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ABSTRACT 

The accurate estimation of site-specific lifetime extreme traffic load effects is an important element 

in the cost-effective assessment of bridges. A common approach is to use statistical distributions 

derived from weigh-in-motion measurements as the basis for Monte Carlo simulation of traffic 

loading. However, results are highly sensitive to the assumptions made, not just with regard to 

vehicle weights but also to axle configurations and gaps between vehicles. This paper presents a 

comprehensive model for Monte Carlo simulation of bridge loading for free-flowing traffic, and 

shows how the model matches results from measurements on five European highways. The model 

has been optimized to allow the simulation of many years of traffic and this greatly reduces the 

variance in calculating estimates for lifetime loading from the model. The approach described here 

does not remove the uncertainty inherent in estimating lifetime maximum loading from data 

collected over relatively short time periods. 

Keywords: Bridge, assessment, weigh-in-motion, Monte Carlo simulation, traffic loading, special 

vehicles 

1. INTRODUCTION 

In recent years, the improved quality and increasing use of weigh-in-motion (WIM) technology [1] 

has meant that more accurate measurements of vehicle weights are now available for periods 

covering many months or even years of traffic at selected locations. These extensive measurements 

can be used to refine probabilistic bridge loading models for the assessment of existing bridges, and 

to monitor the implications for bridge design of trends in vehicle weights and types. Codes of 

practice for the design of bridges such as the Eurocode [2] must be sufficiently general, and 

conservative, to be applicable over the complete lifetime of many different bridge types. They must 
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account for widely varying traffic loading conditions [3,4] which will depend on location, economic 

trends, and on shifts between different modes of transport. Assessment codes are also general, and 

in many cases may be conservative [5] despite the fact that bridge maintenance is expensive, and 

bridge owners need to allocate limited resources efficiently. Site-specific assessment, based on 

measured traffic, can lead to very significant cost reductions for maintenance [6], and the 

application of site-specific models for bridge assessment has been widely studied [5,7-9].  

European and North American codes are based on relatively small amounts of data collected some 

years ago. The U.S. and Canadian codes are based on data collected in Ontario in 1975 for 9250 

trucks [10,11]. The Eurocode [2] was initially based on a number of weeks of data from Auxerre in 

the 1980s [3,12], and was confirmed using data from a number of French sites in 1997 [13]. 

Changing truck weights [14], composition of traffic, and vehicle sizes all have implications for 

bridge loading, and both site-specific assessments and design codes need to be periodically updated 

based on current traffic. This study is based on WIM data collected between 2005 and 2008 for 2.7 

million trucks at five European sites – in the Netherlands, Slovakia, the Czech Republic, Slovenia 

and Poland. Codes segregate normal legal traffic (with some allowance for illegal overloading) 

from special vehicles which require permits [2,15]. Special vehicles are very important for bridge 

loading [5,16], and the model developed for this study seeks to include all vehicles, normal and 

special, that are likely to cross a bridge at full highway speed during its lifetime. 

It is necessary to estimate as accurately as possible the probable maximum bridge load effects 

(bending moments, shears) over a selected lifetime. Inspection regimes vary widely between 

countries and bridge owners, but  assessment time horizons of  5 to 10 years are common [17]. The 

U.S. AASHTO design code is based on the distribution of the 75-year maximum loading [10]. The 

Eurocode [2] for the design of new bridges is based on the distribution of the 50-year maximum, 

and the characteristic load is calculated as the value with a 5% probability of being exceeded in the 

50 year lifetime, or 10% in 100 years, which is approximately equivalent to the value with a return 

period of 1000 years. Even with the relatively large amounts of truck data gathered for this study, it 

is still necessary to extrapolate from the measured data to calculate estimates of lifetime maximum 

bridge loading. This is true regardless of the particular method adopted. No allowance is made for 

changes in traffic patterns over the lifetime of the bridge – characteristic load effects are based on 

the probability of failure given current traffic volumes. One approach to estimating these 
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characteristic values is to fit a statistical distribution to the calculated load effects for the measured 

traffic, and to use these distributions to estimate lifetime maximum effects [10,18,19]. An 

alternative approach adopted by many authors is to use Monte Carlo (MC) simulation [20-22], and 

this is the approach adopted here.  

In the development of the U.S. AASHTO code for bridge design [10], load effects were calculated 

for the measured trucks on different bridge spans and plotted on Normal probability paper. The 

curves were extrapolated to give estimates for the mean 75-year load effect, and the coefficient of 

variation was estimated by raising the distributions to a power based on typical truck volumes. This 

process requires a significant degree of engineering judgment and subjectivity, as noted by Kulicki 

[4], Miao and Chan [19] and by Gindy and Nassif [23] who report variations in estimated lifetime 

maxima of up to 33%. In the development of the Eurocode [2], traffic measurements were collected 

over some weeks at different times, and a number of different extrapolation techniques were 

applied. Multimodal Normal and Gumbel distributions were fitted to measured load effects for 

individual loading events, and the Gumbel extreme value distribution was fitted to periodic maxima 

calculated from simulation. Dawe [12] reports variations of up to 20% between results from the 

different approaches used in the development of the Eurocode.  

