impact 

metrics can be further categorised into two PQ indices [4], 

namely site and system indices. For each index and for each PQ 

impact metric, the risk associated with integrating large 

numbers of dispersed PV generations can be assessed [5]. 

The need for probabilistic studies on determining the impact 

of PV generation in LV networks was highlighted in [2] and [6]. 

A report from EPRI [7] recommends a stochastic approach in 

determining the PV hosting capacity in a distribution network. 

The stochasticity was mainly on the position and size of the PV 

generation while the steady state impact was performed 

deterministically i.e. considering worst case scenarios such as 

maximum recorded PV generation with minimum recorded 

load profiles. As specified by the authors in [2], the long-term 

measurement data is valuable in determining the steady state 

impact in a power distribution feeder. Further, EN 50160 [8] 

presents the voltage characteristic in a probabilistic manner 

such as the 95% level over a given time, the voltage magnitude 

should be within a given limit. Above all, a specific customer 

with a PV installed may not coincide with the worst-case 

scenarios. Consideration of worst case scenarios may strictly 

restrict in estimating the PV hosting capacity. For this reason, a 

combination in stochasticity of the PV location, size, and 

generation profiles together with the demand load profiles will 

represent a probabilistic scenario based study. A similar study 

was reported in [9] where the authors performed probabilistic 

impact assessment from the low carbon technologies in an LV 

distribution system. Therein, the authors leverage Monte-Carlo 

simulation. In the same vein, Klonari et.al in [10] utilizes smart 

meter data to performed probabilistic estimation of PV hosting 

capacity. But [9] considered only voltage variation due to 

varying PV generation as a PQ impact study. A probabilistic 

power flow analysis was studied in [11] where the probability 

distribution of power flow responses are estimated using a non-

parametric fixed bandwidth kernel density estimation. The 

choice of bandwidth highly influences the kernel density 

estimation [12] and therefore, the choice of constant bandwidth 

may not represent an appropriate probability distribution for 

power system responses. A new probabilistic technical impact 

assessment was studied in [13]. But, [13] again lacks the 

stochasticity in the peak PV generation value and profile 

together with PVDG location. A Monte-Carlo based PV hosting 

capacity was reported in [14] but considers the hourly stochastic 

analysis of PV and load profile by taking the time periods of the 
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day when PV generation is likely to be high. Further, [14] lacks 

the temporal and spatial characteristic of both PV generation 

and load demand profiles.  

Consideration of the high amount of PVDG integration in an 

existing LVDN requires statistical information on its impact on 

the operation of a power system. The distribution network is 

highly dispersed and diverse and often characterised as a 

heterogeneous system [1]. In this work, the temporal and spatial 

characteristics of both load demand and PV generation profiles 

are leveraged to perform a stochastic random process study 

through a Monte-Carlo simulation. This aims to quantify the 

likely impacts of the operation of the power system by 

considering two PQ impact metrics. The succeeding aim is to 

further assess the impact observed from the Monte-Carlo 

simulation against the worst-case scenarios. Here the worst-

case scenarios are i) maximum demand with no generation and, 

ii) no demand with maximum generation. The remaining part 

of the paper is sectionalized as follows, Section II briefly 

describes the specification of the distribution network and the 

assumption made in this work. Section III summarizes the 

impact metrics considered. Section IV presents the PQ impact 

studies. Probabilistic analysis and conclusion are presented in 

the sections V and VI respectively. 

II. NETWORK DESCRIPTION AND ASSUMPTIONS 

A. Network Description 

The original IEEE European LVDN [15] is considered as a 

test bed for this study and is shown in Fig. 1. It has a Dy (delta-

star) sub-station transformer of 800 kVA rating and consists of 

905 three phase nodes. This distribution network represents a 

typical 4 wires 3 phase low voltage distribution network as seen 

in most part of the European countries.  
 

Load
3 phase line

Substation transformer

 
Fig.1: One-line diagram of the European low voltage test feeder 

The original test bed had 55 single phase domestic 

customers. Out of the 55 customers, phases A, B and C 

accommodate 38.2%, 34.5% and 27.3% of the loads 

respectively.  

