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ABSTRACT 
Many bridges of the world’s highway networks have been in service for decades 

and are subject to escalating volumes of traffic. Consequently, there is a 

growing need for the rehabilitation or replacement of bridges due to 

deterioration and increased loading. The assessment of the strength of an 

existing bridge is relatively well understood, whereas the traffic loading it is 

subject to, is not as well understood. Accurate assessment of the loading to 

which bridges may be subject, can result in significant savings for highway 

maintenance budgets internationally. In recent years, a general approach has 

emerged in the research literature: the characteristics of the traffic at a site are 

measured and used to investigate the load effects to which the bridge may be 

subject in its remaining lifetime. 

This research has the broad objective of developing better methods of statistical 

analysis of highway bridge traffic loading. The work focuses on short- to 

medium-length (approximately 15 to 50 m), single- or two-span bridges with 

two opposing lanes of traffic. Dynamic interaction of the trucks on the bridge is 

generally not included.  

Intuitively, it can be accepted that the gap between successive trucks has 

important implications for the amount of load that may be applied to any given 

bridge length. This work describes, in quantitative terms, the implications for 

various bridge lengths and load effects. A new method of modelling headway for 

this critical time-frame is presented. 

When daily maximum load effects (for example) are considered as the basis for 

an extreme value statistical analysis of the simulation results, it is shown that 

although this data is independent, it is not identically distributed. Physically, 
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this is manifest as the difference in load effect between 2- and 3-truck crossing 

events. A method termed composite distribution statistics is presented which 

accounts for the different distributions of load effect caused by different event 

types. Exact equations are derived, as well as asymptotic expressions which 

facilitate the application of the method. 

Due to sampling variability, the estimate of lifetime load effect varies for each 

sample of load effect taken. In this work, the method of predictive likelihood is 

used to calculate the variability of the predicted extreme for a given sample. In 

this manner, sources of uncertainty can be taken into account and the resulting 

lifetime load effect is shown to be calculated with reasonable assurance. 

To calculate the total lifetime load effect (static load effect plus that due to 

dynamic interaction), the results of dynamic simulations based on 10-years of 

static results are used in a multivariate extreme value analysis. This form of 

analysis allows for the inherent correlation between the total and static load 

effect that results from loading events. A distribution of dynamic amplification 

factor and estimates for a site dynamic allowance factor are made using 

parametric bootstrapping techniques. It is shown that the influence of dynamic 

interaction decreases with increasing static load effect. 
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Chapter 1 - INTRODUCTION 

1.1 Background 

The developed economies of the world have, as a prerequisite, a transport 

infrastructure that is efficient in the movement of goods and people. In such 

economies, the highway transport infrastructure was, in many cases, built in the 

decades following World War II. Hence, the bridges built for these highway 

networks have been in existence for a significant proportion of their design 

lifetime. Deterioration of these older bridges has been found in many countries; 

yet with economic growth, their importance has increased, as has the cost of 

their replacement or refurbishment. 

Throughout the last century, as scientific knowledge broadened, more accurate 

standards for highway bridge design developed. Indeed the in-situ strength of 

bridges is now well understood relative to the in-situ loads to which bridges are 

subject. The highway bridge load models in bridge design codes are 

consequently quite conservative. Whilst acceptable for the majority of new 

bridges, where the cost of providing additional strength is minimal, the loading 

standards are conservative when applied to bridges in operation. In the past, 

when bridges were fewer in number, more lightly trafficked, and cheaper to 

repair or replace, the overall economic cost of conservative loading codes was 

small. Today, the rehabilitation of existing bridges to conservative code load 

requirements is therefore known to be an area in which savings can be made. 

The factors just outlined have combined in recent years to significantly increase 

the value of accurate assessment of the loads to which a bridge may be subject. 

A general solution of the problem is emerging in which the characteristics of the 
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traffic at a given site are measured and used to investigate the load effects to 

which the bridge may be subject in its remaining lifetime. 

Static weigh-station sites, typical of those used in law enforcement efforts, are 

known to produce biased measurements of traffic, due to the avoidance of 

grossly overloaded vehicles. Lately, unbiased measurement of real traffic is 

obtained by Weigh-In-Motion (WIM) systems. These systems have 

acknowledged measurement inaccuracies but produce unbiased data because the 

installations are not readily visible to traffic. 

Even with modern WIM systems, the quantity of traffic data is usually limited: 

such data is generally expensive to obtain and measurement periods are 

consequently limited. To extend the amount of traffic data, synthetic traffic 

data can be generated, based upon the measured traffic characteristics, through 

the use of Monte-Carlo simulation. Such extended traffic records are then used 

for estimation of rare extreme load effects which may result from the traffic at 

the measurement site in the bridge lifetime. Even with this form of simulation, 

it is necessary to have some form of statistical extrapolation technique, based on 

the load effect history, to estimate a lifetime value of load effect. 
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1.2 Objectives and Scope 

1.2.1 Objectives 

The research described in this exposition has the broad objective of critically 

examining the statistical analysis of highway bridge traffic loading. It had been 

recognized that the contemporary literature on the subject included areas of 

subjectivity that can affect the results of an analysis. Thus the main thesis of 

this work is to further the level of knowledge regarding the calculation of the 

bridge loading that may be expected to occur with an acceptably low level of 

probability in the remaining lifetime of the bridge. 

More specifically, with reference to previous work in the area, the objectives are: 

1. to maximize the information gained from a limited amount of measured 

traffic data; 

2. to develop appropriate software tools to produce robust information for 

further analysis; 

3. to improve the statistical analyses performed on load effect histories such 

that robust and realistic estimates of lifetime maximum load effect are 

determined; 

4. to introduce further statistical techniques through which introduced 

inaccuracies may be accounted for in the lifetime maximum load effect 

estimate. 

1.2.2 Scope of work 

This work focuses on short- to medium-length bridges (approximately 15 to 50 

m) of two opposing lanes of traffic. While it is acknowledged that congested 

traffic may govern for bridges in the upper part of this length range, only free-

flowing traffic is considered in this work. Vehicles of Gross Vehicle Weight 
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(GVW) greater than 3.5 tonnes are considered: lighter vehicles do not 

contribute significantly to the loading to which a bridge is subject, but their role 

in the spatial arrangement of traffic is acknowledged. Dynamic interaction of 

the trucks on the bridge is generally not considered. Only single and two-span 

bridges are examined and the load effects are limited to bending moment, shear 

force, stress and/or strain as appropriate to the problem under study. 
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1.3 Outline of the Research 

1.3.1 Traffic modelling and simulation 

The research presented herein is heavily reliant on the software tools developed 

as part of this work. The efficacy and power of the software has implications for 

the manner in which bridge load research is carried out: for example, larger 

sample sizes generally result in more accurate load effect prediction. 

Accordingly, in this work, the object-orientated approach to programming is 

used. An explanation of this method, and the programs based upon it, is given 

in Chapter 4. As a result of these developments, it is now possible to simulate 5 

years of traffic for a typical heavily trafficked European trunk motorway on a 

typical high-specification desktop personal computer. This traffic may be used 

to assess load effects from any form of influence line or slices of an influence 

surface. The statistical analysis outlined later may then be applied to the 

complex of results gathered. 

1.3.2 Headway modelling 

Intuitively, the gap between successive trucks has important implications for the 

quantity of load that may be applied to a bridge: this work describes, in 

quantitative terms, the implications for various lengths and load effects. It is 

found that existing headway (gap plus the lead truck length) models do not 

focus on the small headways that are critical for bridge loading events. A new 

method of modelling headway for this critical range is presented: it exhibits less 

variability in load effect estimation; conforms to the physical requirements of 

traffic; and preserves measured headway distributions. This method is described 

in Chapter 5, along with comparisons to existing methods. 
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1.3.3 Composite distribution statistics 

The load effect output from the process of measurement, modelling, and traffic 

simulation, requires a statistical analysis to permit estimations of future load 

effect values. Extreme value analysis assumes that the data to be analysed is 

independent (or, at most, has minor dependence) and identically distributed. 

When daily maxima (for example) are considered as the basis for further 

statistical analysis, it is shown here that although this data is independent, it is 

not identically distributed. Physically, this is manifest as the difference in load 

effect between 2- and 3-truck crossing events, for example. Intuitively, such 

events are not identically distributed, and as such, should not be mixed as a 

single distribution in an extreme value statistical analysis. A method termed 

composite distribution statistics is presented which accounts for the different 

distributions of load effect caused by different event types. Exact equations are 

derived, as well as asymptotic expressions which facilitate the application of the 

method. The method is checked against results derived from the exact 

distribution, and compares favourably. Also, the method is applied to the 

output from the simulation process and compared with the traditional approach. 

It is shown that the composite distribution statistics method can give 

significantly different results. 

1.3.4 Prediction of extreme load effects 

The raison d’être of the bridge loading model, and subsequent statistical 

analysis, is the prediction of extreme, or maximum lifetime, load effects. Basic 

prediction techniques are outlined in Chapter 3, but more advanced methods 

are required to reflect the complexity of the underlying process and its model, 

such as the method of composite distribution statistics developed as part of this 

work. Such extrapolation methods, are subject to substantial variability: 
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different samples give different estimates of lifetime load effect. To allow for this 

variability, the method of predictive likelihood is used in this work. This is a 

relatively new area of Frequentist statistics and is not yet adopted in many 

practical fields of research. Predictive likelihood yields many benefits for the 

bridge loading problem. Most importantly, the variability of the predicted 

extreme can be calculated. Further, sources of uncertainty, such as the random 

variation of the data and of the parameter fits to the data, can be taken into 

account. Therefore the result of a predictive likelihood analysis gives a measure 

of the uncertainty inherent in the bridge loading problem, and enables this 

uncertainty to be taken into account. 

1.3.5 Multivariate extreme value analysis 

The full spectrum of bridge traffic load modelling must account for the effect of 

dynamic interaction between the traffic and the bridge during crossing events. 

The modelling and simulation described in this work are strictly static analyses. 

To allow for the effects of dynamics at the return period of bridge loading, 10 

years of traffic were simulated for a bridge which has been tested and modelled 

extensively by other authors. These results are used as a basis for dynamic 

models of crossing events. Both of these data sets form the basis of a 

multivariate extreme value analysis which allows for the correlation between the 

static and dynamic aspects of a crossing event. Using re-sampling techniques, 

estimates for a site dynamic allowance factor are made. It is shown that, while 

dynamic amplification may be large (around 30%) for some individual events, 

the allowance that should be made for dynamics to obtain an appropriate 

overall lifetime load effect value is much less (around 5%). 
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1.4 Layout of the Thesis 

The process under study is described in this chapter and illustrated in Figure 

1.1, where its integration into the chapters of this dissertation is shown. 

Measure Site Data

Bridge Traffic Load Model

Simulate Traffic

Statistical Modelling

Load Effects

Extreme Value Analysis

Prediction

Model Assumptions

Model Definition

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Key

The Bridge Traffic Lifetime Load Estimation Process

Chapter 3

Chapter 8

Figure 1.1: Load estimation process and chapter layout. 

Chapter 2 gives more detailed information on the background to this work by 

surveying the scientific literature in the field. The areas of particular importance 

to this project are highlighted. 

An introduction to the fundamental probability methods used in this work is 

given in Chapter 3. Particular attention is given to the areas of statistical 

analysis that are built upon in other parts of the work. 

The bridge load models used are described in Chapter 4. Measurements of real 

traffic, taken from various sites, are described along with the development of a 
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sympathetic bridge traffic load model. The final part of this chapter describes 

the implementation of the traffic model, to generate data for further analysis. 

It is shown in Chapter 5 that the headway model used is important to the types 

of event and values of load effect that result. A novel headway model is 

described, based on Headway Distributions Statistics of a particular site, termed 

HeDS. A comparison of HeDS with other headway models of the literature is 

made, and differences to existing models described 

In Chapter 6 it is shown that the existing methods of fitting and extrapolating 

load effects do not reflect the underlying statistical phenomena. A method 

termed composite distributions statistics is proposed and shown to give good 

predictions when compared to known return levels. It is applied to the bridge 

loading problem and compared to the conventional means of extrapolation. 

Chapter 7 presents the application of predictive likelihood theory to the bridge 

loading problem. It is shown that this method accounts for the variability of the 

data and parameter values in the composite distribution statistics model and a 

probabilistic assessment of future load effect is found.  

A multivariate extreme value statistical analysis is presented in Chapter 8 in 

the context of relating lifetime static to total (the combination of the static and 

dynamic components of a bridge crossing event) load effect. A dynamic factor is 

derived which relates lifetime static load effect to lifetime total load effect and  

it is shown that required dynamic allowance decreases with increasing lifetime. 

The conclusions reached by this work are presented in Chapter 9 along with 

areas in which further research may be directed. 
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Chapter 2 - REVIEW OF THE LITERATURE 

2.1 Introduction 

That the work herein attempts to improve and extend the work of other authors 

is testament to the importance to be placed upon those works. In particular, the 

work of Grave (2001) is to be noted as a basis for this research. 

Initially, existing traffic models for the purposes of bridge load estimation, 

which are based on measurements, are discussed. Headway modelling in the 

literature is then reviewed as this has been a large focus of this research. 

Following this, the statistics used thus far in the analysis of bridge loading is 

examined. Also covered are the areas of the statistical literature which are 

relevant to this work. 

It is the statistics currently used in the bridge load estimation research that is 

most relevant to this work. Indeed, the main area of progress in this research 

has been the adoption of extreme value theory for the estimation of bridge 

loads. 
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2.2 Bridge Traffic Load Estimation 

2.2.1 Background 

Of all the loads that a bridge may be subject to, traffic loading is probably the 

most difficult to predict. In the general reliability problem, traffic loading 

remains one of the most difficult variables to predict and incorporate. The 

assessment of load-carrying capacity is more readily understood and has been 

well researched (Melchers 1999, Bailey 1996). 

Bridge Code Calibration 

The development of recent bridge loading standards for the design and 

assessment of highway bridges has been predominantly based on the use of 

measured data and statistical extrapolations. Indeed, O’Connor (2001) outlines 

the development of codes such as the Ontario Highway Bridge Design Code 

(OHBDC), the Canadian Highway Bridge Design Code (CHBDC), the 

American Association of State Highway and Transportation Officials 

(AASHTO) tandard e i i ation or eri an i a  rid es, the United 

Kingdom bridge design code, BD37/88 and the Eurocode for bridge traffic 

loading, Eurocode 1: Part 3, ra i  tions on rid es. All of these codes are 

calibrated for load effects that have been obtained from statistical analyses of 

the load effects that result from various forms of traffic model.  