In the Monte Carlo simulation approach, statistical distributions for vehicle weights, inter-vehicle 

gaps and other characteristics are derived from the measurements, and are used as the basis for the 

simulation of traffic, typically for some number of years. It is thus possible to simulate vehicles and 

combinations of vehicles that have not been observed during the period of measurement. Lifetime 

maximum load effects have usually been estimated by extrapolating from the results of the 

simulation. Cooper [24] uses the Gumbel extreme value distribution for extrapolation, whereas the 

Generalized Extreme Value (GEV) distribution is applied by Caprani et al. [25] for simulations of 

up to five years of traffic, and by James [26] who notes its sensitivity to changes in the shape 

parameter. The GEV distribution incorporates the Gumbel, Fréchet (unbounded) and Weibull 

(bounded) distributions. Fitting a distribution to the full data set of periodic maxima can give 

excessive emphasis to loading scenarios which do not make any significant contribution to the 

characteristic value. Castillo [27] recommends fitting the Gumbel distribution to the upper tail of 

the data (by selecting the top n2 data points), but this risks placing excessive emphasis on a small 

number of extreme cases. Crespo-Minguillón and Casas [28] and James [26] use the peaks over 
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threshold extreme value approach, while Cremona [29] adopts the Rice level-crossing technique. In 

this paper, the MC model has been optimized to make it practical to simulate thousands of years on 

a conventional desktop computer, and if the simulation is run for a sufficiently long time, the 

lifetime maximum load effects can be found directly from the results of the simulation. Running the 

simulation for 1000 years and fitting a distribution for smoothing purposes is more efficient than 

simulating many thousands of years, and is found to give sufficiently good estimates. Using long-

run simulations avoids the problems of extrapolating from short simulation runs, and gives much 

more consistent results compared with existing MC simulation approaches.  

In order to simplify the simulation process, various restrictions are often placed on the traffic model 

used – some authors specify a maximum value for vehicle weights, and many use a limited set of 

vehicle classes with a fixed maximum number of axles [20,30-32]. Some employ limited modeling 

of inter-vehicle gaps [10,18,30]. Vehicle models are typically based on existing vehicle types only, 

without attempting to extrapolate for vehicle types other than those recorded [24]. The approach 

used here is to build a detailed MC model, without any restrictive assumptions, and to calibrate it 

against extensive WIM data collected at five European sites. The model is designed to extrapolate 

both vehicle weights and types (axle configurations), and while this extrapolation is based on 

assumptions which will influence the results, it is considered to give a more realistic estimate of 

lifetime loading than previous MC models. 

Estimating lifetime loading from short periods of measured or simulated data does not give a clear 

idea of what types of trucks are likely to be involved in lifetime maximum loading events. Long-run 

simulations provide examples of the types and combinations of vehicles that might be expected to 

feature in extreme bridge loading. This is useful in identifying the relative importance of factors 

such as gross vehicle weight (GVW), the weights of individual axles and of groups of axles, 

wheelbase, and axle layout. This in turn may help in identifying useful legal restrictions on truck 

types. Simulating 1000 years or more of traffic also makes it possible to model extremely rare 

events such as one exceptionally heavy truck or a number of extremely heavy trucks meeting on a 

bridge which can be critical in its lifetime [5]. Identification of such rare events is a potential 

problem with short-run simulations [33].  
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This study focuses on free-flowing, rather than congested, traffic on short to medium span bridges. 

In the range of spans considered, from 15 to 45 m, the combination of static and dynamic load 

effects produced by free-flowing traffic is assumed to govern bridge loading. In longer spans, static 

loading produced by congested traffic is generally considered to be more critical [3]. 

2. DESCRIPTION OF WIM DATA 

A large database of WIM measurements was collected for trucks weighing 3.5 t or more at five 

European sites between 2005 and 2008, as detailed in Table 1. The recorded data were cleaned to 

remove unreliable observations. This cleaning is essential in identifying and removing incorrect 

vehicle data that would otherwise distort the subsequent analysis [9]. Cameras at the WIM site in 

the Netherlands proved very useful in the formulation of rules for data cleaning at all sites, and 

these rules were the basis of software developed to automate this cleaning process. Between all 

sites, an average of 1.5% of recorded vehicles was removed as a result of data cleaning. For 

accurate modeling of very small inter-vehicle gaps, a precision of 0.01 seconds or better is 

preferable when recording vehicle arrival times; although a lower precision of 0.1 seconds is still 

acceptable. At the site in Poland, the precision of 1 second makes it difficult to calibrate the 

simulation model for small inter-vehicle gaps. 

It can be seen that some extremely heavy vehicles were recorded, with the maximum GVW at each 

site being in excess of 100 t. The GVW histograms for two of the sites are illustrated in Fig. 1. The 

distribution of weights up to 70 t shown in Fig. 1(a) is typical of heavily trafficked European 

highways [20-22,32]. Significant numbers of very heavy vehicles were also recorded at both sites, 

as can be seen in Fig. 1(b). The site in the Netherlands has a much higher proportion of very heavy 

vehicles, with 892 vehicles whose GVW is in excess 70 t and 236 vehicles in excess of 100 t, up to 

the heaviest observed GVW of 165.6 t. The corresponding figures for the site in Slovakia are 78 

vehicles in excess of 70 t, 8 vehicles in excess of 100 t, and a maximum observed GVW of 117.1 t. 

Almost all of the very heavy vehicles at the site in the Netherlands are in the slow lane, with just 

seven vehicles in excess of 70 t in the faster lane, and a maximum there of 75.2 t. 



   6 

Table 1. WIM data 

Country 
Netherlands 

(NL) 

Slovakia 

(SK) 

Czech 

Republic 

(CZ) 

Slovenia 

(SI) 

Poland 

(PL) 

Site Woerden Branisko Sedlice Vransko Wroclaw 

Road number A12 (E25/E30) D1 (E50) 
D1 

(E50/E65) 
A1 (E57) A4 (E40) 

Number of measured lanes 2 2 2 2 2 

Number of directions 1 2 1 1 1 

Total trucks (cleaned) 646 548 748 338 729 929 147 752 429 680 

Time period 
Feb to Jun 

2005 

Jun 2005 to 

Dec 2006 

May 2007 to 

May 2008 

Sep to Nov 

2006 

Jan to Jun 

2008 

Number of weekdays with 

full traffic record 
77 290 148 39 87 

Average daily truck traffic 

(ADTT) in one direction 
7 102 1 100 4 751 3 293 4 022 

Time stamp precision (s) 0.01 0.1 0.1 0.001 1.0 

Maximum number of axles 13 11 12 12 9 

Maximum GVW (t)  165.6 117.1 129.0 131.3 105.9 

Number over 70 t 892 78 169 3 35 
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 (a) Less than 70 t  (b) In excess of 70 t 

