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Abstract—This paper describes the ongoing work of the 
authors in translating two-level system design techniques used in 
Health Informatics to the Earth Systems Science domain. Health 
informaticians have developed a sophisticated two-level systems 
design approach for electronic health documentation over many 
years, and with the use of archetypes, have shown how knowledge 
interoperability among heterogenous systems can be achieved. 
Translating two-level modelling techniques to a new domain is a 
complex task. A proof-of-concept archetype enabled data buoy 
eco-system is presented. The concept of operational templates-as-a-
service is proposed. Design recommendations and implementation 
experiences of re-working the proposed architecture to run on 
ultra-resource constrained data buoy platforms using templates-
as-service are described.  

Keywords—semantic; archetypes; data buoy systems; Digital 
Earth; information management; Linked Data 

I. BACKGROUND 

In 1998 US Vice President Al Gore set out his vision for 
what he termed “Digital Earth” [1]. More recently, Craglia et 
al. presented a renewed vision for a Digital Earth leading to 
2020 [2], several grand challenges were highlighted. Among 
these challenges, semantic interoperability between geo-
observational systems, have been highlighted as one of the key 
barriers to a Digital Earth.  

Data buoy systems monitoring oceanographic 
environmental phenomena are important sources of 
computable data within the Digital Earth paradigm. However, 
data buoy systems are often built in isolation, and their data 
representations and associated documentation systems, where 
they exist, are not adequately designed for secondary use and 
higher order knowledge generation. 

With the emergence of the Open Geospatial Consortium’s 
(OGC) Sensor Web Enablement (SWE) standards [3], there 
has been a burst of activity to progress interoperability within 
the Oceanic observing communities [4]. OGC’s SWE 
standards when employed, enable a syntactic level of 
interoperability between reporting systems. However, semantic 
interoperability remains a work in progress. In [5], Leadbetter 
et al. demonstrate how SWE based standards can be linked 
with ontologies in an oceanographic observational system to 
realise Born Semantic/Connected data buoy systems. While 
ontologies enhance a system’s interoperability beyond the 

syntactic level, [6] argues that more advanced frameworks are 
needed to achieve interoperability at a knowledge level.  

In-order to help realise the paradigm shift needed to realise 
a Digital Earth, the authors have previously proposed that 
techniques known as two-level modelling, developed in the 
Health Informatics domain to tackle similar problems of how 
data, information and knowledge concepts are modelled and 
managed, could applied to the Earth systems science domain 
[7]; specifically, data buoy platforms [8]. Recently, [9] also 
acknowledges the potential benefit of a two-level modelling 
approach to enabling interoperable knowledge sharing in 
oceanographic systems. To date no major program of work has 
fully translated an operational two-level information system 
outside of the health domain. Although the benefits of 
translating two-level modelling systems design techniques to 
non-health domains are potentially great, the translation effort 
is complex, and requires a significant investment in terms of 
tool development and wider adoption within the community of 
domain practitioners. In health, two-level modelling has 
evolved over a 20-year period. 

Complex domains such as health and Earth systems science 
based sub domains’ (e.g. oceanography) knowledge is 
constantly evolving. Capturing volatile domain specific 
knowledge concepts in an observational system, such as a data 
buoy and supporting information management infrastructures, 
invariably leads to a mismatch between the needs of the 
domain practitioner and the concepts represented. The core 
issue is the inflexible representation of concepts and how they 
are managed over time.  

Complex domains are typically composed of two categories 
or levels of domain concepts. Those concepts that remain 
stable over a long period of time, and those concepts that are 
prone to evolution, as the domain knowledge evolves over 
time.       

A. Two-Level Information Systems 

Information systems are typical composed of a single level 
or a singular information model. Beale [10] argues that single 
level information systems cannot support the evolution of 
domain concepts, as concepts are captured in a static data 
model. A two-level approach is proposed. In a dual-model 
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information system, non-volatile or stable concepts are still 
represented using traditional data modelling techniques and 
represented in the first level of a dual-model information 
system, this level is referred to as the reference model. Where a 
reference model exists, the challenge is then, how are the 
semantics of the reference model, or the volatile domain 
specific knowledge concepts, that have not been captured by 
the reference model, defined?  