O’Connor and Shaw (2000) and Ryall et al (2000) provide other outlines of 

highway bridge loading codes and their development. 

Weigh-In-Motion 

The advent of Weigh-In-Motion (WIM) technology (Moses 1979) allowed the 

use of measured unbiased traffic streams for bridge load modelling. Before that, 
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traffic studies involved estimating the properties of traffic or sampling the 

population though the use of static weigh stations (Agarwal and Wolkowicz 

1976), which are known to give biased results. It had been recognized (Agarwal 

and Wolkowicz 1976, Dorton and Csagoly 1977, OHBDC 1979) that 

measurement of the traffic characteristic at a site (or sites) is essential to any 

solution (O’Connor 2001). 

Since the development of WIM, unbiased statistics of traffic characteristics have 

become available and this has resulted in more accurate traffic models as may 

be seen from the following section. 

2.2.2 Simulation of traffic loading 

Crespo-Minguillón and Casas (1997) and O’Connor (2001) note that there are 

three main types of traffic models for bridge load effect, split as follows: 

• eoreti a  statisti a  ode s – stochastic process theory and distributions 

representing traffic characteristics are used in statistical convolution to 

determine the distribution of traffic loads that result. O’Connor et al (2002); 

Fu and Hag-Elsafi (1995); Ghosn and Moses (1985); Ditlevsen (1994); and, 

Ditlevsen and Madsen (1994) are examples. 

• tati  tra i  on i rations – measured (or set) traffic data is used to 

calculate the load effects that result. Variation in the traffic stream is not 

allowed, therefore the quantity of traffic used is therefore of prime 

importance. This represents a significant drawback to this approach. 

• i ation o  rea  tra i  o  – measured traffic is used as the basis of 

statistical distributions of traffic characteristics. Monte-Carlo simulation is 
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used to generate synthetic, yet representative traffic which is then used to 

calculate load effects. In this way, unobserved traffic is allowed for. 

Theoretical statistical models are not directly relevant to this work and as such 

are not considered further (refer to Grave 2001 for further reference). Use of 

measured or static traffic configurations is only relevant to two aspects of this 

work; the calculation of load effect from a given traffic stream and the 

subsequent statistical analysis for lifetime load effect. O’Connor (2001) provides 

a literature review of those authors dealing with static configurations and their 

associated extrapolations (Cooper 1995, 1997; Nowak 1991, 1993; for example). 

It is the development of traffic models, based on measured traffic, which is 

directly relevant to this work – Grave (2001) and O’Connor (2001) provide 

thorough backgrounds on the research in this area. By basing traffic models – 

defined by statistical distributions for each of the traffic characteristics – on a 

set of measured traffic, the traffic model can be claimed to represent real traffic. 

The advantage offered by this approach is that unobserved traffic is allowed to 

occur randomly in computer simulations, whilst the overall characteristics 

remain those of the measured traffic. O’Connor (2001), Nowak (1993) and 

Crespo-Minguillón and Casas (1997) identify problems with the load effects that 

result when this process is not undertaken. 

Bailey (1996) 

Bailey (1996) develops a detailed statistical traffic load model for medium- to 

long-length bridges and allows for different types of traffic flow. The model is 

based on WIM measurements taken at various sites in Switzerland. The 

headway model used by Bailey is considered in Section 2.3.2 and Chapter 5. 
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In Bailey’s model, the traffic composition is comprised of 14 different types of 

vehicle which make up 99% of Swiss truck traffic. The observed frequency of 

each vehicle type is used in the simulations. 

Bailey considers axle groups as having a single weight, as the weight is generally 

evenly distributed between closely-spaced axles. A generalized bi-modal beta 

distribution is used to fit the observed axle group weights, shown in Figure 2.1. 

Correlation of this weight with the GVW is allowed for though generation of the 

other axle weights based on the axle group weight. Therefore random variation 

about perfect correlation (as assumed in Vrouwenvelder and Waarts, 1992) is 

allowed for. The procedure adopted for calculating axle weights is shown in 

Figure 2.2. The vehicles’ geometries are modelled by a beta distribution for each 

of the axle spacings and overhangs of each type of truck in the classification. 

The flow rates used in this study are specified, rather than being based on the 

measured flow rates. 

Figure 2.1: Axle-group weight distribution (after Bailey 1996). 
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Figure 2.2: Modelling the axle weight relationships (after Bailey 1996). 

Crespo-Minguillón and Casas (1997) 

These authors present a substantial effort to develop a general and 

comprehensive traffic model for bridge loading. The generation of traffic and the 

modelling of each of the traffic characteristics, are explained in the following 

sequence: 

1. The yearly mean daily flow is selected for the site under analysis. 

2. Calibration curves for the flow (or traffic intensity) during the day of the 

week and the hourly variation are then used (shown in Figure 2.3). 

3. A binomial decision making process is used to determine whether the 

traffic state will be jammed or free-flowing – the parameters of this 

process are not given by the authors, yet stated to be dependent on the 

hour. In this way then, the increased probability of traffic jams during 

rush hour is included. 

4. Given the state of the traffic and its intensity, the traffic density can 

then be determined from measured intensity-density curves shown in 

Figure 2.4. 
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Figure 2.3: Calibration curves for traffic intensity 

(after Crespo-Minguillón and Casas 1997). 

Figure 2.4: Intensity-density curves for traffic condition 

(after Crespo-Minguillón and Casas 1997). 

5. The traffic compositions are taken from measured WIM data at the site. 

The vehicle type, for the next vehicle arriving on the bridge, is calculated 
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using a Markov-chain method, with transition matrices based on those of 

the measured WIM data. 

6. Velocities are then allocated to each vehicle based on a normalized 

velocity function (similar to that of headway, explained next) which can 

then be related to the intensity-density graph for the current flow 

condition. 

7. Headway is assigned using the normalized headway model (Section 2.3 

and Chapter 5). Different such models are specified for different forms of 

driver behaviour, heavy and light vehicles and lanes. 

8. Weights and geometries are then allocated. Axle weights and GVW are 

allocated based on measured correlations (Table 2.1) between GVW and 

axle weights. Geometries are based on measured correlation coefficients 

for axle spacings. The GVW and axle weight distributions are defined 

numerically from measured cumulative distribution functions derived 

from the histograms of Figure 2.5. 

In running this model across a bridge, the authors allow for interaction between 

the vehicles; that is, overtaking events, and changes in speed are modelled. 

Invariability this added complexity increases the number of design decisions 

that must be made. 

Table 2.1: Correlation values between axle weights and GVW 

(after Crespo-Minguillón and Casas 1997). 
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Figure 2.5: GVW histograms for two vehicle types 

(after Crespo-Minguillón and Casas 1997). 

Grave (2001) 

Grave also develops a comprehensive traffic load model for use on short- to 

medium-length bridges. The traffic model in this research is largely based on the 

model developed by Grave. This model is therefore described in detail in 

Chapter 4. Some of the main aspects are discussed here, however. 

Most of the traffic characteristics have been modelled statistically by Grave. 

Only traffic composition percentages and flow rates are deterministic. The 

headway model used by Grave is the same as that of Crespo-Minguillón and 

Casas (1997). The number of vehicle types is more limited than that of the 

other studies mentioned here, though Grave points out that the added 

complexity is not required for the WIM data under study (Chapter 4). 

Other studies 

The study by Harman and Davenport (1979), based on a survey of Canadian 

trucks by Agarwal and Wolkowicz (1976), is one of the first papers to use 
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Monte Carlo simulation of vehicles and headways to obtain load effects for 

further statistical analysis. However, the study is quite limited: it does not 

model real traffic flow; rather, a form of importance sampling of critical loading 

events on single lanes up to 90 m long is used. The authors use a mixed normal 

distribution with three modes to fit to the gross-weight ratio – defined as a 

truck’s weight, divided by the legal weight limit – measured from several truck 

surveys. The geometries of the measured traffic and random GVWs (derived 

from the gross-weight ratio distribution) are used to generate a truck sample. 

Axle weights, as a proportion of GVW, are kept constant. Headways are 

randomly assigned based on a uniform distribution (see 2.3 for more 

information) and velocities are not required for this model. 

Vrouwenvelder and Waarts (1992) describe a study in which a simplified traffic 

model for the estimation of lane loads (not bridge load effects) is developed. The 

main statistic of use is the distribution of gross vehicle weight (GVW). Axle 

weights, as a proportion of GVW, are kept constant. Different types of flow are 

considered, and deterministic headways are used. The observed frequencies of 

many different truck configurations are used in the model. 

Other bridge loading traffic models are described but without the details being 

given, such as O’Connor (2001); Bruls et al (1996), and; Flint and Jacob (1996). 

Discussion 

Bailey (1996) uses the beta distribution for each of the traffic characteristics. 

This is a good distribution for such use: it is sufficiently flexible, and has upper 

and lower limits. It is difficult to compare this model to full site-specific models, 

as there appears to be no mechanism to incorporate hourly flow variation. 
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The model of Crespo-Minguillón and Casas (1997) is the most complex reviewed 

here. There may, however, be errors introduced through the use of numerical 

cumulative distribution functions to represent GVW histograms, for the reasons 

given in Section 2.4.4. Indeed, a substantial quantity of WIM data would be 

required to overcome these limitations. The complexity of the operations 

developed for passing the traffic across the bridge mean that subjective design 

decisions must be made, and this is a potential source of inaccuracy. 

The model described by Grave (2001) is described and criticized in Chapter 4. 

Vrouwenvelder and Waarts’s (1992) model does not claim to represent a full 

bridge load traffic model whilst that of Harman and Davenport (1979) is also 

simplistic, yet thorough for its use. 
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2.3 Headway Models 

2.3.1 Introduction 

Headway, or the distance from the front of one vehicle to the front of the next, 

is of great importance to bridge loading events. As is shown in Chapter 5, the 

types of loading events, and the values of the resulting load effects, are greatly 

influenced by the headway model adopted. Various methods of modelling the 

headway have been used by authors writing on Monte Carlo simulation for the 

analysis of the load effects induced on a bridge by the passage of trucks. Also, 

headway is of significance to the traffic engineering community. The headway 

models developed by both sets of researchers are reviewed next. 

2.3.2 Headway modelling for bridge traffic loading 

Poisson Process-Based Models 

Traffic is often seen as a Poisson process and Grave (2001) gives a review of the 

literature on this subject. As a consequence of the Poisson process, the 

Exponential Distribution is used to model headway (Grave 2001, Bailey and Bez 

1994, Bailey 1996). Often, this distribution is shifted to the right to allow for a 

minimum headway and is known as the Shifted Exponential Distribution: 
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where 
 (2.1) 

and where 0t is the minimum headway and λ is the flowrate (in trucks per 

hour). It may be seen from Figure 2.6 that this formulation gives inordinately 

high probabilities to values of headway close to the minimum allowed (Bailey 

1996). Further, the minimum headway allowed is a subjective element in the 
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process and this has been the subject of study in this research (see Chapter 5). 

However, this formulation allows for the effect of flowrate upon the distribution 

of headways: a higher flowrate requires vehicles to travel closer together. This 

relationship is known to hold until the capacity of the highway is reached when 

flow breaks down and congestion results (see Figure 2.4 and Haight, 1963). 

Figure 2.6: Headway (d plus lead truck length) PDF model (after Bailey 1996). 

Harman and Davenport (1979) recognize that the usual Poisson process 

assumptions of traffic engineering are not wholly applicable to bridges as only 

short headways (0 to 97.5 m in their study) are of interest. Based on a study by 

Goble et al (1976), they assume that the probability density function (PDF) of 

short headway is a constant equal to the average number of trucks per unit 

time. Relative to the negative exponential distribution, this is expressed as: 

 ( ) 1 e tF t tλ λ−= − ≈ (2.2) 
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where the symbols have their previous meaning. Also, Harman and Davenport 

limit the headway to be greater than 7.32 m, which allows for the front and rear 

overhangs of the truck bodies beyond the axles. 

Gamma Distribution Model 

The Gamma distribution function is an extension of the exponential distribution 

and passes through the origin – ensuring small probabilities for small headways: 

 ( , )( )
( )
k tF t

k
γΓ

=
Γ

(2.3) 

where ( , )k tγΓ is the incomplete Gamma function, and the parameters γ and 

are analogous to the scale and location parameters but have physical 

interpretations of mean recurrence rate and the th arrival from a Poisson 

process. This distribution is used extensively in the background studies for the 

Eurocode for traffic loads on bridges (Bruls et al 1996, Flint and Jacob 1996, 

O’Connor et al 2002) and in other studies (O’Connor 2001, Getachew 2003). 

O’Connor (2001) finds that the parameters are dependent on the volume of 

flow, similar to the negative exponential distribution. His study also examines 

the effect of various periods for which the volume is obtained (be it 1, 3, 6 or 24 

hours) on the characteristic extreme derived therefrom; concluding that flow 

periods based upon 1 hour give minimum variation of the extreme on average. 

The Gamma distribution does not, in its left tail, take account of the driver 

behaviour or other factors that must feature in very small headways. Further, 

this distribution passes through the origin; a check must therefore be performed 

such that the physical limitations of the process are not infringed. Bruls et al 

(1996), Flint and Jacob (1996) and O’Connor (2001) use the Gamma 

distribution but assume a minimum gap of 5 m, representing the distance from 

the back axle of the lead truck to the front axle of the following truck. 
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Driver Behaviour Models 

Some authors have adopted headway models based on considerations of driver 

behaviour. Buckland et al (1980) proposed a simple method of calculating the 

headway based upon speed and a minimum distance: 

 1.5 ( )
16
vh L m= + ⋅ (2.4) 

where is the velocity (km/hr) and is the truck length (m). It must be 

recognized that their study is confined to long-span bridges, but their model is 

worthy of consideration nonetheless. Such a model only accounts for flow 

indirectly though the velocity, does not account for driver behaviour, and has 

no facility for site-specific modelling.  

The study by Vrouwenvelder and Waarts (1993) uses different headway models 

for different traffic conditions. They assume that, in free flowing conditions, the 

headway randomly lies in the range: 

 30 ( )L h L m≤ ≤ − (2.5) 

where the symbols have their previous meanings. Following a similar approach, 

for lengths up to 60 m, Nowak considers that gaps (headway minus the length 

of the lead vehicle) may be 4.5 or 9 m (Nowak at al 1991); may be 5 m 

conservatively, that is, bumper-to-bumper traffic (Nowak 1994); or, can vary 

between 5 and 30 m (Nowak 1993). These models may be reasonably realistic in 

terms of their acknowledgment of driver behaviour, but allow no facility for site-

specific modelling and are subjective. Furthermore, there is no facility for 

modelling long headways which have an effect on the occurrence of trucks in 

another lane. 



