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Time delay estimation in signal processing applications: an overview  
 

Aidan O’Dwyer, School of Control Systems and Electrical Engineering, D.I.T. Kevin St., Dublin 8. 

Phone: 00-353-1-4024875, Fax: 00-353-1-4024992, E-mail: aidan.odwyer@dit.ie 

 

Abstract: An extensive though scattered literature exists on the estimation of time delays in signal processing 

applications. However, it is possible to identify themes that are common to many of the available techniques. The 

intention of this paper is to provide a framework against which the literature may be viewed. In addition, original 

work on gradient based time delay estimation is described.  

 

Keywords: Time delay, estimation, gradient algorithms. 

 

1. Introduction 

 

 A time delay may be defined as the time interval between the start of an event at one point in a system and 

its resulting action at another point in the system. Delays, also known as transport lags, dead times or time lags, 

arise in physical, chemical, biological and economic systems, and in the process of measurement and computation. 

Delays also arise in signal processing, where a time delay is also known as a time difference of arrival between two 

signals; such a measurement arises in underwater tracking applications, biomedicine, geophysics, astronomy, 

acoustics, seismology and telecommunications. Quite often in these applications, the time delay is estimated in the 

absence of other process parameters. 

 Section 2 of this paper will briefly survey delay estimation methods, focusing on those that have appeared 

in leading signal processing theory and applications journals. Some analytical and simulation work on a gradient 

based delay estimation method is described in Section 3. Conclusions and references are subsequently provided.  

 

2. Delay estimation methods 

 

Gradient methods of time delay estimation are based on updating the delay by a vector that depends on 

information about the cost function to be minimised. The gradient algorithms normally involve expanding the cost 

function as a second order Taylor's expansion around the estimated delay. The choice of gradient algorithm for an 

application depends on the desired speed of tracking and the computational resources available. It is important that 

the error surface in the direction of the delay should be unimodal if a gradient algorithm is to be used successfully. 

However, the error surface is often multimodal. In these circumstances, strategies for locating global minima may 

involve multiple optimisation runs, each initiated at a different starting point with the starting points selected by 

sampling from a uniform distribution [1]. The global minimum is then the local minimum with the lowest cost 

function value among all the local minima identified. Gradient algorithms based on the Gauss-Newton, steepest 

descent and least mean squares (LMS) method have been defined [2-35].  

Alternatively, the cross-correlation of two signals may be used to estimate the time delay between the two 

signals, as the time at which the cross-correlation term is maximised corresponds to the time delay estimate. Most 

cross-correlation methods, and variations of the method, are off-line in nature [23, 36-74], though some approaches 

have on-line potential [75]. Other authors use the technique to estimate time delays in MIMO environments or 

between multiple sensors and multiple targets [76-81]. Other authors also use power spectral density techniques to 

calculate the time delay [82-84]. The time delay may also be determined from a higher order spectral approach [85], 

though the use of these techniques are suited to a restrictive range of problems, in which noise signals on the input 

and output to the process cannot be effectively dealt with by pre-processing. 

 Finally, other off-line delay estimation algorithms have been defined; one example is discussed by Kenefic 

[86], in which the time delay between two sensors may be found by determining the maximum of the probability 

density function of the delay from a given prior distribution. Other off-line time delay estimation algorithms are also 

discussed [87-121]. On-line implementation of non-cross correlation based algorithms has also received attention 

[122-131]; Blackowiak and Rajan [128], for example, investigate the performance of a simulated annealing 

algorithm in the estimation of the amplitude scaling factors and the time delays of the separate arrivals in a signal 

composed of closely spaced arrivals with added noise. The method is particularly interesting as the cost function to 

be minimised has local minima that make the application of calculus based minimisation techniques (such as the 

gradient algorithms) difficult; the simulated annealing algorithm has the ability to slide through local minima.  

 

3. Open loop gradient method for delay estimation 

 

This paper will consider further the strategy proposed by Durbin [5], in which the process delay variation 

from the model delay is approximated by a rational polynomial, and a Gauss-Newton gradient descent algorithm is 

used to estimate the delayed model parameters. A previous paper (O’Dwyer and Ringwood [132]) has shown that 

the first order Taylor’s series polynomial is the most appropriate choice of rational polynomial; this paper has also 
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provided a proof of the convergence of the non-delay model parameters to the non-delay process parameters, when 

the process and model delays are equal, in the presence of uncorrelated noise. This proof is labelled Theorem 0 

[133]. An outline proof of the convergence of the delay estimate will be provided in this paper; the full proof of the 

theorem (labelled Theorem 1), and associated simulation work, is available [134].   

 

3.1 The delay as an integer multiple of the sample period 

 

Theorem 1: For a first order discrete stable system of known non-delay parameters, the mean of the product of the 

errors (MPE) performance surface versus model delay index is unimodal, with a minimum value of the MPE 

occurring when the model delay index equals the process delay index, under the conditions indicated below. The 

delay index is the delay divided by the sample time. 

