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Abstract 

There is compelling evidence in the literature to support the application of Raman spectroscopy 

for analysis of bodily fluids in their native liquid state. Naturally, the strategies described in 

the literature for Raman spectroscopic analysis of liquid samples have advantages and 

disadvantages. Herein, recent advances in the analysis of plasma/serum in the liquid state are 

reviewed. The potential advantages of Raman analysis in the liquid form over the commonly 

employed infrared absorption analysis in the dried droplet form are initially highlighted. 

Improvements in measurement protocols based on inverted microscopic geometries, clinically 

adaptable substrates, data preprocessing and analysis, and applications for routine monitoring 

of patient health as well as therapeutic administration are reviewed. These advances suggest 

that clinical translation of Raman spectroscopy for rapid biochemical analysis can be a reality. 

In the future, this method will prove to be highly beneficial to clinicians for rapid screening 

and monitoring of analytes and drugs in the biological fluids, and to the patients themselves, 

enabling early treatment, before the disease becomes symptomatic, allowing early recovery. 

Keywords: Raman spectroscopy, Extended Multiplicative Signal Correction, Therapeutic drug 

monitoring, Disease diagnosis, Serum, Plasma, Partial Least Squares Regression 
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1. Introduction 

Vibrational spectroscopic techniques, both Raman and Infrared (IR) absorption, have been 

extensively explored over the last two decades for obtaining the biochemical composition of 

bodily fluids in the field of biomedical analysis [1–10]. The sensitivity to detect subtle changes 

in the biochemical composition and ability to detect the presence of specific biomarkers or 

drugs makes vibrational spectroscopy an ideal tool for the early diagnosis of various 

pathologies [11–14] and therapeutic drug monitoring [15–17]. Both techniques are truly label 

free, rapid, cost-effective, easy to operate, non-destructive and provide the unique molecular 

fingerprint of the sample with minimal sample preparation steps. Such techniques are 

particularly attractive for routine analysis of biofluids, as they are easy to apply, require 

minimal sample preparation and are readily adaptable to analysis of various bodily fluids [1-

5], potentially reducing clinical analysis time, and alleviating patient angst (figure 1).  

Over the past decades, there have been numerous studies of analytes in biofluids using 

vibrational spectroscopy, and, in recent years, attenuated total reflection (Fourier Transform) 

IR (ATR-FTIR) has become popular for rapid screening of biofluids, particularly blood plasma 

and serum [13]. Notably, however, ATR-FTIR is predominantly conducted on dried droplets 

of bodily fluids, adding to the complexity of the measurement and the clinical workflow [18, 

19]. In comparison, the prospect of using Raman spectroscopy for the label-free extraction of 

biochemical information from biological fluids is attractive from various perspectives; liquid 

sample analysis, no requirement for additional reagents, ease of use, speed, cost-effectiveness 

and low sample volume requirement. The application of Raman spectroscopy to biomolecules 

and even tissues was first demonstrated as early as the 1960s, and by the mid 1970s biomedical 

applications were explored [20–22]. Whole cell and tissue studies have been carried out on a 

range of pathologies [23–25] and in vivo studies [26, 27] have demonstrated the prospective 

for diagnostic applications. Raman microspectroscopy potentially lends itself naturally to the 
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analysis of liquid biofluids and such applications have attracted considerable attention in recent 

years. There have been, however, multiple strategies that are used to perform such real-time 

analysis and these options must be carefully considered to achieve optimum Raman spectra 

from liquid samples [28, 29]. Several studies have reported the proof-of-concept of liquid 

sample analysis using Raman spectroscopy [30–37]. However, no systematic validation and 

testing of protocols has yet been carried out to consider this technique for real-time clinical 

applications. This review will summarise the recent advances in the standardisation of 

measurement protocol for biological fluid analysis in the liquid state using Raman 

spectroscopy, in terms of the optimal wavelength and substrate, serum fractionation methods, 

data collection, pre-processing and post processing steps to obtain results with higher accuracy 

and sensitivity. Applications for both analysis of imbalances of high and low molecular weight 

serum constituent components of pathological and clinical significance, as well as therapeutic 

drug monitoring will be considered. Note, that the studies considered do not require signal 

enhancement techniques such as surface enhanced Raman spectroscopy, and therefore such 

techniques are not considered within the scope of the review. However, as they has been 

extensively explored in recent times, a brief comparison of the techniques to infrared 

absorption based techniques is provided. 
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Figure 1. Early disease diagnosis, prognosis and treatment is possible with real-time analysis 

of patient serum using the inverted Raman spectral analysis.  

 

2. Raman vs Infrared absorption spectroscopy 

Although Raman and IR spectroscopy are considered complementary techniques, the 

fundamental physical phenomena governing them are very different, and thus result in distinct 

technical challenges to their clinical implementation [6, 38]. As IR spectroscopy is based on 

absorption due to electric dipole transitions associated with molecular vibrations, water cannot 

be used as a solvent, due to its intense absorption in the IR region due to the highly polar OH 

groups [39, 40]. IR analysis of bodily fluids has therefore been predominantly performed on 

air-dried samples, which leads to chemical and physical inhomogeneity due to the so – called 

“coffee ring” effect and thereby inconsistencies in the results obtained [18, 19, 39]. Raman 

spectroscopy is an inelastic scattering technique based on the Raman effect, i.e., the coupling 

Patient serum

Real time analysis

Early disease diagnostics

60x
LUMPlan F1
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of the oscillating electronic polarisabilities of the molecular bond with the source 

electromagnetic field [41, 42]. The distinct advantage of this technique is that it is compatible 

with water-rich samples such as serum/plasma, as water molecules have a relatively low 

scattering cross section and do not mask the scattering from the solutes in the aqueous solutions 

[43–45]. Zhao et al., developed a fast and reliable approach to identify and quantify liquid 

injectables in the liquid state for spurious/falsely-labelled/falsified/counterfeit medical 

products (SFFCs) using Raman spectrophotometer of 785nm excitation source [46]. Principle 

Component Analysis (PCA) combined with Classical Least Squares (CLS) chemometric 

methods were used to overcome the problems of the interference signals of glass containers 

and solutions, and weak signals from active pharmaceutical ingredients were finally extracted. 