Beale notes that knowledge level concepts are effectively 
constraints on the more general, stable domain concepts 
(captured within the reference model) [10]. In the dual-model 
approach, the knowledge-level concepts are modelled as a set 
of constraint statements. In two-level modelling, a set of 
constraint statements are referred to as an archetype. While 
reference models are typically modelled by computer 
scientists, using object-oriented techniques; archetypes are 
developed by domain practitioners, using a community 
consensus approach.  

For a system to capture, store and serve data that adheres to 
the community knowledge model, the archetype is used as the 
basis to constrain the production of the information data 
objects at run-time. The archetype describes the structure, and 
detail of instantiated records of information. At run-time, 
archetypes may be represented in memory in an archetype-
enabled kernel. Archetypes are intended to be maintained 
using a Web based management, review, validation and 
publishing library system [11]. Communities of domain experts 
access and contribute to the archetype management system, 
taking part in the review and validation process. As domain 
knowledge evolves, community derived archetypes are also 
updated. As systems constrain data instances at run-time using 
archetypes, two-level systems avoid the creeping obsolescence 
inherent with single-level systems. 

B. Semantic Data Buoy Systems 

Data buoys can be categorized into several different classes 
such as surface, sub-surface, near-shore or off-shore. The term 
buoy, typically refers to the float of a buoy system. Buoy 
systems incorporate anchoring, floats and installed 
instrumentation [12]. Here, the term buoy system is used for a 
singularly deployed physical float with anchorage and 
instrumentation, that is both near-shore and of the type surface, 
with additional sub surface instrumentation.  

Data buoy systems are typically technologically constrained 
systems, with power and deployment location dictating the 
buoys available computing, storage and communications 
ability. These resource restrictions, typically prescribe the use 
of somewhat impoverished methodologies to describe, 
transport and store resultant observational data.  

Wireless sensor networks (WSNs) research, and more 
recently SensorWebs [13], have helped to contribute to the 
current fascination with the Internet of Things (IoT). The 
vision of an IoT, has precipitated an acceleration of 

development in sensor based data reporting techniques for 
ultra-constrained systems. As the effort of realizing core IoT 
enabling technologies has reached some stability, other 
constrained platforms, such as data buoy systems can now 
benefit through the adoption of IoT related solutions.  

Previously bare and primitive data descriptions produced by 
data buoy systems for proprietary reporting systems, can now 
include rich markup, capturing data provenance at the edge of 
the network (the data buoy system). Although many IoT 
enabling technologies are now deployment ready, application 
level based standards to capture data provenance and allow 
semantic interoperability are currently only emerging. 
Semantic methodologies and solutions do not typically deploy 
well on constrained systems, such as data buoy systems. 
Enabling “data provenance at the edge” in a standardized way 
would help to ensure constrained data buoy systems that 
directly contribute machine-readable and process-able real-
time knowledge within a Digital Earth paradigm. 

The remainder of this paper describes the ongoing work of 
the authors to develop a constrained two-level modelling 
solution, suitable for ocean observing. The following elements 
are described.   

• A proof-of-concept implementation architecture of a 
proposed translational re-application of two-level 
systems design approaches from the e-health domain, to 
realise an archetype-based interoperable knowledge 
eco-system for data buoy in-situ remote sensing.  

• Re-designing the architecture to allow a resource 
constrained data buoy to be archetype-enabled. A set of 
pragmatic implementation solutions are presented. The 
concept of run-time operational templates-as-a-service 
is proposed, and an implementation is presented. 

  

II. GEO-OBSERVATIONAL ARCHETYPE-ENABLED 
ARCHITECTURE  

In the oceanic engineering domain where in-situ marine 
based observatories are essential, the representation of 
recorded observational knowledge is difficult, as it is ever 
changing and evolving. Modelling, and thus enabling the 
recording of uncertainty is not readily possible. Traditional 
database design and indeed object oriented approaches assume 
a static understanding of entities or classes of information. 
Therefore, these design methodologies cannot represent the 
true nature of knowledge within this evolving domain. Over 
time the chosen data-model becomes outdated. The key 
challenge for oceanic information management is 
representation of concepts that are constantly in-flux; along 
with the difficult task of maintaining a consistent 
understanding of concepts as they are communicated to 
different parties.  



Static data models and “bare-bones” representations of 
domain concepts are a core issue. Also, enrichment of data and 
information with interoperable and computable use-case 
knowledge; generated through a domain practitioner’s analysis 
activities, is not generally provided for. Ontologies have been 
proposed to achieve interoperability of captured domain 
concepts. However, ontologies alone do not allow for 
knowledge evolution in a domain in an interoperable way, 
arrived at by way of community consensus.  