CHAPTER 2 – REVIEW OF THE LITERATURE 

27

Normalized Headway Model 

It is important to recognize that different headway distributions result from 

different truck flows – Figure 2.7(a) – and this has been noted in the literature 

(Bailey 1996, Crespo-Minguillón and Casas 1997, Grave 2001). Rather than 

fitting individual distributions for each flow, Crespo-Minguillón and Casas note 

that a single distribution resulted from consideration of a ‘normalized headway’, 

defined as the vehicles’ headway divided by the average headway for a given 

flowrate – Figure 2.7(b). This distribution may be subsequently altered for the 

particular flow of the period of interest and where γ is the mean normalized 

headway and is the flow (trucks/hour), is: 

 ( ) 1 e
3600

tQF t γ−⎡ ⎤= −⎣ ⎦ (2.6) 

(a) (b) 

Figure 2.7: (a) Different headway distributions and, (b) Normalized headway 

variable, for different flows (after Crespo-Minguillón and Casas 1997). 

For the sites mainly used in this study, Grave (2001) shows that, for the same 

flowrate, the distribution of headways is very similar. Further, Grave shows the 

effect of flowrate upon the headway distribution for the same sites and that in 

using the normalized headway distribution it is necessary to perform checks on 

the resulting trucks so that they do not overlap or come within 5 m. 
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2.3.3 Headways in traffic engineering 

The traffic engineering community has been studying the headway of vehicles 

for many years (Haight 1963, Banks 2003). The general models are as described 

above, along with other more complex models which allow mixing of constrained 

and free flowing traffic (Grave 2001, Anon. 2003). Thamizh-Arasan and Koshy 

(2003), acknowledge that different flows and different traffic types follow 

different headway patterns. Also, at low flow rates, interaction between vehicles 

takes place at longer headways than at higher flow rates (Gazis 1974). Banks 

(2003) notes that drivers’ different expectations of the traffic they are to face 

results in different headway distributions: in morning peak traffic there was no 

evident relationship between headway and speed, for speeds under 100 km/hr.  

Many authors (Lieberman and Rathi 1992, Jensen 2003, Gazis 1974, HRB 1965) 

discuss the motivational aspect to the headway distribution: the ratio of drivers’ 

actual- to desired-speed, and their aggression level, will affect how closely they 

are willing to drive to the vehicle in front. These factors affect the likelihood of 

overtaking, which in turn is controlled by the vehicle’s positioning relative to 

vehicles in target lanes, further affecting the headway distribution. Drivers are 

also willing to operate at the mechanical limit of their vehicles, resulting in 

modified headways which allow for potential rapid deceleration of the driver’s 

vehicle and the vehicle in front. Specifically of interest to this work, truck 

drivers exhibit different characteristics than other drivers: good route planning, 

commercial pressures, specialised training, high route familiarity and fatigue are 

factors affecting truck drivers. Also, the mechanical performances of trucks are 

known to be different – they are less able than other vehicles on the highway to 

respond quickly. All of these factors affect the headway distribution of trucks. 
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2.4 Determination of Extreme Load Effect 

2.4.1 Introduction 

The previous sections have examined the traffic models that are used in the 

literature to estimate bridge traffic load effect. The use of such models to 

determine lifetime load effect for a bridge, invariably involves some form of 

statistical analysis. It may be seen from Chapter 1 that the main objective of 

this work is the improvement of such statistical analyses. In this section, the 

statistical methods used in the literature are examined. Attention is given to 

areas of weakness in current practice that are addressed by this research. 

The methods of statistical extrapolation used in the literature are quite varied. 

A general observation is that European authors, in recent years, are agreed on 

the adoption of some form of extreme value analysis. Conversely, American 

publications on the topic (Moses 2001, Ghosn et al 2003) are greatly influenced 

by the work of Nowak who generally uses a form of normal probability paper 

extrapolation. There are of course exceptions to these observations in both 

continents. 

The following critique of the literature is broken into two sections: those dealing 

with extreme-value methods, and those using other methods. Such a layout 

reflects the importance of the extreme-value approach (Chapter 3) in this work. 

2.4.2 General statistical methods 

Harman and Davenport (1979) 

Harman and Davenport consider single to five-truck events separately and then 

combine the results. The histograms for load effects caused by the five different 

types of loading event are shown in Figure 2.8 and may be seen to be 
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considerably different. Also shown for each type of loading event, are the 

histograms from the measured traffic configuration and from simulated traffic. 

Figure 2.8: Histograms of load effect for different loading events, (a) – (e) 

represent 1- to 5-truck events (after Harman and Davenport 1979). 

In Section 2.5.1, the method used by Harman and Davenport is explained in 

more detail, in the context of the statistical background to this work. Briefly 
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however, the statistical analysis used is as follows. Harman and Davenport note 

that each mechanism may be represented by a negative exponential function 

and fit straight lines on log-scale paper to data points from the upper tail of the 

parent histogram – the plotting position method is not described nor is the 

arbitrary cut off level for the upper tail (see Figure 2.9). These functions are 

compared with Gaussian (normal distribution) functions fitted to the whole 

distribution but especially weighted to best fit the mean. 

Figure 2.9: Extrapolation method (after Harman and Davenport 1979). 
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Nowak 

Nowak has published widely on the subject of bridge load modelling. The truck 

survey carried out by Agarwal and Wolkowicz (1976) for the bridge load model 

of the Ontario Highway Bridge Design Code (OHBDC 1979) is used as the basis 

of most of the papers surveyed here: Nowak (1989), Heywood and Nowak 

(1989), Nowak et al (1991), Nowak and Hong (1991), and Nowak (1993). A 

contemporary truck survey is compared to the OHBDC survey in Nowak 

(1994).  The OHBDC survey consists of 9250 trucks, especially selected as they 

appeared to be heavily loaded. This is assumed to correspond with a two-week 

period of traffic for a busy highway (see Nowak 1993 for example). Therefore, 

for a design lifetime of 75 years (used in most of the cited papers), the number 

of two-week periods is reported as 1500 (Nowak and Hong 1991) and 2000 

(Nowak 1993). Based on these figures, the corresponding probabilities are 

reported as an inverse standard normal deviate as = 5.26 (Nowak and Hong 

1991) and = 5.33 (Nowak 1993). The reason for the difference is due to the 

differing estimates of the number of weeks in the 75 year bridge lifetime. 

Single- and two-lane shear force and bending moments are calculated for the 

trucks in the survey noted, taken individually. However, in the single-lane case, 

this is only done for spans up to 30 m as it is assumed that multiple trucks 

begin to feature thereafter (Heywood and Nowak 1989, Nowak and Hong 1991), 

though in later studies, the effect of headway is studied (Nowak 1993). 

Based on the truck survey data, the results for the load effects are plotted on 

normal probability paper (see Chapter 3) for different spans. In the papers 

Nowak (1989), Heywood and Nowak (1989), Nowak (1991), and Nowak and 

Hong (1991) it appears that straight lines, superimposed on the tails of the 

distributions plotted, are used to extrapolate the load effects. This is specifically 
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stated as the case in Heywood and Nowak (1989). However, in the same paper 

it is recognized that towards the tail of the distributions, curvature is evident. 

The authors suggest that an exponential distribution may provide a reasonable 

fit in this case. In the remaining papers, Nowak (1993) and Nowak (1994), it 

appears that curved lines on normal probability paper are used to extrapolate 

for the load effects of various return periods. This can be seen in Figure 2.10, for 

example. 

Figure 2.10: Load effect extrapolation for a range of spans (after Nowak 1993). 

Nowak (1993) states that the cumulative distribution functions of load effect are 

raised to a power to obtain the mean and coefficient of variation of the 

maximum load effect – as shown in Figure 2.11. It is possible that it is this 

method that is used to extrapolate on the normal probability paper, though it is 

not explicitly stated. In a reply to a discussion about the extrapolation methods 

used in Nowak (1994), Nowak (1995) states that extrapolations based on the 

normal distribution are not used; rather, the power transform is used. 
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(a) Mean maximum moment; 

(b) Coefficient of variation; 

Figure 2.11: Estimation of lifetime mid-span maximum moment 

(after Nowak 1993). 

Eurocode Background Studies 

The background studies carried out for Eurocode 1: Part 3, ra i  oads on 

rid es (EC 1: Part 3: 1994) generated significant interest in bridge traffic load 

modelling in Europe. The important papers are described here. 

Based on measured traffic samples, Bruls et al (1996) consider and compare 

several methods of extrapolation of the basic histogram of load effect: 
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• a half-normal curve fitted to the end of the histogram; 

• a Gumbel distribution fit to the tail of the histogram; 

• Monte-Carlo simulation of artificial traffic and Gumbel extrapolation. 

Flint and Jacob (1996) consider various methods also, some of which are applied 

to the loading on the bridge, rather than the load effects resulting. The methods 

considered are: 

• a half-normal curve fitted to the end of the histogram; 

• Rice’s formula for a stationary Gaussian process; 

• Monte-Carlo simulation of artificial traffic and Gumbel extrapolation. 

This last method, in the lists for both papers, amounts to an extreme value 

approach and will be considered further in Section 2.4.3. The half-normal and 

Gumbel distribution fits to the histograms suffer from some drawbacks as 

discussed in Section 2.4.4. 

Rice’s formula has been used extensively in the literature (Flint and Jacob 1996, 

O’Connor 2001, Cremona 2001, Getachew 2003). One of the problems involves 

the choice of a threshold (see Figure 2.12), above which data will be recorded. 

Given the histogram of the recorded data (see Figure 2.13), Cremona (2001) 

develops an optimal level ( 0x ) at which to set the threshold, based on 

minimization of the Kolmogorov-Smirnov statistic (see Figure 2.14). Getachew 

(2003) and Cremona (2001) describe the method in full. For the current 

purposes, it suffices to recognize that the fits depend on the threshold, the 

optimal level calculated, and the number and width of the histogram intervals. 
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Figure 2.12: Basis for Rice’s formula (after Cremona 2001). 

Figure 2.13: Histogram of out-crossings (after Cremona 2001). 

Figure 2.14: Basis of optimal fitting (after Cremona 2001). 
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Other Studies 

Vrouwenvelder and Waarts (1993) do not attempt to estimate the load effects 

that result from their derived simplified lane load model. The extrapolations 

carried out are for truck weights and presences. Considering the truck weights 

alone, the authors use a truncated (at the lower tail) Weibull distribution on 

the upper mode of the gross vehicle weight (GVW) histogram. It is this fit that 

is used to extrapolate for the truck weight at the return period. 

Even when sampling variability is removed, as in the case of the convolution 

methods noted earlier (Section 2.2.2), authors do not agree on the extrapolation 

method. Two such studies are described next. 

Fu and Hag-Elsafi (1995) describe a probabilistic convolution method to obtain 

bending moments for single truck events. These authors obtain the distribution 

of moment for 2 years of traffic with an annual average daily truck-flow of 2000 

vehicles. This is done by raising the original distribution to the power of 

2×365×2000 = 1.46×106.

Ghosn and Moses (1985) describe a Markov-Renewel process to convolute for 

the bridge load effect distribution. The authors adopt a 0.1 (2.4 hour) daily 

maximum as their extreme data which is then fitted using a normal distribution 

on normal probability paper. The distribution thus estimated is raised to the 

power of 10×365×50 to obtain the distribution of 50-year load effect.  

Raising distributions to a power to obtain an ‘exact’ distribution of maxima is 

normally a cause for concern (Section 2.4.4), but as the authors use a 

convolution method, it may be presumed that the tail of the parent distribution 

has been calculated carefully. Therefore there should be little inaccuracy 

introduced in the distribution of maximum load effects. 
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2.4.3 Extreme value theory based methods 

Introduction 

After the simulation and modelling of loading events, a statistical analysis is 

required to estimate the lifetime load effect. Extreme value theory provides a 

theoretical and practical framework to carry out this analysis and prediction. 

The extreme value theory utilized in extrapolating data to the return period 

required is well established. However it was not until recently that these 

theories were applied to the modelling of traffic loading on bridges. Many 

authors approach the problem by identifying the maximum load effect recorded 

during a loading event or in a reference period such as a day or a week, and 

then fit these maxima to an extreme value distribution. In all cases, the fitted 

distributions are used to extrapolate to obtain an estimate of the lifetime 

maximum load effect. This approach is based on the assumption that individual 

loading events are independent and identically distributed. 

Irish-Based Literature 

To determine the characteristic deflection of the Foyle Bridge, OBrien et al 

(1995) used 8 minute periods of measurements taken for each 4-hour rush hour 

period of a day. Each day of measurement is then represented by a 48 minute 

sample. The authors then consider the daily maximum deflection as an extreme 

value population. The Gumbel distribution is used to fit the data graphically on 

Gumbel probability paper. The extrapolation for the 1000-year return period is 

based on this distribution (shown in Figure 2.15). Interestingly, the authors 

establish the variance of the predicted load effect through the use of an 

empirical formula (Goda 1992). 
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Figure 2.15: Gumbel extrapolation for the Foyle Bridge  

(after OBrien et al 1995). 

Grave et al (2000) describe the population of extreme values as the load effects 

caused by the ‘critical’ loading events, though critical is not qualified. A 

weighted least-squares approach is used to fit Weibull distributions to these 

critical load effects. This process is repeated to give an estimate of the 

distribution of characteristics values, though this distribution is not given. It is 

possible that the critical events are determined in a manner similar to that of 

Grave (2001). In this work, the 100 worst load effects noted during a 5-day 

simulation period are assumed to form an extreme value population. The data is 

plotted on Gumbel probability paper and straight lines are fitted. Such 

distributions form the basis for the extrapolation. The author uses the upper 

2√n data points as recommended by Castillo (1988) for data that may not be 

convergent to an extreme value population. 

In the simulations carried out as part of his work, O’Connor (2001) fits Gumbel 

and Weibull distributions to a population of ‘extreme’ load effects. The author 

does not specify the manner in which the ‘extremes’ are determined. Maximum 

likelihood fitting is carried out on a censored population. O’Connor (2001) 
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censors for the upper √n, 2√n and 3√n data points (Castillo 1988), and notes 

that different estimates of lifetime load effect result from different censoring. 