Water was used as an internal standard for normalisation and CLS quantitation models were 

established. When Raman predicted values were compared with HPLC reference results, the 

relative error of eight doxofylline liquid injectable samples were within 5% and three low-

concentration Levofloxacin in Levofloxacin Lactate and Sodium Chloride Injection samples 

were within 10%, demonstrating this approach to be a reliable and rapid screening method to 

detect SFFCs in liquid dosage forms. In order to extend this Raman spectroscopic set up for 

the study of biological fluids, further studies should be conducted on biological fluids to extract 

clinically relevant information.  

Multianalyte, dried serum analysis has previously been reported using mid-infrared 

spectroscopy, for the simultaneous quantitation of eight serum analytes: total protein content, 

albumin, triglycerides, cholesterol, glucose, urea, creatinine and uric acid [47] and for 

simultaneous quantification of glucose and urea analytes along with malaria parasitemia 

quantification using ATR-FTIR [11]. As a direct comparison of the techniques of mid-IR and 

Raman spectroscopy, together with multivariate data analysis, for the quantitative analysis of 

serum, Rohleder et al. analysed the serum of 247 blood donors [36]. The IR analysis was 
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undertaken on dried droplets, whereas the Raman analysis was of the liquid serum and/or serum 

filtrates. Under their investigation for the quantification of glucose, urea, uric acid, LDL 

cholesterol, HDL cholesterol, total protein, cholesterol and triglycerides, Raman and mid-

infrared spectroscopy delivered similar accuracies for the prediction of physiologically relevant 

analyte levels [36]. More recently, Parachalil et al., undertook a similar comparison of Raman 

compared to ATR-FTIR, using identical sample preparation and analysis protocols, to 

quantitatively monitor diagnostically relevant changes of glucose [44], indicating that Raman 

spectroscopy in the liquid state can perform at least as well as ATR-FTIR, without the need for 

the drying step.  

Notably, whereas many of the previous studies of liquid serum samples employed an upright 

microscopic geometry, that of Parachalil et al., employed an inverted geometry, as previously 

demonstrated by Bonnier et al. [62]. Improved analysis of serum using Raman spectroscopy 

was reported when the sample was analysed in the inverted geometry using a water immersion 

objective with a 785nm laser and CaF2 substrate. A drop of water is used to minimise the 

differences in the refractive indices between sample, objective and the substrate, and thus 

improve the optical coupling. However, the water drop does not contribute to the data collected, 

as it is outside the focus of the beam. As a much better cost-effective, clinically adaptable 

option, Parachalil et al. introduced a commercial, cover slip (of 0.16-0.19 mm thickness) 

bottomed vesicle (Lab-tek plate) as the substrate. The use of glass precludes the use of a 785nm 

source [48, 49], and thus a 532nm laser was chosen as the source, which provides a strong 

Raman signal of water with minimal background interference (Figure 2). This set-up also has 

the added advantage of providing high quality, consistent Raman spectra from a sample 

volumes as low as 1μL. Medipally et al. also reported the benefits of using inverted Raman 

geometry to analyse plasma samples of small volume (20µL) from prostate cancer patients 
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[50]. Note, enhanced methods such as Surface Enhanced Raman Spectroscopy (SERS) are not 

considered in this review. 

 

Figure 2. Thin glass bottomed Lab-Tek plate combined with inverted Raman analysis can 

collect spectral data from very low amount of samples (1µL) making it an ideal tool for clinical 

laboratory analysis. Spectra can be recorded in less than 1 minute. 

 

3. Measurement of Plasma vs Serum 

Human blood plasma or serum are the most commonly studied bodily fluids for disease 

diagnosis, biomarker discovery and therapeutic drug monitoring [51–57]. While plasma and 

serum are both cell-free fluids obtained from blood samples by centrifugation, they differ on 

the basis of whether clotting has been allowed or not. One question which inevitably arises in 

performing biochemical estimation of blood, therefore, is what is the right choice of medium 

to be used, plasma or serum? Plasma is commonly obtained as the supernatant layer after 

refrigerated centrifugation of blood collected with anticoagulants (such as potassium- 

Ethylenediaminetetraacetic acid, sodium-citrated and lithium-heparin) for 10 minutes at 2,000 

x g to concentrate unwanted cells and platelets [58]. For serum preparation, whole blood is 

allowed to clot at room temperature for about 15–30 minutes, whereupon the clot is removed 

by refrigerated centrifugation at 1,000–2,000 x g for 10 minutes, often separated by a gel 

component to avoid contamination [58]. It is important to immediately transfer the supernatant 

(plasma or serum) into a clean polypropylene tube and maintain samples at 2–8°C while 

handling. If the samples are not analysed immediately, they should be stored at –20°C or 

60x
LUMPlan F1

The volume of the 
sample measured can 
be as low as 1μL. The 
spectral features are 
found to be stable at 
the highest and the 

lowest volume
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preferably lower [59]. The time delay between centrifugation and separation of the globular 

fraction and the improper storage conditions could negatively impact on the protein profile 

obtained [59]. Therefore, standardisation of sample collection, processing and storage 

protocols is crucial to ensure reproducibility and consistency in the results obtained. It is also 

recommended to avoid freeze-thaw cycles, because this may have detrimental effects on many 

serum components [60].  

Blood serum and plasma are predominantly composed of water (~90%), minerals, organic 

substances and gas (oxygen, carbon dioxide) [60]. Proteins are the predominant molecular 

components of blood plasma, the remaining constituents being carbohydrates, lipids and amino 

acids. Serum albumin, globulins, fibrinogen and a handful of other abundant proteins account 

for 99% of total plasma/serum proteins, while the remaining 1% is composed of low abundance 

circulatory proteins [54]. Additionally, plasma or serum contain more than 114,000 known 

metabolites at varying concentration level (<1 nmol/L to mmol/L) [60]’ 

Since most of the clinical analytical instruments are accurate for both serum and plasma, these 

two terms are used erroneously interchangeably in most clinical tests [7]. Notably, many 

studies that have been reported to be carried out in serum were in fact carried out in plasma 

[61–66]. 