In [10], Beale comments that one of the main problems 
with “standard” models is that they embody no single point of 
view. Change is not dealt with very well and invariably 
implementations tend to wander from the standard model to 
accommodate the peculiarities of the implementation. The 
OGCs SWE based Observations & Measurements (O&M) 
standard [14] can be classed as a standard model. [15] also 
highlights Beale’s issue with standard models within the Ocean 
observing community, “the design and implementation of the 
Ocean Sensor Web should maintain a balance between 
adherence to the GEOSS, OGC-SWE standards, and the 
concerns of practical and efficient implementation in the ocean 
observation domain.”  

O&M is currently an implementing under the European 
Union’s INSPIRE directive [16]. However, even the INSPIRE 
guidelines for use of O&M notes the issue of variance when 
using standard models, “O&M is a very generic standard, 
allowing for very different design patterns depending on the 
domain as well as the Use Cases to be supported. Application 
of O&M within a technical community requires that the 
community agree on standard content for the key slots in the 
model, as well as on required extensions to the base classes 
provided within the standard. In particular, it is necessary to 
have standard vocabularies”.  

A. Archetypes 

The term archetype is generally defined as a universally 
understood symbol or term. In information systems design an 
archetype is a set of constraints on a reference model. These 
constraints provide semantic relationships between elements 
based on knowledge. Using archetypes, an archetype model 
can be developed that formalizes the volatile knowledge 
concepts within the 2nd level of a two-level based information 
system. Archetypes allow for the necessary variability 
employed by domain practitioners to be managed in an 
interoperable. 

Constraint statements can be captured using the Archetype 
Definition Language [17]. ADL is best suited to constraining 
reference models that are very generic in nature. Where a 
suitable refence model exists, ADL can then be used to 
constrain the instances of these generic classes to represent 
specific domain concepts. ADL was developed for the clinical 
domain. However, ADL can be used to define archetypes for 
any domain where there exists a formal reference model. 

B. O&M as a reference model 

The design of the information level using a reference model 
is well understood. Non-volatile concepts represented in the 
reference model can be modelled using traditional conceptual 

modelling approaches. Given O&M’s growing acceptance as a 
standard for observational systems, O&M has been proposed 
as a candidate to under-pin a two-level modelling approach for 
data buoy systems [7] [8] [9].   

To derive and extend domain specific concepts a 
compound/element pattern (Listing 1 and Figure 1) within the 
reference model is used. The creation of recursive aggregation 
of objects from the non-volatile concepts is a core requirement 
for any reference model within a dual-model system. For this 
work, O&M has been augmented with the compound/element 
pattern where the authors propose an opportunity for further 
constraining is needed to full-fill specific use-case needs.   

 

[{ 
   "id":"identity_model_ref_ID", 
   "GeoData_Composition":{ 
       "archetype_node_Id":"TPOT-OM-       
                        GeoData_Composition.Weekly_Buoy_Data.v1", 
       "name":"Marine_Data_Buoy_Weekly_Report", 
       "details_COMPOUND":[{ 
           "details_ELEMENT":{ 
           "archetype_node_Id":"[at0001]",              
           "name":"buoy_location", 
           "DATA_VALUE":"53.127,-11.200" 
           } 
        }], 
        [{"GeoObservation_Set" :{    
            "archetype_node_Id":"[at0002]", 
            "name":"Buoy_Instrument_Readings",  
            "meaning":"Interval Trig Buoy Multi Instrument Read", 
            "details_COMPOUND":[{ 
                "details_ELEMENT":{ 
                    "archetype_node_Id":"[at0003]",              
                    "name":"triggertime", 
                     "DATA_VALUE":"2017-01-11T11:40:00.000Z" 
                 } 
             }], 
             [{"Observation":{ 
               "archetype_node_Id":"[at0003]", 
               "name":"observation_measure",      
               "observedProperty":{ 
                   "archetype_node_Id":"[at0004]",  
                   "name":"temperature" 
         ... 
}] 

 

Listing 2. Extract from a JSON information object instance. Here an 
augmented O&M data model serves as the reference model, or the 1st level in 
a two-level model system. Knowledge concepts are captured in an archetype 
document. Information instances are created from the reference model to 
ensure interoperability between systems. Use-case specialisms defined in an 
archetype are bound to the instance information using at-codes. Each at-code 
acts as an archetype_node_id binding.  

