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The Identification and Control of Processes with Time Delays

Dr S. Carr and Dr A. O'Dwyer

School of Control Systems and Electrical Engineering,
Dublin Institute of Technology,
Kevin Street, Dublin 8.

Abstract

The identification of the frequency response and process model parameters of systems with
time delay using frequency domain techniques is evaluated in this paper. The performance of
both Fourier Transform and Power Spectral Density techniques is considered. The benefits of
employing modern model based design and delay compensation techniques, based on the
identified process data, are assessed

Keywords: Frequency Domain Identification, Time Delay Systems, Optimal Control

1. Introduction

In recent years there has been much interest in the identification and control of systems with
time delays. Although traditional self-tuning control schemes employ time domain techniques
for process estimation, the use of frequency domain identification techniques has distinct
advantages for time delay systems. The process time delay can readily be extracted from the
process phase data and the non-delay process parameters computed. This paper compares the
use of Fourier Transform and Power Spectral Density estimation methods in identifying the
model parameters for a time ‘delay process. Comparative results are presented to assess the
performance of modern model based control methods with respect to those based on
conventional controller tuning techniques.

The frequency domain identification techniques under consideration are presented in Section 2
of the paper. Section 3 discusses the analytical calculation of the parameters of a First Order
Lag Plus Delay (FOLPD) model using the identified frequency response data. Techniques for
model based delay compensation are also discussed. The classical and modern control laws

considered are given in Section 4 and simulation results are presented in Section S. The main
conclusions are summarised in Section 6.

2. Process Identification using Frequency Domain Techniques
2.1 Discrete Time Fourier Transform

The process frequency response, G(jo), can be identified recursively from the process
input/output data (u(t )/y(t)), using the Discrete Time Fourier Transform (DTFT), as:

6Gi0)= "0 sy - )
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where: F(jo)= Ti F(kTye /=
k=0

2.2 Power Spectral Density

As an alternative to the DTFT approach to frequency domain identification, spectral analysis
methods may be used. In the open-loop case the process frequency response is obtained as:

S0 o @
where: S, = J‘R,y(f)e_’md'r (3)
S, = [B(De " dr ()
) e
with: R,.(9)=lim—— L y(Ou(t + 7)dt (5)
o
R,(7)= lim— Lu(r)u(r +7)dt (6)

3. Analytical Estimation of the Process Parameters and Delay
Compensation

3.1 Process Parameters
Assuming a First Order Lag Plus Delay process model defined as:

= K
G i G_ st = =-st 7
(5)=Gpe Terl® ™

The model parameters can be estimated from the identified frequency response data as follows:
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Calculation of the parameters of an arbitrary order model is discussed in O'Dwyer 1996. To
minimise the sensitivity of the process parameters estimates with respect to changes in the
frequency domain data:



i, Select the lowest practicable frequency for o; and the highest practicable frequency for @;.
The frequencies ©; and ; should be at least a decade apart.

ii. Calculate T, from a magnitude in the range 0.25K<magnitude<0.75K.

{ii. Calculate 7 using data corresponding to the magnitude of the response <0.5K.

3.2 Delay Compensation

Two methods are considered:

i) Smith Prediction

A Smith predictor structure takes the form shown in Figure 1 whereby the time delay is

effectively removed from the control loop such that the design techniques described in section 4
are applied to the delay free process dynamics for design of the controller, C.

y
—

N3

Figure 1: Smith Predictor Compensator
ii) Padé Approximation

The phase effect of a time delay on the process response can be approximated by an allpass
network with a phase lag proportional to frequency (Marshaill 1979). This delay approximation
can be incorporated in the design of model based controller design methods such as the Linear
Quadratic Gaussian method which is discussed in Section 4. The Padé approximants considered
in this paper are summarised in Table 1.

