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Abstract — In this paper we explore the link between information and entropy by
considering the infamous Maxwell demon thought experiment. A non-rigorous math-
ematical solution by Leó Szilárd established this link for the first time, as did Claude
Shannon nineteen years later. In 1961, Rolf Landauer’s mathematical solution resulted
in the Landauer limit, which is still being hotly debated, but here we discuss the implica-
tion of this limit on Moore’s law and future growth in computing power. A workaround
the limit is proposed using an Analogue Artificial Neural Network (AANN). Here, we
mimic the action of a human brain synapse formed from memristance connected be-
tween two Fitzhugh-Nagumo (FN) neuron models. All designs were simulated in Orcad
PSpice c© version 16.5, but a master-slave synapse was built, tested and outputs com-
pared to simulation results. The synapse was also connected in a star-type network
which displayed chaotic-type behaviour for certain parameter values.

Keywords — Entropy, information, Maxwell’s demon, Landauer limit, Moore’s law, mem-
ristance, analogue artificial neural networks, synapse, Orcad PSpice, Fitzhugh-Nagumo
model.

I Introduction

If future computer development is to follow
Moore’s law, alternatives to the von Neumann
computer architecture have to be explored. Neu-
romorphic computing is a relatively new discipline
using an AANN to mimic human brain neuronal
plasticity. In this paper, an artificial synapse us-
ing memristance connected between two electronic
neurons, is presented. We concentrate on physical
circuits, rather than computer modelling, which
brings with it advantages because the system vari-
ables are not limited by finite states. Also, circuits
present a greater range of interesting behaviours
not observed in computer models.

Before we examine neuronal plasticity we must
look at the link between entropy and information
to justify our proposal in the first instance. En-
tropy was the name of energy in a system which
cannot do useful work. Ludwig Boltzmann said

it always increases in any closed system, and en-
graved on his headstone was S = kB lnW , formu-
lated by the physicist, Willard Gibb. Here, kB
= 1.38065156x10−23 Joules/K (value was deter-
mined accurately in 2013), is Boltzmann’s constant
calculated by Max Planck. This is multiplied by
the natural log of W, where W is an number of
equiprobable micro states with the same dimen-
sion as entropy.

Figure 1 shows Maxwell’s Demon introduced in
1871 by James Clerk Maxwell. The demon ob-
served and separated, high and low energy gas
particles into two compartments by opening and
closing the gate at opportune times. However, the
velocity and temperature of the particles remained
unchanged, so when the particles were recombined
after separation, it resulted in a temperature drop
[1]. This created a paradox in the second law of
thermodynamics because entropy cannot be low-



ered without energy costs.

Fig. 1: Maxwell’s Demon infamous thought experiment.

Leó Szilárd, a Hungarian electrical engineer, as-
sociated entropy with information in his doctoral
thesis (1922). A biography by Eugene P. Wigner
said Szilárd had a great influence on many scien-
tists including Albert Einstein. In Szilárds’ 1929
paper, “On the decrease of entropy in a thermo-
dynamic system by the intervention of intelligent
beings” [2], he said information was gathered each
time Maxwell’s demon opened the gate. This in-
formation had entropy that balanced the entropy
decrease-paradox solved, almost.

To find an expression for this entropy, consider
the work Q done in the thermally-isolated con-
tainer with pressure P and volume, Vf= 2Vi:

Q =

∫ Vf

Vi

PdV =

∫ Vf

Vi

kBT

V
dV = kBT ln 2 (1)

Relating this work with temperture, yields entropy
as ΔS = ΔQ/T , and integrating over the limits,
yields S = −kB ln 2.