  

... 
<xs:complexType name="GeoData_Composition"> 
  <xs:complexContent> 
    <xs:extension base="IDENTITY_ABSTRACT"> 
      <xs:sequence> 
   <xs:element name="archetype_node_id" ... maxOccurs="1" /> 
   <xs:element name="name"  .../> 
   <xs:element name="details_Compound" ... /> 
         ... 
</xs:complexType> 
 
<xs:element name="GeoObservation_set" type="OBSERVATION_SET" /> 
  
<xs:complexType name="OBSERVATION_SET"> 
  <xs:complexContent> 
    <xs:extension base="ABSTRACT_OBS"> 
      <xs:sequence> 
        ... 

 
Listing 1. XSD snippet of augmented O&M model with

compound/element patterns. The augmented O&M model serves as the
reference model within the dual-model approach. The 2nd level is captured
using an archetype-model which are constraint statements on the reference
model.  



C. Enabling knowledge rich information objects 

Figure 2 shows an archetype enabled Earth system science 
based observational system eco-system. Several disparate 
inter-connected supporting systems are shown. Development 
of a library of community derived archetypes is supported by 
the online management system and archetypes are available 
through an online repository. For any specific use-case, the 
system builder and associated domain specialists use the 
necessary subset of archetypes available within the archetype 
library. Archetypes may be further specialized per use-case, 
and location, and are combined to produce a set of operational 
templates (OPT). The in-situ remote sensor system uses these 
OPTs locally to instantiate information instances, as shown in 
Listing 2.  

Once created, information instances are transmitted to a 
supporting data-store for persistence. Information objects are 
instantiated from the reference model only. Information 
instances form a directed-acyclic graph that contain labels or 
bindings at various points. Bindings are in the form of at-
codes, and relate the information instance concepts to their 
knowledge domain specific concept, defined within the ADL 
based archetype or operational template.  

III. CONSTRAINED ARCHETYPE-BASED BUOY SYSTEMS  

Creating knowledge rich information objects adds 
significant additional overhead in terms of processing, storage 
and transportation. Constrained data buoy systems typically do 
not have the resources needed to implement a typical 
archetype-based system deployment. Archetype methodologies 
have been developed for the health domain, where typically 
constraints on systems are not of major concern. Scaling issues 
can be solved through vertical and/or horizontal system 
scaling. This is not possible on a data buoy system. 

Within an archetype-based approach three levels of 
information exist, wholly-static concepts that are captured in 
the reference model, quasi-static concepts which are agreed in 
each of the archetypes and dynamic data or instance 
information. Processing and transportation of static data within 
a constrained system represents wasted resource usage. By 
identifying static information residing within an archetype’d 
information instance, and removing this from the information 
instance, a leaner information object can be realized.  

Most observational system should only need to report 
timestamped DATA_VALUES and the archetype to which the 
instance is bound; and to which it may be validated against. 
Presentation layer applications using data instances can later 
reconstitute the semantically rich information using a similar 
knowledge framework as shown in Figure 2.  

Archetypes follow a tree like structure derived from the 
compound/element patterns inherent in the underlying 
reference model. Data instance structures must also follow the 
same tree structure of the underlying reference model, and 
associated archetype. As a result, two-level system data 
instances are a specialized type of graph data. Recently 
recorded observational data instances may only represent a 
simple node within the larger complex instance data graph. 
Fragmentation of an information instance temporarily as a 
distributed graph, or federated graph, with the bulk (wholly-
static and quasi-static nodes) of the information instance 
residing in a resource rich backend infrastructure, an 
observational system need only process and transport a 
minimal data node within the overall data graph. This approach 
is analogous to the Linked Data [18] approach developed in 
recent years to realise the semantic Web. Using Linked Data 
approaches, a fragmented archetype’d information instance can 
be hosted across a supporting knowledge eco-system. 

Archetype based systems are designed to enable the 
creation of knowledge rich interoperable documentation of 
domain use-case knowledge. The creation of information 
usually results in appending information to a document. 
Distributing the information instance between the in-situ 
observational system and the back-end knowledge framework 
reduces the potential significant overhead on constrained 
observational systems mandated by an dual model approach. 