B. Assumptions 

For this study, a high latitude demographic region is chosen. 

From the Whitworth Meteorological Observatory [16], a 5-

minute resolution of 30 sunny days representing the month of 

June from the year 2015 is considered for the PV generation 

profiles and is shown in Fg.2. As an example, it can be seen 

from Fig.2, the per unit solar generation at 12 noon on 15th of 

June is in between 0.1 and 0.2, whereas, the per unit solar 

generation at 12 noon on 11th of June is in between 0.9 and 1. 

Similarly, a pool consisting of 200 load profiles with 5-minute 

resolution, which reflects the temporal behaviour of load 

consumption pattern from Low Carbon Technology (LCT) 

project [17] is considered as the domestic load profiles and is 

shown in Fig.3. From Fig.3, typically it can be seen that the per 

unit load consumption is in between 0-0.3 for the duration 

between midnight until 3 am. Again, starting from 6 pm until 

midnight, most of the houses consume more electricity showing 

a generic load consumption pattern.  

 
Fig.2: Checkerboard plot of the PV profiles for the month of June 2015 in per 
unit 

 
 

Fig.3: Checkerboard plot of the load demand for the 200 days representing a 
temporal behaviour in per unit 
 

Each of the 55 customers are assumed to have a 0.95 lagging 

power factor whereas the PVDG is assumed to export power at 

unity power factor. The peak PV generation levels are randomly 

varied between 1 and 5 kW in steps of 1 kW. Similarly, the peak 

load demands are randomly varied between 1 and 10 kW in 

steps of 1 kW. The IEEE EU LVDN is characterised by the 

spatial and temporal behaviour of the load demand. Together 

with the temporal behaviour of PV generation, various 

stochastic scenarios can be analysed. Furthermore, the 

consideration of randomness in defining the peak PV 

generation, peak load demand and location of PV generation 

provides stochasticity in performing a probabilistic risk 

assessment. Here, the PV generations are allowed to connect 

only to the existing load buses i.e. 55 load buses in total. A 

quasi-time series power flow OpenDSS [18] for every 5 

minutes is chosen as the preferred simulation tool. The 

implementation of the probabilistic study is performed in a co-
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simulation platform between MATLAB and OpenDSS. 

III. IMPACT METRICS 

A. PQ impact metrics 

As discussed earlier, there are two types of PQ impact 

metrics considered, namely PQ variations and PQ events 

respectively. The PQ variations are small variations in voltage 

and current waveforms which primarily occur in the normal 

operating condition of the power system [2], [4]. For instance, 

PQ variations include long and short voltage fluctuations, 

unbalances and harmonics. Accumulated PQ variations could 

lead to premature aging of the LVDN assets such as transformer 

insulation, tap position etc. [19], whereas very high levels of 

variation may lead to equipment failure [20]. The PQ events are 

characterised by large and sudden deviations from the normal 

voltage waveform. Voltage sags and transients are known PQ 

events [19]. Further PQ events can be classified into normal 

which are expected events and abnormal events [2]. Normal 

events are due to power system switching occurrence during 

transformer and capacitor energisation. Abnormal events are 

more concerned with the integration of distributed generation 

such as PVDG. For instance, short circuits and earth faults are 

considered as abnormal events. About 70% of the faults in a 

distribution network are unsymmetrical single to line ground 

(SLG) faults [21] and is considered one of high risked abnormal 

events. Such abnormal events lead to severe voltage sags [19]. 

Under such abnormal events, large reactive power flows are 

required during voltage recovery after the faults. But this 

requirement of large reactive power may lead to high inrush 

current from the capacitance which may lead blowing up the 

fuses or other sensitive power electronic components [19]. 

Voltage sag is a multi-dimensional phenomenon that includes 

measuring voltage sag and detecting them [22]. In this work, 

overvoltage and voltage unbalance due to the stochastic 

integration of increased PVDG are considered as PQ variations 

whereas voltage sag due to random SLG faults is taken as a PQ 

events.  