Fig. 1. GVW histograms for the Netherlands and Slovakia 

3. SIMULATION METHODOLOGY 

In Monte Carlo simulation, the parameters for each individual truck, and for the arrangement of 

trucks in each lane, are generated using lane-specific statistical distributions derived from the traffic 
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measured at each site. The calculated characteristic load effects are sensitive to the assumptions 

used for these distributions. Most simulated vehicles will be within the observed range of vehicle 

classes (number of axles), but the modeling of extreme vehicles with more axles than any observed 

is also necessary. The latter are described in Section 3.2. 

3.1. Observed vehicle classes 

Many models for GVW have been used by other authors. Bimodal and trimodal Normal 

distributions have been used for the entire truck population [21,34,35]. Others have focused on the 

weights of heavy trucks only – Kennedy et al. [36] assume that these can be described by a Normal 

distribution, whereas Grave et al. [32] model these with a Weibull distribution. Bailey and Bez [20] 

use a Beta distribution to model the weights of axle groups (tandems and tridems) and build up the 

GVW from this. Crespo-Minguillón and Casas [28] use the measured empirical distribution 

(bootstrapping) as the basis for MC simulation. Typically, the simulation is designed so that the 

proportion of vehicles in each class is the same as in the measured traffic. The vehicle class may be 

determined simply by the number of axles (and this is the approach adopted here), or in some 

studies further sub-classification is applied based on axle layout [20,22]. 

In this study, the GVW and number of axles for each truck are generated using the 'semi-parametric' 

approach developed by O'Brien et al. [37]. Up to a certain GVW threshold, where there are enough 

data to provide a clear frequency trend, an empirical bivariate distribution is used for GVW and 

number of axles. The threshold chosen for this is the value of GVW for which the bin count in the 

GVW histogram for all vehicles crosses 16 (using a bin size of 1 t). Beyond this threshold, a 

parametric fit is needed in order to smooth the trend and so that simulations can generate vehicles 

with weights and numbers of axles greater than those observed. The upper quadrant of a bivariate 

Normal distribution is fitted to the frequencies above the GVW threshold using truncated maximum 

likelihood estimation. The choice of the Normal distribution is not based on theoretical 

considerations, but it is widely used, fits the data reasonably well, and does not have an upper 

bound. The thresholds used, together with the expected 1000-year GVW (based on the fitted 

distribution), and the parameters of the bivariate Normal distribution are shown for each site in 

Table 2. Only the upper quadrant of the distribution is used, and the overall distribution does not 

have a physical meaning, as is evidenced by the negative mean values in some cases. As discussed 
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in O’Brien et al. [37], results for lifetime maximum loading vary to some degree based on decisions 

made about extrapolation of GVW, and these decisions are, of necessity, based on relatively sparse 

observed data. 

Table 2. GVW and number of axles – Upper quadrant of bivariate Normal distribution (  = mean; 

 = standard deviation;  = correlation coefficient) 

Site 

 

 

GVW 

Threshold 

(t) 

 

Expected 

1000-year 

GVW 

(t) 

 

GVW
 

(t) 

 

GVW
 

 (t) 

 

NAxles
 

 

 

NAxles
 

 

 


   

 

 

Netherlands 100 234 64.9 27.9 7.2 2.1 0.82 

Slovakia 64 167 11.3 26.2 2.9 2.2 0.79 

Czech Republic 62 189 14.6 29.1 4.3 2.5 0.75 

Slovenia 59 175 -61.3 42.4 -4.1 3.7 0.97 

Poland 70 158 -3.9 28.2 1.0 2.2 0.92 

The importance of wheelbase in bridge loading is well recognized. Sivakumar et al. [16] note that 

vehicles with closely-spaced axles such as specialized haulage vehicles – concrete trucks, 

construction vehicles – tend to govern bridge loading, and Tabsh and Tabatabai [38] discuss the 

importance of short-wheelbase vehicles in lateral distribution of loads. Design codes such as the 

Eurocode [2] incorporate some variation in axle spacing in load models for special vehicles, and in 

this study the accurate modeling of axle spacing is given close attention. Photographs from the 

Netherlands of heavy vehicles show that shorter special vehicles are frequently cranes or vehicles 

carrying crane ballast, as in Fig. 2(a), which often travel in convoy with cranes. These are 

characterized by a series of closely-spaced axles. Vehicles with a large maximum axle spacing are 

often “low loaders” carrying construction equipment, as in Fig. 2(b). These vehicles might be 

expected to have special permits and escort vehicles, but were recorded travelling at speeds similar 

to other traffic and are typically part of the general traffic on the highway. Different approaches 

have been used in the past to model axle spacing for each vehicle class – some have assumed fixed 

axle spacings [32,34]; Bailey and Bez [20] use Beta distributions for spacings; Sriramula et al. [39] 

use Normal distributions and model correlation between spacings using copula functions; O'Brien et 

al. [21] use a combination of unimodal and bimodal Normal distributions. In this study, for each 

vehicle measured, all axle spacings are ranked in descending order, starting with the maximum. In 
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the MC simulation, an empirical distribution (bootstrapping) is used to generate the maximum axle 

spacing for each vehicle, given the number of axles and the GVW range (in 5 t intervals). A sample 

illustrating this empirical distribution is given in Table 3. A lower limit of 1 m, and an upper limit 

of 20 m ensure that unrealistic axle spacings are not generated. For all spacings other than the 

maximum, fitted trimodal Normal distributions are used, as illustrated in Table 4. Axle spacings are 

assumed to be independent of each other. The density function for a trimodal Normal distribution is 

given by: 

),(),(),()( 333222111  NpNpNpxf                (1) 

where ),( N  is the Normal density function with mean   and standard deviation  ,  

10  ip  and 1321  ppp . 

