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APHONIC: Adaptive Thresholding for Noise
Cancellation in Smart Mobile Environments

Ruairı́ de Fréin
School of Electrical and Electronic Engineering

Dublin Institute of Technology
Ireland

Email: rdefrein@gmail.com

Abstract—We propose a signal-channel, adaptive thresh-
old selection technique for binary mask construction, namely
APHONIC, (AdaPtive tHreshOlding for NoIse Cancellation) for
smart mobile environments. Using this mask, we introduce
two noise cancellation techniques that perform robustly in the
presence of real-world interfering signals that are typically
encountered by mobile users: a violin busker, a subway and busy
city square sounds. We demonstrate that when the power of the
time-frequency components of the voice of a mobile user does
not significantly overlap with the components of the interference
signal, the threshold learning and noise cancellation techniques
significantly improve the Signal-to-Interference Ratio (SIR) and
the Signal-Distortion Ratio (SDR) of the recovered voice. When
a mobile user’s speech is mixed with music or with the sounds of
a city square, or subway station, the speech energy is captured
by a few large magnitude coefficients and APHONIC improves
the SIR by greater than 20dB and the SDR by up to 5dB.
The robustness of the threshold selection step and the noise
cancellation algorithms is evaluated using environments typically
experienced by mobile phone users. Listening tests indicate that
the interference signal is no longer audible in the denoised signals.
We outline how this approach could be used in many mobile
voice-driven applications.

Index Terms—Mobile Voice-driven Applications; Mobile Com-
puting; Noise Cancellation; Human Computer Interaction; Blind
Source Separation.

I. INTRODUCTION

In 2016 20% of Google Android searches were made by
voice. Voice has an increasingly important role to play in
mobile search [1] and in related application domains; we refer
to the success of Amazon Echo, Siri etc. Voice assistants are an
increasingly viable interaction medium; however, voice, unlike
more traditional interaction methods, triggers strong emotions
because users have a lower tolerance for error using voice
interfaces. Users do not like to repeat themselves and the
blame for failing to process a command typically lies with
the system. In the mobile world, the environment in which
voice is used can have a strong effect on the success of the
system. The effects of community noise on communications
among other human activities are outlined by the World Health
Organization in [2]. It is also true that in many cases relatively
clean recordings of potential inteferer signals are available
from auxiliary sensors.

We consider the problem of monaural noise cancellation,
where prior information is available, in particular, a recording
of ambient conditions. We observe a mixture of the desired

speech signal and ambient noise, on a mobile device. Prior
information could be made available on a peer-to-peer basis,
similar in spirit to the manner in which resources are shared
by intelligent messaging frameworks [3], or by leveraging
measurements from acoustic noise pollution monitoring sys-
tems in urban environments [4]. For example, in a Mobile
Cloud Computing (MCC) scenario, energy-efficient stochastic
leader-selection algorithms may be used by mobile handsets
to determine which sensor should supply the prior information
[5]. In-network compression techniques can then be used
to reduce the bandwidth usage associated with sharing this
prior information (cf. [6], and related works [7]). Leverag-
ing information from auxiliary sensors to improve human-
machine interaction has been studied by the source localization
and source separation communities; one focus has been on
using time-frequency spatial signatures [8]. Recent works
have considered collaborative localization and discrimination
of acoustic sources in urban environment monitoring [9]. In
this paper, we rely on the corrupted observation observed
on a mobile device, along with a single unfiltered version
of the interfering source to perform cancellation, as opposed
to a microphone array. Traditionally recursive algorithms for
adaptive filtering [10] have been applied to this task, for
example, normalized Least-Mean-Square (NLMS) variant and
Recursive-Least-Squares (RLS); however the authors of [11]
illustrated that these approaches do not perform well when
there are synchronization errors.

To ensure that APHONIC is computationally cheap, source
separation methods that make the windowed Disjoint Orthog-
onality assumption, a property quantified for speech in [12],
are examined and extended [11]. One challenge for many
of these approaches is that a TF mask must be constructed
to aid separation. In the stereo case [12], information about
the relative placement of the microphones can be used to
determine source support sets. This placement information can
be built into the linear transform used: the synchronized Short-
Time Fourier Transform queries the candidature of different
TF transforms for generating sparse or WDO representations
of multi-channel anechoic mixtures [13] by optimizing the
transform for the sensor arrangement. However, in the monau-
ral case [11] this placement information is not available. How
to adaptively threshold a natural acoustic scene in order to
separate out different signal components remains an open



problem. There is a need for an algorithm that can adaptively
determine which source is present in which TF bin in the
monaural case. Our primary contribution is that we present
a solution to this challenge. We then demonstrate how this
information can be used to inform two new monaural noise
cancellation techniques, which target urban environments.

