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Abstract: Computer viruses have become complex and operates in a stealth mode to avoid detection. New viruses are argued 
to be created each and every day. However, most of these supposedly ‘new’ viruses are not completely new. Most of the 
supposedly ‘new’ viruses are not necessarily created from scratch with completely new (something novel that has never 
been seen before) mechanisms. For example, most of these viruses just change their form and signatures to avoid detection. 
But their operation and the way they infect files and systems is still the same. Hence, such viruses cannot be argued to be 
new. In this paper, the authors refer to such viruses as derived viruses. Just like new viruses, derived viruses are hard to 
detect with current scanning-detection methods. Therefore, this paper proposes a virus detection system that detects de-
rived viruses better than existing methods. The proposed system integrates a mutating engine together with neural network 
to improve the detection rate of derived viruses. Experimental results show that the proposed model can detect derived 
viruses with an average accuracy detection rate of 80% (this include 91% success rate on first generation, 83% success rate 
on second generation and 65% success rate on third generation). The results further shows that the correlation between the 
original virus signature and its derivatives decreases further down along its generations.  
 
Keywords: artificial neural network, computer virus, mutating engine, derived virus 

1.  Introduction 
A computer virus can simply be defined as a program that infects other programs or systems by modifying them 
for malicious purposes (Konstantinou, 2008). Computer viruses comes with a wide variety of nefarious activities 
that ranges from consuming excess of memory space; to showing some funny and peculiar actions; up to per-
forming serious temporary or permanent damage to a computing system (Filiol, 2005). Criminals are now using 
viruses to hijack and take over computers from unsuspecting users. Hijacked computers are then used to create 
botnets to spread spam, perform a distributed denial of service and steal identities. Therefore, the effects of 
computer viruses have moved from just showing an annoying messages on the screen toward having an impact 
on company reputation and affecting business bottom line.  
 
There is a wide variety of anti-virus programs in existence nowadays which makes an attempt to solve the prev-
alent virus problem in computing systems. For example, McAfee, Symantec's Norton, Kaspersky are just a few 
of the market leaders in the anti-virus industry. In spite of all available anti-virus programs in the market today, 
virus attacks do not seem to slow down. Kaspersky labs antivirus solutions reported a total of 69,277,289 unique 
malicious viruses in the year 2016 (Kaspersky Lab, 2016). This was against 4,000,000 that were reported by the 
same product in the year 2015 (Ivanov et al., 2015). This statistics gives 1631.9% increase within a year i.e. be-
tween 2015 and 2016. Furthermore, Symantec's internet security threat report shows a 125% increase in the 
number of zero-day vulnerabilities between 2014 and 2015.  
 
New viruses are being created each day (Daoud, 2009). However, this paper argues that most of these viruses 
that Daoud (2009) refers to are not completely new. These supposedly “new" viruses are not necessarily created 
from scratch with completely new (something novel that has never been seen before) mechanisms. A number 
of these just change their forms and come up with 'new' signatures to avoid detection (Feng & Gupta, 2009). 
Hence, such viruses cannot be argued to be completely 'new'. Examples of such are polymorphic and metamor-
phic viruses. This paper refers to them as derived viruses. This is mainly because the different variants of virus 
signatures are normally derived from the original signatures.  
 

647



 
Omotayo Asiru, Moses Dlamini and Jonathan Blackledge 

Just like new viruses, derived viruses are hard to detect with current virus scanning-detection method. This is 
because current virus scanning-detection methods rely mainly on known signatures to detect viruses. However, 
virus signatures change rapidly to avoid detection (Silverman, 2001). The main difference between a normal 
virus and a derived virus is that the latter changes its components to look like a new and different program 
before it can multiply. This self-modification ability that modern day viruses possess has put a strain on the 
current virus detection methods (Kumar, 2016).  
 