Medipally et al. investigated the effect of different instrumental and sample preparation 

parameters to identify a combination that would reduce the overall acquisition time for 

recording spectra from blood plasma with minimal of sample preparation steps [50]. Out of the 

four different laser lines (785 nm, 660 nm, 532 nm and 473 nm) tested, only the 785 nm laser 

line gave a reliable biochemical signature of liquid plasma samples. Fluorescence was observed 

when the 660 nm laser line was used and a resonance Raman effect due to the presence of β 

carotene was observed when 532 and 473 nm laser lines were used. Plasma samples from 10 
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prostate cancer patients and 10 healthy volunteers were used in this study. A 96 well plate 

(cover glass bottomed) was used to hold samples of 20 µL and the Raman spectra were 

recorded in the inverted geometry. Spectral preprocessing steps and principal component 

analysis – linear discriminant analysis (PCA-LDA) was performed in the R environment. The 

classification resulted in a sensitivity and specificity of 96.5% and 95% respectively. Although 

a cost effective approach to perform rapid analysis of liquid plasma is demonstrated in this 

study, no attempts have been made to reduce the effect of spectral interferents while using the 

532 nm laserline.  

In validating the protocols for analysis of bodily fluids using inverted Raman microscopic 

analysis using 532nm, Parachalil et al. utilised a simulated blood plasma mixture of albumin, 

fibrinogen, cytochrome C, and vitamin B12 [44]. The findings from this study with simulated 

plasma protein mixture show that the poorly soluble fibrinogen component obscured the 

systematic variations of the protein concentrations due to high degree of scattering. Mild 

sonication of the aqueous solution helped to improve the solubility of fibrinogen and 

significantly improved the Raman spectral intensity by minimising scattering effects. Since 

centrifugal filtration failed to separate fibrinogen from rest of the proteins, ion exchange 

chromatography had to be applied to separate the fibrinogen by altering its net surface charge. 

Although ion exchange chromatography is a quick method to separate proteins, this method 

has to be tailored for a specific protein depending on its charge and cannot be used as a ’one-

for-all’ separation kit for all the proteins. In terms of the applications of Raman Spectroscopy 

for analysis of blood content, it is therefore recommended that fibrinogen content should be 

extracted from plasma, and mildly sonicated for quantitation, whereas blood serum can be 

readily further analysed for High Molecular Weight Fraction (HMWF) and Low Molecular 

Weight Fraction (LMWF) quantification. 

4. Serum Fractionation 
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As long ago as 1999, Berger et al. used near IR light at 830nm to perform Raman microscopic 

analysis of liquid whole human blood and serum samples to quantify the content of six analytes, 

namely glucose, cholesterol, triglyceride, urea, total protein and albumin [28]. The total 

acquisition time per sample was 5 min and the samples were continuously stirred in a quartz 

cuvette to minimise heating artefacts from high intensity laser. However, no attempts were 

made to fractionate the serum to deplete the HMWF analytes.  

Centrifugal filtration devices have been utilised to improve the sensitivity of quantitative 

analysis by both Raman and IR spectroscopy, by separating the molecules according to their 

molecular weight [68]. The proteins that are highly abundant in serum dominate the spectral 

profile, and by the removal of these proteins (albumin and globulins,) the ability to monitor 

changes in the lower molecular weight fraction (LMWF) is enhanced. Pre-rinsing of the filter 

devices with 0.1M NaOH prior to plasma analysis is essential to avoid glycerine interference 

in the analysis [67]. The optimised washing and rinsing procedure includes spinning 0.5mL 

0.1M NaOH at 14000×g for 30 minutes, followed by three rinses with distilled water by 

spinning 0.5mL distilled water for 30 minutes at 14000×g. Every 30 minute wash and rinse 

must be followed by spinning the device in the inverted position at 1000×g for 2 minutes, to 

remove the residual solution contained in the filter. After washing, 0.5mL sample is transferred 

to the filter and centrifuged at 14000×g for 30 minutes. The solution that flows out from the 

filter is the filtrate, which contains mostly water and molecules smaller than the pore size of 

the chosen filter. The remainder of the sample, known as the concentrate, is collected by placing 

the filter device upside down and spinning for 1000×g for 2 minutes. The resultant concentrate, 

~50µL, contains molecules with molecular weight larger than chosen pore size, and is 

concentrated by a factor of ~10. This indicates the potential for the prediction of other 

biomolecules that exist within the LMWF with this method, and with further research, such 
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techniques could be translated into the clinical environment as a rapid tool for screening and 

monitoring. 

In the study conducted using 247 blood donors by Rohleder et al. [37], a key was that the 

prediction accuracy of glucose and urea were improved by up to a factor of 2 by depletion of 

the HMWF using centrifugal filtration techniques. The processing protocol has been 

extensively explored for both ATR-FTIR and Raman analysis [39, 68] whereby the HMWF 

can be isolated in the unfiltered concentrate, while the LMWF filtrate can be further 

fractionated and/or concentrated. Notably, Bonnier et al. have highlighted the importance of 

appropriate rinsing of the filters to avoid contamination of the filtrate [67]. In the study of 

Rohleder et al. [37], Raman spectroscopy was used for quantitative analysis of serum and 

serum ultrafiltrate with an accuracy, within the range of clinical interest [37], by using 785nm 

laser as the excitation wavelength and a quartz cuvette to hold the sample. In this measurement 

setup, a minimum of 200 µL sample was required. 10kDa centrifugal filters were used to 

deplete the HMWF from the serum and the spectra of glucose, urea and uric acid were recorded 

from the serum as well as the ultrafiltrate. 