This paper is organized as follows. In Section II we present
a model for supervised single channel demixing, which is
suited to the urban noise cancellation challenge. In Section III
we formulate an approach for estimating a demixing filter,
given the support set of an interference signal. In Section IV
we investigate the role of phase (or elevation) a criteria for
estimating the support set of the interference. We construct a
histogram of phase values, called the Elevatogram. We propose
an algorithm for determining the support of the interference. In
section V we provide a numerical evaluation of the approach
and provide recommendations for our next steps.

II. MIXING MODEL AND PROBLEM DEFINITION

The windowed Fourier transform of the continuous time
domain signal, x(t), is defined as

FW (x(t))(ω, τ) =
1√
2π

∫ ∞
−∞

w(t− τ)x(t)e−jωtdt (1)

We use a Hamming window, w(t), in this paper.
We observe a mixture signal on a mobile, which is defined

as
x(ω, τ) = s(ω, τ) + n(ω, τ), (2)

where s(ω, τ) is the target signal that we want to extract and
n(ω, τ) is an interference signal that we want to remove.
We do not have a clean version of the signal, n(ω, τ), in
order to aid us in this task; instead we have a reference
version of this signal, n̂(ω, τ), which has been filtered by some
process. For example, the filter h(t) is the impulse response
of the recording set-up. It could be that h(t) scales or delays
the signal. For example, an auxiliary sensor, closer to the
source of the interference could record a clean version of the
interference, which is scaled and delayed relative to the version
on the mobile phone.

Given that we want to make use of the reference signal
n̂(ω, τ) for denoising, in the time-frequency domain, a simple
model for the interference signal is

n(ω, τ) = H(ω)n̂(ω, τ). (3)

Putting this together, the observed mixture is approximated
by

x(ω, τ) ≈ s(ω, τ) +H(ω)n̂(ω, τ). (4)

In this paper we will investigate the approach of time-
frequency masking to remove the interference signal. A time-
frequency mask in this setting has the form

Mα(ω, τ) =

{
1, |x(ω, τ)| � f(|n̂(ω, τ |)
0, otherwise.

(5)

It is defined as a function of the reference interference as
opposed to the clean interference, which is not observed. Once

x = 2 + j

x̄ = 2− j

n = 2.1 + .9j

n̄ = 2.1− .9j
xx̄ = 5

xn̄ = 5.1 + .3j

R

I

Fig. 1. Geometric Motivation: the mixture TF bin, the full-line straight arrow,
is x = 2 + j. Its complex conjugate is also illustrated x = 2 − j. The
calculation xx̄ = 5 yields a real value. The mixture is dominated by the
interference signal, n, therefore it is approximately equal to x, e.g. n =
2.1 + .9j. It is illustrated using a dashed line. The product xn̄ is elevated
from the x-axis and it is slightly further from the origin than xx̄. Introducing
a scaling term h corrects the distance from the origin of the product xn̄, e.g.
hxn̄.

a suitable mask has been selected we can then estimate the
target source, s̃(ω, τ), by multiplication,

s̃(ω, τ) = Mα(ω, τ)x(ω, τ), (6)

if the target and interference signals do not overlap in TF.
Selecting a linear transform that aids separation is attractive.

If a linear transform produces a compactly supported repre-
sentation of speech for example, and the mixture components
are independent, it is unlikely that they will activate the
same frequencies at the same time. By using a windowed
Fourier transform, we consider the frequency components of
the signals in a local-in-time manner, which greatly increases
the likelihood that signals do not overlap in TF. In short, we
look to concentrate signal energy in some transform domain,
if they are independent, it is likely that they will not overlap.

The advantages of the TF masking approach are that
• the signals are demixed in a computationally cheap way if

the signals are not severely overlapped in TF (cf. Eqn. 6);
• we do not have to estimate the phase of the target signal

if we mask in the TF domain. We can use the phase of
the mixture.

Problem: The problem that we consider in this paper is how
to select the mask for this task. We will focus our study on
functions of the form

f(|n̂(ω, τ)|) = α|H(ω)||n̂(ω, τ)|. (7)

Contribution: We propose an algorithm for detecting the
support of the interference signal; for estimating the filter
applied to it; and finally, for reconstructing the target signal.