Nowadays, some virus writers are creating mutation engine for other virus writers to make use of. An example 
of such is a tool kit called “Dark Avenger's Mutation Engine". This tool allows a virus writer who has a normal 
virus to use the engine with his virus code, making each infected file appear like a totally different virus code. 
This is done in such a manner that taking any two files infected by the same virus, their signatures will be totally 
different and without any correlation.  
 
A derived virus as used in this paper can be defined as any virus that uses any of the modern obfuscation tech-
niques to change its form and how it looks. Viruses normally do this in order to produce different variants that 
actually look like a new virus. However, most of these exhibit exactly the same behaviour as with the original 
virus. The obfuscation techniques used by many modern viruses include but not limited to junk or dead code 
insertion, variable substitution, instruction replacement, instruction re-arrangement and instruction transposi-
tion (Rad et al., 2012).  
 
An example of derived virus is a polymorphic virus. A polymorphic virus is a piece of code that is characterized 
by the following behaviour; encryption, self-multiplication and changing of one or more components of itself so 
that it remains undetected (Kumar, 2016). A polymorphic virus is not worse than a normal virus in terms of the 
damage it causes. However, this type of a virus is hard to detect (Silverman, 2001). For example, an original 
signature of a particular polymorphic virus might be “881600808826000dcd13cd19". This virus signature can 
produce a variant or derivative by adding a NOP instruction. A NOP (short for No Operation) instruction is an 
assembly language command or instruction that does nothing. The NOP instruction is used to allow future mod-
ification of code without rewriting or recompiling it (Clements, 2014). By adding a NOP instruction to the above 
polymorphic virus code, the new signature becomes "88160080908826000d9090cd13909090cd19. This same 
virus can further produce another supposedly 'new' virus by adding a JUMP instruction. The JUMP instruction 
transfers program execution flow from the current location to a new location (Kjell, 2015). By adding a JUMP 
instruction to the above polymorphic virus code, the new signature becomes 
“eb10908826000deb0f9090cd13909090cd198816008088ffebed" (Silverman, 2001). This now look very differ-
ent from the original signature. Hence, such a virus cannot be easily detected by the current detection technique. 
Furthermore, the two variants cannot be argued to be new viruses. 
 
Signature scanning is the oldest and most common virus detection technique used by many anti-virus programs 
today. It has so many disadvantages. For example, it has a poor ability to detect derived and new viruses 
(Golovko & Bezobrazov, 2015; Hamza & Hussain, 2014). Signature scanning anti-virus works by comparing the 
signatures of files on a computer system against signatures of viruses stored in the anti-virus database (Mishra, 
2010). If the signature of any file matches a signature in the installed anti-virus database, such a file is declared 
infected and necessary action is taken whether to delete or quarantine it (Kakad et al., 2014). This method of 
virus detection is effective and gives accurate result but only to known and normal viruses. Another major draw-
back of signature scanning is the time lag between virus creation and detection. Other virus detection techniques 
include but not limited to integrity checker, CPU emulator, heuristic scanner and anomaly based detection. Most 
of the listed virus detection techniques can detect any type of virus but still have high false positive (Mishra, 
2010).  
 
Hence, this work aims to add to the body of knowledge by helping improve the rate of detection of derived 
viruses. The rest of the paper is structured as follows. Section 2 describes related work and section 3 presents 
and discusses the proposed model. In section 4, some of the results of the experiments are presented and dis-
cussed. Section 5 concludes the paper and points out future work. 