Parachalil et al. further demonstrated the suitability of Raman spectroscopy as a bioanalytical 

tool, when coupled with ultra-filtration and multivariate analysis, to detect imbalances in both 

HMWF (total protein content, γ globulins and albumin) and LMWF (urea and glucose) of the 

same samples of human patient serum, in the native liquid form [69]. Using a validated Partial 

Least Squares Regression (PLSR) method, the γ globulin and total protein analysis models, 

based on unfiltered patient serum, produced R2 values of 0.88 and 0.82, and Root Mean Square 

Error of Crossvalidation (RMSECV) of 126 mg/dL and 115 mg/dL, respectively. Post 

fractionation of the patient serum samples by ultra-filtration using 100 kDa and 50 kDa filters, 

a similar analysis produced an R2 value of 0.91 and RMSECV of 90 mg/dL for albumin, which 

is comparable to the values previously reported for a model of aqueous solutions of albumin 
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over a similar concentration range. In the case of urea, R2 and RMSECV values of 0.90 and 

70.40 mg/dL for the range of aqueous solutions of varying concentrations were achieved, and 

0.92 and 1.73 mg/dL, for the low molecular weight (<10 kDa) filtrate of patient samples, when 

the full spectral range of 400-1800 cm-1 was employed. Reducing the spectral range of the 

analysis to 800 cm-1 to 1030 cm-1 considerably improved the prediction accuracy and 

sensitivity, resulting in an R2 value of 0.97 and RMSECV of 1.14 mg/dL. In the case of glucose, 

a reduced spectral range from 1030 cm-1 to 1400 cm-1 was chosen to avoid interference from 

urea, resulting in an R2 value of 0.84 and RMSECV value of 1.84 mg/dL in the filtrate from 

the same patient samples. Although both the proof-of-concept studies have been carried out on 

rather small populations (25 patient samples), they demonstrate that the method has potential 

for clinical implementation for early disease diagnostics from bodily fluids. In this work, 

ultrafiltration in conjunction with chemometric methods were used to overcome three 

problems: first, eliminating the interference from water and β-carotene; second, extracting the 

Raman signals from LMWF analytes; and third, solving the problems associated with multiple 

analyte variations in the serum. The sample preprocessing enables a fractionation and 

concentration of the different molecular weight fractions of the serum, enabling their analysis 

and quantification without the need for additional enhancement techniques. It has been 

demonstrated that, using Ag or Au colloids, intense and repeatable spectra are only obtained if 

the high molecular weight protein fraction is filtered out from the serum [70]. Enhanced signals 

of the low molecular weight fraction can then be obtained, although the process of addition of 

colloids would add to the workflow in terms of time and cost. 
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5. Data preprocessing  

Data preprocessing, such as spikes removal, baseline correction, smoothing etc., aims to 

remove any perturbations to the spectra due to any distortions to the spectra which might arise 

during the measurement process (scattering, electronic noise). This pretreatment of data is 

critical to accessing the desired information without losing crucial information. The 

fundamental concepts and basic theory of most used chemometric tools in the pharmaceutical 

industry for pre-processing, processing and post-processing of the generated data have been 

detailed in the review article by Sacre et. al [71]. The majority of the commercial software, e.g. 

Labspec, includes real-time spikes correction, enabling visual inspection of the spectra, and/or 

manual spike removal when very few spikes are present. Some algorithms have been developed 

to perform automated spike removal in the case of a large dataset, for which manual correction 

is not possible [72–76]. The most commonly used smoothing algorithm for de-noising the 

spectra without losing much information is that of Savitzky-Golay [77]. Drifts in the baseline 

occurring due to scattering or fluorescence may be corrected using different approaches such 

as asymmetric least squares [78], mixture models [79], polynomial filter [80, 81] and the rubber 

band method [82]. In the study conducted by Medippally et. al., rubber band baseline 

correction, Savitzky–Golay smoothing algorithm  and vector-normalisation was performed on 

the raw Raman spectra of liquid plasma prior to post processing, in R based statistical software 

[50]. In studies aimed at early diagnosis of oral cancer using Raman spectroscopy by Sahu et. 

al.[83] and differentiation Meningioma by Mehta et. al.,[84], raw liquid serum spectra were 

baseline corrected using a fifth order polynomial function, smoothed using Savitzky-Golay 

algorithm and vector normalised in Matlab based statistical software. Fifth order polynomial 

background subtraction from the raw serum spectra and normalisation was also implemented 

in Matlab by Rohdeler et. al. [36] in their study to compare mid-IR and Raman spectroscopy 

in quantitative analysis of serum. Two different algorithms were used by the same group to 
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perform pre-processing of spectra of serum spectra of ultrafiltrate [37]. Spectra originating 

from ultrafiltrate were scaled to the area under the water Raman band at 1640 cm2 after 

determining the area by a Gaussian fit with linearly decreasing background from 1550 to 1770 

cm2. In the case of serum, spectra were scaled to the maximum intensity and a fifth order 

polynomial background was subtracted. In their study to detect alterations in glucose and lipid 

components in the serum using near-IR Raman spectroscopy, Borges et. al.[85] fitted a 

seventh-order polynomial function over the 400-1800 cm–1 region and subtracted from the raw 

serum spectrum to remove the unwanted background, providing an effective baseline 

correction, and spectra were normalised by the area under the curve prior to data analysis. Least 

squares fitting was used by Berger et al. to remove the background mathematically by 

subtraction of a sloped straight line from each serum spectrum without affecting the shape of 

the Raman peaks [86]. Jenkins et. al. subjected the raw Raman spectra of serum to wavenumber 

standardisation, background subtraction using a rolling circle filter algorithm and 

normalisation to the peak at 1004 cm−1 [29]. The phenyl alanine peak was chosen for 

normalisation as it is the sharpest and most intense peak within the serum spectra and it is 

observed that normalisation to this peak produced better diagnostic discriminatory results when 

compared to other normalisation methods such as vector normalisation. 

Although the accepted dogma is that the contribution of water to Raman spectra is significantly 

less than to mid-IR spectra, water still has a significant contribution to the Raman signatures 

in the fingerprint region of bodily fluids, due to the OH stretching vibration at 1640cm-1. 