III. FILTER ESTIMATION

We assume that mobile phone observations x(t) ∈ L2(R)
are band-limited and sampled at a sufficiently high sampling
rate. In this paper, a continuous time signal x(t) is denoted



by xn = x(nT ) in the discrete time domain, where T is
the sampling period, the sampling rate is 16kHz, and the
index n is drawn from the non-negative integers. The short
time Fourier transform of xn is denoted xm,k, which denotes
that the analysis window wn ∈ RN is positioned at sample
mR, where R is the rational oversampling factor. The DFT
size is denoted N . We use the parameters R = N

2 , where
N = 1024. We select a window which has the property that
both the root mean square duration ∆w and bandwidth ∆W

of the continuous time window w(t) are finite. We use the
absolute value of the filter in the discrete frequency domain in
the remainder of this paper; we denote it hm = |Hm|, where
Hm is H(ω) in the discrete frequency domain.

We define the support sets of the source and interference
signals to be Λ and Ω respectively. For example, the set Ω
consists of the TF bins, {m, k} where the interference signal
is dominant. We desire a linear transform such that

Λ ∩ Ω = ∅. (8)

The images of the sources under the TF linear transform
provide approximate disjoint support –our results support this
empirically. We first estimate hm for all m.

Geometric Motivation: Consider one TF bin of the mix-
ture, xm,k. We call it x for notational simplicity. We denote its
real and complex components x = c+jd and illustrate it in the
Argand diagram in Fig. 1. Similarly, the same TF bin of the
interference is denoted n = a+ jb. The square of the absolute
value of x is an instantaneous estimate of the occupancy of
the TF bin; it can be computed by |x|2 = xx̄ = c2 + d2 ∈ R.

If the interference is the only signal present in the TF bin
and hm = 1, then x = n, and therefore, |x|2 = xn̄ ∈ R,
which is a real-valued quantity (a = c and b = d). If the target
source component is also present, then x 6= n. It follows that
xn̄ = ac+bd+j(ad−bc) ∈ C, which gives a complex-valued
quantity, which has a non-zero elevation from |x|2.

If the interference signal is dominant in the TF bin under
consideration then xn̄ ≈ xx̄ and the angle of elevation of
xn̄ from the x-axis is small. We interpret the term xx̄ as a
squared-distance of x from the origin, along the real axis. The
distance of the vector, xn̄, resulting from the cross-product,
from the origin can be computed by taking its absolute value,
|xn̄|.

If hm 6= 1 we can introduce a scaling term for the
interference TF point, e.g. hn, and estimate the coefficient
h that ensures the two distances match |xhn̄| ≡ |xx̄|. We
extend this idea to the set of TF bins where the interference is
dominant. We consider the set of time bins, indexed by k, for
the frequency bin m, where the interference signal is dominant
and we denote this set, Ωm. We introduce one coefficient for
each frequency bin hm and attempt to fit |xm,khm ¯̂nm,k| to
|xm,kx̄m,k|, for {m, k} ∈ Ωm.

Let us consider the m-th frequency bin. The term hm
denotes that this is the weight for m-th frequency bin.

g =
1

|Ωm|

( ∑
k∈Ωm

|xm,k|2 + ε

)
(9)

Interpretation: The first term in function 1
|Ωm|

∑
k |xm,k|2 is

the average squared-distance of the mixture TF points from
the origin. The second term in g is an error term

ε =
∑
k∈Ωm

|hmn̂m,k|2 − 2
∑
k∈Ωm

|hmxm,k ¯̂nm,k| (10)

which computes the deviation around a squared distance. It
is also an equally valid approach to express this function in
terms of a deviation around 1

|Ωm|
∑
k∈Ωm

|hmn̂m,k|2.
To minimize g(hm) with respect to hm we compute

min
hm

ε, (11)

we set the resulting term to zero, and solve for hm, e.g.

∂ε

∂hm
= 2hm

∑
k∈Ωm

|n̂m,k|2 − 2
∑
k∈Ωm

|xm,kn̂m,k| = 0. (12)

It follows that

hm
∑
k∈Ωm

|n̂m,k|2 =
∑
k∈Ωm

|xm,kn̂m,k|, (13)

which can be re-arranged to give the estimator:

hm =

∑
k∈Ωm

|xm,kn̂m,k|∑
k∈Ωm

|n̂m,k|2
. (14)

Remark: It is important to point out that given that
we are only interested in computing the distance between
xm,khmn̂m,k and the origin, the approach that we have
proposed is simpler, in terms of notation and geometrical
illustration, than expressing the problem using the traditional
Squared Euclidean Distance approach. For example, consider
n̂m,k ∈ C and xm,k ∈ C.∑

k

|hmn̂m,k − xm,k|2 (15)

which may be expressed as∑
k

(hmn̂m,k − xm,k)(hmn̂m,k − xm,k) (16)

which can be written as:∑
k

h2
mn̂m,kn̂m,k − hm

(
xm,kn̂m,k − nm,kxm,k

)
+ xm,kxm,k

(17)
which has a slightly more involved geometrical justification;
it involves the complex conjugate of both the mixture and the
reference signal.

