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Abstract 

Monitoring the uptake, micro-environment and fate of micro or nano scaled particulate 

materials in cells is of paramount importance for the emerging fields of toxicology and 

medicine. Such particulate materials are known to interfere with colorimetric assays and many 

such assays record only a single end-point. Therefore, there is a need for a label-free, cost 

effective technique with little or no inference from the particulate materials.  

Raman micro-spectroscopy was used to simultaneously interrogate the integrity of few-

layer MoS2 submicrometric plates in human macrophage-like cells, in-vitro, as well as the 

biochemical characteristics of the local micro-environment in which they are encompassed. 

Firstly, the degradation profile of MoS2 plates induced by hydrogen peroxidase was established 

using UV-Vis absorption and Raman micro-spectroscopy. Raman micro-spectroscopic maps 

interrogated all aspects of the cell, including the nucleus, cytoplasm and perinuclear region, 

and the location/distribution of MoS2 was monitored as a function of time (4, 24 and 72 h). 

Whereas only pristine MoS2 was detectable after 4 and 72 periods, degradation in-vitro was 

confirmed following a 24 h incubation. Analysis of the MoS2 micro-environments revealed the 

presence of both phosphatidyl lipidic vesicles and enzymatic regions containing lysozyme, the 

former being most associated with the MoS2 degradation. There was an increase and saturation 

of cytosolic neutral lipids detected following a 24 h incubation with MoS2, which reduces 

following a prolonged incubation of 72 h. This study reveals that macrophage-like cells 

perform degradation of the material in-vitro within lipidic vesicles subsequent to phagocytosis, 

which manifest as an increase in the production of lipid bodies as a mechanism of defense 

following exposure to industrial grade MoS2.   
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Introduction 

The field of 2D materials technology has been growing since the isolation and 

characterisation of graphene monolayers in 2004(1). Due to the prospect of increased 

manufacture of 2D engineered materials for flexible transparent displays(2), enhanced energy 

storage and/or medical applications(3), consideration of the risk and/or potential for human 

exposure is paramount(4). There is a need to understand how such materials interact with 

biological cells following exposure, and how, in turn, the cellular micro-environment effects 

these particles. MoS2 is one such 2D material which has attracted recent attention due to its 

enhanced properties over its analogue graphene, based on its electronic band structure (5). 

Compared to its bulk form (in-direct band gap), MoS2 has superior properties in its mono or 

few-layer format, with a direct bandgap, allowing improved catalytic performance in 

comparison to graphene, which possesses a zero band gap (2,5). Mono or few-layer MoS2 

micro/nano plates can be prepared by liquid exfoliation along with a series of liquid 

centrifugation steps for size selection(6,7), and is a widely studied material, with increasing 

interest due to its use as a catalyst in gas evolution, photodiodes and in supercapacitor 

electrodes. Thus, it is necessary to study how the material interacts with cells, as opposed to 

bulk MoS2 which has fewer applications. 

 

When a pathogen enters the human body, it activates both the innate and adaptive 

immune response systems to eliminate the threat and reduce the possibility of infection. The 

first line of defence when exposed to a pathogen is the recognition of pathogen associated 

molecular patterns (PAMPs) found on bacterial cell walls(8) by pattern recognition receptors 

(PRRs) which in turn causes the secretion of effector molecules such as cytokines or 

chemokines from activated immune cells(8). Cytokines have the ability to recruit immune cells 

to the site of infection, stimulate neighbouring cells to produce additional cytokines or 

encourage cell maturation/growth(9).  

 

Macrophages play a crucial role in recognising PRRs to cause a cascade of events 

designed to eliminate a foreign threat from their environment and to maintain homeostasis(8). 

Macrophages are proficient in recognising PRRs, engulfing the pathogen in a process termed 

phagocytosis, degrading the foreign threat while also having the capability to produce 



cytokines to further enhance the immune response(8). Following the identification of a foreign 

substance, macrophages reduce motility and increase their ability to carry out 

phagocytosis(10). Actin rearrangement allows for the pathogen/material to be surrounded by 

pseudopodial extensions and internalised in a double membrane early phagosome (pH 6.2)(11). 

Later, this phagosome will bind with an acidic lysosome (pH 4.5) to form a single membrane 

phagolysosome (pH 5.2)(11). Alternatively, foreign bodies can be internalised in macrophages 

by non-phagocytic pathways, including clathrin-mediated endocytosis, caveolin-mediated 

endocytosis or micropinocytosis. Although the early uptake mechanism can differ slightly for 

each pathway, Xianbing Zhu et al. have shown that vesicles from the non-phagocytic uptake 

pathway are ultimately destined to accumulate within lysosomes (12). In order to achieve 

homeostasis, macrophages play a role in innate immunity and the activation of other immune 

cells by the process of the micro or nano particulate uptake, degradation, antigen presentation 

and cytokine production(13). 

 

A variety of micro/nano particles are known to evoke an immune response, once in 

contact with cells, and this is due to the particle being recognised as a foreign substance due to 

unfamiliar molecular patterns. Studies of the uptake and location of pristine graphene in 

macrophage-like cells have shown that the material is contained within lysosomal 

compartments(14), a cellular mechanism for digestion of foreign bodies. Peroxidase enzymes 

such as myeloperoxidase (MPO) are found in-vitro within azurophilic granules and are known 

to contribute to the degradation of material(15–17). Although no degradation of pristine 

graphene was reported(14), the degradation of single walled carbon nanotubes (SWCNTs) has 

previously been studied in-vitro using changes in the D and G Raman bands as indications of 

degradation(18). Kurapati et al. have shown no major differences between the degradation 

from biologically relevant enzymes or chemical degradation of MoS2 up to 30 days although 

the hydrogen peroxide ex-vivo degradation occurred at a faster rate(19). A review written by 

Bhattacharya et al. has highlighted the corona formation on the surface of carbon based 

nanoparticles can affect the bio-distribution, catabolisation and ultimately the process in which 

cells and immune systems interact with the particulate material (20). It has also been shown 

that coating the particle surface with biocompatible substances such as poly-ethyl glycol (PEG) 

can aid in “camouflaging” it from immune cells(21). This method can reduce the removal or 

degradation of the material and improve circulation time throughout the body.  



 

When MoS2 micro/nano particles are in close proximity to macrophages, the surface of 

the unmodified material will be recognised as a foreign threat and an immune response will be 

initiated to remove it from circulation. This study investigates the effect of a sub-lethal dose of 

MoS2 on macrophage-like cells and monitors the stability and degradation of the material in-

vitro, primarily using confocal Raman micro-spectroscopy. Raman spectroscopy functions by 

using a monochromatic light source that interacts with molecular vibrations within the sample 

to cause a Raman shift which provides detailed information about the vibrational modes within 

the given sample(22). Spectral mapping using confocal Raman micro-spectroscopy allows high 

resolution, in-depth information to be retrieved from an identified area within the cell to 

examine the material integrity, cellular compartmentalisation, particulate uptake and/or 

subcellular location(23). While point spectra acquired by Raman spectroscopy have 

historically been used for detailed analysis of the specific biochemical responses of cells(24), 

the technique used here presents the additional benefit of simultaneously monitoring the 

integrity of the MoS2 material (25). Spectra are collected at each step with the use of an 

automated stage to generate images of pseudo colour coded clusters based on spectral 

similarities or differences. The biochemical composition of various organelles can be 

determined by Raman spectroscopy without the addition of fluorescent labels, making it a cost 

effective, non-destructive and label-free method(26) to monitor the exposure of cells to 

particulate materials (23,27).  