In OBrien et al (2003), hourly maximum strain values are plotted on Gumbel 

probability paper. A least-squares, straight-line, fit is made to the upper 2√n

data points similar to O’Connor (2001) and Grave (2001). Also, González et al 

(2003) use the Gumbel and Weibull distributions to extrapolate bridge load 

effect. The population upon which the distributions are fit is not described.  

Getachew and OBrien (2005) fit the Generalized Extreme Value (GEV) 

distribution (Chapter 3) to the distribution of load effects from a number of 

simulated 2-truck meeting events representing two weeks of traffic. The fitting 

method is not identified, but is compared with histograms of load effect. 

Bailey 

Bailey has published widely on the estimation of traffic load on bridges. Most of 

the publications are based on his doctoral dissertation (Bailey 1996). The 

general approach is to use traffic models to derive load effects which are then 

statistically analysed. Bailey (1996) describes the use of plots of the mean and 

standard deviation of the load effects, as they change with the number of 

loading events, to estimate the appropriate extreme value distribution. Based on 

Bailey (1996), Bailey and Bez (1994 and 1999) describe a qualitative analysis of 

500 simulated upper tails of mean maximum load effects plotted against the 

number of events contributing (see Figure 2.16). They determine that the 

Weibull distribution is most appropriate to model these tails and used 

maximum likelihood estimation. They report that the Fréchet distribution has 

been used by other authors and that, in comparison to the Weibull distribution, 

this approach leads to an overestimation of the load effects. 
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Figure 2.16: Mean maximum moment from N load events (after Bailey 1996). 

Distributions are determined from the tail of the load effect histograms (though 

the tail region is not specified) by using fits based on a nonlinear least-squares 

technique – the Levenberg-Marqhuart method, described in Press et al (1993). 

Minimization of the chi-square statistic is used as the basis of the fit. The 

distributions thus determined are then raised to a power, as appropriate, to 

determine the distribution of maximum load effect (Bailey 1996, Bailey and Bez 

1994, Bailey and Bez 1999) for a given number of loading events. Bailey and 

Bez (1994) also describe a weighted sum technique to allow for different traffic 

conditions. 

Bailey and Bez (1999) and Bailey (1996) provide a parametric study of the 

parameters of the load effect distributions for many simulations. The results are 

used to express the parameters in terms of the traffic characteristics at the site. 
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Cooper 

Cooper has published widely on the bridge loading problem as it relates to the 

United Kingdom. In Cooper (1995), a traffic model of about 81 000 measured 

truck events, which represents one year of traffic, is used to determine the 

distribution of load effects due to a ‘single event’. The author raises this 

distribution to powers to determine the distribution of load effect for 1, 4, 16, 

256 and 1024 such events – where 1024 events is stated to roughly correspond 

with 4.5 days of traffic. A Gumbel distribution is then fitted to this 1024-event 

distribution and used to extrapolate to a 2400 year return period. 

Figure 2.17 shows this process, and the distribution of events obtained by 

raising the initial distribution to various powers is presented. It may be seen 

that two sharp peaks are progressively amplified as the power is increased 

(resulting in two sharp peaks in the distribution of 1024-event load effect). This 

is caused by sparse data in the tail of the initial distribution, amplified by the 

large power applied. This is an important limitation of the power method, and 

is returned to in Section 2.4.4.  

In Cooper (1997), histograms of two-week traffic load effects are obtained from 

measured WIM data. The histograms are converted into cumulative distribution 

functions (CDFs), which are then raised to a power equal to the number of 

daily trucks, to give the distribution of daily maxima (Figure 2.18). The points 

of the CDF are then plotted on Gumbel paper and a straight line is fitted 

(Figure 2.19). 
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Figure 2.17: Densities and CDFs of extreme effects (after Cooper 1995). 

Figure 2.18: Individual event CDF and daily maxima CDF (after Cooper 1997). 

Figure 2.19: Daily maxima CDF fitted to Gumbel distribution  

(after Cooper 1997). 

Other Work 

Crespo-Minguillón and Casas (1997) acknowledge the uncertainties involved in 

the extrapolation techniques of their contemporary literature. The authors plot 

the CDF of monthly maximum load effect on Gumbel probability paper and 
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note that it is not linear (Figure 2.20) – the plotting position method used is 

not stated and is not that of Chapter 3. The authors then adopt a peaks-over-

threshold (POT) approach and use the Generalized Pareto Distribution (GPD) 

to model the exceedances of weekly maximum traffic effects over a certain 

threshold. The fitting method adopted is a least squares approach, minimized on 

the empirical distribution estimate. An optimal threshold is selected based on 

the overall minimum least-squares value and it is the distribution that 

corresponds to this threshold that is used as the basis for extrapolation. 

Figure 2.20: Monthly maxima plotted on Gumbel paper 

(after Crespo-Minguillón and Casas 1997). 

In Moyo et al (2002) the authors record strain measurements on a bridge. The 

daily maximum strain values are plotted on Gumbel probability paper and a 

least-squares fit is used to determine the parameters of the daily maxima 

Gumbel distribution. The authors also employ a method for deriving improved 

plotting positions taken from wind loading literature (Cook 1982). 

Buckland et al (1980) use a Gumbel distribution to fit the 3-monthly maximum 

load effects and this is then used to extrapolate to any return period. 
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Getachew (2003) uses methods similar to those of O’Connor (2001). Gumbel 

and Weibull distributions are used to fit the “extreme” data (extreme is not 

qualified), and the results compared. The method given by Cremona (2001) is 

also used by Getachew (2003). 

2.4.4 Discussion 

It is clear that there are varying degrees of subjectivity in the literature. It does 

not induce confidence in the estimated lifetime load effect, when it is known 

that different decisions yield different results. It is one of the main objectives of 

this research to eliminate such subjective decisions in the statistical analysis of 

load effect data. It must also be recognized however, that subjectivity 

sometimes forms an essential part of any engineering solution to a problem, and 

Bardsley (1994) argues for this in the case of statistical extrapolation. 

Choice of Population 

It is important to choose a population that is in keeping with the limitations of 

the statistical model to be applied. In the works reviewed, Crespo-Minguillón 

and Casas (1997), Moyo et al (2002) and OBrien et al (1995) adhere to the 

recommendations of Gumbel (1958) for example. In these works, the form of the 

parent distribution is not established, and an extreme value distribution is fitted 

to the (presumed) population of maxima. Other authors surveyed describe an 

undefined ‘extreme’ population (O’Connor 2001, González et al 2003, Grave 

2001, Grave et al 2000, and Getachew 2003) which may or may not meet the 

requirements of the theory. OBrien et al (2003) use the hourly maximum, whilst 

Ghosn and Moses (1985) use 2.4 hourly maxima, to form the extreme 

population. In the light of the hourly variation of traffic this does not meet the 

requirements of the extreme value theory; the initial population cannot be 

considered as identically distributed. 
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Other authors surveyed do not adopt the asymptotic extreme value theory and 

estimate the initial, or parent, distribution. They then estimate the theoretical 

exact distribution of maxima (Chapter 3) by raising the parent distribution to 

an appropriate power. Such authors include: Bailey (1996); Bailey and Bez 

(1994 and 1999); Cooper (1995 and 1997), and; Getachew and OBrien (2005). 

The data upon which Nowak’s and Harman and Davenport’s result are based, 

represents a biased survey of trucks from 1976 and both sets of authors 

correctly identify this as a source of significant uncertainty (see, for example, 

Nowak 1993). 

Distribution of Extreme Load Effects 

Those authors that chose a sample of extreme values are faced with the problem 

of choosing a form of extreme value distribution. It is generally not 

acknowledged that, through use of the GEV distribution, such a decision is not 

required. Though Getachew and OBrien (2005) do use the GEV distribution, 

they use it to model the parent distribution of load effect, and not as an 

asymptotic approximation to the distribution extreme values. Therefore, the 

authors surveyed have introduced possible error by the adoption of different 

forms of extreme value distribution. It is recognized however (Bailey 1996, 

O’Connor 2001, for example), that traffic load effects normally exhibit Weibull-

type behaviour and the authors that use this model are probably more accurate. 

This is not the general case however. 

Other authors surveyed attempted to calculate the exact distribution of extreme 

load effect, based on a fit to the parent distribution (Bailey 1996; Bailey and 

Bez 1994 and 1999; Cooper 1995 and 1997; Getachew and OBrien 2005; Ghosn 

and Moses 1985; Nowak and Hong 1991; Nowak 1993). This is done by raising 

the initial distribution to an appropriate power. It is to be noted that Getachew 
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and OBrien (2005) do not do this but estimate the characteristic value directly 

from the parent distribution. The procedure followed by these authors is 

problematic in the light of the arguments of Coles (2001b) and Castillo (1988) 

which state that fitting parent distributions and raising them to a power to 

obtain an ‘exact’ distribution of maxima is inaccurate in most situations. This is 

so because the extreme tail may be of different form to the overall parent and 

consequent tail-fitting errors are raised to the same power. Therefore the 

resulting distribution may be significantly erroneous. Such problems can be seen 

in the work by Cooper (1995), reproduced in Figure 2.17. In this figure, it can 

be seen that a slight undulation in the 1-event distribution tail (more clearly 

observable in the tail of the 16-event PDF) becomes two sharp peaks in the 

distribution of the 1024-event load effect. Sparsity of data in the tail of the 

initial distribution (by definition) is the cause of this. Indeed, Cooper avoided 

compounding this error by raising the original distributions to a power, rather 

than using fitted distributions. 

Nowak and Hong (1991) and Nowak (1993) also raise the distributions to the 

power of the number of repetitions of the survey: 1500 and 2000 respectively 

even though both studies are based on the same data and are estimating load 

effects for the same return period (75 years). 

Estimation 

The methods used in the examined literature to estimate, or fit, the parameters 

of the chosen distribution(s) to the data, are considerably varied. This is 

surprising as the statistical literature recognizes that the method of maximum 

likelihood gives minimum-variance estimates in general (Chapter 3). Only 

O’Connor (2001) appears to use maximum likelihood estimation. 
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Many of the authors use ‘graphical’ (but not necessarily graphed) methods to fit 

the data – that is, a vector of ( )ˆ,x y pairs representing the distribution is fitted 

to the ( ),x y� pairs representing the data. However, it is clear that data only 

provides the x-ordinates of its pairs – the y-ordinates are established through 

various plotting position formulae. Gumbel (1958) and Castillo (1988) discuss 

the choice of plotting position. Therefore, regardless of the actual fitting 

algorithm, subjectivity has been introduced. This is the case for OBrien et al 

(1995), Grave et al (2000), Grave (2001), OBrien et al (2003), Cooper (1995 and 

1997), Moyo et al (2002), and Crespo-Minguillón and Casas (1997). The fitting 

algorithms used by these authors are all based on a form of least-squares fitting. 

Some authors introduce subjectivity by basing their fits on ‘binned’ data; data 

grouped according to arbitrary (though regular once chosen) intervals of some 

value – the bin width. The application of Sturge’s Rule (Benjamin and Cornell 

1970) may reduce the effect, but it remains an area of subjectivity. Bruls et al 

(1996), Cooper (1995 and 1997), Cremona (2001), Flint and Jacob (1996), 

Getachew (2003), Getachew and OBrien (2005), O’Connor (2001), and 

Vrouwenvelder and Waarts (1993) fit distributions directly to histograms. 

Grave (2001) notes correctly that the form of distribution which results is 

greatly influenced by the number of intervals chosen, and O’Connor (2001) 

notes sensitivity of predicted extremes to the number of intervals. Further, as 

these distributions are fit to all, or a significant part, of a histogram of interest, 

the fit to the extreme values is not emphasized – by the very nature of extreme 

values. Therefore, such fits do not represent the extreme values well. Also, by 

raising such fits to a power amplifies the errors, as discussed earlier. The chi-

squared fitting used by Bailey (1996) and Bailey and Bez (1994 and 1999) also 

requires the data to be ‘binned’ and the same problems therefore apply. 
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Choice of Thresholds 

Many of the authors reviewed make decisions (and therefore introduce 

subjectivity) regarding various threshold choices. For instance, O’Connor 

(2001), Grave (2001), Grave et al (2000), OBrien et al (2003), Bailey (1996), 

and Bailey and Bez (1994 and 1999) fit the distributions to ‘tail’ data only. In 

some cases the decisions as to what constitutes tail data is not stated; in others 

the decision is based on Castillo’s suggestion (Castillo 1988). Crespo-Minguillón 

and Casas (1997) are an exception to this as their model inherently requires the 

selection of a threshold, and their choice is rationally based on the overall least-

squares value for all the thresholds considered. 

Nowak also relies on extrapolating from the tails of load effect distributions. 

The level at which the tail (upon which the extrapolation is to be based) starts 

is not stated. The normal distribution-based extrapolations of the earlier papers 

(Heywood and Nowak 1989, for example) are therefore subjective to implement. 

Summary 

It can be seen that most authors exhibit sources of error under several of the 

categories and the errors in such works are therefore compounded. This has an 

effect on the characteristic load effect estimated from such methods. Also, it is 

clear that many authors describe subjective choices in their analyses. 
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2.5 Statistical Background 

2.5.1 Composite Distribution Statistics 

Introduction 

Load effects can be the result of any number of loading events involving 

different numbers of trucks. In general, a load effect due to the passage of a 

single vehicle has a different distribution to that induced by the occurrence of 

multiple vehicles (see Figure 2.8 for example). Multiple truck presence events 

usually yield critical load effects. Normally, it is the maximum per day load 

effect that is used as the basis for the extreme value analysis which assumes 

independent and identically distributed (iid) data. Therefore, to mix load effects 

from different types of loading events violates the iid assumption used in 

extreme value analysis. 

The problem of mixing different statistical generating mechanisms in an extreme 

value analysis has been examined by previous authors in different fields and 

their work is examined in this section. 

Gumbel (1958) 

In his summary, Gumbel (1958) states that “the initial distribution […] must be 

the same for each sample”. Gumbel gives an example of the “the two sample 

problem” – a study of river discharges, where one series of floods is due to the 

melting of snow in the spring, and the other to autumnal rainfalls. Gumbel’s 

approach to the problem is described as: take the largest value of each of two 

large samples, thus forming a couple. By repetition, obtain many such couples 

and then, for each couple, take the largest value. It is the distribution of this 
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final variable that is of interest. Gumbel notes that this distribution is the 

product of the two initial distributions of largest values. 