IV. ELEVATION ESTIMATION VIA THE ELEVATOGRAM

To estimate hm we assumed that the members of the sets
Ωm were known a priori in Section III. This assumption was
also a limitation of [11]. It is generally not valid; it motivates
a second interesting challenge –determining in which TF bins
the interference is dominant. What is the best criteria for
deciding which TF bins should be in Ωm?

A first assumption is that the reference interference is
roughly aligned with the interference in the mixture. In
keeping with our approach thus far, we appeal to Fig. 2 for



x = 2 + j

n = 2.1 + .9j

xx = 5

xn = 5.1 + .3j

R
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s =
−0.1

+ 0.1
j

xs = −0.1− 0.3j

Fig. 2. Examining Elevation: the mixture TF bin, the full-line straight arrow,
is x = 2 + j. The calculation xx̄ = 5 yields a real value. The mixture is
dominated by the interference signal, n, therefore it is approximately equal
to x, e.g. n = 2.1 + .9j. The interference is illustrated using a dashed-line
arrow. The product xn̄ is slightly elevated from the x-axis. It is slightly further
from the origin than xx̄. The target source, s = −0.1 + 0.1j, is illustrated
with a full-line and no arrow head. The product, xs (illustrated by an arrow-
head-less dashed line), has an elevation which is significantly larger than xn.
The support-set of n can be determined by considering the elevation of xn.

inspiration. In the illustrated example, the difference between
the mixture x and the reference signal n is due to the presence
of the target signal, s, e.g. s = x− n = 2 + j − 2.1− .9j =
−0.1 + 0.1j.

Recall that (1) the product xx yields a real value (illustrated
by the vector along the real axis in Fig. 2); (2) the product
xn yields a vector with a small elevation from the x-axis if
n ≈ x (vector without the arrow head in Fig. 2); (3) finally,
a vector s which is not approximately equal to x causes the
product xs to have a large angle of elevation (dashed vector
without an arrowhead in Fig. 2). To determine the set Ωm we
search for the set of points xn which have a small angle of
elevation. To this end we construct the Elevatogram.

We start by computing the angle of the product xm,kn̂m,k
with the positive real axis, xm,kxm,k, which is written as

ϕm,k = arg(xm,kn̂m,k) = arctan

(
i

r

)
(18)

where r = Re{xm,kn̂m,k}, i = Im{xm,kn̂m,k} and we assume
that r > 0. If this is not the case, we do not consider the TF
bin.
Partition Construction: We must partition ϕm,k into the
source and interference support sets Λm and Ωm for each m
to compute the filter hm.

The problem reduces to converting real-valued elevation
data into binary-valued data, e.g. the signal components in-
terference and target source. We assume that the angles of the
TF points for each discrete frequency, m, contain two classes
of points only –it follows a bi-modal distribution. We calculate
the optimum threshold, t∗m, between the two classes of points
by separating the two classes in the sense that the intra-class
spread is minimal. This approach can be interpreted as a 1-
D discrete analog of Fisher’s Discriminant Analysis [14] or
threshold selection methods used in image processing [15].

We quantize the angles (Eqn. 18) which allows us to
generate a histogram with L bins. More detail is given below.
We call this object an Elevation histogram –Elevatogram. This
object makes an exhaustive threshold search routine practical.

The problem is to partition the points in Argand diagram
into the two sets of TF bins, Ωm and Λm. We posit that the
interference points will aligned with the x-axis. The target
source set of points should have a non-zero elevation from
the x-axis. How can we select an optimal threshold tm for
partitioning these sets of points?