 

Raman has been successfully used to study the structure of nanomaterials(28), shifts 

due to applied stress(29) or examining layers with 2D materials(25,30). First order Raman 

bands associated with the E1
2g (in-plane) and A1g (out-of-plane) vibrational modes within the 

MoS2 layer are observed at approximately 380 and 407cm-1 respectively(25). An excitation 

source of wavelength 532 nm means that these modes are resonantly enhanced(31), and 

therefore prominent against the background Raman fingerprint of the cell in the region of 500-

1800cm-1, such that the cellular micro-environment and the material integrity can be monitored 

simultaneously. Second order Raman bands for MoS2 are also detectable in the region ~500 - 

800 cm-1,(31) and, although they are weak compared to the first order bands, they can interfere 

with interpretation of the biological spectral signature of the cell, limiting the useful analysis 

range for the latter to 800-1800cm-1.   



Our collaborating group from Trinity College Dublin, led by Professor Jonathan 

Coleman (co-author), has published extensively on the production and synthesis of an array of 

2D materials. Their protocols reliably yield reproducible, stable and well characterised 

exfoliated materials. A lot of work in the past has also been published by our collaborating 

group on characterising the size distribution of MoS2 dispersions prepared by Liquid Cascade 

Centrifugation (LCC) (32). Due to this, it is very simple to determine the particulate lateral size 

(length) along with the number of monolayers per particle (thickness) using UV-vis 

spectroscopy (33). Due to the nature of liquid phase exfoliation, a relatively polydisperse 

sample is produced with a broad distribution of both lateral dimensions and thickness which 

need to be further processed for size selection. Additionally, the known size selection 

techniques produce a low yield of the size selected particulate material. Therefore, LCC was 

developed to produce high yields of 2D materials at a predetermined lateral size at high 

concentrations. Furthermore, this technique is applicable for a vast array of 2D materials 

prepared in surfactants.  

 

Previously, the cytotoxicity, uptake and inflammatory responses of few layered MoS2 

nanometric and submicrometric plates were investigated (34). (Note, the nomenclature used is 

chosen in accordance with an updated naming system for 2D materials (35,36)). Three lateral 

sizes of micro/nanoplates (50, 117 and 177 nm) were exposed to three cell types, mimicking 

three possible exposure routes (A549:inhalation, AGS:ingestion and THP-1:blood 

circulation)(34). A range of concentrations were tested, establishing sub-lethal dose regimes of 

1 μg/ml, THP-1 cells being seen to be susceptible to toxicity due to its cellular function as a 

phagocytic cell. Confirmation of uptake was observed of all material sizes in all three cell types 

using Transmission Electron Microscopy (TEM). Therefore, in order to further investigate the 

uptake and sub-cellular location of a sub-lethal dose of particulate MoS2 in THP-1 cells, Raman 

micro-spectroscopy has been employed. For the purpose of tracking the movement and/or 

location of MoS2 following internalisation, a pulse chase exposure method was applied(37), 

whereby cells were initially exposed to MoS2 containing culture medium for 4h to allow 

sufficient time for internalisation, and subsequently incubated in media containing no MoS2 

for 4, 24 or 72 h.  

 



 

Materials and methods 

2D MoS2 Production 

Full characterisation of MoS2 material fabricated by the same method has been 

published previously (7,38,39). The stability of few-layer MoS2 submicrometric plates in 

surfactant over time has been reported as -40 mV(7). MoS2 production is briefly outlined 

below.  

MoS2 powder (Sigma Aldrich, Ireland) was sonicated in aqueous surfactant solution 

(sodium cholate (SC), 6 g/l) for 1 h. To remove any impurities in the starting powder, the 

resultant dispersion was centrifuged at 5 krpm for 90 min. Having discarded the supernatant, 

the sediment was re-dispersed in fresh aqueous SC solution (0.5 g/l) and was sonicated for 6 h 

to produce a stock dispersion. This stock dispersion was relatively polydisperse, and to achieve 

a better-defined particulate size distribution, the sample was subjected to liquid cascade 

centrifugation (LCC).  

LCC involves a series of progressively increasing centrifugation speeds to produce a 

narrow distribution of plate sizes in suspension(32). The stock dispersion was initially 

centrifuged at 1 krpm for 90 min to remove any unexfoliated material. The sediment was 

discarded, while the supernatant was collected and centrifuged at a higher speed (1.5 krpm for 

90 min). After centrifugation at 1.5 krpm, the sediment was collected and redispersed in fresh 

aqueous SC (0.5 g/l), which represents the first particulate size selection. The supernatant was 

then subjected to further centrifugation at the next highest speed, 2.5 krpm, for 90 min. 

Similarly, the sediment was collected and redispersed in aqueous SC, while the supernatant 

was centrifuged at a higher speed. This process was repeated for 2.5 krpm, 3.5 krpm, 5 krpm 

and 10 krpm. The respective sediments for a given speed were analysed using UV- vis 

spectroscopy and electron microscopy to determine the particulate concentration, mean lateral 

size and layer number (40). LCC maximises the micro/nano plate concentration of sheets in 

suspension (32).  

The size and thickness were estimated according to the protocols previously described (33). 

For the batch employed in the current studies, the lateral size and numbers of layers was 



estimated using UV-visible absorption spectroscopy (UV-Vis) to be 120±20 nm and 3-5 layers, 

respectively. 

 

Cell Culture  

Human acute monocytic leukemia (THP-1) cells were cultured in Roswell Park 

Memorial Institute (RPMI) medium (Gibco, Bio-sciences Ltd, Ireland). RPMI was 

supplemented with 10% Foetal Bovine Serum (FBS). Cells were maintained in a humidified 

atmosphere at 37 °C and 5% CO2. THP-1 monocytic cells were seeded onto calcium fluoride 

(CaF2) discs (Crystran, United Kingdom) at a concentration of 1 x 105 cell/ml (3 ml/sample) 

and differentiated into macrophage-like cells by incubating them with 100 nM phorbol 12-

myristate 13-acetate (PMA) for 72 h.  

 

Cellular Preparation for Raman Mapping  

               To ensure the acquisition of high-quality spectra, sample preparation and 

measurement conditions were optimised. Subsequent to optimisation of the Raman protocol, 

THP-1 cells grown on CaF2 discs were exposed to a sub-lethal dose of 1 μg/ml of MoS2 (105 

nm) for 4 h to allow sufficient time for internalisation and then cells were incubated in 

supplemented media (no particulate material present) for a specified amount of time (4, 24 and 

72 h). Free SC surfactant solution was not tested as a control, as the molecular organisation 

and concentration in solution is non-comparable to the SC bound to plate edges to aid in 

stabilization. The equivalent concentration of SC found in micro/nano material suspensions 

was previously tested showing minor effect on three cells types (34). The reagents used were 

not endotoxin free, although the cellular response to endotoxin was seen to be plate dependent, 

as described in our previous publication (34). It was observed that cytokine production in both 

the three cell lines tested (A549, AGS and THP-1) along with bone marrow derived dendritic 

cells (BMDC’s) were plate size dependant, the smallest particles of lateral dimensions ~50 nm 

eliciting the highest response. It should be noted that a relationship between the quantity of 

endotoxin detected and the available surface edge was observed. MoS2 has discrete Raman 

bands at ~ 381 and 407 cm-1 (31) which do not overlap with any cellular information, therefore 

the presence of these bands confirms uptake and facilitates the exploration of its intracellular 

integrity. Following incubation, cells were washed twice with pre-warmed phosphate buffer 



saline (PBS) and fixed in 4% Formalin (3 ml/sample) for 15-20 min at room temperature. 