Claude Shannon, another electrical engineer,
also linked entropy and information in his famous
1948 paper “A Mathematical Theory of Com-
munication”[3]. The mathematician, John von
Neumann, a friend of Szilárd, said to Shannon
he should use the term entropy because “no one
knows what entropy is, and in a debate you’ll al-
ways have the advantage” (Tribus and McIrvine
1971) [4]. In James Gleick’s book “The Informa-
tion” [5], he wrote that this never happened as
Shannon was unaware of Szilárd’s work! Shan-
non’s entropy for a string of length n, is:

H(x) = −
n∑

i=1

p(xi) ln p(xi) bits (2)

Where p(xi) is the probability of an event xi oc-
curring from the number of states n, each having a
probability between 0 and 1. Shannon’s entropy is
a measure of the amount of information needed to
determine precisely a system state from amongst
all possible states. The higher the entropy of a sig-
nal, the greater the amount of information it pos-
sesses and is also a measure of the unpredictabil-
ity of a signal. Andrei Kolmogorov, an outstanding
Russian mathematician and gifted teacher, in 1959

suggested a modified form of Shannon’s entropy, as
did Y.Sinai in the same year and is known as the
Kolmogorov-Sinai (KS) entropy. Shannon and KS
entropies represent the rate at which information
is created and is useful for testing whether a time
series is chaotic. KS entropy is zero for a regu-
lar series, finite for a chaotic series, but infinite
for a random signal [6]. Kolmogorov and Ray Sol-
monoff created Kolmogorov Complexity to specify
the minimum length a string of binary digits may
be compressed and is essentially the Shannon en-
tropy.

II The Landauer limit

In lectures on self-replicating machines in 1949,
John von Neumann said the minimum energy to
operate an electronic switch is zero, provided in-
formation is not lost. Similarly, in 1961, Rolf
Landauer said the minimum energy to change
a computer bit of information is the Landauer
limit, equal to EL = kBT ln 2 = 2.87098x10−21

J (T=300 K) [7]. In 1982, Charles H. Bennett
argued the missing entropy in Maxwell’s thought
experiment was not due to the information in the
demons memory, but erasing it from its memory
[8].

The energy for deleting a computer bit of in-
formation which produces heat, was measured in
2008 as Ebit = 1x10−15 J, which is a million times
above the Landauer limit. At the University of
Notre Dame, professor George Snider said an in-
tegrated circuit operating near the Landauer limit
would emit heat per square cm greater than that
from the Sun’s surface. However, the Landauer
limit ceases when information is not erased, as in
reversible computing under adiabatic conditions,
but is difficult to implement. Our solution is an
AANN which uses memristance as a scaled plastic
weight between electronic neurons.

III Memristance

Long-lasting brain memories are formed by re-
peated applications of a stimulus which strength-
ens the synaptic connection-a process called Long-
Term Potentiation (LTP) and AANN systems copy
this by modifying its weights between neurons.
Professor Leon Chua, in his 1971 paper, proposed
a fourth circuit element called memristance, which
is resistance with memory. This makes it an ideal
candidate as a AANN variable weight storing in-
formation as a non-volatile resistive state.

In 2008, Stan Williams in Hewlett-Packard, de-
veloped a memristor-type device with a modest
switching speed. The device operated in the
nanometre range with a potential to achieve pack-
ing densities similar to the human brain. In 2010,
his team developed a 3 nm by 3 nm memristor op-
erating at 1 GHz and with an electron-hole mobil-



ity of 1 m/s. This was used in a USB memory key
with a performance equalling flash memory tech-
nology.

Memristance is formed from a highly-resistive
semiconductor, titanium dioxide, which is doped
with oxygen atoms and sandwiched between 5
nm platinum plates. Heating the material re-
moves some negatively-charged oxygen atoms leav-
ing positively-charged oxygen vacancies. These
charge carriers are moved by an external bias volt-
age across the plates, but remain in place once the
bias is removed thus making it a non-volatile mem-
ory.

Memristors are not commercially available and
so we emulated it electronically. Initial investiga-
tions simulated memristance in PSpice using three
techniques: Netlists, Analogue Behavioural Model
(ABM) parts, and electronic emulators [9]. Two
memristance models were considered: (i) the lin-
ear drift model, which doesn’t take into account
the distorting effect of electric fields over short
nanometre distance, and, (ii) the non-linear drift
model, which does.

a) The linear drift model

Chua related magnetic flux linkage and charge
which causes some confusion as these devices do
not produce a magnetic flux. However, flux refers
to the time integral of the applied voltage and is a
function of the charge, ϕ = f(q), so:

v(t) =
dϕ

dt
=

dϕ

dq

dq

dt
= M(q)

dq

dt
= M(q)i(t) (3)