To simplify this task we project all of the angles or
elevations, ϕm,k into the non-negative orthant by applying the
non-linear operator, [x]ε ← |x|+ ε with the value ε = 10−16,

ϕm,k ← [rm,k]ε + j[im,k]ε. (19)

In a second simplifying step we quantize each of the angle
estimates ϕm,k so that they are members of one of L quanti-
zation bins between 0 and π

2 . This quantization step has the
effect of making an exhaustive search routine computationally
cheap. The quantization step-size is denoted ∆, it yields L
angles, ∆i, for i = 0, 1, . . . L − 1 and the value of the angle
of each bin is ϕi.

The probability that a quantization bin is occupied is pi.
Given the threshold tm, the probability of an angle being
drawn from set Ωm or Λm respectively, is

pΩ(tm) =

t−1∑
i=0

pi, pΛ(tm) =

L−1∑
i=t

pi. (20)

We do not indicate the threshold, tm, or the frequency bin, m,
in the remainder of this section, when the meaning is clear.
The mean angle of each set is

µΩ(tm) =

tm−1∑
i=0

ϕi
pΩ
pi, µΛ(tm) =

L−1∑
i=tm

ϕi
pΛ
pi (21)

where ϕi denotes the value of the i-th quantization level. The
mean value of all of the quantized points is

µ = pΩµΩ + pΛµΛ. (22)

We will calculate the optimum threshold by separating points
in Ωm and Λm so that their spread is minimized, by consid-
ering the objective function

f = pΩ(µΩ − µ)2 + pΛ(µΛ − µ)2

= pΩpΛ(µΩ − µΛ)2. (23)

The optimal threshold, t∗m is computed by an exhaustive
search over the values of i

f(t∗m) = max0≤i≤L−1f(i). (24)

The support set of the interference, Ωm, and source set, Λm,
is computed by comparing the angles of each TF bin with the
optimum threshold t∗m, e.g.

Ωm = {{m, k}|ϕm,k < t∗m}. (25)

This support set gives rise to our first binary mask, the
elevation mask, which is defined as

Me
m,k =

{
1 if {m, k} ∈ Ωm,

0 otherwise.
(26)



Putting this threshold selection algorithm together with the
filter estimation step in Section III, we propose two noise
cancelling algorithms for removing an interference signal
given an unfiltered version of the interference.

The first algorithm, Elevation Mask Denoising,
combines steps 1 and 2 below. The second algorithm,
Filter Mask Denoising, combines steps 1, 2 and 3.

• Approximately align the reference interference with
the mixture;

• Compute the discrete TF representation of the mixture,
x(t), and the prior information, n̂(t);

• Compute the angle subtended between the positive real
axis and the product xm,k ¯̂nm,k in a
counterclockwise direction, e.g. ϕm,k;

• Apply the partition construction step;
– Project the angle back into the non-negative

orthant using the non-linear operator (Eqn. 19);
– Generate the histogram of the angles in the

non-negative orthant;
– Determine the optimal threshold by solving

the optimization problem max0≤i≤L−1f(i);
– Compute the support sets Ωm and

Λm using t∗m;

1 Threshold Estimation - tm

• Construct the elevation mask using Eqn. 26.
• Remove the interference signal by applying
Me to (Eqn.6).

2 Elevation Mask Construction - Me

• Estimate the filters hm using the estimator in Eqn. 14
and the support set Ωm

• Compute the binary mask (Eqn. 5) by computing
the function in Eqn. 7 with α = 1;

• Remove the interference signal by applying
Mf to (Eqn.6).

3 Estimate and Construct Filter Mask - Mf

V. NUMERICAL EVALUATION

In this section we demonstrate that the bi-modality assump-
tion is justified and that it can be used to learn an appropriate
separation threshold and its associated binary mask. We then
examine the efficacy of combining the threshold with the
filter learning step for a refined binary mask construction.
Finally, we examine the interference removal step on a
number of single channel mixtures constructed using data
from the “Sixth Community-Based Signal Separation Eval-
uation Campaign” (SiSEC), which is available on-line here:
https://sisec.inria.fr/home/bgn-2016/ data-sets. The SiSEC is
a long-running denoising channel which looks to perform
multi-channel denoising. In comparison with the work of
this evaluation campaign, we restrict our experiments to the
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Fig. 3. Time Domain Signals: speaker (row 1); violin (row 2) and a mixture of
the speaker and violin (row 3). We observe the mixture and a filtered version
of the violin signal. The goal is to extract the speech.

monaural case in this paper; we use prior information about
the interfering source.