Gumbel’s reasoning is based on the following development. The basic results of 

probability (described in Chapter 3) state that for a value x and N random 

variables, 1, , NX X… :

[ ] [ ]1
1

, ,
N

N i
i

P x X x X P x X
=

≥ ≥ = ≥∏… (2.7) 

 [ ] [ ]1
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, ,
N

N i
i

P x X x X P x X
=

≤ ≤ = ≤∏… (2.8) 

This is so, regardless of the ‘type’ of random variable, iX . That is, it is 

irrelevant whether iX represents an extreme population or a parent population. 

Equation (2.8) is more useful, due to its relationship with the cumulative 

probability function (Chapter 3). Therefore, 

 ( ) [ ] ( )1
1

, ,
i

N

C N X
i

F x P x X x X F x
=

= ≤ ≤ =∏… (2.9) 

where ( )
iXF x represents the distribution of load effect resulting from different 

types of truck loading events, and so ( )CF ⋅ is the composite distribution of load 

effect. The load effect considered can be extreme or parent. 

Wind Speed Analysis 

The analysis of maximum wind speed is complex due to its nature. There are 

some similarities, though, with the bridge loading problem. Through study of 

the approaches taken in the wind speed literature, methods for analysing bridge 

loading can be adapted. Two of the more important papers are described next. 
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Gomes and Vickery (1978) 

The work of Gomes and Vickery (1978) provides a direct analogy between the 

wind speed and bridge loading problems. They describe the problem of 

estimating the distribution of extreme wind speeds in mixed wind climates – 

climates in which wind may be caused by extensive pressure system storms, 

thunderstorms, hurricanes or tornados. They use the Gumbel distribution 

(Chapter 3) to model the extreme wind speeds from each of the mechanisms 

that occur at a particular site, and combine, without proof, as follows (in their 

notation): 

 [ ]
1

Q

M q
q

P V v P V v
=

⎡ ⎤≤ = ≤⎣ ⎦∏ (2.10) 

where qV is the annual maximum gust speed of the qth meteorological 

phenomenon and MV is the annual maximum gust speed, regardless of the 

source. [ ]XP V v≤ is the cumulative distribution function of the variable X.

Also of importance in their paper, Gomes and Vickery consider the annual 

maximum gust speed from thunderstorms, with an unknown number of 

thunderstorms in any given year. Adapted slightly here, they derive the 

distribution of annual maximum gust speed from thunderstorms as: 

 ( ) ( ) ( )
0

n
T T NG v F v f n dn

∞

⎡ ⎤= ⎣ ⎦∫ (2.11) 

where ( )TF ⋅ is the parent distribution of thunderstorm gust speed and ( )Nf ⋅ is 

the probability density function of the number of thunderstorms per year, N.

Clearly a functional form of (2.11) may be difficult to obtain and include in 

(2.10). Gomes and Vickery (1978) report a study which shows that 
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approximating the distribution of N by its mean value does not result in 

significant inaccuracy. Hence (2.11) may be written as: 

 ( ) ( ) N
T TG v F v⎡ ⎤≈ ⎣ ⎦ (2.12) 

where N is the mean value of N. Gumbel (1958) describes a similar formulation 

to (2.11) for the exact distribution of maxima when the sample size itself is a 

random variable. 

Cook et al (2003) 

The paper by Gomes and Vickery (1978) was considered in detail by Cook et al 

(2003) in the light of more recent developments in statistics. Of note in this 

work, is their proof of (2.10), described next. 

The authors consider two mechanisms; A and B which give values AV and BV

and in general, for a given period, a pair of events { },A BV V can occur. Thus, 

there are four possible outcomes. Representing ∅ as the null set, the events are: 

1. No events from either mechanism, { },∅ ∅ ;

2. An event from both mechanism, { },A BV V ;

3. An event from A only, { },AV ∅ ;

4. An event from B only, { }, BV∅ .

Given that the duration of the sampling period will be long enough such that an 

event from both mechanism occurs, the authors show that: 

 ˆ ˆ ˆ
A BP V v P V v P V v⎡ ⎤ ⎡ ⎤ ⎡ ⎤≤ = ≤ × ≤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (2.13) 

They extend this to the general case by induction: 
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This proof includes acknowledgement of the temporal aspect of the sample space 

considered. However, it is approximate as it considers the relative frequency of 

each of the possible outcomes, rather than the relative frequency of each of the 

mechanisms themselves. The authors solve this by modifying the contribution to 

(2.14) of a mechanism by considering its occurrence as a Poisson process. 

Harman and Davenport (1979) 

The study by Harman and Davenport noted earlier, also recognizes the 

composite nature of the bridge loading problem. In revised terminology, the load 

effect caused by the i-truck event has cumulative distribution function ( )iF ⋅ and 

the event has probability of occurrence, if . The distribution of load effect 

greater than a value, r, is then ( ) ( )1i iF r F r≡ − . Therefore, the ‘complete’ 

distribution of load effect greater than r is given by Harman and Davenport as: 

 ( ) ( )
5

1
C i i

i
F r f F r

=

= ⋅∑ (2.15) 

which is an application of the theorem of total probability (Chapter 3). The 

cumulative distribution function of the largest load effect from a sample of size 

n is then given by: 

 ( ) ( ) ( )1 exp
n

C CG r F r nF r⎡ ⎤ ⎡ ⎤= − ≅ −⎣ ⎦ ⎣ ⎦ (2.16) 

which is reasonable for large n. Substitution of  (2.15) into (2.16) yields: 

 ( ) ( )
5

1

exp i i
i

G r nf F r
=

⎡ ⎤= −⎣ ⎦∏ (2.17) 

Section 2.4.2 describes the log-scale paper fitting procedure used by Harman and 

Davenport, based on (2.17). 
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2.5.2 Predictive Likelihood 

Introduction 

The relatively new theory of frequentist predictive likelihood can be used to 

estimate the variability of the predicted value, or predictand. Applications of 

predictive likelihood to real-world problems are sparse. Davison (1986) presents 

one in the context of his revised form of predictive likelihood. Lorén and 

Lundström (2005) present the only full paper (obtained for this work) on the 

application of predictive likelihood techniques; in their case, to the prediction of 

fatigue limit distributions for metals. 

Fisher (1956) is the first clear reference to the use of likelihood as a basis for 

prediction in a frequentist setting. A value of the predictand (z) is postulated 

and the maximized joint likelihood of the observed data (y) and the predictand 

is determined, based on a model with parameter vector θ . The graph of the 

likelihoods thus obtained for a range of values of the predictand yields a 

predictive distribution. Such a predictive likelihood is known as the profile 

predictive likelihood. Denoting a normed likelihood by ( );L xθ this is given by: 

 ( ) ( ) ( )| sup ; ;P y zL z y L y L z
θ

θ θ= (2.18) 

It is to be noted that likelihood is not a probability and so the usual conditional 

probability rule does not apply. Mathiasen (1979) appears to be the first to 

study Fisher’s predictive likelihood and notes some of its problems. Foremost for 

this work is the problem that it does not take into account the parameter 

variability for each of the maximizations of the joint likelihood function required 

(Lindsey 1996, Bjørnstad 1990). Lejeune and Faulkenberry (1982) propose a 

similar predictive likelihood, but include a normalizing function. 
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Predictive likelihood is a general concept (see Berger and Wolpert 1988) and in 

the literature many versions have been proposed. The paper by Bjørnstad 

(1990) is seminal in predictive likelihood for it collects all of the literature and 

examines each of the predictive likelihoods proposed. Bjørnstad notes that the 

Fisherian predictive likelihood of (2.18) “plays a central role in prediction”. The 

other predictive likelihoods considered by Bjørnstad are those based on 

sufficiency principles put forth by Lauritzen (1974), Hinkley (1979) and Butler 

(1986). Based on the Lauritzen-Hinkley definition, Cooley and Parke put 

forward a number of papers dealing with the prediction issue (Coole and Parke 

1987, Cooley et al 1989, Cooley and Parke 1990). However, their method relies 

on the assumption that the parameters are normally distributed, and they use 

Monte-Carlo simulation as a result. Leonard (1982) suggests a similar approach. 

Davison (1986) provides a relevant example of the application of predictive 

likelihood methods to river discharges and wave heights. Though he uses a 

different form of predictive likelihood, the explanation of his approach with the 

GEV distribution (Chapter 3) is important to this work. 

2.5.3 Multivariate Extreme Value Analysis 

Allowing for the effect of the dynamic interaction between the bridge and the 

trucks which form a loading event is essential to determine the total load effect 

to which the bridge is be subject. As part of a study described in Chapter 8, 

dynamic interaction simulations are described for 10 years of monthly maximum 

events. To determine the lifetime total load effect for the bridge, the correlation 

between static and total load must be accounted for. As extreme values of two 

correlated variables are required, multivariate extreme value analysis is adopted. 
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The study of multivariate extreme value theory began in the 1950s (Galambos 

1987). Coles (2001a) and Galambos (1987) agree that the work of Tiago de 

Oliveira was essential to its development – refer to Coles (2001a) and Galambos 

(1987) for references to his work. 

An approach to the modelling of bivariate extreme value distributions, including 

consideration and estimation of several dependence structures, is presented by 

Tawn (1988). Several general models of extreme value distributions are 

examined by Tawn (1990) who also presents an application – the modelling of 

tri-variate extreme sea level data. Large dimensional problems in multivariate 

extreme value modelling are considered by Embrechts et al (2000). In this 

paper, the authors also present an application in the field of sea level analysis 

for flood protection. Coles and Tawn (1991) present a generalization of the 

peaks-over-threshold (POT) approach to the modelling of multivariate extreme 

values.  

Capéraà et al (1997) present the modelling and estimation of extremal 

dependence functions. Klüppelberg and May (1998) also discuss the bivariate 

dependence functions and state that the only possible models are the mixed and 

logistic classes. Coles et al (1999) also discuss the dependence functions used in 

multivariate extreme value analysis. A thorough presentation of multivariate 

extreme value analysis and the modelling of dependence through the use of 

dependence structures and copulas is given by Demarta (2002). Segers (2004) 

also discusses the estimators of use for the bivariate extreme value dependence 

function of Pickands (1981) whilst Hefferenan (2005) gives a review of the 

dependence measures used in multivariate statistical modelling in recent years.  

Literature on the statistical computational aspects of multivariate extreme value 

statistics is sparse. Stephenson (2004) presents a user guide to R (R
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Development Core Team 2005) software for the analysis of multi- and uni-

variate extreme analysis. The guide gives several applications of the theory and 

serves well as a collection of examples, and an introduction to the theory. 

Nadarajah (1997) and Stephenson (2003) both describe procedures to simulate 

multivariate extreme value distributions. This is important for the application 

of bootstrapping methods to the problem 

There have been several applications of the theory, mostly in the statistical 

literature. Hawkes et al (2002) discuss the use of multivariate extreme value 

theory in estimating coastal flood risk due to combinations of high tides and 

wave surges. An application of bivariate extreme value analysis to the wave 

height and sea level problem of coastal flood defence is presented by Draisma 

and de Haan (2004). Zachary et al (1998) use the theory to estimate the loads 

caused on offshore structures by combinations of wave height, wave period and 

wind speed. An application of multivariate extreme value theory to structural 

design problems is considered by Coles and Tawn (1994); a detailed application 

to coastal engineering is presented. Also, Gupta and Manohar (2005) use 

multivariate extreme value theory in the analysis of random vibration problems. 

Specifically, a two span bridge subject to earthquake support motions is 

examined. 

The multivariate extreme value analysis used in this work is based mainly on 

the work of Stephenson (2003 and 2004). The software developed as part of 

Stephenson’s work has been used here – the evd library for the R (R

Development Core Team 2005) language. Stephenson’s work is, in turn, based 

on that of the many authors mentioned previously, most notably the work of 

Coles and Tawn. 
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2.6 Summary 

This chapter presents the background literature to the various aspects of this 

research project. Initially, the contemporary work in the field of bridge traffic 

load models is presented, followed by some discussion. One area of significant 

development of such models is presented in detail as it forms a substantial part 

of the current research: that of headway modelling. The literature for the main 

theme of this work is then presented – methods of statistically analysing the 

results of bridge traffic load simulations. An extensive discussion is provided, in 

which various problems with the current methods are outlined. Following this, a 

section outlining the background statistical literature of this work is presented. 

General statistical literature is not presented, rather, the literature specific to 

the main areas of use in this work. General statistical literature is discussed in 

Chapter 3 instead. 
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“Statistics in the hands of an engineer are like a 
lamppost to a drunk—they're used more for support 
than illumination”        - AE Housman 
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Chapter 3 - FUNDAMENTAL PROBABILISTIC METHODS 

3.1 Introduction 

Karl Pearson (1920) posed “the fundamental problem of statistics” as follows: 

An ‘event’ has occurred p times out of p + q = n 
trials, where we have no a priori knowledge of the 
frequency of the event in the total population of 
occurrences. What is the probability of its occurring 
r times in a further r + s = m trials? 

That Pearson’s ‘problem’ applies to the bridge loading problem is immediately 

apparent. Note also that prediction is an integral part to this “fundamental 

problem” – just as it is to the bridge loading problem. This chapter presents the 

background material necessary for the development and presentation of the 

statistical analyses used to solve Pearson’s “fundamental problem”.  

Initially, the fundamental definitions of any random experiment are given, 

followed by the mathematical tools need to operate on random experiments. 

Inference from the outcomes of a statistical experiment is then considered: the 

method of maximum likelihood, which is of central importance to this work, is 

presented here. Following this, the statistics of extreme values is introduced and 

the basic definitions and limitations of the theories outlined. Finally, the 

problem of predicting future outcomes of a statistical experiment is addressed. 

The material introduced herein forms the background to the analyses carried 

out by many other authors in this field, as may be seen from Chapter 2. 
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3.2 Basic Results 

The fundamentals presented in this section are required for further 

developments in this work as a whole. Standard texts that may be referred to 

for more information on these basic results are Mood et al (1974) and Ang and 

Tang (1975). Other highly relevant texts are Castillo (1988), Lindsey (1996), 

Coles (2001a), Cox and Hinkley (1974), Feller (1968), and Azzalini (1996). 

3.2.1 Probability, events and sample spaces 

The classical, or frequency definition of probability is: 

If a random experiment can result in n mutually exclusive and equally 

likely outcomes and if nA of these outcomes have attribute A, then the 

probability of A is the fraction nA/n.

The sample space is the collection of all possible outcomes of an experiment. 

Considering an experiment with a single die, the sample space would the 

integers 1 to 6, representing the six possible faces of the die. Sample spaces may 

be finite with discrete points, or infinite with continuous ‘points’. 