B. PQ impact indices 

Two PQ indices, namely site and system indices are 

considered here. The single site index refers to any particular 

PQ impact metrics at the point of connection of PVDG to the 

utility grid. The system index refers to a segment or the entire 

distribution system. Normally, the system index represents a 

value of a weighted distribution [4]. In this work, a segment of 

the distribution network observed by the monitoring device 

located at the secondary terminal of Dy sub-station transformer 

is assumed to provide the PQ system indices. 

IV. PQ IMPACT STUDIES 

A. Probabilistic study 

For each PQ impact metrics namely variations and events, a 

probabilistic study considering both temporal and spatial is 

performed. Fig.4 represents the Monte-Carlo simulation to 

assess PQ variation metrics. Herein, both PVDG and load 

demand are characterized by each respective pool of profiles. 

The location of each load bus is obtained in to order connect 

new PVDG randomly in the existing load buses. A penetration 

level, n, is defined at the beginning of the Monte-Carlo 

simulation. So, when the number of PVDG installed customer 

i.e. N_pv is 11, then penetration level n is equal to 20%. The 

penetration level is incremented by 20% up to 100% for every 

100 different stochastic scenarios (See Appendix). Each 

stochastic process designated by ‘MC’ is characterised by re-

defining the existing loads and connecting new PVDGs 

randomly in the existing load buses for each penetration level. 

In total, there are 500 different stochastic processes. The 

existing loads are re-defined in two manners, peak load values 

and load demand profiles. The peak load demand values for 

each 55 customers are randomly varied from 1 to 10 kW and 

has a rectangular distribution [20]. Similarly, the corresponding 

load demand profile is randomly selected from the pool of 200 

load profiles and also has a rectangular distribution. The 

rectangular distribution is defined by its probability density 

function (pdf) ‘𝑓(𝑥)’ and has a uniform value between the 

lower bound ‘a’ and the upper bound ‘b’. The pdf is given by 

the equation 1. 

𝑓(𝑥) =
1

𝑏 − 𝑎
  ; 𝑎 ≤ 𝑥 ≤ 𝑏 

   (1) 

No.of PVDG installed customer= N_pv
No.of existing load with PVDG=L_load
Penetration level, n= %100

_

_
X

loadL

pvN

Obtained the bus location 
of the existing loads i.e. 

“Load_bus”
Total Load_bus=L

Start

Load Standard IEEE EU LVDN, 
pool of 30 PV profiles and 
pool of 200 Load profiles

Perform power flow for 
every 5 minute time step 
for a day

Obtained PQ 
Variation Metrices

Disconnect all the PVDG 

Is n>100%? Stop

No

Yes

MC=i
                  Re-defining the existing load.
1.Load_kw=rectangular distribution
2. Load_profile=rectangular distribution
                  Connecting new PVDG.
1.PVDG_bus=
2.PV_kw=rectangular distribution
3.PV_profile=rectangular distribution

i=1

Is i>100?

i=i+1

No

Statistical 
analyisis

Increment n by 
20% 

Yes

L

pvNP _

 
 

Fig.4: Monte-Carlo simulation to assess PQ Variation Metrics 
 

The connection of new PVDG is allowed only to the buses 

where the loads are already existed in the LVDN. For each 

penetration level ‘n’, the customer that wishes to install PVDG 

is determined by ‘N_pv’ permutation of total load buses i.e. ‘L’ 

through an ordered sampling without replacement [23]. This 
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type of sampling is designated by ‘ 𝑃𝑁_𝑝𝑣
𝐿 ’, and is given by the 

equation 2. 
 

𝑃𝑁_𝑝𝑣
𝐿 = 𝐿 ∗ (𝐿 − 1) ∗ … .∗ (𝐿 − 𝑁𝑝𝑣 + 1)    (2) 

 

The peak PVDG generation (‘PV_kW’) values randomly 

vary from 1 to 5 kW and have a rectangular distribution given 

by the equation 1. Similarly, the corresponding PVDG 

generation profile is randomly selected from the pool of 30 PV 

profiles and has a rectangular distribution. A phasor mode 

power flow is solved in OpenDSS for every 5 minutes through 

the MATLAB COM interface. Finally, the PQ variation metrics 

are obtained from the power flow for further statistical analyses. 