2. Related work 
This section reviews existing research efforts that are directed at detecting viruses, more so the derived ones. 
Several researchers have made plausible attempts to try and accurately detect derived viruses. For example the 
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work of Chen et al. (2012). Chen et al. (2012) proposes a neural network ensemble method. The authors therein 
(Chen et al., 2012) discuss how machine learning could be used for virus detection. The characteristics of the 
virus are first extracted for classification and learning through the system calling sequence of a program. Differ-
ent machine learning approaches are then used to construct an ensemble. The results of the machine learning 
are combined according to Dempster Shafers evidence theory to form the final output of the system. This re-
search work only discusses how an artificial neural network can be trained. However, it does not show how the 
output of the trained artificial neural network detects a computer virus. An astounding 97% accuracy was re-
ported for this work when compared with other traditional ways. It must be mentioned though that Chen et al. 
(2012) did not specify if this include derived or new viruses. Vinod et al. (2012) proposes a method of detecting 
variants of metamorphic malware using bioinformatics techniques that are normally used for Protein and DNA 
matching. In their proposed method, a multiple sequence alignment is used to arrange an opcode sequence of 
malware. This is to determine similarity among malware samples and also to determine frequent occurring pat-
tern in a malware family. The frequent pattern depicts maliciousness. It is reported that the result of the exper-
iments is comparable with some of the anti-virus software that are commonly in use today. 
 
A memory-based abstraction approach to handle obfuscation in polymorphic virus is proposed by Nguyen et al. 
(2012). The aim of this research work is to handle obfuscation in polymorphic virus. The methodology involves 
abstracting the binary code based on their memory states and analyzes the abstracted states to detect useless 
instructions. This method is proposed because in spite of any obfuscation technique employed, the actual mali-
cious code, once executed produces the same memory state patterns when properly abstracted. However, the 
major challenge of this approach is the need to develop an abstract form that captures the memory states af-
fected by each instruction when executed. As such, it is stated that the approach is not practically possible be-
cause of high complexity. Kamarudin et al. (2013) conducted an analysis on the effectiveness of signature based 
anti-virus software in detecting metamorphic viruses. In their work, Kamarudin et al. (2013) created a seed virus 
using a virus generator. Thereafter, the seed virus is run on their morphine engine which contains some code 
obfuscation techniques. This process is done to generate a family of metamorphic variants for the seed virus 
and it was conducted 20 times which gives 20 metamorphic variants of the seed virus with each generated var-
iant different from one another. This explains the reason why detection of metamorphic virus is difficult with 
signature based anti-virus software. Kamarudin et al. (2013) also performed a similarity test on 4 generations of 
metamorphic variants and the original seed. It was discovered that the similarity decreases with higher genera-
tions. The first generation virus is similar to the virus seed with about 60 percent and the fourth generation virus 
has an average similarity of 19.7 percent with the virus seed. 
 
Gang & Zhongquan (2014) developed a malicious code detection solution that is based on fuzzy reasoning. This 
work adopts a comprehensive scheme to get behaviours in such phases as file structure analysis and function 
calls identification. It also analyses the most common obfuscation technique that insert data after call instruction 
and provide an algorithm that identifies information calls. A dynamic fuzzy neural network decision system is 
then used to determine mutating and unknown malicious executable viruses. The system does not show how 
viruses are detected. However, 95.2% detection accuracy was reported for this work’s experiment. 
 