Subsequent to fixation, cells were washed twice with Millipore water and left in water for 

Raman micro-spectroscopy. 

  

Raman Spectroscopy of THP-1 cells  

Raman spectra were recorded using a Horiba Jobin-Yvon LabRAM HR800 

spectrometer equipped with a 532 nm solid state diode laser (50 mW), narrow bandwidth 

version with single edge filter and 600 gr/mm line grating. The Horiba Jobin-Yvon LabRAM 

HR800 spectrometer is a dual Raman microscope with the capabilities to measure samples in 

both upright and inverted mode, the upright microscope using the standard Olympus BX41 

model, while the inverted model is Olympus IX71. Raman measurements for both MoS2 

degradation and biological samples were analysed using the same Raman instrument. All 

cellular measurements were acquired in water with a 100x water immersion objective 

(LUMPlanF1, Olympus) with a spot size of 1 μm, using the upright BX41 model. Raman maps 

were recorded over a spectral range from 300 to 1800 cm-1. Spectra were recorded 15 sec 

acquisitions and 2 accumulations. Cells were grown on a calcium fluoride (CaF2) substrate, 

which has minimal background contribution with only a distinct band present at 321cm-1 which 

does not overlap with particulate material or cellular information (41). 

Subsequent to Raman acquisition, data was analysed using a Factor Analysis (FA) 

algorithm (Labspec 5) and classical least squares (CLS) analysis with Labspec software version 

6(42). To ensure spectra are of good quality, data was smoothed with a Savitzky-Golay filter, 

spectra were cut to the desired spectral range (365-1800cm-1, 800-1800cm-1 and 365-470cm-1) 

and baseline corrected. The factor analysis (FA) algorithm is used to classify spectra within a 

Raman map dataset based on different spectral features into different clusters/factors. FA is an 

unsupervised method of processing spectral images to identify similar spectral profiles within 

a Raman map dataset (e.g. MoS2 peaks, cellular features). FA works by randomly assigning 

centroids to a once anonymous data set to achieve clusters in which no overlap of centroids is 

occurring. Each spectral point is classified based on the nearest centroid centre. The mean 

spectra for each cluster are displayed as Factors in Figure 2 – 6. CLS analysis then fits weighted 

contributions of each of the chosen factors (mentioned above) to each point in the map. The 

location/distribution of each cluster is produced and given a pseudo-colour for effective 

visualisation and therefore the distribution and location and/or integrity of MoS2 within the 



cells can be determined. Subsequent to unsupervised FA (Labspec 5) and supervised CLS 

(Labspec 6), the data is then subjected to further pre-processing in Matlab. A water contribution 

was weighted and subtracted from each cluster prior to principal component analysis (PCA), 

in order to monitor the evolution of the surrounding micro-environment of MoS2 over time. For 

further identification of components, an in-house dataset of 82 standards was compared to PCA 

loadings. A weighted spectrum is calculated by subtracting one standard from another (e.g. 

Phosphatidyl lipid minus Lysozyme) and then direct comparison with PCA loadings.  

 

MoS2 degradation with H2O2 

The sample of few-layer MoS2 submicrometric plates was diluted to a final 

concentration of 100 μg/ml in 5 mls of PBS. Hydrogen peroxide was then added to each vial 

to have a final concentration of 0, 10, 500, 1000 and 2000 μM. Samples were then incubated 

at 37°C, 5 % CO2 for a total of 14 days. Images were taken at intervals (Day 0, 1, 2, 4, 7 and 

14) following a gentle inversion, aliquots were taken and stored in the dark at -80°C until ready 

for Raman and UV-Vis analysis. Raman samples were placed in Labtek chamber slides and 

recorded with 60x liquid immersion on an inverted microscope. Spectra were recorded using 

the Horiba Jobin-Yvon LabRAM HR800 spectrometer in the inverted mode, using an Olympus 

IX71 microscope. A laser excitation of 532 nm was used examining the spectral range in 300 

to 500 cm-1, laser filter 50 %, 3 second acquisition and 10 accumulations. Samples to be 

analysed using UV-Vis were placed in 96 well plates and absorbance recorded using a 

SpectraMax plate reader (Molecular Devices, USA). To accurately determine position, area 

and shape of Raman and UV-Vis peaks, curve fitting was performed in Labspec 5 using 

Gaussian-Lorentzian curve fitting approach.  

 

Oil Red O Staining  

Following incubation with MoS2 for a specific amount of time (4, 24 and 72 h), the 

cells were washed and fixed as described in Cellular Preparation for Raman Mapping above, 

and the samples were allowed to air-dry overnight prior to staining. Oil red O staining was 

prepared fresh and filtered before staining the cells for 15 min at room temperature (3 ml/ 

sample). Oil red O was removed, and samples were washed multiple times with distilled water. 



Samples were allowed to dry and the coverslips were attached using mounting media. Images 

were then taken on an Olympus Microscope (BX51).  

 

 

Results 

Induced plate degradation ex-vivo with hydrogen peroxide 

Macrophages are known to uptake foreign substances into phagosome/lysosomal 

compartments, in which material is destined for degradation prior to catabolism/excretion. In 

order to understand the potential impact of the digestion process on submicrometric plate 

spectra, MoS2 (100 μg/ml) suspended in surfactant were chemically degraded over 14 days 

using H2O2 (2000 μM) and monitored by UV-Vis absorption and Raman spectroscopy. Raman 

spectra of sample aliquots are presented in Figure 1A(i) (Day 0 – blue, Day 1 – green, Day 2 – 

purple, Day 4 – yellow, Day 7 – cyan and Day 14 – red). Bar charts shown in Figure 1A (ii-v) 

were derived using the Gaussian-Lorentzian curve fitting algorithm in the Horiba Labspec 5 

software. The position of the E1
2g MoS2 Raman peak at 380 cm-1 shows a gradual shift and 

decrease in intensity (Figure 1A(ii-iii), while the A1g Raman peak at 407 cm-1 shows no 

significant shift (Figure 1A(iv-v)). Notably, a broadening and increase in area can be clearly 

seen for the 407 cm-1 Raman peak. A similar decrease in intensity was observed by Kurapati 

et al., although over a longer time frame of 30 days(19). The samples were also analysed using 

UV-Vis absorption spectroscopy and the corresponding spectra can be seen in Figure 1B(i). 