The terminology ‘event A’ is used to represent an outcome of a statistical 

experiment that has attribute A. The event space, A , is defined as the 

collection of all permutations of events, or the collection of all subsets of the 

sample space. The sample space itself is a subset of the event space. 

A probability function, [ ]P ⋅ , is a set function with a domain of the event space 

and counterdomain the interval [0,1] on the real number line. [ ]P A represents 

the probability of event A. Where Ω represents the sample space of an 

experiment, [ ] 1P Ω = , by definition. A probability space, denoted [ ]( ), , PΩ ⋅A ,
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describes the sample space, event space and probability function, respectively, 

for a given random experiment. 

Given two events, A and B in A , the conditional probability of event A given 

that event B has occurred is defined as: 

 [ ] [ ]
[ ]

|
P AB

P A B
P B

= (3.1) 

The division by [ ]P B is equivalent to a re-scaling of the sample space for A.

Conditional probabilities appear when an outcome is dependant on another 

outcome. 

Figure 3.1: Illustration of the theorem of total probability 

The theorem of total probability, illustrated in Figure 3.1, is defined as: 

For a given probability space [ ]( ), , PΩ ⋅A , if 1 2, , , nB B B… is a collection of 

mutually exclusive events in A , satisfying 
1

n

i
i

B
=

Ω =∪ and [ ] 0iP B > for 

1, 2, ,i n= … , then for every A∈A ,

[ ] [ ] [ ]
1

|
n
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i

P A P A B P B
=

= ⋅∑ (3.2) 
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In the cases where A does not depend on B, [ ] [ ]|P A B P A= , and the events A

and B are therefore independent. For several events, and using (3.1), 

independence is defined as: 

For a given probability space [ ]( ), , PΩ ⋅A , if 1 2, , , nA A A… is a number of 

events in A , then these events are said to be independent if and only if: 

 

[ ]
[ ] [ ]

[ ]
11

i j i j

i j k i j k

n n

i i
ii

P A A P A P A

P A A A P A P A P A

P A P A
==

⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎣ ⎦

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∏

�

∪

(3.3) 

Independence of events features largely in this research and the above definition 

is of central importance. 

3.2.2 Random variables and distribution functions 

Often it is not the occurrence of a particular event that is of interest, but 

rather, the value of an attribute realised by the event: 

For a given probability space, [ ]( ), , PΩ ⋅A , a random variable, denoted X

or ( )X ⋅ , is a function with domain Ω and counterdomain the real 

number line. 

A random variable links the sample space with a unique real number; 

consequently all outcomes are described numerically. Another function is 

required to relate the realized value of the random variable to a probability: 
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The cumulative distribution function of a random variable X, denoted 

( )XF ⋅ , is that function with domain the real line and counterdomain the 

interval [0,1] which satisfies ( ) [ ] ( ){ }:XF x P X x P X xω ω⎡ ⎤= ≤ = ≤⎣ ⎦ .

( ){ }: X xω ω ≤ is read as the set of all points ω for which ( )X xω ≤ . The 

cumulative distribution function will normally be abbreviated to CDF. It is the 

cumulative aspect of this function (the ‘≤ ’) that urges another definition: 

The probability density function of a random variable X, denoted ( )Xf ⋅ ,

is that function defined by: 

 
( ) [ ] [ ]( )

( )
0

limX

X

f x P X x P X x

d F x
d x

Δ→
= ≤ + Δ − ≤

=
(3.4) 

The probability density function is abbreviated as PDF. It is to be noted that 

the above definitions relate to continuous random variables. The relationship 

between CDF and PDF is thus defined as: 

 ( ) ( )
x

X XF x f u du
−∞

= ∫ (3.5) 

There are many forms of distributions and any of the textbooks given at the 

start of this section may be referred to for further information. 

3.2.3 Probability paper 

Graphical methods for the analysis of statistical data have a long history and an 

important place even in modern techniques; the histogram being the most 

prevalent – see Coles (2001a) for example. In this work, data and their 

corresponding statistical models are usually graphed on probability paper; a 
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graph in which the x-axis is in arithmetic scale, and the data is plotted at its 

value. The y-axis is modified to give the standard variate of the distribution 

under study, such that, when the data is plotted, a straight line reveals 

adherence to the distribution. 

The plotting position of the data on probability paper is governed by the 

empirical distribution function: the CDF of a data set, 1, , nx x… . When the data 

is arranged in increasing order, for any one of the ix exactly i of the n

observations have a value less than or equal to ix , therefore the cumulative 

probability is given by: 

 [ ] ( )
1i i

i iP X x F x
n n

≤ = = ≈
+

� (3.6) 

The adjustment is made such that ( ) 1nF x ≠� . The right hand side of (3.6) is the 

empirical probability. It is this probability that is used to identify the plotting 

position. Gumbel (1954) and Castillo (1988) discuss many other plotting 

positions. The choice of plotting position is not as important as it once was, as 

most inference is now done numerically rather than graphically. 

Gumbel probability paper will be mostly used in this work and the Gumbel 

distribution is given by: 

 ( ) exp expI
xG x μ
σ

⎡ ⎤−⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(3.7) 

The standard Gumbel (or extremal) variate is: 

 xs μ
σ
−

= (3.8) 
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Therefore, the standard extremal variate, corresponding to the probability from 

the Gumbel distribution, s , and the empirical distribution, s� , for a given data 

point, x, may be plotted on the y-axis once the following inversions are applied: 

 
( )( )
( )( )

ln ln

ln ln

Is G x

s F x

⎡ ⎤= − −⎣ ⎦
⎡ ⎤= − −⎣ ⎦

��
(3.9) 

Should the extremal variates correspond for each of the data points, a straight 

line results. Thus, the comparison of the fitted data may be got by drawing a 

straight line through the data points. Figure 3.2 illustrates the concept: a 

straight line is fitted through the data points (in this case by maximum 

likelihood – see section 3.3.2). The left y-axis gives the standard extremal 

variate whilst the right y-axis gives the cumulative probability. The x-axis 

corresponds to the data values. 
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Figure 3.2: Gumbel paper probability plot. 



CHAPTER 3 – FUNDAMENTAL PROBABILISTIC METHODS 

68

It was previously stated that Gumbel paper is used, almost exclusively, in this 

research. However, it is not usually the Gumbel distribution being fit – rather 

the Generalized Extreme Value (GEV) distribution. This is a more flexible 

distribution that may exhibit curvature on Gumbel paper (or probability plot). 

Upward curvature reveals an asymptote to an x-axis value – corresponding to a 

physical limit on the statistical process. A curve asymptotic to a y-axis value (as 

well as a straight line) corresponds to a statistical mechanism with no physical 

limitation. Figure 3.3 gives two examples of GEV distributions plotted on 

Gumbel paper. 
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Figure 3.3: GEV distributions plotted on Gumbel probability paper: (a) 

bounded, and; (b) unbounded. 
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3.3 Statistical Inference 

Azzalini (1996) defines statistical inference as the operation through which 

information provided by a sample of a population is used to draw conclusions 

about the characteristics of that population. The population is defined as the 

totality of elements about which information is desired, and the sample is 

defined as a collection of observed random variables taken from the population.  

The following example will be developed through the following sections:  

consider a container holding 5000 small balls which are either black or white, of 

which the proportion of black balls is required. Rather than examining each of 

the 5000 balls, a sample could be taken at random from the container. Azzalini 

(1996) describes the reasons why this is often preferable. Suppose that 50 balls 

are drawn at random, of which 4 are found to be black. The proportion of black 

balls is ˆ 4 / 50θ = , in which the ‘hat’ notation shows that this is only an estimate 

of the true parameter value. It is reasonable to think that drawing another 

sample of 50 balls may not result in the same value for θ . However as of yet, it 

is the best estimate of the proportion of black balls in the population. Another 

issue is the sample size, and the amount of information it holds about the 

population: should 100 balls have been drawn and 8 found to be black, it is 

intuitive to expect extra ‘information’ about the estimate of θ from this larger 

sample. 

Approximating the hypergeometric distribution with the binomial distribution 

(valid for the size of the sample), the probability that the random variable Y

yields the observed number of black balls, y, is: 

 [ ] ( )5050
1 yyP Y y

y
θ θ −⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 (3.10) 
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Approximating the set of possible values for θ as the interval [0,1] , it can be 

seen that (3.10) represents a family of probability distributions for each value of 

the parameter θ . Inference is identifying the true distribution of Y through 

estimation of the parameter θ (Silvey 1970, Lindsey 1996). 

The Likelihood method of inference is mainly used in this work. As will be 

shown, it is a robust, accurate estimator with excellent asymptotic properties. It 

is also a minimal sufficient statistic (Zacks 1971) – it contains as much 

information about the distribution of the data as the data itself (Mood et al 

1974). There are some known cases in which likelihood can give anomalous 

results (see for example, Zacks 1981), but these do not affect the work herein. 

3.3.1 Likelihood 

Edwards (1992) gives the first example of a likelihood argument and attributes 

it to Daniel Bernoulli, who states: “…one should choose the one which has the 

highest degree of probability for the complex of observations as a whole”. 

Edwards (1992) himself also defines likelihood informally: “Our problem is to 

assess the relative merits of rival hypotheses in the light of observational or 

experimental data that bear upon them”. Fisher first defined mathematical 

likelihood in 1912 in an undergraduate essay and continued to advance it, 

culminating in his paper “On the Mathematical Foundations of Theoretical 

Statistics” in 1922 (Fisher 1922, Alrich 1997). Fisher’s idea is to examine the 

probability of having observed the data that was observed, given the proposed 

probability model. For a probability density ( );Xf x θ – where the notation 

indicates that the density is a function of the parameter (or vector of 

parameters) of the model – the likelihood of having observed a particular 

realization x is defined as: 
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( ) ( ) ( ) ( ); ;L L x c f xθ θ θ θ= = ⋅ (3.11) 

where the notation emphasizes the dependence of the density upon the 

parameter, and similarly for the likelihood upon the data. The multiplicative 

constant is required to make the probability density a probability for each data 

point. For the set of n sample values the probability of having observed the 

observed values is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1

; ; ; ;

; ;

n

n

i
i

L x c f x f x f x

L x c f x

θ θ θ θ θ

θ θ θ
=

⎡ ⎤= ⋅ ⋅ ⋅ ⋅⎣ ⎦

= ⋅∏

…

(3.12) 

In practice it is more convenient to work with the log-likelihood to avoid the 

multiplicative nature of the likelihood function: 

 ( ) ( ) ( ) ( )
1

; log ; log ;
n

i
i

l x L x c f xθ θ θ θ
=

= = +∑ (3.13) 

Generally the constant ( )c θ is not involved in any calculations using likelihood 

as one seeks knowledge of relative likelihoods and c is thus not relevant. 

Returning to the example of the 5000 balls, it can be seen that for the single 

observed value 4y = , equation (3.10) corresponds to (3.11) and is thus the 

likelihood function for the parameter θ . This is graphed in Figure 3.4(a) which 

shows an increased likelihood for a parameter value around 0.05 to 0.10, relative 

to other possible values of the parameter. Also shown is the likelihood function 

for the case when the number of samples is 100 and the number of observed 

black balls in this sample is 8, as are the graphs of the likelihood ratio, which is 

the likelihood function, normalized on its maximum value, and the log-

likelihood, for comparison. 
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Figure 3.4: Likelihood functions for the ‘ball’ example: (a) absolute likelihood; 

(b) relative likelihoods, and; (c) log-likelihoods. 

The question regarding the amount of ‘information’ held in the data was raised 

previously: more information regarding the ‘true’ value of θ should surely be 

available from a larger sample. Trivially, if the sample is the total population, 

then the amount of information about θ is at a maximum. This increase of 

information may be seen in the likelihood ratio and log-likelihood graphs – the 

width of the 100n = curve is less than that of the 50n = curve. This means a 

smaller range of likely parameter values, at any level of relative likelihood, 

results from the larger sample size, than for the smaller. Thus the 100n = curve 

holds more information about the true parameter value, as expected. 
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3.3.2 Maximum likelihood and Fisher information 

A mathematical definition of the information contained in the sample may be 

obtained by considering the log-likelihood function: the value of the parameter 

that maximizes the likelihood function is most likely to be the ‘true’ parameter 

value. This is the Method of Maximum Likelihood. A parameter value found in 

this way is denoted θ̂ to emphasize that it is an estimate; the notional ‘true’ 

value of the parameter is denoted 0θ . Using the log-likelihood function, the 

maximum likelihood estimate (MLE) of a parameter is the value that satisfies: 

 
( );

0
d l x

d
θ
θ

= (3.14) 

Geometrically this is the slope of the tangent to the log-likelihood curve at its 

maximum (Figure 3.4). Using a Taylor series approximation about the MLE, 

the log-likelihood function is approximated as: 

 ( ) ( ) ( ) ( ) ( ) ( )2
2

2

ˆ ˆ1ˆ ˆ ˆ
2

d l d l
l l

d d

θ θ
θ θ θ θ θ θ

θ θ
= + − ⋅ + ⋅ − ⋅ + … (3.15) 

having dropped the dependency notation for brevity. Then approximately, 

incorporating (3.14) and dropping third-order and higher terms: 

 ( ) ( ) ( ) ( )2
2

2

ˆ1ˆ ˆ
2

d l
l l

d

θ
θ θ θ θ

θ
= + ⋅ − ⋅  (3.16) 

Empirically, equation (3.16) measures how informative the data is about the 

MLE. It states that the support offered by the data to θ̂ , and some other value 

θ , differs by an amount proportional to the second derivative of the log-

likelihood function about θ̂ . Hence, the observed (or Fisher) information (Cox 

and Hinkley 1974) is defined as: 
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( ) ( ) ( )2

2

ˆ
ˆ''

d l
l

d

θ
θ θ

θ
= − = −I (3.17) 

Referring to Figure 3.4(c), it is apparent that the curve for the larger sample 

size (n = 100) is narrower than that for the smaller sample size (n = 50) and is 

therefore more curved near the MLE than the log-likelihood function of the 

smaller sample. Hence, (3.17) may be perceived as the spherical curvature of the 

log-likelihood function at the estimate: its reciprocal is the radius of curvature 

at the estimate. The reciprocal is also the value of the Cramér-Rao lower bound 

for the variance of an unbiased estimator (Azzalini 1996, Mood et al 1974, Zacks 

1971) – the smallest possible variability a parameter estimator can have.  