Analysis of the ultracentrifugation concentrate reduced the relative contribution of the water 

signal [68] but further efforts to remove it by data preprocessing have been explored, to increase 

the relative contribution of the analyte. Kerr et al., [87] have compared a number of commonly 

employed data pre-processing techniques, and, especially in the case where the background 

contains a known interferent, such as substrate or background, demonstrate the benefits of the 
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adapted EMSC model, which also contains a polynomial with linear and higher order 

components.  Parachalil et al. adopted an adapted method of Extended Multiplicative Signal 

Correction (EMSC) [87] to subtract the known spectrum of water from their spectra, initially 

for the analysis of the HMWF in simulated plasma mixtures [44], and subsequently the 

measurement protocol was used to quantitatively monitor diagnostically relevant changes of 

glucose in liquid serum samples (spiked serum samples and patient samples), and the results 

were compared with similar analysis protocols using infrared spectroscopy of dried samples 

[43]. The analysis protocols to detect the imbalances in glucose using Raman spectroscopy 

were first demonstrated for aqueous solutions and spiked serum samples. As in the case of 

infrared absorption studies [40], centrifugal filtration was utilised to deplete abundant analytes 

and to reveal the spectral features of LMWF analytes, in order to improve spectral sensitivity 

and detection limits. After the depletion of the abundant proteins, the dominant water peak 

from the filtrate collected after centrifugal filtration using 10kDa can be removed by using the 

EMSC algorithm, and PLSR analysis applied to obtain a prediction model relating the glucose 

concentrations and the intensity of glucose features. Note, that the study introduced a water 

normalisation factor into the EMSC protocol, using the fitted co-efficient of the water scaling 

factor, which has the effect of scaling the analyte spectra, assuming a constant water 

contribution to all sample spectra. This step helps to considerably reduce the spectral variability 

of the Raman spectra of glucose recorded from 25 patient samples (Figure 3) [44]. 

The principle of EMSC for subtraction of a specific measureable background spectrum and the 

associated Matlab codes have previously been published by Kerr and Hennelly, 2016 [86], and 

their description is adapted in the following. The raw spectrum, S, consists of Raman spectrum 

of interest, R, a baseline signal, B, and the water signal, W. 

S = R + B + W [86]                                                                                        (1) 
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The Raman spectrum of interest can be represented by a reference spectrum of the material of 

interest, r, and it can be assumed that R is the product of this reference spectrum and a certain 

scalar weight, Cr, which describes the concentration dependence [88,89] 

R ~ Cr x r          [86]                                                                                        (2) 

Similarly, a spectrum, w, is recorded from water directly in order to represent the spectral 

contribution of water in W, as the product of pure water spectrum and a certain scalar weight. 

W = Cw x w      [86]                                                                                           (3) 

The baseline, B, is now represented by an appropriate order of polynomial (N) as: 

BN = C0 + C1X + C2X
2 +……+ CNXN             [86]                                            (4) 

where N is the order of polynomial and Cm for m = 0  N represents various coefficients of 

polynomial. The EMSC algorithm is used to obtain estimates of the scalar values Cr, Cm and 

Cw. These estimates are obtained from an optimal fit of the various vectors in Equation 5. 

S~ [𝐶𝑟 × 𝑟] + [𝐶𝑤 × 𝑤] + [∑ 𝐶𝑚𝑋𝑚 ]𝑁
𝑚=0         [86]                                          (5) 

The background corrected, concentration dependent analyte spectra, T, can be represented as: 

T =
S−[𝐶𝑤 ×𝑤]−[∑ 𝐶𝑚𝑋𝑚]𝑁

𝑚=0

𝐶𝑤
    [86]                                                                        (6) 

Note, that division by Cw has the effect of scaling the analyte spectra, assuming a constant 

water contribution to all sample spectra.  
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Figure 3. (A) PCA scatter plot of Raman data of the filtrate obtained after ultrafiltration of 

patient serum without scaling the analyte (glucose) spectra from the previously published study 

by Parachalil et. al [44] and (B) after scaling the analyte spectra to the water content. Figure 

3B displays less scatter when compared to Figure 3A, indicating less variability among the 

spectra 

 

However, although the EMSC algorithm removed the underlying water spectra effectively, 

interference from other LMWF analytes, namely, urea was noticed. Hence, a shorter spectral 

range from 1030cm-1 to 1400cm-1 was chosen for data analysis, as this region does not contain 

signature peaks of urea. Improved Root RMSECV was observed for Raman prediction models, 

whereas slightly higher R2 values were reported for infrared absorption prediction models. 

The adapted EMSC algorithm can also be employed to remove known spectral interferents. In 

several studies of human serum, β-carotene has been observed as a string contributor to the 

spectrum, particularly when using 532nm or lower as source, as the scattering from the 

conjugated antioxidant species are resonantly enhanced [29, 50, 83]. The LMWF species are 

not easily removed by centrifugal separation [69], but their contributions can be effectively 

“digitally” removed using the adapted EMSC protocol. 

6. Data Analysis 

A B
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Data analysis protocols can be differentiated into classification protocols, largely employed for 

diagnostic purposes, and regression protocols, predominantly used for quantitation of identified 

analytes. The latter have been explored for both imbalances in intrinsic blood constituents, as 

well as for therapeutic drug monitoring. 

Depciuch et al. collected Raman and FTIR spectra from dried and liquid serum from depressed 

patients and their analysis indicated that both methods provided equally valid results to 

discriminate the patients with similar accuracies [33]. The light source wavelength was 780 nm 

and the sample volume used was 1.5ml, which could be an impediment for clinical translation. 

Other similar studies conducted by the same group using the same set up on phospholipid-

protein balance in human serum and qualitative, quantitative changes in phospholipids and 

proteins in animal depression models. The role of zinc deficiency induced phospholipid-protein 

imbalance in serum of the animal models suggest that both IR and Raman spectroscopic 

techniques could be used as effective tools to identify the changes in the blood serum [30–32]. 