A model to classify files into malware or benign was developed by (Kuriakose & Vinod, 2014). Kuriakose & Vinod 
(2014) use feature selection methods such as term frequency, inverse document frequency among others to 
develop the model. Malware and benign portable executables are unpacked and disassembled to get bi-gram 
data set. The bi-gram dataset is used for training and testing. The experiment shows that the model can detect 
more synthetic metamorphic viruses with average detection rate of 92%. Andree & Nhien-An (2016) uses statis-
tical methods, Naïve-Bayes algorithm and N-grams to find out if there is significant data that could be used to 
classify malware in control flow change. In order to find a discriminator between a malware and good software, 
Andree & Nhien-An (2016) first calculate and compare statistical values of the median, variance, variance coef-
ficient and spread for both malware and good software. The second approach used by Andree & Nhien-An (2016) 
to find a discriminator is a Naïve-Bayes classifier. The classifier is first trained with sample datasets comprising 
of raw jump length data for both malware and good software. Thereafter, the classifier test unknown software 
against the data that has been learned by the classifier. The third approach used by the authors is based on the 
extraction on N-grams of words from a text. The N-grams of sample datasets are extracted and saved to a data-
base for further comparison. Test samples are processed the same way the sample datasets are processed and 
saved into another database. The categorization test searches for occurrence of the to-test n-grams in the sam-
ple datasets and check for similarities. The data found in this work is not usable and its likelihood is too low to 
make a decision. 
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The reviewed literature shows that virus detection technique based on signatures is most commonly used tech-
nique (Kamarudin et al., 2013) and it has so many disadvantages. These include; human intervention in signature 
extraction, the need for users to regularly update the signature database (Vinod et al., 2010), time lag between 
virus creation and detection and most importantly, its inability to detect new and derived virus (Mishra, 2010). 
Some other approaches that use behavior to detect the presence of a virus have high false positive while some 
are still far from perfection. Some of the methods proposed in literature involve some error prone pre-pro-
cessing and some of these are too complex to implement. Another approach that sounds promising might be; 
to use the concept of artificial immune system to enhance computing devices with their own immune system. 
However, training a computer on how to differentiate non-viral files from viral files seems to be a big challenge. 
This is important in a computing system where applications are installed and uninstalled on a regular basis. Some 
research explored the use of artificial intelligence in detecting computing viruses (Gang & Zhongquan, 2014). 
However, more research still needs to be conducted in order to fully explore options from the field of artificial 
intelligence. Furthermore, few research efforts focus on derived and metamorphic virus detection. These are 
some of the challenges faced by the current virus detection techniques that are proposed in literature. The next 
section discusses our proposed model and reflects on how it extends existing literature. 

3. The proposed model for derived virus detection 
In view of the current problems of detecting computing derived viruses as identified in the previous section, 
there is a need for a solution that can detect derived virus. The solution should be dynamic in nature and not 
dependent on pre-defined virus signatures. The solution should also learn from existing virus signatures and be 
able to detect derived viruses thereof. Hence, the authors propose a model based on these requirements. The 
proposed model is as shown in figure 1.  The proposed model comprises of various building blocks depicting 
different processes. The processes in each block are discussed below. 

 

Figure 1: Proposed model 

650



 
Omotayo Asiru, Moses Dlamini and Jonathan Blackledge 

3.1 Virus signature database 

This is the first block of the model. This block generates the dataset using the following steps: 

3.1.1 Existing/known virus signatures 

The first step of this model is to obtain existing virus signatures. The existing virus signatures can be obtained 
from any source such as VX Heaven and nlnetlabs website. However for this particular study the signatures were 
obtained from nlnetlabs website. The size of a virus signature string varies. This could be from a few bytes to 
tens of thousands of bytes (Wang, 2008). For the experimentation of this study, the authors consider signatures 
of 32 bytes. This is because several neural networks require the input to be represented as a fixed-length feature 
vector (Le et al., 2014). Therefore obtaining a generalized result requires the use of virus signatures with differ-
ent bytes. This work considers fixed size string virus signatures. Hence, this is one of the limitations of this work.     

3.1.2 Derive virus signatures    

In this step, a mutating engine is designed, built and used to generate the derived virus signatures. The process 
starts by arranging known virus signatures into groups based on their similarities. Each group can be argued to 
come from a particular virus family which consisting of related virus signatures. Virus signatures in a family are 
randomly combined to produce a derived virus signature for that family. This becomes the first derived virus 
signature and is then added to the family. Thereafter, another randomization is conducted taking into consider-
ations both the existing signatures and the newly generated derivative. The result is a second derivative signa-
ture. This process is repeated three times to generate three new derivatives. Using the mutating engine, this 
process is repeated across all the groups of virus signature families. From the  existing virus signatures taken 
from nlnetlabs website, the mutating engine was able to generate new virus derivatives of three generations 
grouped into a number families. The aim here is to simulate a derive virus signature using the existing virus 
signatures and train the system to be able to identify it later. This is necessary since this research aims to train a 
neural network to be able to detect derived viruses based on the existing viruses. 