We start by illustrating that the bi-modality assumption is
realistic by considering a mixture of a speaker and a violin
(in Fig. 3). The violin is the interference signal we want to
remove. It is illustrated in row 2 of Fig. 3. The speaker is the
target signal. It is illustrated in row 1. A mixture of both the
violin and the speaker is illustrated in row 3 of Fig. 3. All
mixtures examined in this paper are sampled at 16kHz. We
use a clean, but delayed version of the violin signal as prior
information.
Bi-modality Assumption and Threshold Evaluation: Fig. 4
illustrates that when the violin dominates in a range of fre-
quencies the threshold selected is higher, because the approach
has correctly decided that most TF bins in this range of
frequencies correspond to the violin. Conversely, when the
speaker is dominant, the selected threshold is lower. This
is because two concentrations are present in the histogram:
the higher concentration corresponds to the speaker which
is not correlated with the interference and thus has a higher
angle of elevation; the lower concentration corresponds to the
violin signal, which is well-correlated with itself. There is also
background noise.

Fig. 5 illustrates the threshold selected for all of the TF
frequency bins in the speech-violin mixture. It summarizes
the threshold selected when (1) the violin is dominant; (2) the
speaker is dominant; and finally, (3) a mixture of both sources
present, or no source is present. The threshold selected in each
frequency bin is determined by the presence of speech. When
speech is present, there is more energy present on the right-
hand side of the angle histogram. When speech is not present,
the energy is concentrated on the left-hand side.
Mask Evaluation: We use these thresholds, tm∀m, to
construct the support sets –which are readily converted into
binary masks– for the speech and the violin signal, e.g. Λm
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Fig. 4. Illustrating bi-modality: consider a mixture of a violin and speech in
four frequencies in TF, e.g. 188, 375, 859 and 1016 Hz. Speech dominates
the mixture at 188 and 375 Hz. The violin dominates the mixture at 859 and
1016 Hz. The violin histograms have their highest count at 0 radians. When
the speech is dominant the histogram exhibits two concentrations. The higher
(radian) concentration corresponds to the speech energy, the lower (radiant)
concentration corresponds to the violin. The selected threshold (red dot) is
lower when speech dominates.
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Fig. 5. The threshold estimation procedure is examined for a mixture of
speech and a violin. The estimated threshold depends on dominance of the
speech or violin in each frequency. (a): Histogram of angle of cross-product
of mixture with clean interference signal the red line denotes the estimated
threshold; (b): Comparison of the normalized sum of the magnitudes of the
TF bins of the violin with the speech, a measure of the dominance of each
signal in each frequency bin. The threshold estimated in each bin depends on
the energy of each mixture component.

and Ωm for all frequency bins. Then, we compare three types
of binary mask: 1) an ideal binary mask, which is used as
a benchmark and relies on full knowledge of both sources;
2) a mask constructed using the elevation threshold scheme.
We call this mask Me (for the speaker) and Me,∗ (for the
violin) respectively, where the superscript denotes the elevation
method; and finally 3) we refine our estimates of these masks
by using the filter estimation procedure in Eqn. 5 and Eqn. 7.
We denote these masks Mf and Mf,∗ respectively, where the
superscript denotes that these masks are constructed by using
the elevation threshold scheme to form the support sets for the
filter estimator.

The purpose of this evaluation is to compare the the efficacy
of Me and Mf with the best binary mask –the ground-truth
or ideal binary mask. Given that our interference removal

TABLE I
PERFORMANCE OF BINARY MASKS

Speech Violin
% Mask Preserved by Me 54.2 90.6
% Energy Preserved using Me 53 97
% Interfering Energy me 2.6 46.7
% Energy Preserved using I 95.5 99.25

% Mask Preserved by Mf 66 58
% Energy Preserved using Mf 67 70
% Interfering Energy Mf 30.99 26.89

approach is based on binary masking, the best binary mask
can be constructed if we have knowledge of both the clean
speech and violin signal, by comparing the magnitude of each
TF bin for the speech and the violin and adding a one to the
mask if the speech is dominant, e.g.

Im,k =

{
1, if |sm,k| > |n̂m,k|
0, otherwise.