To investigate similarities and differences between the serum samples of different types of 

depression in humans, Principal Components Analysis-Linear Discriminant Classification 

(PCA-LDC) was employed in their analysis of Raman and FTIR spectra from dried and liquid 

serum from depressed patients [33]. The results from both FTIR and Raman spectra 

unambiguously demonstrated that the levels of proteins and phospholipids are higher in healthy 

controls than in depressed subjects and that phospholipids affect the structure of proteins. Two 

measurement strategies were compared in order to determine the influence of water on the 

measured spectra; the first method entailed recording the water spectrum as back-ground, and 

subsequently automatically subtracting it from each serum spectrum, while the second method 

entailed recording a spectrum of the air prior to the spectrum of blood serum and subsequently 

the water spectrum was subtracted from the blood serum without air background. Both the 

methods provided identical serum spectra, suggesting that appropriate measurement of the 
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background and the subtraction of water signal had the greatest impact on the reliability of the 

results. 

Jenkins et al. developed a high-throughput (HT) serum Raman spectroscopy platform and 

compared dry and liquid data acquisition of serum samples for liquid biopsy of 30 colorectal 

cancer patients and 30 matched control patients [29]. Using a stainless steel high throughput 

substrate that allows up to 40 samples to be loaded at once, and 785 nm laser as the excitation 

wavelength, the maximum sensitivity and specificity obtained for discrimination of colorectal 

cancer patients were 77% and 81% respectively. In this study, Raman spectra were subjected 

to routine preprocessing such as wavenumber standardisation, background subtraction using a 

rolling circle filter algorithm and normalisation to the peak at 1004 cm−1. Partial least squares 

discriminant analysis (PLS-DA) was used to investigate causes of differences and variances 

within datasets. PLS-DA models were cross validated using k-fold cross validation with 5 

folds. The sample volume required was 200 µL and the total time for the data collection was 

12.5min. In a clinical setting, it would be advantageous to reduce the data collection time in 

order to avoid delay in analysis. When excitation wavelength of 532nm was used on the liquid 

platform, the specificity was found to be low, due to the prominence of carotenoids in the serum 

spectra. No measures were taken to remove the interference of carotenoids from the spectral 

data. The prominence of carotenoids due to resonance Raman was also reported by Sahu et al., 

in an exploratory study for detection of oral cancers [83] and by Mehta et al., in their study 

conducted to differentiate meningioma. Sahu et. al. used 532nm as excitation source  and 

Raman spectra were collected by placing 30µL serum samples on a glass slide and the laser 

was focused through a 50X Nikon objective. The spectra were vector normalised, baseline 

corrected, smoothed and subjected to PCA-LDA followed by cross-validation using leave-one-

out cross-validation (LOOCV). Although this study reported spectral differences between 

DNA, changes in the plasma amino acid profiles and β-carotene levels across the analysed 



20 
 

groups, the strong bands of β-carotene could interfere with the detection of other analytes 

increasing the ambiguity in the results obtained. In the study conducted by Mehta et al., 25 

patient samples from healthy and meningioma groups were subjected to PC and PC-LDA 

followed by LOOCV cross validation, yielding classification efficiency of 92% and 80% for 

healthy and meningioma respectively. Passively thawed 30µL serum samples, on a calcium 

fluoride (CaF2) slides were subjected to Raman analysis using 785nm laser excitation source. 

Borges et al.[85], collected blood serum from 44 volunteers to discriminate between altered 

and normal concentrations of glucose, total cholesterol, triglycerides, low density (HDL) and 

high density lipoproteins (LDL). Raman analysis was performed using 830nm excitation 

source for a sample volume of 100µL. The data collected was subjected to PCA yielding a 

classification efficiency of 77% for total cholesterol, 81% for triglycerides, 59% for HDL and 

60% for LDL.  

In terms of quantification of systematically variable analyte concentrations, multivariate PLSR 

analysis is often the method of choice. PLSR is most commonly employed to construct a model 

that can relate variations of the measured spectral responses to a systematic variation of 

concentrations of the target analyte [90–92]. The constructed model can them be employed to 

identify spectral factors which account for the maximum variation in predictors ‘X’ (spectral 

data) versus associated responses ‘Y’ (target values of protein concentration) [91]. The spectral 

data (X matrix) can thus be related to the target concentrations (Y matrix) according to the 

linear relationship Y = XB +E, in which B and E are matrices of regression coefficients and 

residuals, respectively. The PLSR model can be used to predict the outcome of varying 

concentration of analytes based on the spectral data. The model is validated using a rigorous 

cross validation procedure which evaluates its performance in accurately predicting analyte 

concentrations [44]. In the study of Berger et al., PLSR prediction models were built, using 

leave one out cross validation (LOOCV), for each the six analytes after spectral background 
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removal, providing an root mean square error of 26mg/dL, 12mg/dL, 29mg/dL, 3.8mg/dL, 

0.19mg/dL and 0.12mg/dL for glucose, cholesterol, triglyceride, urea, total protein and 

albumin, respectively [28]. A similar approach was employed by Parachalil et al. [43] to 

compare the predictive capacity of Raman microscopy for quantitation of glucose in human 

serum, compared to the similar ATR-FTIR analysis of Bonnier et al. [87] indicating that the 

RMSECV for Raman of 1.84mg/dL is comparable or better than that of 3.1mg/dL for ATR- 

FTIR.  

Having removed the spectral interferents using EMSC, PLSR can independently identify 

spectral correlation associated with target analyte range. Cross-validation of the PLSR model 

is required to evaluate the accuracy, often cited in terms of the Root Mean Square Error of 

Cross Validation (RMSECV) [93]. The number of latent variables used for construction of the 

PLSR model is optimised by establishing the value that is equivalent to the minimum of the 

RMSECV. The R2 value provides an indication of the correlation between the analyte 

concentration and spectral intensity, while the standard deviation (STD) provides an indication 

of the variation between each spectrum calculated from the same sample. Commonly, a 

multiple fold cross validation approach is employed to validate the robustness of the method. 