(a)  The delay variation is approximated by a first order Taylor’s series approximation. 

(b)  The noise is uncorrelated with the process input.  

(c)  The resolution on the process delay is assumed to be equal to one sample period.  

(d)  The error is calculated based on using a first order process model; the partial derivative of the error with 

respect to the delay variation is calculated based on using the first order Taylor’s series approximation for the 

delay variation.  

(e) The process delay index is greater than the model delay index, as the model delay index converges.  

(f)  The input signal to the process and the model allows the fulfilment of the necessary conditions for unimodality 

provided in the theorem. 

Proof: The process difference equation, )n(y2 , based on using a first order process model, is ([134]): 

)n(w)1g)u(ne1K()1(nye(n)y p

TT

2

TT

2
ss +−−−+−= −−

  (3.1.1) 

with process time delay, spp Tg=τ , sT  = sample period, =pg  process delay index, u(n) = input and w(n) = noise. 

The model difference equation, assuming that the previous process output is used in its calculation and mg  = model 

delay index, is  

 )1gn(u)e1(K)1n(ye)n(y m

TT

2

TT

3m
ss −−−+−= −−

   (3.1.2) 

Therefore, from equations (3.1.1) and (3.1.2),  

)n(y)n(y)n(e 3m23 −=  = )n(w)]1gn(u)1gn(u)[e1(K mp

TTs +−−−−−− −
    (3.1.3) 

The partial derivative of the error with respect to the delay variation may then be calculated by using a first order 

Taylor’s series approximation for the delay variation. The corresponding model difference equation, assuming the 

previous process output is used in its calculation, is ([134]) 

)gn(u
T

T)gg(K
)1n(ye)n(y m

smp

2

TT

2m
s −

−
−−= −

)1gn(u)
T

T)gg(
1e(K m

smpTTs −−
−

−−− −       (3.1.4) 

Therefore, from equations (3.1.1) and (3.1.4),  

)n(y)n(y)n(e 2m22 −=  = 

)gn(u
T

T)gg(K
)1gn(u)e1(K m

smp

p

TTs −
−

+−−− −
)n(w)]1gn(u)

T

T)gg(
1e(K m

smpTTs +−−
−

−−+ −    (3.1.5) 

The corresponding partial derivative is 

[ ])1gn(u)gn(u
T

KT

)gg(

)n(e
mm

s

mp

2 −−−−=
−∂

∂
     (3.1.6) 

The update vector for updating the model delay, which depends on the product of )n(e3  and )gg()n(e mp2 −∂∂ , 

is then independent of pg . The cost function that corresponds to this update vector is the MPE function; this 

function is defined as )]n(e)n(e[E 32  in this case. The MPE performance surface, )]n(e)n(e[E 32 , may then be 

calculated to be ([134]):  

)]gg(r)0(r[)e1(K2 mpuuuu

2TT2 s −−− −
+ )]1gg(r)1(r)0(r[

T

T)gg(
)e1(K mpuuuuuu

smpTT2 s +−+−
−

− −

)0(r)]gg(r[
T

T)gg(
)e1(K wwmpuu

smpTT2 s +−
−

−− −
  (3.1.7), 

)n(ruu  and )n(rww  being the autocorrelation functions of )n(u  and )n(w  respectively. Therefore,  

=)]n(e)n(e[E 32 )0(rww  for pm gg = .  

It may be shown by comparing the sizes of the individual terms in equation (3.1.7) that 

>)]n(e)n(e[E 32 )0(rww  for mp gg >  only ([134]). Thus, the minimum value of )]n(e)n(e[E 32  occurs at pm gg =  

(when mg  is restricted to be less than or equal to pg ) and the noise has no effect on the estimated process delay 

value. If mp gg > , then, from equation (3.1.7), the only situation that arises for which =)]n(e)n(e[E 32 )0(rww  for 
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pm gg ≠  is when the input has a flat autocorrelation function, which corresponds to a constant level input. Thus, 

any input change is sufficient for correct process delay index estimation, provided that the required condition on 

mg  is fulfilled, if the delay index is estimated by determining the minimum of the MPE performance surface. 