(27)

The mask for the violin, I∗, is constructed by inserting ones
in the positions of zeros, and vice verse.
Mask Performance: We consider a number of different
performance measures. We then consider the masks qualitively.
The first measure is the percentage Mask Preserved (MP), or
the percentage of elements of the learned mask which are
in common with the ideal binary mask. This is computed as
follows for an arbitrary binary mask Y :

Mp(Y ) =

∑
m,k Im,kYm,k∑
m,k Im,k

(28)

The second measure is the percentage Energy Preserved (EP)
by using a given mask Y ,

Ep(Y ) =

∑
m,k Ym,k|sm,k|2∑
m,kj |sm,k|2

. (29)

For example, for speech separated using the ideal mask we
have Ym,k = Im,k. We tabulate these measures for the violin-
voice mixture in Table I. Approximately 90% of the ideal
binary mask for the violin is preserved by the elevation method
for thresholding, and 54% of the speech ideal mask elements
are preserved. Speech is compactly represented in the TF
domain, and therefore, identifying 54% of the relevant TF bins
is sufficient to accurately reconstruct the speaker. The elevation
mask preserves 53% of the speech energy and 97% of the
violin energy. For completeness, we also note the percentage
energy of the violin that was incorrectly assigned to the speech
and vice versa, in the Interfering Energy in Table I, which is
computed for the mask Y as follows:

Ip(Y ) =

∑
m,k Ym,k|n̂m,k|2∑
m,kj |n̂m,k|2

. (30)

This measure indicates the effect of masking the violin signal
using the speaker mask. To put these results in context we give
the percentage EP for the ideal binary mask for the violin. The
percentage EP using Me for the violin is 97% which compares



favourably with the percentage EP by the ideal binary mask
(99.25%). This result, coupled with the fact that the ideal mask
preserves 95% of the energy of the speech signal, demonstrates
that binary masking is a good approach for monaural interfer-
ence removal. Good performance is achievable as > 95% of
the TF bins for the two source do not overlap; however we
temper this result with the caveat that 5% of the energy of the
sources does overlap, and that speech and music signals have
a compact support in TF –this 5% could be important.

Recall that in this task a reference version of the violin
signal is used to help determine a good threshold for separating
a mixture of speech and violin. In this case, TF bins which
have an elevation which are close to the real axis are assigned
to the violin. This is undesirable. When TF bins consist of a
mixture of both the speech and the violin, our investigation
supports the assertion that these TF bins are assigned to the
violin support set, which in turn reduces the quality of the
recovered speech signal.

Table I summarizes the performance of the mask constructed
using the elevation method and the filter estimation step, Mf .
This mask preserves more of the elements of the ideal mask.
The percentage MP by Mf is 66% compared to the percentage
MP of 54% obtained by the mask Me. Similarly, the energy
of the speech signal preserved by Mf is also increased. These
increases come at the expense of separation performance. The
violin signal is more audible in the denoised speech for the
mask Mf compared to the mask Me. This result is confirm
by examining the percentage energy leaked by the masks.

We discuss the performance of the masks qualitatively by
reference to Fig. 6. A clean segment of the TF representation
of the speech is given in Fig. 6 along with a version produced
by ideal masking. The ideal mask preserves the high-energy
TF bins of the speech, however, TF bins with low energy are
generally assigned to the violin. The elevation mask preserves
high-energy TF bins of the speaker without introducing energy
from the violin; however, fewer TF bins are preserved than
by the Ideal mask. Finally, the Mf mask preserves the high-
energy TF bins of the speaker, but preserves more lower
energy high frequency bins than the elevation mask. This mask
produces a better representation of the speech by introducing
a significant amount of violin energy into the estimated signal.
This is not desirable from a perceptual evaluation of denoising.
This analysis underpins the quantitative evaluation in Table I.
Interference Removal in Urban Environments: We illustrate
the performance of the estimator in Eqn. 14 combined with
the threshold in an interference removal task in an urban-
type environment. We consider the performance measures
outlined in [16], which have been used in many subsequent
multi-channel source separation challenges by the community
(https://sisec.inria.fr/home/bgn-2016/). The measures we con-
sider are the: Signal to Distortion Ratio (SDR); Source to
Interference Ratio (SIR); and finally, the Sources to Artifacts
Ratio (SAR). One benefit of these measures is that they do
not depend on signal normalization or power which introduce
error into Signal-to-Noise-Ratio estimates.

Table II evaluates the Blind Source Separation (BSS) scores
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Fig. 6. Qualitative comparison using a short segment of the speech-violin
mixture: Ideal Mask, Elevation Mask, Elevation and Filter Mask. We have
illustrated the lower frequencies (first 300 frequency bins) and 25 consecutive
time bins.

TABLE II
BLIND SOURCE EVALUATION TOOLBOX: TARGET SPEECH SOURCE IN THE

PRESENCE OF NOISE.