An evident decrease in amplitude can be seen for both the lower (~618 nm) and higher (~675 

nm) wavelength peaks (Figure 1B (ii and iv)). Noticeably, a decrease in peak area could also 

be observed over time following plate degradation. No MoS2 material can be detected by UV-

Vis following a 14-day incubation in H2O2 and consequently the curve fitting could not be 

applied. This would suggest that all material has been degraded by H2O2 following a 14-day 

incubation. However, MoS2 was still detectable using Raman spectroscopy with the added 

benefit of observing changes in the spectral profile. This method not only demonstrates that 

submicron plates can be detected with Raman micro-spectroscopy but highlights the sensitivity 

and advantage of using Raman for monitoring plate integrity and/or degradation inside a cell.  



 

Figure 1 Raman analysis of 105 nm MoS2 degraded over time (0, 1,2,4,7, and 14 days) using H2O2 at a concentration of 2000 

μM Figure 1A(i) Raman spectra from 365 to 470 cm-1. Figure 1A(ii-iii) Gaussian-Lorentzian curve position and area analysis 

of 380 cm-1 Raman peak. Figure 1A(iv-v) Gaussian-Lorentzian curve position and area analysis of 407 cm-1 Raman peak. 

Figure 1B(i) UV-Vis absorbance spectra from 550 to 700 nm. Figure 1B(ii-iii) Gaussian-Lorentzian curve amplitude and area 

analysis of the lower wavelength peak. Figure 1B(iv-v) Gaussian-Lorentzian curve amplitude and area analysis of the higher 

wavelength peak. Figure A-B(i) Spectra are off-set for clarity.  

 

Methodology used for Raman map analysis   

Raman spectroscopy has been shown to be suitable for detecting subtle changes in the 

integrity of the MoS2 and therefore it was now employed to explore the integrity of the MoS2 

within the cell micro-environments. Figure 2 is a schematic representation of the methodology 

used for the analysis of selected macrophage-like THP-1 cells, exposed for 4 h to MoS2 and 

incubated for a subsequent 24 h in medium. Figure 2A is a bright-field image depicting the grid 

from where the spectral mapping has been acquired. Transmission electron microscopy (TEM) 

was previously performed(34) and indicated MoS2 was internalised inside single membrane 

vesicles within the cell following a short time-point of 4 h, and therefore the Raman map 

included parts of the nucleus, cytoplasm, perinuclear region and vesicles, to cover all aspects 

of the cell. Figure 2B is a representative spectrum from 365-1800 cm-1, revealing the 



contributions of both MoS2 material (red) and biological (blue) information within the same 

spectrum. A 2D image showing the identification/location of MoS2, following multivariate FA 

and CLS fitting, can be seen in Figure 2C (i), along with the corresponding spectra in the range 

of 365-470cm-1 (Figure 2C(ii)). Similarly, an image showing the location of different biological 

regions can be seen in Figure 2D (i), along with the corresponding spectra in the range of 800-

1800cm-1 (Figure 2C(ii)), the features of which can be assigned to specific modes of different 

biochemical species(43). This demonstrates the ability to examine two aspects, (i) the 

distribution and integrity of the MoS2 in the cell as a function of exposure time and (ii) the 

characteristics of the micro-environment of the MoS2 plates in the cell. The details of these 

analyses will be elaborated further. 

 

 

Figure 2 Analysis of Raman Map of a macrophage-like THP-1 cell following a 24 h incubation. Figure 2A bright field image 

of THP-1 cell under x100 water immersion and taken on a Horiba dual Raman microscope. Figure 2B Spectra in the range of 

365 -1800cm-1in which MoS2 material and fingerprint regions are indicated by red and blue overlay boxes, respectively. Figure 

2C (i) cluster location of MoS2 material inside the cell along with corresponding spectra in the range 365 – 470 cm-1 (Figure 

2C(ii)). Figure 2D (i) image overlay showing the location of four biomolecules in the fingerprint region in the cell along with 

corresponding spectra in the range 800-1800 cm-1(Figure 2D(ii)).  

 

Detection and characterisation of MoS2 in-vitro over time 

The first step is to monitor the integrity of the material inside the cell and detect any 

changes or alterations to the MoS2 plates following incubation (4, 24 or 72 h) in the cellular 

micro-environment. The Raman map, in Figure 3, of a cell incubated for 4 h following 

exposure, was analysed using only the spectral range from 365–470 cm-1, which contains the 



strongest MoS2 peaks at 380 and 407 cm-1. An unsupervised, multivariate FA approach, 

available in the instrument (Labspec 5) software, was applied to identify clusters with 

molecular/spectral differences based on Raman spectra. Following the identification of Factors, 

supervised CLS analysis was then preformed to produce pseudo-colour images illustrating the 

distribution of each Factor within the Raman map. Figure 3A is a bright-field image depicting 

the grid from where the spectral mapping has been acquired. MoS2 is observed to be present in 

large quantities throughout the cell, widely distributed in various locations, indicative of the 

early uptake and processing of the MoS2 by the immune cell. Following application of the FA 

algorithm, three different Factors are identified, the distributions of which are shown in the 2D 

image overlay of Figure 3B. The distribution and/or location of each of the three Factors is 

displayed separately in 3D format in Figure 3C-E (i). Factor 2 is dispersed more diffusely over 

the cell, while Factor 1 and 3 are more confined to discrete areas within the cell. Examining 

the spectra (Figure 3C-E (ii)), no major differences in MoS2 material are apparent, although a 

slight change in ratio between E1
2g and A1g modes can be seen. Also, a minor red shift of both 

peaks can be seen in Factor 2 and 3. ACS Material LLC(44) have reported a similar red shift 

of both peaks with their Bio-MoS2 samples (MoS2 in the presence of Bovine Serum Albumin), 

suggesting a biological interaction of MoS2 with proteins following a 4 h incubation (Factor 2 

and 3) but no indication of degradation.  

 



 

Figure 3 Raman Map Analysis of a macrophage-like THP-1 cell following a 4 h incubation. Spectral range 365 to 470 cm-1. 

Figure 3A bright field image of THP-1 cell under x100 water immersion and taken on a Horiba dual Raman microscope. Figure 

3B 2D overlay image of the Raman map showing the location of the three Factors (Factor 1 – green, Factor 2 – red, Factor 3 

– blue). Figure 3C (i) 3D construction showing the location of Factor 1 within the cell. Figure 3C (ii) mean spectra of Factor 

1 displayed. Figure 3D (i) 3D construction showing the location of Factor 2 within the cell. Figure 3D (ii) mean spectra of 

Factor 2 displayed. Figure 3E (i) 3D construction showing the location of Factor 3 within the cell. Figure 3E (ii) mean spectra 

of Factor 3 displayed. 

 

24 h after the 4 h exposure to MoS2, the cellular Raman map of Figure 4 was also 

analysed using the FA algorithm, within the spectral range from 365–470 cm-1. Factor 1 has a 

spectrum similar to the original MoS2 used for exposure, while, in contrast, Factor 2 (red) 

shows a significant decrease in strength and a minor red shift of the E1
2g mode, as well as a 

broadening of the A1g mode. The distribution of Factor 2 appears predominantly in the 

perinuclear area of the cell. Factor 3 also shows a decrease in intensity of the E1
2g mode, a shift 

to higher wavenumber and a broadening of the 407 cm-1 peak, although to a lesser extent than 

that observed in Factor 2. The spectral profiles of MoS2 plates found in Factor 2/3 match the 

Raman spectral characteristics of degraded MoS2 found in Figure 1A. Notably, micro/nano 

plates stabilised in sodium cholate surfactant are sensitive to alterations in salt concentration. 