3.2 Conversion of the virus signatures 

The second block of the model converts the virus signatures obtained in stage 1 from their string to decimal 
forms. This is necessary because most neural networks are designed to accept numbers as input (Heaton ,2011). 
It is also possible to represent the signatures in other numerical formats like binary and ASCII. However, this 
might introduce more complexity. For example, binary representation of each virus signature might generate a 
lot of 0’s and 1’s which might not be easy to manage. For example, the first four characters of the signature 
“b840008ed8a11300b106d3e02d00088e” gives “0110001000111000 0011010000110000” in binary. Further-
more, ASCII representation might not be necessary since the signatures do not contain special characters. This 
is another limitation of this work. It does not consider virus signatures that have special characters. However, 
our future work will incorporate special characters of virus signatures. 

3.3 Normalization 

The output from the block above is the signatures written in a decimal form. This is normalized to improve the 
efficiency of the model. For this experiment, all training data inputs are normalized between -1 and 1 using the 
formula below. This is because a hyperbolic tangent activation function is used to scale the output. 
 

 

 
The above equation normalizes a value x, where the variable dH represents the high value of the data, variable 
dL represents the low value of the data and the variable n represents the high and low normalization range 
desired i.e. -1 and 1. 
 
The training data targeted output, i.e. the classes (existing and derived) are encoded also. “1, 0” denotes an 
existing signature and “0, 1” denotes a derived virus signature. 
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3.4 Neural network training 

For this study, the authors train and use a neural network as the virus detector. Our model uses a supervised 
multilayer feed-forward neural network. The authors chose a multilayer feed-forward neural network because 
it can learn a mapping of any complexity. The network learning is based on repeated presentation of training 
samples with each input matched to its corresponding output. Multilayer perceptrons are feed-forward net-
works with one or more nodes between the input and output layer. Figure 2 shows a multilayer feed-forward 
neural network. 
 
The first layer is the input layer which accepts data (x1, x2…xn) into the neural network and it is linked directly 
to the hidden layer. The hidden layer lies between the input layer and the output layer. The output layer is the 
last layer. This layer gives the neural network predicted output to the external party where it is needed for 
further processes or decision. Each node in the input layer has value for every input (x1, x2…xn). The neural 
network initially assigns weights (w11, w21…w4n) to each connection. Each input is multiplied by its correspond-
ing weight and the result of each connection is summed together and passed to the hidden layer nodes (h1, h2, 
h3…hn). A hyperbolic tangent activation (∫) function is used to scale the result and the final value becomes the 
value for the node the connections entered. This calculation is also performed on the nodes in the hidden layer 
using the values that entered the hidden layer nodes and the assigned weights (w211…w2m4) and result is sent 
to the output layer (y1, ym). The neural network checks its predicted output against the desired output; error is 
calculated by subtracting the desired output from the predicted output. The weights are adjusted based on the 
error and the iteration continues until the error becomes very small. 

 

Figure 2: A multilayer neural network (Zainal-Mokhtar & Mohamad-Saleh, 2013)  

3.5 Neural network testing 

The performance of neural networks is determined by their generalization ability. A generalization is the prop-
erty of trained neural networks to classify an input correctly even if it is not a member of the training set. This is 
what block four of this model does. New samples that are not part of the training dataset are given to the net-
work for classification. A correct classification of the hidden samples means such a network has learned. Incor-
rect classification means otherwise. 
 
Finally, the trained neural network is used as a detector within a computer system to detect both existing and 
derived viruses. 

4. Experimental results 
After training the neural network, the trained neural network code is converted to a class and deployed as a 
library (.dll). This library is used in a C# code for the implementation of this model. The mutating part of this 
model generated new derived virus signatures up to three generations. These are used for testing the model. 
The signatures are presented to the model and some of the results are shown in the table below. 
 