Though the above has been presented relating to one-dimensional parameters, 

the theory is extendable to multi-dimensional parameters. In such cases the 

reciprocal of the information may be thought of as related to the volume under 

the likelihood surface. The square root of the determinant of the information 

matrix may be seen as a measure of the width of the likelihood surface 

(Edwards 1992). Also, the diagonal entries of ( )θI represent the variance of a 

parameter with respect to itself. Hence, the square root of the diagonal term 

corresponding to a parameter represents the standard error of that parameter. 

Figure 3.5 shows two log-likelihood surfaces for the normal distribution. The 

flatter surface is derived from 50 random deviates of ( )2100,5N ; the more 

curved surface is found from 200 random ( )2100,5N deviates. This figure clearly 

shows that ‘support’ for differing values of μ and σ drops away much quicker 

for the larger data set. Put another way, the volume under the curve at its 

maximum is less; its reciprocal is the information, which is thus greater. 
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Figure 3.5: Log-likelihood surfaces of ( )2100,5N , for n = 50 and 200. 

3.3.3 Asymptotic normality of an MLE 

The maximum likelihood estimator has many properties desired of an estimator 

– refer to Azzalini (1996), Edwards (1992), and Mood et al (1974) for further 

information. Of direct relevance is that it is a Best Asymptotic Normal (BAN) 

estimator. An estimator (for example, maximum likelihood), ( )T X , such that 

 ( ) ( )( ), vardnT X N θ θ⎯⎯→  (3.18) 

where n is the sample size, is said to be a BAN estimator if ( ) ( ) 1var θ θ −= I

which indicates that the estimator is asymptotically normally distributed. In the 

multi-dimensional case, the reciprocal of the observed information is the usual 

variance-covariance matrix of the parameter estimates. Therefore, parameters of 

distributions estimated using maximum likelihood estimation may be taken to 

be asymtotically normally distributed; the accuracy of the approximation 

improves with increasing sample size due to the central limit theorem. 



CHAPTER 3 – FUNDAMENTAL PROBABILISTIC METHODS 

76

3.3.4 Profile likelihood and deviance 

The previous section described the asymptotic distribution of maximum 

likelihood parameter estimates. Often, it is more useful to obtain an estimate of 

the actual distribution of a parameter (Barndorff-Nielsen 1983). In the uni-

dimensional case this does not pose a problem: Figure 3.4 illustrates how the 

parameter estimate varies. As the likelihood function cannot provide an absolute 

statement of the suitability of a parameter estimate, the likelihood ratio graph 

of Figure 3.4(b) is particularly important in aiding estimates of parameter 

distributions. Having evaluated the log-likelihood, the likelihood ratio is given 

by the difference of two log-likelihoods. The deviance function is defined as: 

 ( ) ( ) ( )ˆ2D l lθ θ θ⎡ ⎤= −⎣ ⎦ (3.19) 

As the log-likelihood is usually a negative quantity, the deviance is positive. The 

likelihood ratio is multiplied by 2 for reasons outlined by Lindsey (1996). The 

deviance, as defined in (3.19), is approximately chi-squared distributed with the 

number of degrees of freedom equal to the number of parameters in the model 

(Coles 2001a). With such knowledge, it is possible to work backwards from a 

pre-specified probability (such as 95%) to find the value of ( )l θ that defines the 

confidence region. Figure 3.6 illustrates this for the ball example. It can be seen 

that the 95% confidence interval narrows for the larger sample size, reflecting 

the increase in information available. Also, it is of note that the confidence 

intervals are not symmetric about the MLE (corresponding to zero deviance). 

Thus the distribution of the likelihood estimate is skewed which is not 

compatible with the assumption of normality. 
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Figure 3.6: Deviance function and confidence intervals for the ball example 

samples (note that the 2χ PDF graph is rotated 90°). 

In multi-parameter cases, the application of the preceding method is more 

difficult. It may be seen from Figure 3.5 that the parameters are orthogonal in 

multi-dimensional space, though not independent. To estimate the distribution 

of a parameter, a notional ‘slice’ through the likelihood surface is made parallel 

to the axis of the parameter of interest – approximately, the resulting cross 

section is the profile (log-)likelihood of the parameter of interest. However, the 

‘slice’ is in fact a point, as it must be taken at the MLEs of the other 

parameters, conditional on the current value of the parameter of interest. The 

profile log-likelihood of a parameter, iθ , is defined as: 

 ( ) ( )sup ,p i il l
θ

θ θ θ= (3.20) 

where θ denotes the restricted parameter vector which is θ without iθ and 

sup may be read as ‘the maximum of’. Thus, for each value of the parameter of 

interest, the profile log-likelihood is the maximized log-likelihood with respect to 

all of the other parameters. In the case of the example of Figure 3.5, the profile 
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likelihood for the μ parameter is shown in Figure 3.7. The 95% confidence 

intervals derived from the ( )2 0.95, 2χ distribution – where the number of 

degrees of freedom is 2, corresponding to the number of parameters in the model 

– is also shown in Figure 3.7. Note also that each unit of the 2χ distribution 

corresponds to two units of log-likelihood due to the deviance function. Further, 

it may be seen that the confidence intervals are close to symmetric about the 

MLE of the mean; the normal approximation in this case would be quite 

reasonable. 
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Figure 3.7: Profile likelihood for μ of N(100,52), with confidence intervals got 

from χ2(0.95,2). 

Though only parameters have been examined here, the method of profile 

likelihood can be extended to cover any functional combination of the 

parameters. As will be shown in Chapter 7, this extension of profile likelihood 

has considerable benefit for the prediction of extreme values. 

μ μ

χ2
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3.4 Statistics of Extremes 

The statistics of extremes, or extreme value theory, is concerned with 

identifying trends in the extreme (maximum or minimum) values obtained from 

a set of samples. The theory has found extensive use in the practical sciences 

where decisions have to be made and not postponed until a better theory, or 

more data emerges (Castillo 1988, Coles 2001a). Bardsley (1994) argues that the 

theory has reached its zenith and that the results of an elaborate objective 

analysis are not significantly better than a subjective analysis by an experienced 

investigator. This view is certainly not as widespread as its counterpart. The 

statistical analyses used in this work employ extreme value theory throughout. 

3.4.1 Basic formulation 

Only the distribution of the maximum of a sample is considered here, though 

that of the minimum follows a similar formulation – refer to Castillo (1988), 

Ang and Tang (1984) and Galambos (1978) for more details on what follows.  

Consider a set of n random variables, 1, , nX X… and allow [ ]1max , , nY X X= … .

Given a set of observations, 1, , nx x… for which [ ]1max , , ny x x= … . When the 

iX s are independent, the distribution function, ( )YF ⋅ , of y is: 

 [ ] [ ]1( ) ; ;Y nF y P Y y P x y x y= ≤ = ≤ ≤… (3.21) 

which results because the largest of the ix s is less than or equal to y if, and only 

if, all of the ix s are less than or equal to y. If the iX s are independent and 

identically distributed (iid), then, similar to (3.3): 

 [ ] [ ]1
1

; ;
n

n i
i

P x y x y P X y
=

≤ ≤ = ≤∏… (3.22) 
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and therefore, where ( )XF ⋅ is the distribution function of 1, , nX X… :

[ ]( ) ( ) n
Y XF y F y= (3.23) 

The distribution ( )XF ⋅ is known as the parent distribution. As the parent CDF 

is raised to the power of n, it is important that the parent distribution is both 

known and closely models the data – especially in the upper tail of the 

distribution (Coles 2001b, Castillo 1988). Any deviations of the model from the 

true distribution are raised to the power of n and can therefore distort the 

analysis. Also, explicit expressions for the distribution of the maxima are 

difficult to obtain from (3.23). These problems with this formulation have 

resulted in the development of the asymptotic theory of extreme order statistics

– most notably associated with Fisher and Tippett (1928), though other authors 

were writing on this subject around the same time (Gumbel 1958). 

3.4.2 Fisher-Tippett and Gnedenko 

The asymptotic theory of extreme order statistics attempts to identify possible 

limiting forms of the distribution of the extreme as n tends to infinity, avoiding 

the degenerate results; 0 when ( ) 1XF y < , and 1 when ( ) 1XF y = . Fisher and 

Tippett (1928) recognized that the maximum of N sets of observations of n

values of X, must also be the maximum of n values of X. Therefore any non-

degenerate distribution must be of the same form, but linearly transformed by 

location and scale parameters ( na and nb respectively) that depend only on n:

( ) ( )n
n nG y G a b y= +  (3.24) 

where ( )G ⋅ indicates an extreme value distribution representing a limiting 

asymptotic form of the distribution of maxima. This equation is known as the 

stability postulate and any distribution that meets this equation is said to be 
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max-stable. With this as a basis, the limiting form of the distribution of the 

maximum from a parent distribution is: 

 [ ]( ) ( )n
X X n nF y F a b y= +  (3.25) 

Fisher and Tippett gave three solutions to this equation, based on different 

values for na and nb : the Type I, II and III limiting forms. Gnedenko (1943) 

established the strict mathematical conditions under which the Type I, II or III 

distributions form the limiting distribution for various forms of parent 

distributions – known as the domain of attraction of the parent distribution 

(Castillo and Sarabia 1992). 

3.4.3 Jenkinson and von Mises 

The three forms of limiting distributions, to which almost all distributions 

converge, are the Gumbel, Frechet and Weibull distributions (Gumbel 1958). 

Jenkinson (1955) and von Mises (1936) independently solved expression (3.25) 

for a single form: the Generalized Extreme Value distribution (GEV), given by: 

 
1/

( ) exp 1 yG y
ξ

μξ
σ +

⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
(3.26) 

where [ ] max( ,0)x x
+
= and where the parameters satisfy ∞<<∞− μ , 0>σ and 

∞<<∞− ξ . The model has three parameters: location, μ ; scale, σ ; and shape, 

ξ . The Type II and III families correspond to the cases 0ξ > and 0ξ <

respectively. The Type I family is the limit of ( )G y as 0ξ → . The major 

benefit of using the GEV distribution is that, through inference on ξ , the data 

itself determines the correct tail model, avoiding the need to make a subjective 

a priori judgment on which of the Fisher-Tippett limiting forms to adopt.  
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The power of the concept of asymptotic limiting forms is that the actual form of 

the parent CDF ( )XF y is not required for fitting the GEV (or indeed any of the 

extreme value distributions). It is worthy of note, however, that the speed of 

convergence with n repetitions of the parent distribution to the GEV varies: the 

normal distribution is notoriously slow, whist the exponential distribution 

converges rapidly (Cramér 1946). Figure 3.8 illustrates the exact and 

asymptotic (Gumbel) distributions from these two parent distributions – based 

on the constants na and nb given by Galambos (1978) and Cramér (1946) and 

the methodology of Gumbel (1958). 
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Figure 3.8: Asymptotic and exact distribution of maxima: (a) standard 

exponential distribution, and; (b) standard normal distribution. 
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From Figure 3.8, the difference in the speed of convergence for these two 

distributions is readily apparent. Castillo (1988) and Gomes (1984) discuss 

penultimate forms of asymptotic distributions; for suitable parameters the 

Weibull distribution (a particular case of the GEV distribution) can offer a 

better approximation of the distribution of maxima from a normal parent than 

its true asymptotic distribution (Gumbel). When it is necessary to check on the 

form of the parent, due to small sample sizes, speed of convergence tests may be 

used and are detailed in Galambos (1978). 

3.4.4 Estimation 

The method of maximum likelihood requires the maximization of the log-

likelihood function. Optimization techniques often deal with minimizing 

functions. Hence minimization of the negative log-likelihood is usually 

performed. In this work, the GEV distribution is mostly used and Jenkinson 

(1969) gives the log-likelihood function for the GEV distribution: 

 ( )
1

1 1

1, , ; log 1 log
n n

i i
i i

l y n y y ξμ σ ξ σ
ξ = =

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
∑ ∑ (3.27) 

 1 0 1, ,where for i
i

xy i nμξ
σ
−⎛ ⎞= − > =⎜ ⎟

⎝ ⎠
… (3.28) 

For parameter combinations where 0iy < (which occurs when a data point ix

has fallen beyond the range of the distribution) the likelihood is zero and the 

log-likelihood will be numerically ill-defined. Solution of (3.27) is done by 

numerical means – there is no analytical solution. Jenkinson (1969) describes an 

approximate iteration technique for solving the equation which uses the 

expected information matrix (the matrix of second derivates of (3.27) with 

respect to each of the parameters). However Jenkinson only derived 

approximate values for this. Prescott and Walden (1980) detailed the elements 
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of the observed information matrix, ( )θI , for the GEV distribution. They 

furthered this work (Prescott and Walden 1983) by proposing a Newton-

Raphson technique which uses ( )θI and is found to converge quickly. Hosking 

(1985) presents an algorithm for the estimation of the parameters of the GEV 

distribution based on Prescott and Walden’s proposal. 

Good starting values for the minimization of the negative log-likelihood function 

of the GEV distribution are obtained from the method of probability weighted 

moments (PWMs) described by Hosking et al (1985). The exact solution 

requires iterative methods, but within the range usually encountered in practice, 

{ 0.5 0.5}ξ− ≤ ≤ , Hosking et al (1985) have proposed an estimator, rb , which uses 

the data, jx , and is then used to solve for the other parameters in the sequence: 

 j

n

j
r x

rnnn
rjjjnb ∑

=

−

−−−
−−−

=
1

1

)()2)(1(
)()2)(1(

�
� (3.29) 

 1 0

2 0

2 log 2
3 log 3

b bc
b b

−
= −

−
(3.30) 

 2ˆ 7.8590 2.9554c cξ = +  (3.31) 

 
)21)(ˆ1(

)2(ˆˆ ˆ
01

ξξ
ξ

σ
−−+Γ

−
=

bb
(3.32) 

 0
ˆ ˆˆ (1 ) 1ˆb σμ ξ
ξ

⎡ ⎤= + Γ + −⎣ ⎦ (3.33) 

The PWM approach is written in C++ and used to initiate a C++ version of 

Hosking’s (1985) algorithm. Data sets from Coles (2001a) are used to verify the 

output against published results. It is found, however, that there are cases in 

which Hosking’s algorithm does not converge, or does not achieve the same 

minimum function value as the WAFO MATLAB toolbox (Brodtkorb et al 2000) 
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which was used occasionally to verify output. As a result, a more robust 

optimization method is implemented. 