The position of each of the ranked spacings on the vehicle is also modeled in the simulation using 

empirical distributions for all spacings in each vehicle class, and a sample is shown in Table 5.  

Table 3. Sample extract from empirical distribution: frequencies of maximum axle spacing/GVW 

combinations (6-axle trucks, Czech Republic) 

Number of axles = 6 

 Maximum axle spacing (m) 

GVW (t) 1 2 3 4 5 6 7 8 9 10 …20 

…            

20 0 0 36 318 397 127 21 29 21 5  

25 0 1 7 129 183 73 21 20 19 17  

30 0 0 11 73 167 56 34 20 12 35  

…            
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Table 4. Parameters of sample trimodal Normal distributions for other axle spacings (6-axle trucks, 

Czech Republic) 

Spacing 1  
(m) 

1  
(m) 

1p  
 

2  
(m) 

2  
(m) 

2p  
 

3  
(m) 

3  
(m) 

3p
 

 

2
nd

 Max 3.14 0.49 66% 4.57 0.24 30% 6.53 0.92 4% 

3
rd

 Max 1.39 0.05 57% 2.27 0.05 0% 3.53 0.86 43% 

4
th

 Max 1.37 0.34 7% 1.37 0.05 87% 2.63 0.92 6% 

Smallest 1.26 0.05 16% 1.34 0.05 79% 1.34 0.69 5% 

 

Table 5. Sample empirical distribution for positions of largest spacings (6-axle trucks, Czech 

Republic) 

Position 1
st
 Max 2

nd
 Max 3

rd
 Max 4

th
 Max 

1 13% 78% 7% 2% 

2 5% 5% 24% 38% 

3 73% 13% 4% 5% 

4 7% 3% 36% 23% 

5 1% 1% 29% 33% 

 

  

(a) GVW=100.1 t, wheelbase=16.2 m (carrying 

crane ballast). 

(b) GVW=100.8 t, wheelbase=22.3 m 

Fig. 2. Two 9-axle vehicles recorded in the Netherlands 

The approach used is illustrated for the case of 9-axle vehicles recorded in the Netherlands, and two 

typical examples are shown in Fig. 2. The axle layout for the vehicle of Fig. 2(a) can be 

characterized as follows: it has a maximum spacing of 4.56 m behind the third axle, the next largest 

4.56 m 

3.35 m 

11.04 m 

2.53 m 
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spacing of 3.35 m behind the first axle, with all other spacings approximately 1.40 m. The vehicle 

of Fig. 2(b) has a maximum spacing of 11.04 m behind the fourth axle, the next largest spacing of 

2.53 m is behind the first axle, with all other spacings between 1.30 and 1.50 m.  

The distributions of the magnitude of the first and second largest spacings for all 9-axle trucks in 

the Dutch data are shown in Fig. 3(a), and a distinct bimodal shape for the maximum spacing is 

evident, corresponding to crane-type vehicles and low loaders. The distributions of the position of 

the first and second largest spacings are shown in Fig. 3(b) which shows that the maximum spacing 

most commonly occurs behind the fourth axle, and that the second largest spacing most commonly 

occurs behind the first axle. 

 

0%

10%

20%

30%

40%

0 2 4 6 8 10 12 14

Inter-Axle Spacing (m)

F
re

q
u

en
cy

Maximum 

spacing

2nd maximum

 

0%

10%

20%

30%

40%

50%

 1  2  3  4  5  6  7  8

Position

F
re

q
u

en
cy

Maximum spacing

2nd maximum

 

(a) Magnitude (b) Position 

Fig. 3. Magnitude and position of the two largest axle spacings for all 9-axle trucks in the 

Netherlands.  

This approach can be extended to characterize the axle layout for any vehicle. For maximum 

accuracy, the distributions for the magnitude and position of the first, second, third and fourth 

largest axle spacings in each class of vehicle are used in the simulation model. The fifth and 

subsequent spacings are typically in the range 1.3 m to 1.7 m, and are all modeled with a single 

distribution for each vehicle class. For vehicles with fewer than six axles, a reduced number of 

distributions is required – for example, 3-axle vehicles are completely described by the first and 

second largest spacing. The importance of correctly modeling axle spacing and layout is illustrated 

in Fig. 4 which shows the differences between the load effects on bridges of various spans for the 

two vehicles pictured in Fig. 2. Although these two vehicles have very similar GVWs, the shorter 

vehicle of Fig. 2(a) causes up to 50% greater bending moments in short to medium span simply 
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supported bridges, and up to 40% greater shear forces. The longer vehicle, on the other hand, causes 

up to 15% greater hogging moments over the central support of two-span continuous bridges. Some 

of these differences are caused by variations in axle loading between the two vehicles, but most of 

the differences can be attributed to the difference in the maximum axle spacing. 
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Fig. 4. Ratios of bridge load effects for the two vehicles pictured in Fig. 2.  