Hence:

i(t) =
1

M(q)
v(t) = W (q)v(t) (4)

Here W is memductance analogous to conduc-
tance. The total width of the device is D and w,
the width of the doped region. When w is zero,
the device is off with resistance Roff . However,
when the doped region expands such that w = D
= 10 nm, then the device is on with resistance Ron.
The ratio of off to on resistances is 102 to 103. The
normalized width of the doped region with respect
to the total width, D, is:

x =

{
0 ≤ (w/D) ≤ 1
0 elsewhere

(5)

The total resistance is the sum of the doped and
undoped resistive regions as:

M(t) =
w(t)

D
RON + (1− w(t)

D
)ROFF (6)

Or, in terms of x :

M(x) = ROFF − (ROFF −RON )x (7)

For the linear model, the width of the doped re-
gion, w(t) is proportional to the charge, q(t) in
the device and to the average dopant mobility,
μv ≈ 10−14m−2s−1V −1, hence:

w(t) = μv
Ron

D
q(t) (8)

The boundary layer speed between the doped and
undoped regions is constant and the rate of change
of w(t) with time is a function of the current:

dw(t)

dt
= μv

Ron

D

dq(t)

dt
= μv

Ron

D
i(t) (9)

Substituting (9) into (7) and if the on resistance
is much less than the off resistance, then:

M(q) = ROFF

{
1− Ron

β
q(t)

}
(10)

β = D2/μv, where D2 has a much greater effect in
the nano scale range.

b) The non-linear drift model

In the non-linear drift model, small voltages over
nano-scale distances, produce vary large electric
fields which produce non-linearities in the ionic
transport mechanism. This manifests itself at ei-
ther edge of the doped/undoped regions because
the speed of the boundary region gradually de-
creases to zero at each end. Non-linearity in the
Hewlett-Packard model uses a window function
f(x) = {1− (2x−1)2p}, where p is a positive inte-
ger between one and ten, as proposed by Joglekar
and Wolf (2009) [10]. Figure 2 shows windows for
p = 1,4 and 10. The inset shows a PSpice ABM1

Fig. 2: Joglekar and Wolf windows.

part for displaying the window. The time x-axis
represents the normalized width of the memristor,
x = w/D. Figure 3 displays a pinched hysteresis
loop, a bow-tie plot of voltage versus current which



is similar to the HP bow-tie plot and to that ob-
served in brain synapses. As the voltage increases
so does the current. However, as the voltage con-
tinues to increase so does the current but to a
larger amount because of a change in the memris-
tance. Interestingly, the bow-tie pattern narrows
to a line with increasing frequency of the applied
signal and the device becomes purely resistive with
no memristance. Current and voltage values are

Fig. 3: Bow-tie pattern of V versus I

zero at the origin indicating power is not dissipated
at this point. The memristance symbol in the in-
set was created and associated with a netlist model
which included a window with p = 10. Memristors
are not commercially available so it was necessary
to emulate it using the electronic design shown in
Figure 4. Here, AD633 4-quadrant multiplier parts
implement a cubic polynomial and negative resis-
tance [11,12].

Fig. 4: Linear drift memristance emulator using AD633 IC

Memristors possess resistance which relies on the
current flow history, thus a memory can be stored
by applying suitable spikes from the neuron.
The memristance value (the synaptic connection
strength), depends on the polarity, strength and

duration of the neuron pulse train. A negative
voltage increases the resistance with time, whereas
a positive voltage reduces the resistance. There
are two learning rules by which synaptic learning
occurs between two neurons: One relies on the rel-
ative timing between spikes and is called Spike-
Timing Dependent Plasticity (STDP), and the sec-
ond depends on the relative firing rate of the spikes
and is called the BCM model after its creators Bi-
enenstock, Cooper and Munro. We now consider
an electronic neuron model to generate these volt-
age impulses.