I Me Mf 1

Signal to Distortion Ratio 15.8832 5.0927 3.2876 -0.0008
Signal to Interference Ratio 22.2958 20.6979 6.8212 0.1321
Sources to Artifacts Ratio 17.0350 5.2506 6.6513 18.1516

obtained for the Speaker-Violin denoising task for the ideal
binary mask, Me, Mf and finally for a mask of all ones,
which is denoted 1, which serves to illustrate the performance
when no denoising is performed.

Regarding the Speech-Violin mixture, the SIR for the mask
Me is closer to that of the ideal mask I than the mask derived
from the filter, Mf . This result agrees with the quantitative and
qualitative analysis of these masks above. Moreover, the mask
Me produces a denoised signal that exhibits an improved SDR
over Mf , but at the cost of introducing more artifacts in the
denoised signal than the mask Mf . This result is supported
by a comparison of the SIR and SDR of the masks. We
now broaden our analysis to consider a wider range of signal
ensembles. We examine mixtures of (1) a male speaker and a
guitar; (2) a male speaker and a female speaker; (3) a female
speaker and a moving subway car; and finally, (4) a female
speaker in a city square environment. In each denoising task
the first source is the target source and the second listed source
is the interference. In these experiments, we assume that an
unfiltered version of the interference signal is available as prior
information as described by the our motivating scenario in
Section I. Mixtures are created by normalizing each source
signal and adding them (weighting them by one).

In each task the elevation mask Me yields the best SIR.
In all but one case, the best SAR and SDR is given by
the mask Mf generated by the elevation method, coupled



TABLE III
MALE SPEAKER (TARGET) AND GUITAR (INTERFERENCE)

I Me Mf 1

SDR 10.8883 2.6394 4.7032 -0.2941
SIR 20.7462 16.6687 7.5474 -0.1378
SAR 11.3983 2.9072 8.5898 17.3004

TABLE IV
MALE SPEAKER (TARGET) AND FEMALE SPEAKER (INTERFERENCE)

I Me Mf 1

SDR 13.2361 3.4319 3.9832 -0.2368
SIR 23.0074 20.2969 6.0257 -0.0793
SAR 13.7416 3.5626 9.2089 17.2960

TABLE V
FEMALE SPEAKER (TARGET) AND SUBWAY CAR MOVING

(INTERFERENCE)

I Me Mf 1

SDR 15.3383 4.3769 2.9938 0.0024
SIR 21.6354 18.2969 4.2447 0.1531
SAR 16.5290 4.6205 10.3970 17.6096

TABLE VI
FEMALE SPEAKER (TARGET) AND CITY SQUARE (INTERFERENCE)

I Me Mf 1

SDR 15.9713 5.8592 1.9853 -0.1768
SIR 24.1081 23.1886 4.0517 -0.0301
SAR 16.7122 5.9611 7.6439 17.6346

with the filtering method. In summary, the elevation mask,
Me, removes the interfering source, almost completely, but
the resultant target signal is corrupted by this mask. Musical
noise is introduced, but this artifact does not overly affect
the comprehensibility of the recovered signals. Fewer artifacts
are introduced by the mask Mf , but this mask achieves
this by not removing some components of the interference
signal. Listening tests confirm that the denoised target signals,
resulting from the application of the elevation mask Me,
are cleaner. This result bears out the inherent trade-off in
using binary masking as a denoising approach. To remove an
interfering signal using hard masking we introduce artifacts
into the recovered target signal (because the windowed disjoint
orthogonality assumption is only approximately true). Some
TF bins are assigned to one of the two sources when they
should potentially be assigned to both. On the other hand the
performance of binary masking is impressive and the resultant
approaches are computationally cheap.

VI. CONCLUSION

Two methods for denoising a single-channel mixture via
time-frequency masking, given a prior information about the
interfering signal, were proposed and analyzed. Given a mix-
ture of a target signal and an unwanted interference, our
goal was to eliminate the interference without introducing
artifacts. Prior information, in the form of a clean unfiltered
recording of the interference was required. We proposed a
method for automatically constructing signal support sets.
Prior information about the signal supports sets is generally

assumed for single-channel binary masking approaches. We
then proposed two algorithms for interference removal. The
first approach constructed a binary mask using the learned
signal support set and gave the best interference removal.
However, a bye-product of this approach was the introduc-
tion of musical noise into the recovered signal. The second
approach, combined the support set information with a filter
estimation step. The introduction of artifacts was reduced by
this method, however, the recovered signal exhibited traces of
the interfering signal. We posit that these denoising approaches
may be well suited to applications where low computational
complexity is a requirement, and prior information about the
interference is available from other networked sensors, or by
the user.
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