 

Many different approaches have been used in modeling the distribution of the gross weight to the 

individual axles. Grave et al. [32], Harman and Davenport [33] and Jacob [34] use deterministic 

values for the proportion of GVW carried per axle for each vehicle class. Bailey and Bez [20] use 

bimodal beta distributions for axle groups (tandems and tridems), and Normal distributions for 

single axles. O'Brien et al. [21] use a mixture of Normal, bimodal Normal and trimodal Normal 

distributions, whereas Miao and Chan [19] use a mixture of Inverse Gaussian, Gumbel and Weibull 

distributions. Correlation between axle loads is modeled for each vehicle class by Crespo-

Minguillón and Casas [28], and by Srinivas et al. [40] who use copula functions. The proportion of 

the GVW carried by each individual axle is simulated in this work by using bimodal Normal 

distributions fitted to the observed data for each axle from each vehicle class. An example of the 

fitted parameters is given in Table 6. The measured weights of adjacent axles are highly correlated, 

with coefficients of correlation typically in excess of 90% for closely-spaced axles, while the 

weights of non-adjacent axles show lower levels of correlation – typically around 50% to 60%. The 

observed correlation structure for both adjacent and non-adjacent axles for each vehicle class is 
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achieved in the simulation using the general technique for simulating correlation as described by 

Iman and Conover [42]. When all axle loads have been generated for a particular vehicle, their sum 

is generally close, but not exactly equal, to the GVW. To account for this, each axle load is scaled 

pro-rata to ensure that their sum is equal to the GVW. A minimum value of 25% of the average axle 

load for the vehicle, and a maximum value of twice the average is imposed to prevent unrealistic 

values being generated in the simulation. These are based on observed maxima and minima. An 

examination of the bridge loading scenarios that produce daily and yearly maximum load effects 

also ensures that these are not unduly influenced by vehicles with unusually heavy axle loads.  

Table 6. Parameters of sample bimodal Normal distributions for axle loads (6-axle trucks, Czech 

Republic) 

Axle 1   1  1p  2  2  2p  

1 15.9% 1.8% 42.0% 22.4% 6.0% 58.0% 

2 18.6% 10.4% 4.7% 18.6% 5.6% 95.3% 

3 17.9% 4.0% 98.3% 24.2% 14.5% 1.7% 

4 15.4% 3.0% 98.7% 24.1% 14.9% 1.3% 

5 14.1% 3.6% 99.9% 43.3% 12.1% 0.1% 

6 14.1% 3.7% 99.9% 33.9% 4.1% 0.1% 

3.2. Extrapolated vehicle classes 

As noted earlier, many authors have used models where all simulated vehicles are drawn from a 

fixed number of observed classes, but the model used here generates vehicles that may have more 

axles than any observed vehicle. The determination of the axle spacing and loading for these is 

based on extrapolation from observed vehicle classes. This extrapolation for all sites is based on the 

Dutch WIM data where the maximum number of axles observed for any vehicle is 13. At the other 

sites where the maximum number of axles observed is lower, the trends for axle configuration 

appear to be similar to comparable Dutch data. Fig. 5(a) shows the relationship between GVW and 

average maximum axle spacing for all countries. As GVW increases above 60 t, the data become 

more sparse, but the trend is similar in all countries. Fig. 5(b) shows the percentage of low loaders, 

defined here as those with maximum axle spacing greater than 7.5 m, as a function of GVW. In all 

countries, the percentage of low loaders rises steeply as GVW increases above 50 t, to 

approximately 50% at 100 t. In the Netherlands, the trend continues upwards to 100% for the 
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heaviest observed vehicles, and this clear trend in the Dutch data is assumed to be reasonable for all 

sites. The extreme Dutch vehicles in excess of 100 t are therefore used as a template for axle 

configuration for other sites, although the extrapolation of GVW is done separately for each site, 

based on the measured data. The graphs in Fig. 5 clearly show that there is a dependence between 

axle spacing and GVW. 
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(a) Average maximum axle spacing  (b) Percentage of vehicles with maximum axle 

spacing over 7.5 m (“low loaders”) 

Fig. 5. Trends in maximum axle spacing with weight (GVW in 1 t intervals). 

The magnitudes of all axle spacings for extrapolated vehicle classes are modeled using trimodal 

Normal distributions fitted to measurements for Dutch trucks with nine or more axles. Axle loading 

is modeled using a Normal distribution for each axle, based on the average distribution of axle loads 

for Dutch trucks with nine or more axles. To allow for the varying number of axles in the observed 

data (i.e. from 9 to 13), the random variable used for each axle is the percentage of the GVW 

carried by that axle divided by the average percentage per axle (e.g., (12%)/(10%) = 1.2). The 

percentage of the GVW carried by each of the front four axles tends to show the greatest variability, 

with the axles to the rear carrying similar loads. 

3.3. Gaps, traffic flows and speeds 

O'Brien and Caprani [42] describe the many approaches that have been used in other studies for 

modeling headways (the time between the front axles of successive vehicles arriving at the same 

point on the road). Distributions that have been used include the negative exponential, uniform, 

gamma, and lognormal, while some authors have used deterministic gaps. Driver behavior is 

influenced by the clear gap (bumper to bumper) in front of the vehicle. It is not possible to calculate 
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this clear gap from the available WIM data, but it is possible to calculate the inter-axle gap – the 

gap between the rear axle of the leading truck and the front axle of the following truck. Although 

headway has been used in other studies, inter-axle gap is used here as it is a better proxy for the 

clear gap and is not dependent on overall vehicle length. Gap distributions for each lane are fitted to 

the observed data for different flow rates in approximately 20 increments up to the maximum 

observed flow rate in each lane. For each flow rate, three piecewise quadratic curves are fitted to the 

observed cumulative distributions of gaps up to 4 seconds, in a similar way to that described by 

O'Brien and Caprani [42] for headways. For gaps greater than 4 seconds (in which case following 

trucks are unlikely to be on the bridge simultaneously), a negative exponential distribution is 

adopted as a sufficiently accurate approximation. 