Plates stabilised in sodium cholate surfactant are, however, prone to agglomeration, dependent 

on the salt concentration. Therefore, induced agglomeration of submicron plates was carried 



out by incubating MoS2 in varying concentration of sodium chloride (40, 20, 10 and 5 mg/ml). 

The Raman spectra from induced agglomeration can be seen in Supplemental Figure 6, in 

which no spectral changes could be observed. Therefore, it can be concluded that any spectral 

changes observed of MoS2 in-vitro are not due to plate agglomeration.  Consequently, it can 

be stated that, following a 24 h incubation of MoS2 inside macrophage-like cells, significant 

degradation of MoS2 occurs. Macrophages aid in the digestion of pathogens/materials 

following phagocytosis, and it has been reported that macrophages have the ability to produce 

superoxide radicals through two enzymatic systems (NADPH oxidase and NO synthase) to 

degrade carbonaceous nanoparticles(45). After 24 h, the distribution of MoS2 is concentrated 

in discrete regions of the cell when compared to the distribution of the MoS2 following 4 h 

incubation. Understanding the plate distribution and the corresponding cellular processing of 

these foreign substances will hold a key to understanding how the MoS2 is degraded.   

 

Figure 4 Raman Map Analysis of a macrophage-like THP-1 cell following a 24 h incubation. Spectral range 365 to 470 cm-

1. Figure 4A bright field image of THP-1 cell under x100 water immersion and taken on a Horiba dual Raman microscope. 

Figure 4B 2D overlay image of the Raman map showing the location of the three Factors (Factor 1 – green, Factor 2 – red, 

Factor 3 – blue). Figure 4C (i) 3D construction showing the location of Factor 1 within the cell. Figure 4C(ii) mean spectra of 

Factor 1 displayed. Figure 4D (i) 3D construction showing the location of Factor 2 within the cell. Figure 4D(ii) mean spectra 

of Factor 2 displayed. Figure 4E (i) 3D construction showing the location of Factor 3 within the cell. Figure 4E(ii) mean spectra 

of Factor 3 displayed. 

 



The Raman map in Figure 5, of a cell incubated for 72 h following 4h exposure, was 

similarly analysed over the spectral range from 365–470 cm-1. Similar to the 4h incubation 

(Figure 3), MoS2 is seen to be present in large quantities throughout the cell, Factor 2 showing 

a broad distribution with varying intensities all over the cell. Factor 1 and 3 from 72 h analysis 

shown in Figure 5 (C and E) are more confined to selected areas than any Factors observed in 

either the distributions of the 4 or 24 h time-points. An evident increase in concentration to a 

localised area is also indicated, following a 72 h incubation post-exposure. Examining the 

spectra (Figure 5C-E (ii)), no significant degradation in MoS2 material is apparent, although a 

slight change in ratio between E1
2g and A1g modes can be seen. Also, a minor red shift of both 

peaks can be seen in Factor 2 and 3. Therefore, it can be concluded that no degraded material 

remains inside the cell or can be detected following an incubation in a cellular micro-

environment for 72 h.  

 

Figure 5 Raman Map Analysis of a macrophage-like THP-1 cell following a 72 h incubation. Spectral range 365 to 470 cm-1. 

Figure 5A bright field image of THP-1 cell under x100 water immersion and taken on a Horiba dual Raman microscope. Figure 

5B 2D overlay image of the Raman map showing the location of the three Factors (Factor 1 – green, Factor 2 – red, Factor 3 

– blue). Figure 5C (i) 3D construction showing the location of Factor 1 within the cell. Figure 5C(ii) mean spectra of Factor 1 

displayed. Figure 5D (i) 3D construction showing the location of Factor 2 within the cell. Figure 5D(ii) mean spectra of Factor 

2 displayed. Figure 5E (i) 3D construction showing the location of Factor 3 within the cell. Figure 5E(ii) mean spectra of 

Factor 3 displayed. 



Notably, the Raman maps at different time points from Figure 3-5 were recorded on different 

cells and were analysed independently. A clear time progression is therefore not easily 

depicted, or quantifiable. A representative figure, illustrating the 2D images over time, can also 

be seen in supplemental (Supplemental Figure 7).  

   

Investigating the cellular micro-environments in which MoS2 is encompassed  

Degradation of MoS2 at 24 h following internalisation has been observed, and thus the 

next step is to profile the cellular micro-environment in which it is localised. The Raman map 

of Figure 4 was examined in the spectral range of 365-1800cm-1, in which the main MoS2 and 

cellular peaks are located, by similarly applying the FA algorithm followed by supervised CLS 

analysis (Figure 6). When FA is explored in this range, the dataset was classified into four 

factors based on different spectral features contributing from both MoS2 plates and cellular 

features. All components show the presence of MoS2 material in varying concentrations. This 

confirms the uptake of MoS2 inside the cells along with the cellular micro-environment in 

which it is surrounded by. In contrast to the 4 h incubation, after which a diffuse distribution 

of material could be seen throughout the entire cell, observations after a longer incubation 

period of 24 h show the migration of MoS2 towards the perinuclear region (Factor 1, Figure 

6C). Vesicles associated with Factor 2 (Figure 6D (i)) are located in the area surrounding the 

nucleus of the cell, similar observations were also seen for the 4 and 72 h incubations 

(Supplemental Figure 2 and 4). Vesicles related to both the endocytic and exocytic systems are 

commonly found in this “perinuclear cloud”, including but not limited to endosomes, 

lysosomes, and Golgi originated vesicles(46). Vesicles present within the “perinuclear cloud” 

exhibit reduced motility, although a small portion will be transported through the cytoplasm to 

the peripheral of the cell for exocytosis(46).  

 

As the plates were observed to degrade following a 24 h incubation inside macrophage-

like cells, smaller quantities of MoS2 could be detected in Factor 2, 3 and 4 when compared to 

Factor 1. A more uniform concentration of plates could be observed in macrophage-like cells 

incubated for both 4 (Supplemental Figure 2) and 72 h (Supplemental Figure 4) with MoS2. 

When comparing the distribution of Factors to the bright-field image, it appears that Factor 1 

and 4 are cytoplasmic in origin. Factor 2 has a direct correlation with vesicles present in the 

“perinuclear cloud” and Factor 3 appears consistent with the location of the nucleus. Therefore, 



when comparing the spectral maps from Figure 4 and 8, it can be concluded that Factor 1 

(Figure 6) contains non-degraded MoS2 while Factors 2, 3 and 4 contain degraded MoS2, 

although to a lesser extent in Factor 3 and 4. Notably, it may appear that MoS2 is detected 

inside the nucleus, although this is not the case. The spectra are acquired through (numerical 

aperture 0.90) multiple planes of the cell and MoS2 may be present above/below the nucleus, 

but not inside and for this reason the nuclear data (Factor 3) was not included in analysis. 