Before proceeding to the next Monte-Carlo simulation, i.e. 

when MC=i+1, all the installed PVDGs are disconnected and 

repeats the same process of re-defining and connecting new 

PVDG in the LVDN. The EN 50160 [8] is adopted to measure 

the voltage magnitude variation i.e. the voltage magnitude 

should be within ±10% of the nominal voltage for 95% of a 

defined period (typically one week) and voltage unbalance i.e. 

the unbalance should be less than 2% for 95% of a defined 

period (typically one week). 
 

No.of PVDG installed customer= N_pv
No.of existing load with PVDG=L_load
Penetration level, n= 
      

Obtained the bus location of the 
existing loads i.e. “Load_bus”.
Total Load_bus=L
Create New PVDG
PVDG_bus=

Start

Load Standard IEEE EU LVDN

Solve Monte Carlo fault 
study

Obtained PQ 
Event Metrices

Is n>100%? Stop

No

Yes

MC=i

1. Re-defining the existing load.
Load_kw=rectangular distribution.
2.Re-defining the PVDG.
PV_kw=rectangular distribution.
3. Random selection of  SLG rectangular 
distribution

i=1

Is i>100?

i=i+1

No

Statistical 
analyisis

Increment n by 
20% 

Yes

Define SLG to all 
the load buses

%100
_

_
X

loadL

pvN

L

pvNP _

 
Fig.5: Monte-Carlo simulation to assess PQ Event Metrics 

 

Fig.5 represents the Monte-Carlo simulation to assess PQ 

event metrics. A penetration level, n, is defined at the beginning 

of the Monte-Carlo simulation. The penetration level is 

incremented by 20% up to 100% for every 100 different 

stochastic scenarios. The location of each load bus is obtained 

to connect new PVDG randomly in the existing load buses. As 

discussed earlier, for each penetration level, ‘n’, the new PVDG 

connection to the existing load bus is performed by ‘N_pv’ 

permutation of ‘L’ through an ordered sampling without 

replacement. A list of SLG faults is defined for all the load 

buses which will later select one randomly at a time for each 

Monte-Carlo fault study. Voltage drop and recovery are 

associated with applying and clearing the fault but observing 

the voltage sag depends on the method of monitoring the sag 

[19]. From the network description, there are 55 loads in the 

LVDN. Therefore, there will be 55 SLG faults in which phases 

A, B and C represent 38.2%, 34.5% and 27.3% of the total SLG 

faults respectively. 

Herein, both PVDG and load demand are characterized by 

their peak value in order to assess the voltage sag at the system 

and site (where loads are connected) due to SLG faults. Each 

stochastic process, MC, is characterised by re-defining the peak 

values of the existing loads and PVDGs for each penetration 

level followed by performing a random SLG fault. In total, 

there are 500 different stochastic processes. The peak values of 

each load randomly vary between 1 to 10 kW and have a 

rectangular distribution. Similarly, for each penetration level, 

the peak value of each PVDG is also randomly varied between 

1 to 5 kW and has also rectangular distribution. The random 

selection of each SLG fault from the 55 SLG faults is again 

represented by a rectangular distribution. A Monte-Carlo fault 

study is performed in OpenDSS [24] and finally, the PQ event 

metrics are obtained for further statistical analyses. The fault 

study mode in OpenDSS selects a random fault object from the 

list of faults and disables the current fault object before the next 

Monte-Carlo fault study proceeds. Only the peak magnitude of 

the voltage sags for a recorded duration (i.e. sampled either for 

one cycle or for half cycle) due to the SLG fault will be 

monitored in this fault study analysis. The remaining voltage 

will adopt to quantify the voltage sag during SLG fault events 

[19]. So, the term ‘deep sag’ and ‘shallow sag’ will be used 

here. A deep sag is a sag with a low magnitude of remaining 

voltage whereas the shallow sag is a sag with a large magnitude 

of remaining voltage. Voltage sag duration, phase angle jumps 

during the unsymmetrical faults and point-on-wave, waveform 

distortion, or the transients at the start and end of the events are 

not considered for this study. It is further considered that, due 

to the assumption of monitoring the voltage sag as a peak 

magnitude, an overshoot immediately after the sag will be 

observed. 