In other studies, traffic flow has been modeled as constant throughout the day [20], or by using 

“homogeneous” days with variable hourly flow which is the same for all days [25,35]. The latter 

approach is extended here to allow for variable daily flows which incorporate both random daily 

variation and any seasonal variation in the measured data. The Weibull distribution has been used 

elsewhere to model the temporal variation in traffic flows [43], and it gives a very good fit for the 

measured daily traffic volumes at all sites. The Weibull distribution parameters for each site are 

given in Table 7. They are used to generate a variable number of trucks for each day of the 

simulation. The Weibull distribution has an upper bound, and in the slow lane in the Netherlands for 

example, it produces daily flow values of between 4800 and 7300 trucks per day, with a mean of 

6545. The Weibull distribution for maxima is given by Castillo [27]: 
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Table 7. Weibull distribution parameters for daily truck flow rates 

Site                                           k 

Netherlands 7 296 844 1.77 

Slovakia 1 562 440 3.07 

Czech Republic 6 410 2 170 2.15 

Slovenia 4 067 1 027 2.15 

Poland 4 187 539 1.75 

 

The averages of the observed hourly flows throughout the 24 hour period over all measured 

weekdays are scaled to produce the required flow for each simulated day. The use of a variable 

number of trucks per day has a slight effect on the extreme value distribution of daily maximum 

bridge load effects, but when yearly maxima are used, the block size becomes effectively constant, 

as is required for the application of extreme value statistics. A year’s traffic is assumed to consist of 

250 weekdays, with the very much lighter weekend and holiday traffic being ignored. This is 

similar to the approach used by Caprani et al. [25] and Cooper [35]. No growth in traffic volumes is 

allowed for – annual average traffic flow is assumed to remain constant over the period represented 

by the simulation. Any seasonal variation in GVW or vehicle types is not incorporated in the model. 

Truck speeds are generated using the empirical frequency distribution for each lane combined with 

the method described by Iman and Conover [41] to give the high correlation observed between 

speeds of successive vehicles. The empirical cumulative distribution for each lane at each site is 

calculated from the histogram of speeds in 1 km/h bins for all measured vehicles. The frequencies 

in the empirical distribution are re-scaled linearly to the interval (0,1), and a vehicle’s speed is 

simulated by generating a uniform random number on this interval and selecting the corresponding 

speed from the empirical distribution. 

The measurements at the site in Slovakia are for two lanes in opposing directions, whereas at all 

other sites they are for two same-direction lanes. In Slovakia, it is possible to compare directly 

results for simulated and observed bi-directional traffic. For the purposes of comparing simulated 

and observed results at the other sites, the two lanes are treated separately.  
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3.4. Simulation of bridge loading 

The simulated traffic is passed in time steps of 0.02 s over simply supported and two-span 

continuous bridges of various length. Maximum load effects are calculated for each simulated 

loading event, and these events are categorized into different types depending on the number of 

trucks on the bridge in each lane when the maximum occurs. For example, in two-lane traffic there 

are three possible types of two-truck events – one truck in each lane, two trucks in lane 1, and two 

trucks in lane 2. Depending on the length of the simulation run, daily, monthly or yearly maxima 

are calculated for each event type. The classification of different event types has been found to 

improve the convergence of the results to the Generalized Extreme Value distribution [25], although 

this convergence also improves greatly when yearly rather than daily maxima are used. For the 

purposes of comparing simulated and observed results, the bridge is assumed to be a simple beam, 

and the transverse position of the vehicles is ignored. When estimating lifetime maximum loading, 

lane factors are used to model lateral distribution of axle loads. 

Flowcharts for the entire simulation process are shown in Fig. 6, which shows an overview, and in 

Fig. 7 which shows the steps involved in generating a stream of simulated traffic (Fig. 7(a)), and the 

steps for calculating periodic load effect maxima produced by passing a stream of traffic over a 

bridge (Fig. 7(b)). 

 

Fig. 6. Overview of simulation process 
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(a) Process to generate a stream of simulated 

truck traffic in one lane 

(b) Calculation of bridge load effects for a 

stream of truck traffic 

Fig. 7. Flowcharts for simulation processes 
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3.5. Calibration of simulation model 

The simulations are run for a time-span of 8 years (2000 working days) and the daily maximum 

load effects are compared with those calculated from measured traffic at each site. If observations 

of a random variable, drawn independently from the same parent distribution, are grouped in blocks 

of fixed size, the distribution of the block maxima will tend asymptotically to a Generalized 

Extreme Value (GEV) distribution, and a convenient way of presenting such results is to plot the 

calculated block maxima on Gumbel probability paper [44]. The block maximum values are sorted 

in ascending order and an empirical probability is assigned to each value to calculate its “plotting 

position”. This is calculated for the value in position i in the sorted list of N values as : 

     1


N

i
pi

             (3) 

The load effect value is plotted on the X-axis, and the “standard extremal variate” is plotted on the 

Y-axis: 

     
))ln(ln( ii py 

            (4) 

 Representative results are shown in Fig. 8 and Fig. 9 for different load effects on a 35 m bridge. 

For the Netherlands (Fig. 8), the three loading event types shown for the slow lane are those 

featuring one, two and three following trucks in the same lane. The 3-truck event is relatively rare 

for shorter spans and does not occur on every day. This accounts for the many zero values shown 

for this curve. The one-truck event clearly governs over the simulated 8-year time span for both 

load effects.  

For the bi-directional traffic in Slovakia in Fig. 9, four event types are shown – the one and two-

truck same-lane events (denoted by “1” and “2” respectively), the two-truck meeting event, with a 

truck in each lane (“1+1”), and the three-truck meeting event, with two trucks in one lane (“2+1”). 

In this example, it is less clear which event type governs bridge loading over this time span, with 

both the one-truck and the two-truck meeting events producing similar maximum values.  