 

Figure 6 Raman Map Analysis of a macrophage-like THP-1 cell following a 24 h incubation. Figure 6A bright field image of 

THP-1 cell under x100 water immersion and taken on a Horiba dual Raman microscope. Figure 6B 2D overlay image of the 

Raman map showing the location of the four Factors (Factor 1 – green, Factor 2 – red, Factor 3 – blue, Factor 4 – cyan)). 

Figure 6C (i) 3D construction showing the location of Factor 1 within the cell. Figure 6C(ii) corresponding spectra of Factor 

1 displayed. Figure 6D (i) 3D construction showing the location of Factor 2 within the cell. Figure 6D(ii) corresponding spectra 

of Factor 2 displayed. Figure 6E (i) 3D construction showing the location of Factor 3 within the cell. Figure 6E(ii) 

corresponding spectra of Factor 3 displayed. Figure 6F (i) 3D construction showing the location of Factor 4 within the cell. 

Figure 6F(ii) corresponding spectra of Factor 4 displayed. 

 

Principal component analysis (PCA) is a size reduction tool used in data processing to 

discriminate different samples or cell locations according to the differences in biochemical 

composition. The spectral features discriminating the two or more data sets is then displayed 

as a principal component (PC), PC1 normally showing the highest degree of variability in the 

data set. PCA of the pixels grouped according to the FA was carried out over the range of 800-

1800 cm-1, to compare the micro-environment in which MoS2 is internalized after 24 h 



incubation. PCA was carried out to compare Factor 1 and Factor 2, as shown in the scatter plot 

in Figure 7A (i), in which Factor 1 (green) is clearly differentiated from Factor 2 (red) based 

on PC1. The loadings for PC1 are displayed in Figure 7A(ii), which shows Factor 1 contains 

protein (phenylalanine – 1003, 1208, 1578 and 1617 cm-1 and Amide III – 1233 cm-1) and 

nucleic acids (1340, 1480 and 1578 cm-1). Interestingly, bands present at 1578, 1615 and 1679 

cm-1 (Factor 1), which can be assigned to bound and free NADH (Nicotinamide adenine 

dinucleotide),(47) could be observed, which was not the case for the 4  and 72 h time-points 

(Supplemental Figure 3 and 5). The prominence of NADH signatures is consistent with the 

need for additional energy from the cell to undertake the degradation process. Factor 2 is 

dominated by positive peaks with a high concentration of lipids (1066-1080, 1266, 1301, 1440, 

1659 and 1749 cm-1) present along with carbohydrates (868 cm-1).  

 

Clear separation based on PC1 can be observed for Factor 2 (red) versus Factor 4 (cyan), 

the separating components matching the loadings for Factor 1 versus Factor 2 (Figure 7B(i)). 

This suggests that Factor 1 and Factor 4 have a similar biochemical composition in the range 

800-1800 cm-1 and this is confirmed by PCA analysis (Figure 7C(i)), by which no separation 

is achieved. Considering the full range of Factor 1 and Factor 4 displayed in Figure 6, the only 

difference between these components is the presence of relatively larger quantities of non-

degraded MoS2 in Factor 1, compared to minor quantities of degraded material in Factor 4. 

Plate degradation was not detected in macrophage-like cells following a 4 or 72 h incubation. 

However, PCA analysis was also carried out and can be seen in supplemental (4 h - 

Supplemental Figure 3, 72 h - Supplemental Figure 5).  

                                   



 

Figure 7 Principal components analysis to observe differences in the Factors observed in Raman Maps following 24h 

incubation. Figure 7A(i) PCA scatter plot of Raman spectra from Factor 1 (green) and Factor 2(red), plotted PC1 versus PC2. 

Figure 7A(ii) PC1 loadings showing the separation between the two Factors. Figure 7B(i) PCA scatter plot of Raman spectra 

from Factor 2(red) and Factor 4(cyan), plotted PC1 versus PC2. Figure 7B(ii) PC1 loadings for Factor 2 versus Factor 4. Figure 

7C(i) PCA scatter plot of Raman spectra from Factor 1(green) and Factor 4(cyan), plotted PC1 versus PC2. Figure 7C(ii) PC1 

loadings for Factor 1 versus Factor 4.  

 

Identification of cellular micro-environments  

Based on the PCA, Factor 2 appears the most lipidic in nature, while Factors 1 and 4 

are relatively protein rich in composition. The PCA loading was then compared with an in-

house data set of 82 pure biological macromolecule components, including proteins, lipids, 

enzymes etc. These cellular component standards were then used to identify potential 

constituent compounds which contribute to the differentiation of the sub-cellular environments. 

Two components are compared in parallel by subtracting one component from the other to 



create a difference spectrum, which is then compared against the PCA loadings (Figure 8C). 

From all the components tested, Factor 2 showed a spectral profile consistent with the 

prominence of phosphoglycerides (PG), that contain an acyl group derived from a phosphatidic 

acid, alternatively called the phosphatidyl family (Figure 8D)(48). Phosphatidyl lipids are 

composed of a lipid backbone, two fatty acids chains and one phosphoric acid group esterified 

to a head group (e.g. serine, choline, ethanolamine etc.)(48), and are commonly detected in cell 

membranes. A quantitative profile of macrophage PG has shown that an increase in 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are expected following 

differentiation of monocytes into macrophages(49). In another study by Meijuan Cheng et al, 

it was shown that PC had anti-inflammatory effects following lipopolysaccharide (LPS) 

exposure by reducing the level of (tumour necrosis factor) TNF-α secretion(50). Factor 1 and 

4 were also compared with the in-house dataset and a high degree of similarity with lysozyme 

was observed (Figure 8D). Lysozyme is an enzyme found in granulocyte immune cells (e.g. 

neutrophils and macrophages) in which the cytoplasm contains multiple azurophilic/lysosomal 

granules containing digestive enzymes as a first line of defense(51). Formerly known as 

muramidase, lysozyme permeabilises the bacterial cell membrane by the hydrolysis of the 

peptidoglycan within the cell wall(52). The presence of lysozyme within the micro-

environments described by Factors 1 and 4 may aid in the degradation of the MoS2 due to its 

anti-microbial abilities.   

 



 

Figure 8 Analysis of components present in PCA loadings. A Phosphatidyl family lipid standard. B Lysozyme enzyme 

standard. C Difference spectrum (Lysozyme minus phosphatidyl lipid). D Comparison of PC1 loading from Factor 1 versus 

Factor 2 (blue) against the difference spectrum (orange).   

 

Detection of neutral lipids following exposure to MoS2  

Raman maps from all time points indicate that the macrophage-like cells, in response 

to the uptake of foreign material, express a certain amount of lipids forming vesicles 

surrounding the perinuclear region (Factor 2, 4 h - Supplemental Figure 2, 24 h – Figure 6 and 

72 h -Supplemental Figure 4). In order to confirm the presence of neutral lipids within the 

cytoplasm, the cells were stained with Oil Red O. Neutral lipids are uncharged and hydrophobic 

in nature and are commonly surrounded by a phospholipid monolayer in macrophages to form 

lipid bodies (LBs)(53). Untreated cells will contain LBs within the cytoplasm of THP-1 cells, 

that have been differentiated into macrophages using phorbol 12-myristate 13-acetate 

(PMA)(54), and this can be seen in Figure 9 (negative treatment - NT). Neutral lipids are 

represented by the orange/red colour inside the cells. When comparing the 4 h incubation to 

the untreated cells, there is a visible increase in the number of lipids present. Lipid metabolism 

can be different between classically activated (M1) and alternatively activated macrophages 



(M2), but it has also been shown that an increase in phosphatidylcholine and 

phosphatidylethanolamine is expected during macrophage differentiation (49,55). 