The Nelder-Mead (NM) optimization algorithm (Nelder and Mead 1965) is also 

known as the amoeba algorithm (Numerical Recipes in C – Press et al 1992) 

because of its slow robust movement across the k-dimensional surface of a 

function, where k is the dimension of the optimization problem. The NM 

algorithm is based on a simplex – a geometric shape with 1k + corners. Lagarias 

et al (1997) describe, in detail, the operations of the algorithm. 

In the processing undertaken in the AnalyseEvents program (Chapter 4), the 

PWM method is used to initiate both the Hosking and NM algorithms – 

processing time is not substantial in any case. The program checks to see if the 

Hosking algorithm has a smaller negative log-likelihood than that of the NM 

algorithm. If not, the results of the NM algorithm are used. While good results 

can be obtained with manual re-injection of the Hosking algorithm, in general 

this is not possible for this research – the number of individual GEV fits is 

substantial for each run. Checks have been performed both against published 

results and other algorithms such as WAFO (Brodtkorb et al 2000) and EVD

(Stephenson 2004) for the R-language (R Development Core Team 2005). 
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3.5 Prediction 

Some of the solutions to Pearson’s “fundamental problem of statistics” are 

described in this section. Initially the traditional extrapolation procedure – 

which uses a fitted distribution – is described. However, the variability of both 

the parameters and the data itself intuitively produce uncertainty in the 

estimate found in this manner. The delta method uses the asymptotic normality 

principle to estimate this variability, whilst the bootstrap method uses 

computational means to establish variability. Both methods are briefly 

described here. 

3.5.1 The characteristic value and return period 

The characteristic value is that value of a random variable that is expected to 

be exceeded once in a given return period. Given a random variable X , with 

distribution function ( )XF ⋅ , the probability of exceeding a value, u, is: 

 [ ] 1 ( )XP X u F u> = − (3.34) 

For a given return period, R , consider n repetitions of the sampling period, XT ,

from which X was determined, such that: 

 
X

Rn
T

= (3.35) 

In n such repetitions, the probability that the characteristic value, u, will be 

exceeded is: 

 [ ] ( )1 ( )XP X u n n F u> = −in  repetitions (3.36) 

From the definition of a characteristic value, this probability must be equal to 

unity, that is, is expected to occur at least once in n repetitions, hence, 
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[ ]1 ( ) 1
1( ) 1

X

X

n F u

F u
n

− =

⇒ = −
(3.37) 

The characteristic value may therefore be determined by: 

 1 11Xu F
n

− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

(3.38) 

3.5.2 Extrapolation 

In the work that follows, it will be usual to have a return period of 1000 years 

with each year comprising 50 working weeks of data with 5 working days per 

week, for reasons outlined in Chapter 4. The distribution obtained from the 

simulations is usually that of the maximum per day: the number of repetitions 

of the sampling period is then: 

 

1000

1000
1000

1
1000

1000 50 5 250 000
1( ) 1 0.999996

(0.999996)

X

X

n

F u
n

u F −

= × × =

⇒ = − =

⇒ =

(3.39) 

As described previously, this will correspond with a standard extremal variate 

derived from the Gumbel distribution as: 

 ( ) ( )( )1 0.999996 log log 0.999996

12.429
IG− = − −

=
(3.40) 

An example of such extrapolation is shown in Figure 3.9 on Gumbel probability 

scale (Ang and Tang 1975, Section 3.2.3). Also, as the sampling period 

approaches the return period, the extrapolation distance decreases, intuitively 

resulting in an better estimate – though this needs to be proved using other 

methods.  
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There is inherent variability in the extrapolation process described: parameter 

estimates vary due to estimator uncertainty; the data varies; and different 

investigators may use different estimation techniques, which may or may not be 

biased. Prediction of a single number does not reflect the statistical nature of 

the underlying problem. Various methods for estimating the variability of the 

characteristic extreme are available; two are described next. Another method is 

preferred and described in Chapter 7 in relation to this research. 
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Figure 3.9: Sample extrapolation procedure. 

3.5.3 The Delta Method and the normality assumption 

The delta method for the approximation of moments of functions of random 

variables is usually based on a first-order Taylor series expansion of the function 

about the point of interest (Rice 1995, Oehlert 1992). Given a random variable 

X and a one-to-one function, Y = g(X), the first-order Taylor approximation 

about the mean is: 

 ( )( ) ( ) ( ) X
X X

d gY g X g X
dx
μμ μ= ≈ + − (3.41) 
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Noting that this is a linear function of X, the linear transformation of variables 

rule (Mood et al 1974) gives: 

 ( ) ( )
2( )Var VarXd gY X

dx
μ⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
 (3.42) 

Use of the matrix form of the Taylor series expansion (Beck and Arnold 1977) 

enables this to be extended to the case of several variables: 

 ( ) ( ) ( )Var T
XY g g=∇ ⋅ ⋅∇X V X (3.43) 

where Y is a scalar value of the function ( )g ⋅ with parameter vector X . XV is 

the variance-covariance matrix of the parameter vector and ( )g∇ X is the 

gradient vector of the function (Coles 2001a, Azzalini 1996, Efron and 

Tibshirani 1998, Lindsy 1996, Zacks 1971). 

In (3.41) when X represents the (asymptotically) normally-distributed 

parameter(s) of a distribution, and as Y is a linear transformation of X, then: 

 ( ) ( )( ), Vard
XY N g Yμ⎯⎯→  (3.44) 

where ( )Var Y may be given by (3.42) for a single parameter function or (3.43) 

for a multi-parameter function. 

For large sample sizes the delta method approximations give good results as a 

result of the central limit theorem (Mood et al 1974). However, for smaller 

sample sizes and where the linear approximation of the function in the region of 

interest is not good, the delta method can give inaccurate results (Rice 1995). 
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With respect to the GEV distribution used in this work, for R sampling periods, 

the maximum likelihood estimate of the characteristic value is got by 

rearranging the equality (3.37): 

 ( )ˆ 1R Rz g R y ξσμ
ξ

⎡ ⎤= = + ⋅ −⎣ ⎦ (3.45) 

where, 1log 1Ry
R

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. From (3.43), letting ( ), , Tθ μ σ ξ≡ =X and: 

 

( )

( ) ( )1 2 1

ˆ

; ;

1; 1 ; 1 log

T
R

R R R

R R R R

g z

z z z

y y y yξ ξ ξ

θ

μ σ ξ

ξ σξ σξ− − −

∇ =∇

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

⎡ ⎤= − − −⎣ ⎦

(3.46) 

From (3.43) with the substitutions of (3.45) and (3.46) the distribution of ˆRz

may be got from (3.44). The estimate notation on the parameters of the GEV 

was dropped for clarity: the expressions are evaluated at the estimates. 

Implicit in methods like the delta method, is the central limit theorem and the 

assumption of asymptotic normality. Often it is not the case that the sample 

size is sufficient to converge to normality and the distribution may, in fact, be 

skewed. It is shown in Chapter 7 that the distribution of the bridge traffic load 

effect return level estimate is generally highly skewed and therefore highly non-

normal. Therefore confidence limits, or variance estimates, based on the 

assumption of normality can give misleading results and should be avoided 

where possible. 

3.5.4 Bootstrapping 

The bootstrap has emerged as a fundamental tool in statistical analysis since its 

introduction (Efron 1979). This is, in part, due to the ready availability of 
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computing power and the intuitive nature of its application. Efron and 

Tibshirani (1993) and Davison and Hinkley (1997) both give thorough accounts 

of bootstrapping and its flexibility of use. Boos (2003) exemplifies the power of 

the bootstrap applied in a civil engineering, extreme value analysis, setting. 

The bootstrap process (Figure 3.10) consists of re-sampling the original data 

(non-parametric bootstrap) or a model fitted to it (parametric bootstrap) and 

estimation of the statistic, ( )s ⋅ , of interest for the model. This process is 

repeated many times (bootstrap replications) and a distribution of the statistic 

of interest is found. 

Figure 3.10: Illustration of the bootstrap process. 

Extreme values are of particular importance to this work. Efron and Tibshirani 

(1993) describe a case where the bootstrap fails to give reasonable answers due 

to the sparsity of data in the tail, and the associated poor estimate of the true 

distribution by the empirical distribution (3.6).  

As an illustration of this problem, and the non-parametric bootstrap process in 

general, consider a data set 1, , nx x… randomly taken from a uniform 

distribution of bounds [ ]0,θ . The maximum likelihood estimator for θ is: 

 
1, ,

ˆ max ii n
xθ

=
=

…
(3.47) 

( )1, , nX x x= …Data Set

Bootstrap samples * *
1 BX X��

Bootstrap replications ( ) ( )* *
1 Bs X s X��

��
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Figure 3.11: Problem noted by Efron and Tibshirani (1993): (a) non-parametric 

bootstrap estimate; (b) parametric bootstrap estimate; (c) sample histogram, 

and; (d) histogram of the parametric bootstrap populations. 

For the interval [ ]0,1 , 0 1θ = and a sample of n = 50 is generated on this 

interval from which ˆ 0.9858θ = ; the histogram for the sample is shown in Figure 

3.11(c). For each bootstrap replication, the data is sampled, with replacement, 

to provide a bootstrap sample from which an estimate of *
îθ is made. Such 

estimates are made for B = 1000 bootstrap replications. The histogram of these 

estimates is shown in Figure 3.11(a). Further, to obtain an estimate of the 

actual distribution of θ̂ , 1000 further samples of size n = 50 were randomly 
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generated on the interval [ ]0,1 . The resulting distribution of θ̂ is shown in 

Figure 3.11(b). 

It can be seen from Figure 3.11 that the bootstrap distribution does not match 

that of the Monte-Carlo estimated distribution. Efron and Tibshirani (1993) 

refer the reader to Beran and Ducharme (1991) for further information on this 

problem. The example presented is a non-parametric bootstrap method; the 

parametric bootstrap method does not fail in this setting Figure 3.11(b). It is to 

be noted that the variability of the parameters of the parametric bootstrap 

cannot be taken into account (Efron and Tibshirani 1993); when compared to 

the method of Chapter 7, this becomes significant. 
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3.6 Summary 

The basic statistical methods, essential to the work that follows, have been 

presented either in detail or by introduction and reference. Basic tools that will 

be used throughout this work, such as the method of maximum likelihood, 

probability paper, characteristic values, return periods and extrapolation have 

also been presented. More advanced tools that will be used further have also 

been presented, for example: profile log-likelihood, the bootstrap, Nelder-Mead 

solution of the GEV likelihood function, Fisher information, probability 

weighted moments, and the speed of convergence of the asymptotic extreme 

value distributions. Basic methods of prediction analysis such as the delta 

method and the bootstrap approach have also been presented. 
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Chapter 4 - SIMULATION OF BRIDGE TRAFFIC LOADING 

4.1 Introduction 

This chapter describes the measure, model and simulate phases of the bridge 

traffic load model used in this research. This approach has become more 

prevalent in recent years as more accurate unbiased measurements of real traffic 

have become available due to progress in Weigh-In-Motion (WIM) technology.  

WIM measurement, and its accuracy, is investigation by many authors (Jacob 

and OBrien 2005, OBrien et al 2005). The implication of the accuracy of site 

measurements on resultant characteristic load effects has been studied by 

O’Connor (2001) and O’Connor et al (2002). The objectives of this research 

focus on the efficient use of expensive site data such that sufficiently accurate 

predictions of future load effect are made by further statistical analysis.  

Basic statistical distributions of measured traffic characteristics form the input 

for the traffic model. Such an approach enables site-specific traffic 

characteristics to be generated which, even though not necessarily measured, 

represent those of the site. This chapter describes the modelling process 

undertaken for this research. 

The software tools developed for this research are described in Section 4.5. The 

adoption of object-oriented programming techniques is shown to have significant 

benefit for traffic load simulation. Substantially increased periods of simulation 

are possible, increasing the amount of information available to the statistical 

analysis, which reduces uncertainty in the extreme. 
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4.2 Measurement of Highway Traffic 

This work is based on traffic data from a number of European sites. The 

development of simulation methodologies is generally independent of the 

accuracy and amount of traffic data obtained from these sites. However, 

progress in the overall process does depend on having a sufficient quantity of 

data upon which reasonably general methods may be based. 

WIM technology is the method through which the measured traffic data is 

obtained, and it is explained briefly in the following section. The work of Grave 

(2001) formed the early basis of this research programme and the sites analysed 

in his research are mainly used in this work. Those sites, and other sites also 

used, are described later in this section. 

4.2.1 Weigh-In-Motion measurement 

As outlined previously, highway traffic is essential to the bridge traffic load 

simulation process. Static weigh stations are generally not suitable for this 

purpose: it is known that traffic measured with such installations is often biased 

(Laman and Nowak 1997) as drivers of overweight trucks become aware of the 

installation and avoid the site. Therefore, for bridge traffic loading purposes, the 

measurement system must be unobtrusive so that unbiased data is gathered. 

Data should be recorded continuously for the duration of the recording period. 

Also, measurements of the traffic in free-flow are required to obtain headway, 

speed and overlapping data. WIM technology has been developed to meet these 

requirements. Pavement-based WIM systems use sensors located in the road to 

detect and weigh each of the axles. Alternatively, Bridge-WIM systems 

effectively use the bridge as a form of weighing scales. Either system can be 

used to collect traffic data that may be used in bridge loading studies. Recent 
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advances in the accuracy and durability of WIM technology have improved the 

accuracy of the measured truck and axle weight statistics (Jacob et al. 2002). 

O’Connor et al. (2002) have looked at the important issue of sensitivity of 

bridge loading to the accuracy of the original weight measurements. 

Figure 4.1 illustrates the Bridge-WIM process; an example of a Bridge-WIM 

installation is shown in Figure 4.2 and a typical layout of the detectors is shown 

in Figure 4.3. For this layout, an example of the voltages realised by the 

passage of a truck is shown in Figure 4.4. A passing vehicle induces voltages in 

the axle detectors which give its speed, transverse position, number of axles, 

axle spacing and, importantly for flow and headway, the time stamp of arrival. 

The voltages induced in the strain transducers are processed with the axle 

detector information through a Bridge-WIM algorithm (OBrien et al 2005) to 

give the axle weights and GVW (Gross Vehicle Weight) for the vehicle.  

Figure 4.1: Bridge Weigh-In-Motion overview (courtesy of ZAG, Slovenia). 
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(a) (b) 

Figure 4.2: WIM installations: (a) road surface axles detectors; (b) bridge soffit 

strain transducers.  

Figure 4.3: Typical Bridge-WIM installation showing the locations of axle 

detectors and strain transducers along with their channel numbers. 
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