A. Linked Data 

Linked Data is an approach for exposing, sharing and 
connecting structured data using URIs and RDF [18]. The core 
principles of Linked Data provide the basic recipe for 
connecting data using Web technologies. Structured data (as 
opposed to unstructured) refers to data with a high level of 
organization, such as information residing within a relational 
database. Structured data markup is a text-based organization 
of data that is included in a file served from the Web. Linked 
Data techniques use the generic graph-data model of RDF to 
structure and link data within a Linked Data approach.  

Fig. 2. Overview of a two-level model support observation sensor system 
architecture. The additional processing, storage and communication load has 
been found to be prohibitive for deployment across many data buoy
platforms. Run-time templates need a kernel to run on the data buoy 
platform.  

 

Fig 1. Compound/element pattern embedded within O&M. 



Linked data patterns have been used to demonstrate the 
Linked Data Ocean concept [19]. Linked data patterns are 
typically supported using RDF. RDF is an XML based syntax. 
XML is a powerful language for defining rules for the 
encoding of documents. However, XML is generally not suited 
to constrained observational systems, due to its verbosity and 
the complexity of XML parsers. The JavaScript Object 
Notation (JSON) is a simple standard for the exchange of 
hierarchically structured JavaScript objects. JSON parsing is 
more efficient than XML and results in smaller exchange 
overhead. JSON-LD [20] is a standard designed to serialize 
RDF using JSON. JSON-LD is a concrete RDF syntax, and so 
a JSON-LD document is both an RDF document and a JSON 
document and correspondingly represents an instance of an 
RDF data model.  

B. Archetypes & RDF 

The RDF data model is composed of atomic data entities 
referred to as semantic triples. A triple is composed of three 
nodes within the RDF graph, and codifies a statement about 
semantic data. Triples of this type are the basis for representing  
machine-readable knowledge. An RDF graph can be visualised 
as a node and directed-arc diagram in which each triple is 
represented as a node-arc-node link (Subject - Predicate - 
Object). RDF creates a graph structure to represent data. 
Serializations of RDF such as JSON-LD allow the markup of 
data instances using a structured data graph. RDF does not 
describe how the graph structure should be used. RDF schema 
(RDFs) is a schema language that allows information modelers 
to express the meaning of the RDF graph data. RDF and its 
schema extension RDFs provide support for distributed 
information and can be used to realize the data instance 
fragmentation described above. However, RDF & RDFs do not 
provide the same semantic modeling capabilities as a reference 
model with an associated constraining archetype. The 
Ontology Web Language (OWL) provides additional 
vocabulary and semantic formalisms to RDF/RDFs. For 
example OWL provides the owl:Restriction construct. 

OWL provides rich semantics that forms useful support for 
a federated data paradigm such as Linked Data. To enable the 
power of a two-level information system design approach 
within a constrained buoy system, the authors propose the 
fragmentation of archetype’d data instances using a Linked 
Data approach. Fragmentation can be realized within the dual-
model approach by employing Semantic Web technologies and 
techniques.  

Lezcano et al. have shown how archetypes can be translated 
automatically into OWL, to enable a reasoning engine based on 
archetypes [21].  

C. ADL to OWL to JSON-LD 

Reference [22] provides a succinct introduction to the steps 
necessary to translate archetypes represented in ADL to OWL. 
The Artemis project [23] developed a framework to map 
archetypes between different standards. A syntactic 
transformation of (ADL-defined) archetypes into OWL format 
was produced. However, the Artemis framework requires a 
manual mapping to take place. The Poseacle project [23] also 

provides a semantic transformation of ADL archetypes into 
OWL.  

The Born Semantic approach described in [4] uses the 
O&M JSON encoding OM-JSON [25] to support a Linked 
Data approach. The process used is to overlay OM-JSON onto 
JSON-LD, this allows an RDF inferred graph to be created. 
Here the authors propose that the ADL defined archetype, or 
operational template serves the function of OM-JSON 
proposed for Born Semantic systems in a more flexible way, 
while realizing the greater benefits of two-level modelling.  