B. Worst case study 

Consideration of worst case study will enable in comparing 

the results obtained from the probabilistic study in further 

assessing the PQ impact metrics due to increased PVDG 

integration. For the PQ variation metrics, two worst case 

scenarios can be considered, namely, ‘Worst case 1’ i.e. 100% 

penetration level of PVDG together with maximum recorded 

PV generation with minimum recorded load profiles or zero 

load demand, and ‘Worst case 2’ i.e. 0% penetration level of 

PVDG together with maximum recorded load demand profiles. 

For the Worst case 1, all the 55 customers have PVDG installed 

in their premises with peak generation of 5 kW at unity power 
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factor (upf) and follow the maximum recorded PV generation 

profile from the pool of 30 sunny days. Furthermore, there is no 

consideration of load demand in this case. In the Worst case 2 

all the 55 customers have peak load demand of 10 kW with no 

PVDG installed and follows the maximum recorded load 

demand profile from the pool of 200 load profiles. The 

maximum recorded PV generation and load demand profiles 

from their respective pools are shown in Fig.6. 

Similarly, for PQ events two worst case scenarios can be 

considered, namely, ‘Worst case 3’ i.e. 100% penetration level 

of PVDG with peak generation of 5 kW at upf. In this case, 

there is no consideration of load demand. And ‘Worst case 4’ 

i.e. 0% penetration level of PVDG together with peak load 

demand of 10 kW for all the 55 customers. 

 
 

Fig.6: Maximum recorded PV generation and load demand profiles 
 

V. PROBABILISTIC ANALYSIS 

A. PQ Variations Metrics and Indices 

From the Monte-Carlo simulation, cumulative distribution 

functions (CDFs) can be computed for each case study and for 

each PQ variation metrics and indices. For overvoltage metrics, 

voltage in per unit represents the random variable x and F(x) 

represents the CDF of x. In total, there are 8 CDFs for each 

penetration level. The corresponding CDF enables to measure 

the probability of occurring overvoltage at the site for each case 

study. From Fig.7, the probability of occurring overvoltage i.e. 

1.1 p.u at the site is 0.78 approximately for ‘Worst case 1’. 

Further, it can be seen that the CDFs of all the penetration levels 

stay within the two worst case scenarios. Again, from Fig.7 the 

CDFs of case studies, namely 60%, 80% and 100% penetration 

levels together with ‘Worst case 1’ show that there is a 

probability of occurrence of overvoltage by a certain percentage 

of the customers. This is explained in Fig.8. 

 
Fig.7: CDF of site indices for overvoltage metric 

 

Referring to Fig.8, the percentage of customers violating 1.1 p.u 

represent the random variable xs and F(xs) represents the 

complementary CDF (CCDF) evaluated at xs in four case 

studies, namely 60%, 80% and 100% penetration levels 

together with ‘Worst case 1’. The CCDF allows to represent 

how frequent a random variable exceeds a particular limit. 

From Fig.8, the probability of 20% of customers violating 1.1 

is 0.5 in the case of 100% penetration level, 0.35 in the case of 

80% penetration level and 1 in the case of ‘Worst case 1’. 

Again, the probability of maximum percentage, i.e. 85% 

(approximately) of the customers violating 1.1 p.u is 0.8 in the 

case of ‘Worst case 1’. Whereas, the probability of maximum 

percentage, i.e. 25% (approximately) of the customers violating 

1.1 p.u is 0.2 in the case of 100 % penetration level. But less 

than 5% of customers are likely to experience overvoltage in all 

the four cases. Thus, these CCDF trails show that as the 

penetration level increases, there is a higher probability of 

percentage of customers observing overvoltage.  

 
Fig.8: CCDF of % of customer violating overvoltage 

 

It can be seen in Fig.7 that, the probability of occurrence of 

minimum voltage, i.e.1.05 p.u is about 0.43 for ‘Worst case 1’. 