First Order Second Order Third Order
1-sT2 1-sT/2 + (sTV/12 1-sT/2 + (sTY/10 - (sT)*/120
1+sT/2 1+5sT/2 + (sT)/12 1+ sT/2 + (sTY/10 +(sT)*/120

Table 1: Padé Approximants for €

4. Controller Design

Two approaches to controller design are taken. The first directly uses the identified frequency
response information to design a PID controller according to classical tuning rules. The second
approach takes advantage of the availability of the process model parameters in the
minimisation of an optimisation criterion (Linear Quadratic Gaussian). This latter approach has
advantages for on-line controller updating in a self-tuning scenario.
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4.1 PID Controller Design using Tuning Conventional Rules

The ultimate frequency can be found by iteration with respect to the evaluation frequency of the
Fourier transform (Ringwood and O'Dwyer 1994) according to the equation:
@ =w _5M(ﬂ-+¢i) 11)

it
& ¢ ¢i _¢f—1

with 0<8<1(3 is considered as an uncertainty factor). This approach uses a straight line fit
between two data points to extrapolate to the ultimate frequency. Classical ultimate cycle
tuning rules such as Zeigler-Nichols can then be employed for controller design without the
need for model parameter calculation.

4.2 LQG Controller Design

The non-delay portion of the plant is described by the polynomial transfer function in s, G(s) =
B(s)/A(s). The low frequency process noise/ disturbance dynamics are assumed to be generated
by a white Gaussian noise source coloured by the filter C(s)/A(s). The LQG cost function to be
minimised is:

J= [{oo, + ko, }ds (12)

where @, (s) is the power spectral density of a random function x(s). ®.. and P, denote the
error and control spectral densities respectively and the cost function weightings Q(s), R(s) are
the polynomial transfer functions:

Q(s) = (B*4(8)B4(5))/(A*($)Aq(s)) (13)
R(s) = (B*(s)B())/(A*(3)A«(s)) (14)

where the adjoint operator (*) in the Laplace domain is defined by: x*(s) = x(-s). The cost
function weighting polynomials are designed to encapsulate the inevitable trade off between the
output tracking error and control effort. The LQG controller which minimises the cost function
(Grimble 1985) is:

Co=GA/HA, (15)
where the spectral factor D, is the solution to:

D* D, = (BABy)*BAB, + (AB,A,)*AB.A, (16)

and the polynomials G,H and F are the minimal degree solutions with respect to F of the
coupled Diophantine equations:

D* G +FAA, = (BAB,)*B,C* (17
D*H - FBA, = (AB,A,)*B,C* (18)

5. Results

5.1 Simulation Model

A number of simulations were performed covering a range of process dynamics and time
delays. A common rule of thumb is that PID controllers are suitable for control of a FOLPD
process if 0.1 < © /T, £ 1.0 (O'Dwyer 19964). Hence illustrative results are considered in this
paper for a FOLPD process with dynamics given by Gp(s) = 2 /(1 +s) for the two cases:



Case 1: 7=0.5 seconds (small delay)
Case2: t=3 seconds (large delay)

5.2 Identification

Extensive identification tests were performed for both the Fourier Transform (FT) and Power
Spectral Density (PSD) identification methods. Tests were carried out with and without noise,
which was simulated using a random number generator (numbers from zero to one) multiplied
by a scale factor and added to the process input signal. A comparison of the per cent magnitude
estimation error and absolute phase estimation error for both the FT and PSD methods is shown
in Figure 3 with a) no process noise and b) high process noise (scale factor 2). While it is more
computationally intensive, simulation results consistently reveal the superiority of the PSD
approach over the FT method with respect to insensitivity to even very high levels of noise.
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Figure 2: Frequency Domain Identification of G =2.¢*%/(1 +s)

Table 2 below summarises the model parameter estimates obtained (using the analytical
estimation described in section two) for various levels of process noise (indicated by the noise
scale factor used in the simulation). The results highlight the robustness of the PSD method
with respect to process noise.

noise scale factor FFT Identification PSD Identification
K T, T v T, T
0.1 1.9949 | 0.9952 | 0.5002 1.9998 | 0.9972 | 0.5005
0.2 1.9938 | 0.9943 0.5003 1.9998 | 0.9972 | 0.5005
0.5 1.9909 | 0.9939 | 0.5003 1.9998 | 0.9972 | 0.5005
1 1.9897 | 0.9939 | 0.5002 1.9998 | 0.9972 | 0.5005
2 1.9883 09960 | 0.5 1.9998 | 0.9972 | 0.5005
5 1.9620 | 0.9882 | 0.5005 1.9998 | 0.9972 | 0.5005
10 1.9686 1.0229 | 0.5008 1.9998 | 0.9972 | 0.5005

Table 2: Parameter Estimation Results
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5.3 Control Results
Case 1: 0.5 second delay

Since the identification tests show the PSD estimation to be more robust in the presence of
noise, the process model identified using this approach (Table 2) is used as the basis for
controller and delay compensator design throughout this section. Hence, for the LQG design
method presented in section 4:

A(s) = 0.9972s+1 B(s)=1.9998
The error and control weighting functions were selected as:
Ays)=s By(s) =1 Afs)=1 B{s)=1.5

The above choice of error weight introduces integral action for steady state offset removal
(since the polynomial Aq(s) appears in the controller denominator). The control weighting
function determines the relative importance which is placed on the penalisation of the control
signal by the cost function. Simulation results are presented in Figure 3. Figure 3a compares
the output regulation properties of a Zeigler Nichols tuned PID controller with that of an LQG
controller designed with design parameters as listed above (see Table 3). As expected, in the
case of a relatively small delay, the PID controller does stabilise the system, although the best
response obtainable is rather oscillatory. The LQG controller (in this case designed without
knowledge of the delay) provides a superior response from the points of view of reduction in
oscillation and overshoot with no increase in controller order. Ease of controller design and
redesign was also found to be an advantage of the LQG controller, a faster response is obtained
simply by decreasing the value of the control weight (and vice versa).

PID Controller LQG Controller

132 [ 1+ 1/s +0.25s] s+ 1.0028
1.55" +2.8773s

Table 3: Controller design

The effect of including a Padé approximation of the process delay in the LQG Controller design
is investigated in Figures 3b and 3c.This is achieved by multiplying the polynomials A(s) and
B(s) by the denominator and numerator polynomials respectively of the relevant order Padé
approximation in Table 4 below. Figure 3b shows a significant improvement in regulator
performance with respect to the conventional PID design by including a first order Padé
approximation in the design. An increase in regulator performance with Padé order is
demonstrated in Figure 3¢, with corresponding increase in LQG controller order.

Order Padé Approximation (0.5 second Delay) LQG Controller
First -0.24255+0.9701 0.24255%+1.21s+0.973
0.24255+0.9701 0.3645>+2.153s"+3.764s
Second 0.02025%-0.24255+0.9699 0.02025>+0.2627s+1.2135+0.9727
0.02025+0.24255+0.9699 0.0303s*+0.4225°+2.155*+3.763s
Third -107%6%+0.02425%-0.24255+0.9699 1075*+0.0255°+0.267s+1.25+0.973
107s%+0.02425>+0.24255+0.9699 107°57+0.0395"+0.4375°+2.1528™+3.76s

Table 4: Padé approximation of 0.5 second delay and LQG Design
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Figure 3: Output Regulation for Process with 0.5 Second Delay

The incorporation of a Smith Predictor structure in the feedback loop resulted in improved
closed loop performance for both the PID and LQG design cases as demonstrated by Figure 3d.

Case 2: 3 second delay

For this relatively large delay, both the PID (Zeigler-Nichols tuned) and LQG controller with no
delay compensation proved unable to stabilise the closed-loop system. The results for the Smith
Predictor compensated loop are similar to those obtained in Figure 3d above. Hence only the

results for the Padé approximation method in conjunction with LQG design are presented

lations show that this approach is effective for the control of even

(Figure 4). A range of simul
trated in Figure 4,

very high delay systems. As in the low delay case (Figure 3c) and as demons
the output regulation performance is improved with increasing Padé order.

6. Conclusions
systems based on the

This paper has discussed approaches to the regulation of time delay
application of frequency domain identification methods and optimal control. The main results

obtained reveal:
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Figure 4: LQG Control for Process with 3 Second Delay (with padé approximations)

. Both identification techniques are capable of providing accurate model parameter estimates

(Figure 2). However, the PSD identification has distinct advantages were there is a high
level of process noise, as may be expected in an industrial control environment.

. Simulation results indicate benefits of the LQG approach over the PID method both in terms

of ease and speed of design and closed-loop performance (Figures 3 and 4). PID performs
adequately for low delay although output regulation is rather oscillatory. Improved
performance can be obtained using the LQG approach which allows the control activity to
be limited in the design to remove oscillations (which can be a feature of time delay
systems). Subsequent improvement in LQG performance is reported by including a Pade
approximation of the estimated process delay in the design.

. The use of a smith predictor structure was also investigated and good regulation was

achieved due to the high accuracy of the process identification employed.

For higher delay systems, the PID approach was not capable of stabilising the system while
the LQG controller can provide good regulation properties if a pade approximation of the
delay is included in the controller optimisation.
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