 However, if a gradient method is used to estimate pg , then an additional restriction that the MPE function 

must be unimodal for mp gg > , with a minimum MPE value occurring at pm gg = , is imposed. The unimodality of 

the MPE function for mp gg >  may be proved by induction; an outline of the inductive proof (provided in full in 

[134]) is as follows:  

It may be proved that the MPE function at 1gg pm −=  is greater than the MPE function at pm gg =  (using 

equation (3.1.7)), provided that 








 −
+− −

T

T)gg(
)e1(2

smpTTs  )]gg(r)0(r[ mpuuuu −− >
T

T)gg( smp − )]1gg(r)1(r[ mpuuuu +−−    (3.1.8) 

It may also be proved that the MPE function at 1ngg pm −−=  is greater than the MPE function at ngg pm −= , 

provided that  

)]1(r)0(r[
T

T
)]1gg(r)gg(r)[e1(2 uuuu

s

mpuumpuu

TTs −++−−−− −  

0)]2gg(r)1gg()1gg(r)1g2g2()gg(r)gg[(
T

T
mpuumpmpuumpmpuump

s >+−+−++−+−−−−+      (3.1.9) 

Both of the conditions in equations (3.1.8) and (3.1.9) are fulfilled by many excitation signals e.g. a white noise 

signal or a square wave signal ([134]).                                                          

 

The behaviour of the MPE function (equation (3.1.7)) versus model delay index is confirmed by Figures 1 

and 2, in representative simulation results. For these simulations, 0.2K = , 7.0T = seconds and 30g p = . The 

normalised MPE (= )0(r/MPE uu ) is plotted versus model delay index; )0(rww  = 0. The plots show that the MPE 

surface is greater than )0(rww  for mp gg >  only, and that when the conditions in equations (3.1.8) and (3.1.9) are 

fulfilled, the MPE function is unimodal for mp gg > , with a minimum MPE value occurring at pm gg = . 

A representative simulation result corresponding to Theorem 1 is given in Figures 3 and 4. The starting 

values of the process and model delay index were both equalised; a step change was then made to the process delay 

index. The parameters K and T were put equal to 2.0 and 0.7 seconds, respectively (as above). The Levenberg-

Marquardt gradient algorithm [135] was used to update the model delay index; the sample time is 0.1 seconds. 

Coloured noise, generated by low-pass filtering a white noise signal, was added. The model delay index was limited 

in variation to one sample period per iteration; such filtering was found to be desirable in simulation. Good 

convergence to the process delay index is seen for mp gg > . Other supplementary simulation results show no 

convergence to the process delay index when mp gg < . This verifies Theorem 1. The error, )n(e3 , in Figures 3b 

and 4b is non-zero due to the presence of the coloured noise. 

 

Figure 1: Normalised MPE vs. time delay  Figure 2: Normalised MPE vs. time delay  

index mg  - white noise input                       index, mg  - square wave input 

 
 

Figure 3a: Time Delay Index Estimate-  Figure 4a: Time Delay Index Estimate- 

white noise excitation           square wave excitation 

Model time delay index Model time delay index 
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Figure 3b: Process minus Model output          Figure 4b: Process minus Model output 

 

3.2 The delay as a real multiple of the sample period 

 

Theorem 1 dealt with the estimation of delays that are integer multiples of the sample period. For the 

estimation of delays that are real multiples of the sample period, the process difference equation is ([134]): 

)gn(u)e1(K)1n(ye)n(y p

TTg

3

TT

3
sbs −−+−= −

)n(w)1gn(u)ee(K p

TTTTg ssb +−−−+ −   (3.2.1) 

with bg  = process delay minus the process delay index. The corresponding model difference equation (assuming 

the previous process output is used in its calculation) is 

)gn(u)e1(K)1n(ye)n(y m

TTg

3

TT

4m
sas −−+−= −

)1gn(u)ee(K m

TTTTg ssa −−−+ −
  (3.2.2) 

with ag  = model delay minus model delay index. The model difference equation for calculating the partial 

derivative of the error with respect to the delay variation (and assuming that the previous process output is used in 

its calculation) is ([134] ): 

)1n(ye)n(y 3

TT

5m
s −= −

)gn(u
T

T)gggg(K
m

sabmp −
−+−

− )1gn(u]
T

T)gggg(
1e[K m

sabmpTTs −−
−+−

−−− −
 

The MPE performance surface, )]n(e)n(e[E 54 , may be obtained in a similar manner to the development outlined in 

equations (3.1.5) to (3.1.7), with )n(y)n(y)n(e 4m34 −=  and )n(y)n(y)n(e 5m35 −= . It may be shown that 

)]n(e)n(e[E 54  = )0(rww  if mp gg =  and ab gg = ([134]). Simulation results show that the MPE function versus 

model delay is multimodal when the delay is a real multiple of the sample period ([134]). The estimation of the real 

value of the process time delay, using the approach, is impossible using gradient methods. 

 

4. Conclusions 

  

 This paper has surveyed a wide variety of methods for time delay estimation in signal processing 

applications. It is the hope of the author that the paper will provide a convenient reference for application work. The 

conclusions of the paper are that new design techniques have been accumulating, each claiming that it is the best 

suited for the application. In general, there is a lack of comparative analysis with other design techniques; 

associated with this is the lack of benchmark examples for testing the different methods. The main priority for 

future research should be a critical analysis of available design methods.  
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