The archetype approach has been designed to append data 
to documents rather than replace or delete. This works well for 
the approach presented here where the JSON instance shown in 
Listing 2 is coerced to the JSON-LD format. The JSON-LD 
inferred RDF graph is composed of tripified-data. Triples serve 
as the basis upon which fragmentation of the information 
object can occur. Figure 3 illustrates the approach. The inferred 
graph in Figure 3 is made up of node-arc-node structures. Each 
node within the graph represents an entity, which can hold any 
number of attributes. In JSON an attribute is a key-value pair. 
A triple contextualizes a node, forming a relationship based on 
a predicate. For example, Observation – has – Results; Results-
contain-Result. Using JSON-LD each set of key-value pairs 
(node) can be located on a different physical data-store, within 
a distributed or federated information system, similar to the 
“shards” concept used in MongoDB. The distributed graph 
data approach means that a constrained observational system, 
such as a data buoy must only serve the necessary key-value 
pairs of a Result, once context for that result is provided, or 
once the result node is tripified.       

A. Information object fragments & JSON-LD 

JSON-LD introduces the @Context concept, which is used 
to define the vocabulary binding for the data concepts used in 
the JSON-LD document. The context is also a set of rules for 
interpreting a JSON-LD document. Here the authors propose 
that JSON-LD context serves to enable the binding of a graph 
node to the information instance graph hosted on the backend 
supporting infrastructure. A context can be directly embedded 
within a JSON-LD document, or as in this case put into a 
separate document and referenced (shown in Listing 3 and 

 
Fig 3. Archetype’d information instance graph representation. The Result 
node contains the dynamic information that is observed from a data buoy 
systems. The graph is formed using a Linked Data approach.  



Listing 4).  Here the context is used to link the data instance 
data to the actual instance hosted on the server. 

To reduce the size of the graph node, key-value pairs are 
represented using the at-codes defined within the archetype 
(Listing 3). In [26] Sundvall et al. have shown how archetype-
based health record systems can be implemented through the 
application of a REST architecture. In the approach described, 
a similar methodology is employed to allow the binding of 
graph nodes to URIs; Listing 3 illustrates this. The context 
(Listing 3) defines keys (of a key-value pair) and their 
corresponding context within a specific data graph. JSON-LD 
context definitions are hosted on the backend-support services 
infrastructure (Figure 2). Contexts are created from OWL 
representations of ADL based operational templates. Contexts 
are exposed using the RESTful architectural approach via a 
URI. This allows a Result node (Figure 3) to maintain its 
context within the data graph.  

Listing 4 shows the resulting node representation which a 
data buoy system must adhere too. In this simple example, a 
data value (DV) key has the value 10.23. This data value is 
bound the JSON-LD context definition to its meaning using 
URIs composed of at-codes. At-codes are defined within the 
archetype (not shown here). Table 1 shows the triple JSON-LD 
based representation of the value. When the data buoy system 
transmits the result, the supporting backend infrastructure can 
process JSON object (or information instance fragment) using 

the JSON-LD context. The result of the backend processing 
step results in an information instance shown in Listing 2.  

IV. IMPLEMENTATION & EVALUATION 

A. Runtime Operational Templates as a Service 

A core principle of the approach presented is to enable the 
fragmentation of archetype-based instance data between a 
constrained system (data buoy) and backend supporting 
infrastructure and services. A RESTful architectural style has 
been adopted to enable the Linked Data paradigm. 
Fundamental to information instance creation in an archetype 
enabled system are operational templates, and a runtime 
template kernel. The federated graph approach described above 
requires a novel template kernel to support the creation of valid 
graph data nodes on the data buoy and the backend. The 
concept of Operational Templates as a Service (OPTaaS) has 
been developed to support the overall approach and facilitate 
interactions between a micro-kernel and the federated template 
kernel.  Figure 4 shows the interactions between the data buoy 
systems and OPTaaS component. RESTful interactions within 
a constrained environment require a great deal of overhead, 
and may not be possible using traditional methods. For this 
work the Constrained Application Protocol (CoAP) [27] is 
used to support a constrained RESTful approach.    