IV The Fitzhugh-Nagumo model

In the human brain, neurons and synapses act as
processor and memory, and hence there is no pro-
cessing bottleneck which results for separate pro-
cessor and memory units. Neurons communicate
using two types of coupling: an inhibiting link to
prevents a neuron from firing, and an excitatory
link that makes it fire. A short voltage pulse to a
neuron produced results similar to that observed in
biological neurons and which fires when the volt-
age amplitude exceeds a threshold.

In 1961, Richard Fitzhugh and J. Nagumo et
al, modified the Van der Pol equations to model
impulse propagation [13]. The Fitzhugh-Nagumo
(FN ) model generated voltage impulses similar to
the action potential spikes observed in real neurons
and the coupled first-order equations are:

u = −c
∫
(−u+ v + u3

3 − I(t))dt
v = − ∫

(−u+ bv − a)dt
(11)

The neuron membrane potential is u, v represents
the dynamics of the neuron current, and I (t) is the
excitation signal. We replaced the original current
excitation signal with a voltage pulse generator
with amplitude 0.268 V and period 2.025 s. The
model was simulated initially using ABM parts as
shown in Figure 5.

Fig. 5: ABM FN model

Figure 6 shows the u, v and excitation signals over
50 s. The attractor is u on the y-axis and v on



Fig. 6: The FN attractor, FFT spectrum, and excitation and u and v signals.

the x-axis, with the identity line plotted v against
itself. An unstable fixed point is observed near the
origin. An FN model oscillates periodically when a
Hopf bifurcation occurs for excitation amplitudes
greater than 0.34. After excitation, a refractory
period prevents the neuron from firing. The effect
of a range of excitability voltage amplitudes were
observed on the limit cycle. The neurons were cou-
pled in a master-slave configuration and also in a
star-type network as shown in Figure 7 [13]. Such
a network can exhibit chaotic behaviour, depend-
ing on the network parameter values. In this ar-
rangement the excitation signal was replaced by
the summation of the signals from each neuron and
weighted by a positive constant k. The equations
for N =6 are:
dui

dt = ui − u3
i − vi − k

6

∑6
j=1 uj

dvi
dt = a+ bui − cvi

(12)

Fig. 7: Star-type neural network

Figure 8 shows the implementation of the FN neu-
ronal model contained in two hierarchical blocks
coupled by the resistance, R5, the memristance. In
this master-slave configuration, the memristance
value controls the neuron dynamics of the slave
neuron and produces frequency locking and chaotic
behaviour for certain parameter values. The sig-
nals from the actual circuits were very similar to

those displayed in Figure 6.
The role of chaos in the brain is still being de-

bated, but its fast response to certain stimuli is
probably due to a chaotic element in the signal.
Walter J Freeman, a neuroscientist, has champi-
oned this belief which remains unproven, but gain-
ing ground [14,15,16]. Research indicates the brain
reacts extremely fast to situations which threaten
it and does so by operating near the edge of crit-
icality (the edge of chaos). For example, prey
to avoid being eaten by a predator, will zig-zag
chaotically, but without conscious effort. The wide
range of the FN FFT spectrum indicates signals of
a chaotic nature but this is difficult to prove, even
by applying the Lyapunov exponent and KS en-
tropy tests.

V Conclusions

Maxwell’s demon thought experiment generated
much discussion for nearly a century until Leó
Szilárd suggested the missing entropy was the in-
formation needed by the demon to keep track of
the particles. However, Landauer and Bennett
proved that the missing entropy was associated
with erasing this information and not in its acquisi-
tion. Several scientific experiments by researchers
on Maxwell’s demon have since verified that infor-
mation is involved in a solution to the missing en-
tropy [17]. Eventually, Landauer’s limit will stop
further growth in computing power using the von
Neumann architecture unless steps are taken.

Memristance connected between FN electronic
neurons might prove fruitful whenever commercial
memristors become available. This design pro-
duced interesting results that are still being in-
terpreted, but connecting these synapses in more
complex networks other than master-slave, is the
eventual goal in future research. At the time of
submitting this paper, authors Nugent and Molter
published a paper in February 2014 on Anti Heb-
bian and Hebbian (AHaH) computing using mem-



Fig. 8: FN electronic neuron: one of two neurons in a master-slave configuration.

ristance as the variable weight [18].
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