Table 1 shows some of the result of the experiment conducted with the model. The first result (0,0454 and 
0,9756) for the first generation has its second value greater than the first. This means the model categorized the 
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input signature as a derived virus signature since we decoded derived virus signatures as “0, 1” during the train-
ing. Furthermore, the second result (0,8673 and 0,1376) has its first value greater than the second. This means 
the model categorized the input signature as an existing virus signature since we decoded existing virus signa-
tures as “1, 0” during the training. The other results for the second and third generations are interpreted same 
way.   

Table 1: Some results of the model on newly derived virus signatures 

First generation Second generation Third generation 
0,0454 0,9756 Derived 0,1007 0,9144 Derived 0,4794 0,6531   Derived 
0,8673 0,1376 Existing 0,0327 0,9748 Derived 0,6708 0,5171   Existing 
0,0053 0,9936 Derived 0,2285 0,7798 Derived 0,9293 0,142   Existing 
0,8727 0,1574 Existing 0,3077 0,6984 Derived 0,4246 0,4912   Derived 
0,0053 0,9922 Derived 0,0324 0,973 Derived 0,4206 0,6591   Derived 
0,7363 0,5559 Existing 0,9402 0,1404 Existing 0,6369 0,5265   Existing 
0,5687 0,6287 Derived 0,7385 0,4545 Existing 0,6299 0,509   Existing 
0,0867 0,8473 Derived 0,5812 0,3784 Existing 0,5481 0,4281   Existing 

The three generations consist of the same number of virus signatures. In the first generation, the model was 
able to classify 90.5% signatures successfully as derived virus signatures and 9.5% signatures were incorrectly 
classified as existing virus signatures. Furthermore, in the second generation, 82.9% signatures were successfully 
classified as derived virus signatures and 17.1% signatures were incorrectly classified as existing virus signatures. 
Lastly, in the third generation, the model successfully classified 65.3% signatures as derived virus signatures and 
34.7% signatures were incorrectly classified as existing virus signatures. The figure below shows the graphical 
representation of the results. 

 

Figure 3: Graphical representation of experiment result 

The first generation showed the highest number of derived virus detection rate than the other two generations. 
The second generation also showed a higher detection rate than the third generation which has the least detec-
tion rate. Based on this, a conclusion can be drawn that the correlation between the actual virus signature and 
its derivatives decreases further down along the generations. This means that after many generations of a virus 
changing forms, its variants will no longer look like the original. The variants will look like a completely new virus 
even though the variants and the original virus will always have same behavior and operation with similar ef-
fects. The next section concludes the paper and provides recommendations for future work. 

5. Conclusion 
This paper presents a novel model for detecting derived virus. The ability of our model to accurately classify 
derived virus signatures means that it can be used as virus detector in a computer system. The model has proven 
to work better than many solutions that are based on signature scanning. This is mainly because the model does 
not depend solely on a set of pre-defined virus signature; it also postulate what future signatures might look like 
and makes an attempt to detect them. Furthermore, the model is able to classify viruses used for the training 
and also their new variants that were not used during the training. Currently, the proposed model has an average 
success rate of:  
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80.2% on detecting existing signatures,  

85.2% on signatures used for training and  

80% on the average for derived virus signatures.  

In terms of the derived virus signatures; this includes success rate of 91% on first generation, 83% on second 
generation and 65% on third generation. Of note in these results is that the accuracy of detecting derived viruses 
decreases linearly as the number of generations increase. For example, the success rate would have been even 
lower on the fourth generation than it is on the third. This is to be expected because as we continue to add more 
generations to the training set; the difference between the original and the derivative virus signature gets even 
bigger. Furthermore, this explains the difficulty in current anti-virus systems to detect new viruses. Although, 
the result seems to have a lesser accuracy in percentile as compared to some existing solutions; it is important 
to note that the proposed model was able to detect derived viruses which cannot be detected by existing sys-
tems.  
 
Our future work will try and improve the accuracy of the model. Furthermore, future work will experiment with 
variable virus signature sizes and those that contain special characters. Finally, the model is to be trained en-
crypted virus signatures for robustness. 
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