B. Constrained Application Protocol (CoAP)  

To support web services running on platforms with very 
limited resources the IETF formed the Constrained RESTful 
Environments group (CoRE) [28].  CoRE has been tasked with 

{ 
  "@Context" : { 
    "obj_store" : "coap://tpot.arch-dev.ie/obj_store/", 
    "obj_id" : { 
      "@id" : "obj_store:obj_id", 
      "@type" : "@id" 
    } 
    "at0002" : "obj_id:at0002/", 
    "at0004" : "at0002:at0004/", 
    "at0008" : { 
      "@id" : "at0004:at0008", 
      "@type" : "@id"       
    }, 
    "DV" : { 
      "@id" : "at0008:#at0009", 
      "@type" : "@id"  
    }, 
    "resultTime" : { 
      "@id" : "at0008:#at0010", 
      "@type" : "@id"  
    } 
  } 
} 
Listing 3. Extract from a JSON-LD representation. Information instance
fragments are bound to archetypes/OPTs via the @Context. The @id
represents the parental information instance of this observation_set. Where
at0004 refers to an observation_set with the readings for at0008 (temperature)
which is an observation fragment belonging to the sensor_data_record of
{object_id} defined by the archetype {opt_id}. The URI fragment, denoted by
the # symbol, denotes this the end of of the URI path. This is defined by the 
last aggregation level within the reference model 

 
Fig. 4. RESTful interactions between a data buoy and the operational 
template as a service (OPTaaS). The CoAP protocol is used for message 
exchanges. The OPTaaS holds the runtime templates and builds a 
fragment template as a micro @Context. The micro @Context is cached 
by the observational sensor system and used to perform prelimary JSON-
LD processing prior to posting to the OPTaaS web service. The OPTaasS 
holds a run-time template for the observational system and performs full 
validation of the information instance as they are received.   

{ 
  "@Context" : "coap://tpot.arch-           

dev.ie/microcontexts/{microCtxt_id}", 
  "obj_id" : "{sdr_object_id}", 
  "@id":"at0008", 
  "DV": "10.23", 
  "resultTime": "<time_stamp>"  
 } 
Listing 4. Extract from a JSON-LD representation of Result (Figure 3). 

 

TABLE 1. A triple representing a temperature reading.

Subject Property Value

coap://tpot.arch-
dev.ie/obj_store/{obj_id} 
/at0002/at0004/at0008 

coap://tpot.arch-
dev.ie/obj_store/{obj_id}/ 
at0002/at0004/at0008/#DV 

10.23  



developing a framework for deploying web services to 
constrained environments, such as sensor nodes. In the CoRE 
framework, a network of nodes called devices interact. Devices 
are responsible for one or more resources, which could be a 
representation of sensors, actuators, and combinations of 
values or other information. Devices in the network can send 
messages to each other to request, query and publish data. As 
part of the overall effort to enable constrained RESTful 
environments, CoAP was defined. 

CoAP is a specialised Web transfer protocol for use with 
constrained nodes and networks. CoAP provides a 
request/response interaction model between application 
endpoints. Unlike HTTP based protocols, CoAP uses UDP as 
its transport layer and employs a simplified re-transmission 
mechanism. CoAP is designed to easily interface with HTTP 
for integration with the Web with very low overhead and 
simplicity for constrained environments.  

C. Evaluation System Overview  

A data buoy software system architecture has been defined 
(Figure 5) to evaluate the described technique. The goal of the 
initial evaluation is to verify the methodology described, with a 
core requirement to reduce the size of the data instance 
required on the constrained system, without comprising the 
knowledge infrastructure. The backend remote observation 
support infrastructure is hosted on a server running Ubuntu 
Linux. The data-buoy test-rig was developed using an ARM 
1GHz Cortex A8 processor based board.  

A test archetype was developed for proof-of-concept 
implementation. An XML serialization of the O&M data 
model was produced. The LinkEHR editor [29] was used to 
constrain the information model further for the 
implementation. An ADL representation of the test archetype 
was produced, and stored within a simple archetype store. 
Community derived archetypes are hosted in the archetype 
repository in ADL format (Figure 5). Operational templates are 
used to further specialize archetypes for specific use-cases. For 
this implementation, operational template are assumed to be 
equivalent to the serialized archetype, i.e. no further 
specialization or constraining has been performed. The 
OPTaaS component requests the conversion of an OPT for use 
within the constrained data buoy test rig system. The 
Validation & Converter component retrieves the template from 
the template store in ADL format. This template is then 
converted to OWL format. The ADL file was translated to 
OWL using the technique described in [21]. The library 
Owl2jsonld [30] is used to produce a JSON-LD context from 
the OWL translation. The resulting JSON-LD representation 
was manually fragmented to produce a micro-context for the 
graph node Result shown in Figure 3. The micro-context store 
is made available via an URI.  