Macrophages are known to secrete cytokines and proteins, one of which is lipoprotein lipase 

(LPL), which is known to increase the level of lipids accumulated intracellularly(56). An 

increase in TNF-α in THP-1 cells exposed to industrial grade MoS2 has previously been 

shown(34), although White et al. have shown this will not affect LPL levels(56). Interestingly, 

the 24 h incubation not only has a further increase in internal lipids, but external lipids excreted 

by the cells can also be observed, as indicated by blue arrows in Figure 9. This further indicates 

the need for increased cellular energy, as indicated by the increased levels of NADH. When 

cells have been incubated with MoS2 for 72 h there is a reduction in the quantity of Oil red O 

stain detected inside the cell. This reduction and the fact that MoS2 degradation was not 

detected in cells incubated for 72 h, suggest that cells have halted the production and storage 

of neutral lipids and/or digestive enzymes, as the foreign threat has been eliminated. It has been 

suggested that the interaction of LBs with phagosomes may play two roles:1-as a pathogen-

driven process by which the pathogen uses the host lipid supply to improve the chances of 

infection, or 2-that LBs target phagosomes containing pathogens as way to eliminate the 

foreign threat(57).  

 



 

Figure 9 Identification of neutral lipids in macrophage-like THP-1 cells following a 4, 24 or 72 h incubation with MoS2. NT 

are untreated control cells grown in supplemented media following PMA activation. Lipid are stained using Oil Red O. 

Extracellular lipids can be seen in 24 h incubation and are indicated by blue arrows.  

 

Discussion  

Determining the presence of nanomaterial and/or submicron plate degradation in-vitro 

is of paramount importance as non-degraded material can cause a reduction in clearance, 

prolonged retention and ultimately can lead to accumulation of material within vital organs 

(58). For the safe use of MoS2 in biomedical applications the dissolution within biological 

environments needs to be fully understood. It is well documented that the size, shape and 

surface area of both nano and submicrometric material can affect the fate, transport and 

recognition of materials by the immune system and therefore material degradation. When MoS2 

are oxidized in the presence of H2O2 it causes the generation of soluble molybdenum species 

due to etching of the plate edges. The material used in this study contained a high level of 

endotoxin suspected of being bound to the particulate edge. In order to mimic the possible 

cellular degradation of MoS2 (19), the MoS2 (100 μg/ml) was incubated ex-vivo with relatively 

high concentrations of H2O2 (Figure 1 – 2000 μM) oxidizing agent to induce degradation of 



plate samples. H2O2 is commonly found in phagocytic immune cells such as macrophages and 

neutrophils although at lower concentrations of 50-100 μM(59). Z, Wang et al have shown 

MoS2 dissolution of chemically exfoliated sheets is greatly associated with pH and additional 

cell culture components showed lower rates of dissolution (60). Additionally, they reported 

multi-layer sheets prepared by ultrasonically exfoliation showed slower rates of degradation. 

When MoS2 sheets were incubated in H2O2 concentrations well above biologically relevant 

levels to induce degradation ex-vivo, a relatively slow rate of degradation was achieved, with 

particulate material still detected following 14 days incubation. Samples from each time-point 

were analysed by both Raman micro-spectroscopy and UV-Vis absorption spectroscopy, 

demonstrating Raman to be more effective with a lower limit of detection. Furthermore, 

alterations in spectral profile could be observed with Raman spectroscopy showing a decrease 

in intensity for the E1
2g Raman mode (380 cm-1) while peak broaden and/or increase in peak 

area could be observed for the A1g mode (407 cm-1). Additionally, it can be noted that any 

alterations in spectral profile compared to the pristine MoS2 samples is not due to aggregation 

as can be seen in supplemental figure 6. These findings provided evidence to aid in 

interpretation and characterization of Raman findings when investigating MoS2 in-vitro within 

human macrophage-like cells.  

 

Following analysis of Raman maps in the spectral range of 365 -1800 cm-1, it was 

observed that MoS2 is taken up by the cells and the biochemical composition of the surrounding 

micro-environment was characterised. The MoS2 location appears more diffuse following a 4 

h incubation, indicating the early uptake of the material, most likely internalised in phagosomes 

and the initiation of the cellular reaction to a foreign substance in its environment. Following 

a 24 h incubation, high levels of MoS2 were detected, but seen to be more localised to discrete 

regions of the cell, for further processing or possible binding with lysosomes to form 

phagolysosomes. Although phagosome to phagolysosome is the most probable uptake pathway 

when considering macrophages, the non-phagocytic uptake mechanisms should not be ignored, 

as cells function in a multi-disciplinary way. When cells have interacted with the plate for 72 

h (Supplemental Figure 4), a more diffuse location of non-degraded MoS2 was detected 

throughout the cell similar to observations at 4 h time points (Supplemental Figure 2).  

Traditionally, degradation would be expected in a lysosomal environment, although samples 

used throughout this study are industrial grade and contain high levels of LPS. LPS has been 



known to reduce the enzymatic activity of lysozyme(61), potentially explaining why both 

degraded and non-degraded MoS2 could be detected within macrophage-like cells.  

 

Particulate material uptake can be influenced by a range of characteristics that include 

size, shape or charge, although cell type along with their biological function can greatly 

affected the fate of the material. Passive, non-specific uptake(62,63) is well known, although 

macrophages play a crucial role in active uptake as the first line of defense in the immune 

system when invaded by a foreign threat. Therefore, the common uptake mechanism for 

macrophages is initiated by phagocytosis to form a phagosome, which later binds with a 

lysosome to form a phagolysosome to destroy/degrade the foreign material with the aid of 

digestive enzymes. Non-phagocytic pathways are also considered when examining the uptake 

in macrophages and can include clathrin coated vesicles, caveolae vesicle or micropinocytosis 

(12). The initial uptake mechanism may differ slightly for each pathway, although Zhu et al. 

have shown that the vesicles from all pathways of uptake of MoS2 within cancer cells are 

destined to accumulate in lysosomes (12).   

 

In the current study, non-degraded MoS2 was detected in macrophage-like cells 

following a 4 h incubation with plates, illustrating the early uptake mechanism. Particulate 

material may be internalised within phagosomes, early/late endosomes, clathrin or caveloae 

vesicles. Following a prolonged in-vitro incubation of 24 h, degraded MoS2 plates are detected. 

Accelerated degradation could be due to the primary vesicle containing internalised material, 

fusing with an acidic lysosome, the change in pH causing the dissolution of the MoS2 plates. 

Consistent with the observations of Wang et al., no degradation of MoS2 following a 72 h 

incubation was observed (12). This could be due to a slower uptake mechanism or MoS2 is 

within non-lysosomal compartments, as a result of which the cell has exhausted its resources 

and is recovering to produce more lysosomes, or it is preparing for exocytosis of a material.  