This can be further seen in Fig.9 that most of the customers have 

a minimum voltage in between 1.04 p.u to1.06 p.u. Fig. 9 

represents the checkboard plot for the voltages observed in all 

55 nodes. This particular plot is made for ‘Worst case 1’. It can 

be observed here that under ‘Worst case 1’, voltage profile 

starts to increase down the feeder. From midday till afternoon 

maximum voltage rise can be observed from node 25 onwards. 

 

 
Fig.9: Voltage checkerboard plot of all 55 customers in p.u for ‘Worst case 1’ 

study. 
 

Similarly, in the case of overvoltage system indices, voltage 

in per unit represents the random variable X and F(X) represents 

the CDF of X. In total, there are 8 CDFs for each penetration 

level. The corresponding CDF enables to measure the 
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probability of occurrence of overvoltage at the site for each case 

study. From Fig.10, the probability of occurrence of 

overvoltage (i.e. 1.1 p.u) at the system is 0 for all the 8 cases. 

But the probability of occurrence of minimum voltage of 1.045 

p.u is 0.4 in the case of ‘Worst case 1’. This can be further seen 

in Fig.11 that the minimum voltage for all the three phase 

voltages at substation transformer is about 1.04 p.u in the case 

of ‘Worst case 1’. 

 
Fig.10: CDF of system indices for overvoltage metric 

 

 
 

Fig.11: Three phase voltages at substation transformer 
 

For each index, the unbalance factor is computed and quantified 

against the standard i.e. the voltage unbalance factor should be 

less than 2% for 95% of a defined period. The unbalance site 

indices are computed at the three-phase node where the 

customers connect their single-phase service cable. Therefore, 

there are 55 three phase nodes to consider for site voltage 

unbalance. To quantify the percentage of occurrence of voltage 

unbalance that exceeds a defined threshold limit, a cumulative 

plot of voltage unbalance factor versus percentage of 

occurrence (i.e. duration) are shown in Figures 12 and 13. These 

graphs are essentially a CCDF. Fig. 12 shows the site voltage 

unbalance factor for 8 different cases. It can be seen here that 

the percentage of occurring the voltage unbalance factor of 

almost 1.8 is 60% in the three cases, namely, 0% penetration 

level, ‘Worst case 1’ and ‘Worst case 2’. This increase in 

voltage unbalance at 0% penetration is a normal due to 

unbalance loading in the LVDN. However, ‘Worst case 1’ and 

‘Worst case 2’ are the extreme conditions and stays within the 

limit. The percentage of occurring maximum voltage unbalance 

factor of 1.907 is 54.3% in the case of ‘Worst case 1’. And, the 

percentage of occurring maximum voltage unbalance factor of 

1.821 is 41.29% in the case of ‘Worst case 2’. The unbalance 

factor primarily depends on the loading in each phase. It can be 

recalled that out of the 55 customers, phases A, B and C 

accommodate 38.2%, 34.5% and 27.3% of the loads 

respectively, showing a certain level of balance loading and is 

shown in Fig.12 as 0% penetration. 

A further observation from Fig.12 shows that the integration 

of PVDG reduces the voltage unbalance factor. This is 

primarily due to the phase cancellation between the phases. But 

as the PVDG penetration increases from 20% to 100%, the 

voltage unbalance factor starts to increase by a small factor. The 

percentage of occurring maximum voltage unbalance factor of 

about 1 to 1.2 is 100% of all the 8 cases. This means that most 

of the time the voltage unbalance factor at each three phase 

nodes will be within 1-1.2 meaning it will stay within the limit. 

Overall, it can be concluded here that, PVDG integration 

alleviates voltage unbalance in the LVDN. 

 
 

Fig.12: Percentage of site voltage unbalance factor 
 

The system index voltage unbalance factor is shown in Fig. 

13. The unbalance factor is within the limit for all the 8 cases. 

Similarly, here, as the penetration of PVDG increases from 0% 

to 100%, the voltage unbalance increases by a small factor. The 

percentage of occurring minimum voltage unbalance factor of 

0.74 is 44.44% in the case of ‘Worst case 1’. And, the 

percentage of occurring minimum voltage unbalance factor of 

0.72 is 18.75% in the case of ‘Worst case 2’. Further, the 

percentage of occurring maximum voltage unbalance factor of 

about 0.7 to 0.75 is 100% of all the 8 cases. This means that 

most of the time the voltage unbalance factor at the transformer 

will be within 0.7 to 0.75. Overall, the voltage unbalance at the 

transformer will be within the limit in all the 8 cases. 