A basic data buoy OPTaaS client application was created 
using node.js. A minimal backend supporting infrastructure 
was developed. The OPTaaS server was also implemented 
using node.js. The OPTaaS client and server both use the 
node.js based coap library node-coap [31]. A basic runtime 
kernel and validator was developed, based on the openEHR 
Java Reference Implementation [32]. The runtime template 

kernel component is used by the OPTaaS to process JSON-LD 
observations and resolve the triples to an RDF store. The 
OPTaaS server interacts with the sensor data record store (SDR 
Datastore) via a call to localhost. Apache JENA [33] is used as 
the SDR Datastore.  

V. DISCUSSION & FUTURE WORK 

Node.js is used to implement many of the system 
components. This has allowed for rapid prototyping to allow 
evaluation of the proof-of-concept. However, is was found that 
a lot of manual steps had to be employed within the process. 
The evaluation has informed a set of work packages for future 
development. The openEHR Java Reference Implementation is 
specifically designed for openEHR archetypes. The LinkEHR 
editor is a multi-reference model archetype editor. LinkEHR 
developers have announced that LinkEHR will be made 
available as an open source project in the near future. For the 
current work, archetypes are created manually using LinkEHR, 
an open-source version of LinkEHR would greatly enhance the 
development described. The proof-of-concept work has also 
allowed the authors to further specify the components 
necessary for further constraining of the system in terms of 
technical constraints; these are outlined below.  

D. Ultra-constrained considerations  

Semantically annotating captured data at source is 
problematic in constrained systems. Born connected system 
mechanisms are computationally expensive, and in a resource-
constrained environment, this may not be possible. Preliminary 
evaluation of the described technique has shown that 
semantically rich data objects can be supported using a Linked 
Data approach. However, our evaluation is not ideal. As Pottie 
observed in [34], Every bit transmitted brings a sensor node 
one moment closer to death.  

The use of URIs to semantically enrich data objects can 
present an unacceptable overhead in some constrained 
environments. URI lengths are in general too long for packets 
in a constrained communication environment directly. The 
specified mmessage size for a CoAP payload should be less 
than 1024 bytes to avoid IP fragmentation.  

Fig 5. Evaluation software system architecture 



Codification of URIs have been proposed to overcome this 
limitation. The authors are using the experience gained from 
the described evaluation to further constrain the technique 
described. The next stage of evaluation is to implement the 
technique on an ARM Cortex M3 based test rig, with further 
constraints on communications and power. For this work a 
Contiki OS [35] based micro-kernel is being developed.   

It is noted that triples are the base of the entire RDF 
knowledge model. Triples can be represented using many 
different formats. However, many of these are suitable for 
constrained systems due to computational constraints and 
limitations on packet size. JSON-LD has been shown to be an 
efficient serialisation mechanism for RDF based data. However 
more efficient approaches exist. In [36] the authors have 
developed a promising approach that fulfills the following 
criteria: Low memory usage, small message size, type 
awareness, simple processing and a standardized solution. 
Their work uses the EXI format for RDF/XML data 
representation. XML interchange using EXI has been shown to 
be more efficient than JSON and binary JSON encodings [37]. 

The ongoing work to translate two-level modelling to 
constrained Earth system science based observational 
environment will adopt the concrete grammar approach 
described in [36] and extend it to help realise a RDF/linked 
data style for a federated archetype-based instance data. At the 
time of writing, the W3C Web of Things (WoT) Interest Group 
have published a WoT Current Practices draft [38], which also 
provides several promising approaches, useful for the work 
presented here. 

VI. CONCLUSION 

Through a proof-of-concept implementation the authors 
have shown how two-level modelling systems design 
techniques can be successfully employed in an Earth systems 
science domain context such as ocean observing using 
constrained data buoy systems. However, it was found that 
knowledge frameworks such as two-level modelling add 
additional overhead in terms of meta-data additional 
processing for parsing and validation. These additional 
overheads are prohibitive for deployment on many resource-
constrained observational systems, such as a data buoy 
systems. 

It was found that through the combination of RESTful 
architectures, Linked Data techniques and the implementation 
of the concept of run-time operational templates-as-a-service, it 
was possible to significantly reduce the overhead on a 
constrained in-situ remote observational system, such as a data 
buoy; while also realising the benefits of a two-level modelling 
eco-system. 
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