Typically, the set of observations is randomly divided into approximately equal size, e.g. 50% 

of the spectral data randomly selected as test set, while the remaining 50% is used as the 

training set [101]. The cross-validation process is then repeated multiple times (the folds), such 

that all observations are used for both training and testing, and each observation is used for 

testing exactly once. The results from the folds can then be averaged to produce a single 

estimation. The Root Mean Square Error of Cross Validation (RMSECV) is calculated from 

the multiple iterations to measure the performance of the model for the unknown cases within 

the calibration set.  
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In order to advance the studies of Berger et al., [86] and Rohleder et al.,[36, 37] using the 

improved inverted microscopy modality, Parachalil et al.[69] also used the EMSC correction, 

ultrafiltration protocols and PLSR analysis to construct models for the quantitation of the whole 

serum (total protein, γ globulin), serum concentrate (albumin) and serum filtrate (urea and 

glucose) of patient samples, resulting in higher accuracy and sensitivity of analysis. The 

strategy demonstrated in this study enables the simultaneous estimation of total protein level 

and detection of imbalance in γ globulin concentration accurately from whole serum, without 

the use of any reagents and without destroying the sample being studied. The proposed method 

has many advantageous over the routinely used biuret method, Turbidimetric Immunoassay 

(TIA) and Radial Immunodiffusion (RID), as the required sample volume can be as low as 

10μL, it is rapid and non-destructive to the medium being studied, whereas the conventional 

methods are considered impractical due to the requirement of large sample volume and 

laborious sample processing steps [94–96]. Moreover, the linearity reported for a comparative 

study of RID and TIA is 0.59 [97], substantially lower than the R2 calculated by Parachalil et 

al. [44]. Using filtration, the albumin was isolated from patient serum and the prediction model 

had a prediction accuracy significantly superior to that reported for the Bromoscerol Green 

method (2.2 g/dL), used to determine albumin concentrations from cirrhotic patients [98]. It 

has previously been reported that selecting the spectral region from 1030 cm-1 to 1400 cm-1 

improved the sensitivity and specificity for the prediction model of glucose from patient 

samples over the concentration range 52.5-434.2 mg/dL, and the technique was demonstrated 

to be at least as accurate as ATR-FTIR of similar patient samples [69], measured in the dried 

state and closer to the accuracy of colorimetric methods, 1.4 mg/dL urea [99] and 2 mg/dL 

glucose [100]. Similarly, higher prediction accuracy (RMSECV=1.14 mg/dL) was attained 

when PLSR analysis was performed on a reduced range for urea from patient samples over the 

concentration range 2.52-78.99 mg/dL, compared to the full range (RMSECV=1.73 mg/dL). 
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This standardised, optimised methodology was also applied to determine the Limit of Detection 

(LOD) and Limit of Quantification (LOQ) for therapeutic drug monitoring (TDM) in human 

serum, using the examples of Busulfan, a cell cycle non-specific alkylating antineoplastic 

agent, and, Methotrexate, a chemotherapeutic agent and immune system suppressant [101]. 

Ultrafiltration of the spiked human pooled serum with 10kDa centrifugal filter efficiently 

recovered the drug in the filtrate prior to performing Raman analysis. The drug concentration 

ranges were chosen to encompass the recommended therapeutic ranges and toxic levels in 

patients. Finally, prediction models were built by using PLSR and LOD and LOQ were 

calculated directly from the linear prediction models. The LOD calculated for Busulfan is 

0.0002 ± 0.0001 mg/mL, 30-40 times lower than the level of toxicity, enabling the application 

of this method in target dose adjustment of Busulfan for patients undergoing, for example, bone 

marrow transplantation. The LOD and LOQ calculated for Methotrexate are 7.8 ± 5 µM and 

26 ±5 µM, respectively, potentially enabling high dose monitoring. Although SERS gives 

promising results in detecting drugs at low concentrations in biological matrices [16, 102], 

qualitative variations within the SERS substrate, and the interference of other biomolecules 

with the SERS spectra, makes quantification in real samples a challenging task [103]. The 

simpler approach, adopted here, of Raman spectroscopy coupled with concentration of the high 

and low molecular weight serum fractions using commercially available centrifugal filter 

devices and multivariate analysis technique ensures that the information in the fractions is 

effectively preserved, while enabling easy detection of the analyte concentration with higher 

accuracy that in the unprocessed sample. Better analysis of serum using Raman spectroscopy 

was observed when the sample was analysed in the inverted geometry using the water 

immersion objective with a 532nm laser as source with Lab-Tek plate as substrate [44]. A drop 

of water is used to minimise the differences in the refractive indexes between sample, objective 

and the substrate. However, the water drop does not contribute to the data collected, as it is 
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outside the focus of the beam. The promising results from the systematic studies conducted by 

Parachalil et al.[69] using this analytical set up combined with chemometric techniques such 

as EMSC to measure concentrations of HMWF, LMWF and drugs in human serum strongly 

indicates a highly significant correlation between predicted and reference concentrations. 

These results suggest that Raman can on its own can detect and quantify concentrations close 

to 1% without the aid of any enhancement method [37]. 

Considering the more general applications of the technique to a broader range of drugs or 

analytes, it is notable that both the LOD and LOQ for a given set up are determined by the STD 

of the measurement of the control (serum or filtered serum), and the Raman scattering 

efficiency of the analyte. To further illustrate this point, the LOD of vitamin B12, cholesterol, 

urea and glucose from liquid samples for this measurement protocol were also determined 

using the method previously reported by Parachalil et al. [101] (Table 1). Figure 4 displays a 

plot of LOD versus the maximum intensity per unit acquisition time, per unit concentration. 