 
Fig.13: Percentage of site voltage unbalance factor 
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B. PQ Events Metrics and Indices 

From the Monte-Carlo simulation, cumulative distribution 

functions (CDFs) can be computed for each case study and for 

each PQ event metrics and indices. As discussed earlier, the 

observed voltage sags will be represented as a percentage of the 

remaining voltage due to Monte-Carlo fault study. For voltage 

sags site index, the remaining voltage represents the random 

variable y and F (y) represents the CDF of y. The corresponding 

CDF enables to measure the probability of observing certain 

percentage of the remaining voltage for a particular case study. 

Higher percentage of remaining voltage means it is a shallow 

sag i.e. the low fault current. Whereas, lower percentage of 

remaining voltage means it is a deep sag i.e. high fault current.  

From Fig.14, until 40% of remaining voltage, all the case 

studies have the same CDF except the ‘Worst case 3’. Starting 

from 45% of remaining voltage, the F(y) gradually increases as 

the penetration of PVDG increases with ‘Worst case 3’ showing 

the highest probability of occurring the remaining voltage 

ranging between 30% to 80%. That means ‘Worst case 3’ has 

the highest probability of seeing lower percentage of remaining 

voltage i.e. deep sag (high fault current). When F(y) =0.4, 

‘Worst case 4’ shows high percentage of remaining voltage 

around 85% which mean a shallow sag. Again, the ‘Worst case 

4’ shows the highest probability of occurrence of high 

percentage of remaining voltage i.e. shallow sag. From this 

analysis, it can be concluded that the presence of PVDG 

together with load demand contributes to the fault current at the 

load buses leading to voltage drop. As the penetration of PVDG 

increases, higher probability of occurrence of lower percentage 

of remaining voltage or deep sag is observed. But depending on 

the type of generator model, voltage sags might be different. 

Here during Monte-Carlo fault study, the PV generator is 

switched into a dynamic mode by converting it into the 

Thevenin’s equivalent and finally to Norton’s equivalent [25].  

 
 

Fig.14: CDF of site indices for voltage sag 
 

Similarly, for voltage sags system index, the remaining 

voltage represents the random variable z and F (z) represents the 

CDF of z. The corresponding CDF enables to measure the 

probability of observing certain percentage of the remaining 

voltage for a particular case study. From Fig.15, the CDFs of 

40%, 60%, 80% and 100% penetration levels together with 

‘Worst case 3’ follow the same trail or relatively similar slope. 

This trail signifies that all the CDFs correspond to shallow sag 

which means low fault current at the point where these voltage 

sags are measured i.e. at the secondary side of Dy transformer. 

This is true because the integration of DG along the feeder will 

reduce or lower the fault current contribution at the beginning 

of the feeder i.e. substation Dy transformer for fault beyond the 

DG location [2]. This means that if the fault occurs beyond the 

DG location down the feeder, the fault current seen at the 

upstream feeder will be lower. Due to the random integration of 

PVDG and random occurrence of SLG fault, the fault current 

seen at the upstream feeder or secondary side of a substation 

transformer is low. With the increased random integration of 

PVDG, the fault current seen at the upstream feeder can be even 

lower and this is one of the cases observed in Fig.15.  

For the case studies, 0% of penetration level, 20% of 

penetration level and ‘Worst case 4’ are concerned, the F(z) 

increases as the percentage of remaining voltage increase. This 

is because the fault current seen by the upstream feeder is 

normal since there is less or no PVDG contribution towards the 

fault current. With 20% of penetration level, the F(z) is lower 

as compared with 0% of penetration and ‘Worst case 4’.  
 