Results for load effects from the simulation show good agreement with those calculated from 

measured data. The slight divergence of some of the measured values at the upper end of the curves 
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can be attributed to the random nature of extreme events (as is evident in repeated simulation runs, 

for example), and the principal objective of the simulation is to ensure that the model matches the 

main trends in the observed data.  
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(a) Mid-span moment, simply supported (b) Mid-support hogging moment, 2-span 

continuous bridge 

Fig. 8. The Netherlands, slow lane only: Daily maximum load effects, bridge length = 35 m  
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Fig. 9. Slovakia, bi-directional traffic: Daily maximum load effects, bridge length = 35 m 
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4. USING THE SIMULATION MODEL TO ESTIMATE MAXIMUM LIFETIME 

LOADING 

4.1. Modeling two-lane traffic 

The traffic modeled for this study is bidirectional, with one lane in each direction, and independent 

streams of traffic are generated for each direction. In simulation, many millions of loading events 

are analyzed, and for efficiency of computation it is necessary to use a reasonably simple model for 

transverse load distribution on two-lane bridges. This is achieved by calculating load effects for 

each vehicle based on a simple beam, and multiplying these load effects by a lane factor to account 

for transverse distribution. The lane factors used are based on finite element analyses which were 

performed on bridges with different spans (from 12 to 45 m), and different construction methods 

(solid slab for shorter spans, and beam-and-slab for longer spans). One lane is identified as the 

“primary” lane and the lane factor for vehicles in this lane is always taken as unity. When a vehicle 

is also present in the other “secondary” lane, the location of maximum stress is identified in the 

finite element model, and the relative contributions of each truck is calculated. In some cases the 

maximum stress occurs in a central beam, and the contribution from each truck is similar, giving a 

lane factor close to 1.0 for the secondary lane. In other cases, the maximum stress occurs in a beam 

under the primary lane, and the lane factor for the secondary lane is significantly reduced. In the 

case of shear stress at the supports of a simply supported bridge, the maximum occurs when each 

truck is close to the support, and the lateral distribution is very much less than for mid-span bending 

moment. As a result of this analysis, two sets of lane factors are used in the simulation runs, one at 

either end of the calculated ranges – “low” and “high”. The factors used are shown in Table 8, 

together with the three types of load effect that are examined in all simulation runs. 

Table 8. Lane Factors for secondary lane 

 
Load Effect 

Lane Factors 

  Low High 

LE1 Mid-span bending moment, simply supported 0.45 1.0 

LE2 Support shear, simply supported 0.05 0.45 

LE3 Central support hogging moment, 2-span continuous 0.45 1.0 
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At the WIM sites in four of the five countries, the data are for two same-direction lanes, and the 

percentage of the total truck traffic in the slow lane ranges between 92% and 96%. For the purposes 

of this study, the truck volumes in the faster lane are merged with the slow lane to give a stream of 

single-lane traffic, with gap distributions adjusted for the slightly higher flow rate. This is similar to 

the approach that has been used in other studies [24] and is conservative as it neglects the increased 

gaps between trucks that would be introduced by merging all traffic – trucks and cars – in both 

lanes. In Slovakia, where the measurements are for the slow lane only in each direction, the 

simulation is based on the measured traffic flows. According to Rogers [45], the peak capacity of a 

two-lane bidirectional road is approximately 2000 vehicles per hour in each lane, and while the 

percentage of trucks is site dependent it would typically be in the range of 5% to 15%. This would 

imply that the truck volumes in the Netherlands would most likely cause congestion, but that the 

volumes at the other sites could quite plausibly be carried by a two-lane bridge. The WIM data from 

the Netherlands are very useful in characterizing the axle configuration for extremely heavy 

vehicles in all countries, but the bridge loading results presented here are confined to the four 

Central European countries. 

The programs which implement the simulation model are written in C++, and use parallel 

processing. Only potentially significant crossing events are examined in detail – i.e. where the 

combined GVW on the bridge exceeds a selected threshold. This is a form of importance sampling 

[46,47] and greatly reduces the required processing time. For example, at the Czech site where the 

traffic volume is relatively high (4751 trucks per day in each direction), there are 9104.2   vehicles 

in 1000 years of bidirectional traffic. Using the programs designed by the authors, a full simulation 

of these events and calculation of load effects for four bridge spans takes about 4 days on a single 

personal computer with a 1.73 GHz Intel® Pentium® Dual-Core processor. By focussing on only 

significant crossing events, the processing time can be reduced to about 1 day.  

4.2. Results from 1000-year simulation runs 

1000-year simulations were performed for each site. The simulated traffic was run over four bridge 

lengths – 15, 25, 35 and 45 m – and three load effects were calculated for low and high transverse 

distribution (lane factors), as shown in Table 8.  
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The output from each simulation run includes the annual maximum value of each load effect for 

each of the event types described earlier, as well as the overall annual maximum load effect, 

regardless of event type. These can be plotted on Gumbel probability paper as shown for example in 

Fig. 10 for mid-span bending moment on a simply supported 35 m bridge with low transverse 

distribution. A Weibull fit to the top 30% of values is also shown. As can be seen, the fit for the 

Czech data is almost linear, suggesting a Gumbel distribution, whereas for the other sites there is 

more pronounced curvature, indicating that the Weibull distribution is more appropriate. The traffic 

volumes vary significantly between sites, and consequently the number of loading events per year is 

quite different. The GVW distribution is also different at each site. These two factors are considered 

to explain the differences in the distributions of load effects at each site. An advantage of using the 

Weibull distribution is that it encompasses the Gumbel distribution as the limiting case as the shape 

factor tends towards zero.  
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Fig. 10. Load Effect 1, low lane factors, 35 m span, overall annual maxima, with Weibull fits to top 

30% (SK = Slovakia, PL = Poland, CZ = Czech Republic, SI = Slovenia) 

In Table 9, sample results for lifetime maximum loading are given for a 35 m bridge. The 

characteristic 1000-year load effect values are also expressed as ratios to the corresponding values 

for Eurocode Load Model 1 with dynamic effects removed [2]. The 50-year and 75-year mean 

values are very similar to each other in magnitude, and are approximately 10% lower than the 1000-

year return values. The COV of the 50 and 75 year mean values are around 5%, and this compares 

with other studies of site-specific static load effects – for example, Moses [5] cites reported results 

from various studies of between 1% and 5% for maximum loading events. Repeated simulation runs 
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will give slightly different estimates, but the variance between runs is quite small – for example, the 

estimate for the 75-year mean has a COV of about 1.0%.  