 

It is well known that both smooth and rough endoplasmic reticulum (ER) are in close 

proximity to the nucleus(64), which correlates with the distribution of Factor 2 observed 

following a 24 h incubation time-point. Additionally, the accumulation of neutral lipids is 

commonly associated with the lumen of the ER in which budding of the ER membrane allows 



the formation of LBs(65). LBs are frequently identified in the cytoplasm of foam cell 

macrophages as a mechanism to defeat infection(66) and are more recently described as 

inflammatory organelles(67). Furthermore, enzymes involved in carbohydrate metabolism, 

fatty acid synthesis and lipid metabolism are all associated with LBs(66). Additionally, LBs 

contain a hydrophobic core surrounded by a phospholipid monolayer which further connects 

with the identification of the phosphatidyl membrane lipids in Factor 2 (Figure 8).   

 

The production of industrial grade MoS2 materials used in this study is carried out in a 

non-sterile environment in which the possibility of contamination from endotoxin (also known 

as LPS), is certain. Previously, particulate MoS2 of three lateral sizes (50, 117 and 177 nm) 

prepared by the same production method have contained high levels of endotoxin with a direct 

increase in LPS with increasing surface area(34). LPS is commonly found on the outer cell 

membrane of gram-negative bacteria and is composed of three main components: the O 

antigen, the core and a Lipid A moiety(61). The O antigen is found on the outer most region 

on the molecule and can vary between species while the Lipid A moiety is known to cause the 

most toxicity and is responsible for immune responses(68). Two common forms of 

macrophages are called M1 and M2 respectively(69). M1 macrophages are classically activated 

by exposure to LPS or interferon-gamma (IFN-γ), while M2 macrophages are alternatively 

activated by exposure to cytokines such as IL-4 or IL-13(70), through the interaction/binding 

with toll-like receptors(71) on the cell surface which leads to accumulation of triglycerides 

(neutral lipid) along with the decrease in lipolysis and increase in the uptake of free fatty acids 

from their environment(72,73). Over a time period of 24 h, macrophage activation can increase 

in a dose dependent manner due to the presence of LPS(74). A range of cytokines are 

commonly excreted by macrophages in response to LPS exposure, including but not limited to, 

TNF-α, interleukin 1-β (IL-1beta) and IL-6(74), which in turn are interconnected with a range 

of cascade pathways(9). Therefore, the presence of LPS on the surface of these industrial grade 

particulate materials will greatly contribute to the cellular response and the destiny of the 

material once phagocytosed. Interestingly, non-degraded MoS2 was detected in an enzymatic 

micro-environment (Factor 1 - Figure 6) with spectral profiles similar to lysozyme (Figure 8D). 

As reported previously by Lukasiewicz J et al., LPS has the ability to reduce the activity level 

of lysozyme and therefore aids in understanding why both degraded and non-degraded MoS2 

could be detected in macrophage-like cells following exposure (61).  



 

NADH is detected using Raman micro-spectroscopy in macrophage-like cells 

following a 24 h incubation with MoS2. This demonstrates the need for cellular respiration by 

the cell and suggests that the cell is carrying out additional processes of cellular response. The 

cellular micro-environment for both 4 and 72 h incubation with MoS2 (Supplemental Figure 3 

and 5) was also analysed using PCA and no signatures of NADH could be detected. Shabany 

et al. have shown NAD+ is directly related to TNF-α production following exposure of pro-

inflammatory macrophages to LPS (75). As previously reported(34), the plates used in these 

studies are industrial grade and contain LPS contaminates which have been shown to stimulate 

macrophages to secrete TNF-α in a size dependent response with the smallest particles eliciting 

the highest reactivity. The production of LBs could also be responsible for the increased levels 

of NADH at the 24 h time-point, as the Oil Red O staining indicates that there is a saturation 

of LBs following a 24 h incubation. As NADH is not detected in cells following a 4 h 

incubation (Supplemental Figure 3), it would suggest the initiation of a cellular reaction in 

response to a foreign threat occurs post 4 h incubation with MoS2. As a decrease in LBs is 

observed following a prolonged incubation of 72 h, along with no incidence of NADH 

(Supplemental Figure 5), this would suggest the cell has exhausted its energy supply post 24 h 

and reduced/ceased the production of LBs. Subsequent to LBs formation in bone marrow-

derived macrophages (BMDM), Santucci et al. have reported a similar decrease in LBs content 

when cultured without exposure to a foreign threat whereas infected BMDM exhibited a 

reduction in lipid degradation (76).  

 

Due to the fixation process prior to Raman spectroscopic analysis, a separate sample 

must be prepared for each incubation time-point and, as a result, a different cell and/or 

interaction was interrogated for each time-point although a figure illustrating the 2D images 

from each cell over time can be seen in supplemental figure 7. Notably, the rate of 

internalisation and/or quantity of material internalised can vary from cell-to-cell and within 

each sample time-point. Furthermore, due to the non-supervised method of FA applied for each 

spectral map, factors are exclusive for each map making them independent between each time-

point. For these reasons, future work will involve acquiring point spectra from multiple cells 

within each sample to address this variation.  

 



Conclusion 

In conclusion, confocal Raman micro-spectroscopy has proven to be a detailed, label-

free, cost effective and non-destructive method of analysis to detect the uptake and fate of few-

layer MoS2 submicrometric plates inside macrophage-like cells when incubated inside a 

cellular micro-environment over time. The micro-environment of the MoS2 provides 

information about the biochemical composition of various sub-cellular locations and indicate 

possible cellular processes that may be activated due to the exposure, uptake and incubation 

with MoS2. This technique is transferrable for applications with different cell types and 

different particulate materials. A screening process for toxicology, medicine or understanding 

the bio-distribution and/or bio-degradation of particulate materials in-vitro could also be 

applied using the same method. Furthermore, Raman maps can be used to examine the cellular 

compartments as a function of time along with the advantage to simultaneously detect the fate 

of the plates once inside the cell due to no overlap with MoS2 first order Raman bands (380 

and 407 cm-1) and the cellular Raman bands. It has been shown that the MoS2 material is 

internalised by macrophage-like cells following a 4 h exposure and MoS2 is still detected 

internally following a prolonged incubation up to 72 h. An interaction of MoS2 with proteins 

could be detected in both 4 and 72 incubation time-points and are suspected of being 

internalised within non-lysosomal vesicles. Degradation of MoS2 in-vitro following a 24 h 

incubation was recorded and vesicles are suspected of binding with lysosomes to alter the pH 

and cause plate dissolution. The biochemical composition of various cellular compartments 

was profiled illustrating both the presence of proteinaceous and lipid micro-environments. 

With the use of in-house datasets, it was also confirmed that vesicles present within the 

“perinuclear cloud” are from the phosphatidyl family of membrane lipids while Factors 1 and 

4 contain the digestive enzyme lysozyme. An increase in internal lipid content as a result of 

MoS2 exposure was detected using Oil Red O staining showing a saturation following a 24 h 

incubation with an evident decrease in lipid content following a prolonged 72 h incubation. 

Due to the production style of these industrial grade materials, LPS contaminants on the surface 

of MoS2 plates may aid in a heightened macrophage response and contribute to the lipid 

production as a defense mechanism against a foreign threat.    
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