 
 

Fig.15: CDF of system indices for voltage sag 

VI. CONCLUSION 

This study proposes the consideration of two PQ impact 

metrics and indices as a means to measure the likely impacts of 

increased PVDG integration under spatial and temporal 

behaviour of both PV generation and load demand. For each PQ 

impact metrics, 8 different cases were considered, namely, 

PVDG penetration levels at 0%, 20%, 40%, 60%, 80%, and 

100%, a maximum generation with zero demand and maximum 

demand with zero generation. A Monte-Carlo simulation is 

chosen as a tool for such stochastic process. From the results, 

site overvoltage shows a likely impact that will persist as the 

PVDG integration increases. The probability of the maximum 

percentage of customer violating 1.1 is higher in the case of 

‘Worst case 1’ (i.e. maximum generation with zero demand) 

than in the case of 100% penetration level. At the 100% 

penetration level, the maximum percentage of customer 

violating 1.1 p.u is 25% and the probability of occurrence is 0.2. 

Further about 20% of customers will violate 1.1 p.u at the 100% 

penetration level and the probability of occurrence is 0.5. 

However, less than 5% of the customers will observe 

overvoltage in four case studies, namely 60%, 80% and 100% 

penetration levels together with ‘Worst case 1’, whereas, the 

system overvoltage stays within the limit.  

In terms of site voltage unbalance, integration of PVDG 

reduces the voltage unbalance as compared with no PVDG 
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integration or low penetration level. This is mainly due to the 

phase cancellation. This increase in voltage unbalance at 0% 

penetration is a normal due to unbalance loading in the LVDN. 

Overall, the site and system voltage unbalance stay within the 

limit for all the 8 different cases. In the case of site voltage sag, 

as the penetration of PVDG increases, higher probability of 

occurrence of lower percentage of remaining voltage or deep 

sag is observed. However, the system voltage sags are quite 

different from that of the site. The probability of occurrence of 

lower remaining voltage or deep sag reduces as the penetration 

of PVDG increases. This is because PVDG integration reduces 

the fault current seen at the upstream feeder. 

In conclusion, the increased integration of PVDG poses some 

threat to the performance of the power system. From the 

probabilistic study, overvoltage poses the highest threat, 

whereas voltage unbalance stays within the limit. Further, 

increased integration of PVDG will contribute towards fault 

current leading to deep sag at the site. This probabilistic 

approach can be used as a tool to identify the likely impacts due 

to PVDG integration at the existing load buses. This will enable 

in quantifying the likely impacts against the worst-case 

scenarios.  

APPENDIX 

The proposed Monte-Carlo simulation considerd 100 

samples or simulations to estimate the parameter of interest. 

The choice of this samples was determined to compromise 

between computational time and the accuracy of the estimation. 

One specific site PQ variation impact metric i.e. overvoltage 

was chosen to determine the accuracy of the estimation. 1000 

samples size have chosen to perform Monte-Carlo simulation 

to determine the site overvoltage for 5 cases i.e. 0%, 20%, 40%, 

60, 80% and 100%. A confidence level of 95% is chosen which 

contains a true parameter i.e. mean. This true parameter 

signifies that the mean of the true population of samples size ‘n’ 

is 1. Table A1 shows the confidence intervals of two samples 

size namely 100 and 1000 for 5 cases with 95% confidence 

level. 

 
Penetration 

in % 

Sample size 

=100 

Sample size 

=1000 

 

Absolute  
Error Average Time = 

180 seconds 

Average Time = 

1800 seconds 

Confidence 

interval 

Confidence 

interval 

low high low high low high 

0 1.0316 1.0358 1.0329 1.0343 0.0013 0.0016 

20 1.0332 1.0373 1.0345 1.0359 0.0014 0.0014 

40 1.0353 1.0397 1.0366 1.0381 0.0013 0.0017 

60 1.0377 1.0427 1.0392 1.0409 0.0015 0.0019 

80 1.0396 1.0453 1.0417 1.0435 0.0021 0.0018 

100 1.0426 1.0491 1.0447 1.0468 0.0021 0.0024 

 
Table A1: Confidence intervals of two samples size namely 100 and 1000 for 

5 cases with 95% confidence level 

 

The absolute error from Table A1 shows that sampling size 

of 100 is a good estimation for 95% confidence level for the 

corresponding confidence intervals at a tenth of the 

computation time as compared with sampling size of 1000.  
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