An approximately linear, inverse relationship can be seen, which simply emphasises the maxim 

that the stronger the Raman signal of the analyte, the easier it is to detect. The correlation also 

implies, however, that a simple measurement of the analyte in aqueous solution could be 

employed to predict the LOD, and therefore the suitability of the technique for the therapeutic 

monitoring application. 
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Table 1: LOD of glucose [44], busulfan [101], methotrexate [101], cholesterol, urea [69] and 

vitamin B12 calculated from the PLSR prediction plot of these analytes, compared to the 

maximum Raman intensity of maximum peak per unit acquisition time, per unit 

concentration 

 

Analyte Intensity 

(arb. 

units) 

LOD(mM) 

Glucose 1000 0.0006±0.0005 

Busulfan 19704 0.0008±0.0001 

MTX 1600 0.00076±0.0005 

Cholesterol 216718 0.0006±0.0001 

Urea 540000 0.00033±0.00001 

VB12 1266666 0.00014±0.00002 

 

 

Figure 4. LOD of glucose (44), urea (69), busulfan (101), methotrexate (101), cholesterol, and 

vitamin B12 calculated from the PLSR prediction plot of these analytes, compared to the 

‘maximum Raman intensity of maximum peak per unit acquisition time, per unit 

concentration’. The methodology used for calculating LOD was previously published (101) 
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7. Clinical Translation 

Vibrational spectroscopic techniques have attracted a lot of attention as analytical methods of 

choice for analysing biological samples. The promise of the techniques is based on the abilities 

to objectively fingerprint the biochemical profile underlying early onset of disease in cells, 

tissues or bodilyfluids [3, 6, 9]. The techniques have no requirement of specific reagent, and 

the minimal sample preparation means there should be fewer procedural errors and no major 

time delay in providing the results to the patients. In the case of FTIR, considerable progress 

towards using this technique as a routine diagnostic tool for disease diagnosis has been made. 

Recently, ClinSpec Diagnostic, based at the University of Strathclyde’s Technology & 

Innovation Centre, won a £1.2 million investment to further develop a “revolutionary” blood 

test using FTIR which could potentially improve brain cancer survival rates through early 

detection of the disease [104]. Researchers from Monash University have similarly developed 

FTIR based techniques to analyse disease-causing pathogens in human blood [105]. Advances 

in instrumentation have made FTIR an ideal tool of choice for an increasing number of clinical 

application even though the sample drying step is potentially a huge drawback [19, 68, 106].  

Notably, it is demonstrated that the Raman analysis protocol can yield accuracies which are 

comparable with those reported using infrared absorption based measurements of dried serum, 

without the need for additional drying steps. However, there remain challenges to fulfilling the 

requirements for clinical translation. Distortions in the spectra due to the water contributions, 

low detectability of the low molecular weight fraction analytes, lack of standardisation steps 

and financial factors could be the hindrance for clinical translation in the medical and clinical 

environment. Nevertheless, new strategies have been recently developed to address these 

potential limitations, namely the inverted Raman geometry, low cost (Lab-Tek plate) 

substrates, serum fractionation techniques, selective spectral region analysis and sophisticated 

data preprocessing (EMSC) and analysis (PLSR) techniques. These advances have maximised 
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the diagnostic accuracy and are cost-effective solutions that are likely to be adopted in a clinical 

setting.    

Application of the adapted EMSC based algorithm helped to eliminate the contribution from 

water and scattering associated with the HMWF, and linear predictive models were built from 

the PLSR analysis. It is worth noting that PLSR seeks to correlate systematic variations in the 

spectroscopic profiles with the external target variable, in this case protein concentration. As 

such, the method is not inherently specific to any molecular variations, in the case where 

multiple species vary simultaneously over the same range. The accuracy of the proposed 

method is comparable to that of the most commonly used method for detecting albumin from 

biological fluids, the Enzyme Linked Immunosorbent Assay (ELISA) [107, 108], and the most 

commonly used gold-standard method i.e., the Clauss assay for fibrinogen [109]. The proposed 

approach can be expeditiously employed for early detection of pathological disorders 

associated with high or low plasma/serum analytes.  

Bodily fluids are usually collected from a large number of patients in a hospital, potentially 

delaying the performance of the analysis and availability of results, which may in turn delay 

the therapy, and prolong patient anxiety. The accuracy of the conventional test kits that enable 

point-of-care testing can be poor, and they are can be avoided due to high cost [110,111]. The 

enormous advantage of employing this inverted Raman spectral analysis for real-time 

serum/plasma analysis in a clinical setting is that, in the face of emerging diseases, one could 

get an early diagnosis in a cost effective manner before the disease becomes symptomatic 

(Figure 1). Integrated with smaller spectroscopic instrumentation, implementation of such a 

screening/diagnostic tool in developing countries where conventional diagnostics methods are 

scarce and avoided due to high cost, would bring about a dramatic impact on population 

screening.   
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8. Conclusion 

 

The potential advantages of employing Raman spectroscopy of bodily fluids for disease 

diagnosis apart from its high sensitivity and specificity are: low cost, no reagents are required, 

samples can be probed in the native state and rapid results can be obtained. Although there is 

a wealth of information to support the application of Raman analysis for bodily fluids, this 

approach is still considered young and upcoming in the eyes of medical community, thereby 

hindering its clinical translation. The examples summarised in this article attest to the cost 

effective, easy to use, reproducible method of Raman measurement protocol for detecting 

imbalances in serum/plasma proteins and low molecular weight analytes, as well as therapeutic 

drug monitoring. Significantly improved sensitivity of Raman spectroscopic measurements of 

blood samples in liquid form is achievable by means of serum fractionation and the 

implementation of chemometric approaches. In the case of clinical translation, there remain 

challenges to overcome before it can be a reality. Nevertheless, it has been demonstrated that 

options and alternatives are available to overcome these challenges in using Raman 

spectroscopy for liquid sample analysis, leading to a better accuracy and repeatability and thus 

a better sensitivity. Naturally, the next phase includes not only refining this method and 

improving the technical capabilities to match those of the current clinical needs, but also 

technical advances to translate them from research laboratory to clinical practice. In addition, 

to ensure further relevancy of this method, comparison studies between the gold standard of 

current diagnostic methods and the current method in a large multi-centred randomised clinical 

trials are required. Once these factors are taken into account, it is possible to envisage a routine 

platform providing clinical biochemical analysis at minimal cost.  
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