In Fig. 11, some sample schematic layouts of maximum-in-lifetime loading scenarios are shown. 

For each site, bridge span, load effect and level of transverse distribution, similar diagrams are 

generated for the top 20 loading events in 1000 years of simulation. These are useful in assessing 

the plausibility of the estimated characteristic values, and an analysis of these scenarios allows 

some conclusions to be drawn about the types of vehicles and loading events that are likely to cause 

the maximum loading in the lifetime of the bridge. These conclusions are summarized for each load 

effect in the following paragraphs.  

 

Table 9. Characteristic maximum load effects – 35 m bridge 

Site 

Lane 

Factors 

1000-year 

return value 

(and Ratio to 

Eurocode 

LM1) 

50-Year 

Mean 

50-year 

COV 

75-Year 

Mean 

75-year 

COV 

 LE1: Mid-span Moment (kNm) 

Czech Republic 
High 10 766 (0.75) 9 853 4.9% 9 994 4.6% 

Low 9 539 (0.88) 8 592 5.2% 8 699 5.4% 

Slovenia 
High 10 548 (0.74) 9 383 6.2% 9 498 6.1% 

Low 8 905 (0.83) 8 220 4.4% 8 288 4.5% 

Poland 
High 10 202 (0.71) 9 441 4.7% 9 563 4.7% 

Low 8 631 (0.80) 8 136 3.3% 8 227 3.3% 

Slovakia 
High 9 862 (0.69) 8 776 6.9% 8 933 6.9% 

Low 8 368 (0.78) 7 864 3.5% 7 914 3.5% 

LE2: Support shear (kN) 

Czech Republic 
High 1 177 (0.95) 1 058 5.6% 1 073 5.6% 

Low 1 165 (1.22) 1 049 5.6% 1 061 5.5% 

Slovenia 
High 1 088 (0.87)  989 5.9% 1 005 6.1% 

Low 1 087 (1.14)  983 6.3%  998 6.6% 

Poland 
High 1 059 (0.85)  978 4.4%  988 4.4% 

Low 1 049 (1.10)  967 4.3%  978 4.3% 

Slovakia 
High 1 003 (0.81)  935 3.9%  945 3.9% 

Low  992 (1.04)  934 3.6%  945 3.6% 

LE3: Hogging Moment 
a
- Central Support (kNm) 

Czech Republic 
High 2 687 (0.86) 2 439 5.3% 2 474 5.2% 

Low 2 489 (1.05) 2 279 4.9% 2 312 4.7% 

Slovenia High 2 569 (0.82) 2 270 7.2% 2 309 7.2% 
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Low 2 428 (1.02) 2 115 7.7% 2 162 7.6% 

Poland 
High 2 459 (0.79) 2 254 5.2% 2 291 5.1% 

Low 2 263 (0.95) 2 092 4.6% 2 118 4.4% 

Slovakia 
High 2 312 (0.74) 2 091 5.6% 2 122 5.4% 

Low 2 235 (0.94) 2 057 4.9% 2 090 4.5% 

Note: 
a
 For hogging moment, the results are for a 2-span bridge with an overall length of 35 m. 
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(a) Czech Republic, high lateral distribution 

Load effect 1: Mid-span moment, simply supported 

104 t and 61 t 

 

 

 
(b) Poland, low lateral distribution 

Load effect 2: Support shear, simply supported 

157 t 

 

 

 

 
(c) Slovenia, high lateral distribution 

Load effect 3: Hogging moment, two-span  

33 t and 148 t 

 

 
(d) Slovakia, low lateral distribution 

Load effect 3: Hogging moment, two-span  

165 t 
 

 

Fig. 11. Schematics of selected maximum-in-lifetime loading scenarios on a 35 m bridge 

Load Effect 1 – Mid-span bending moment, simply supported 

Where there is high transverse distribution of load, typical lifetime maximum loading events feature 

two trucks meeting on the bridge. In most cases, there is one very heavy vehicle meeting a more 

frequent 5 or 6-axle truck, as in Fig. 11(a) for the Czech Republic. This is an example of Turkstra’s 

rule [48]. The heavy vehicle is typically a crane-type vehicle with closely-spaced axles and a GVW 

within the range observed in the WIM data. When there is low transverse distribution, 1-truck 
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events are more common and often feature a heavy crane or a low loader significantly heavier than 

any observed. Two-truck events still feature, although usually with one very heavy truck meeting a 

frequent truck.  

Load Effects 2 – Shear at support, simply supported 

For shear, transverse distribution is relatively low (see Table 8) because the trucks are close to the 

bridge abutments. As a consequence, one-truck events tend to dominate, often composed of a low 

loader significantly heavier than any observed vehicle, as in Fig. 11(b) for Poland. In some cases, 

there is a light truck on the bridge at the same time. Due to the assumptions in the simulation based 

on WIM data from the Netherlands, low loaders are the dominant type for the heaviest vehicles. 

Load Effect 3 – Hogging moment over central support, two-span continuous bridge 

Low loaders also feature frequently for this load effect, partly because they are the dominant type 

above 120 t, but also because of the shape of the influence line for hogging bending moment. A low 

loader can straddle both spans and so produce higher moments than a crane-type vehicle of the 

same GVW. Some events have a heavy low loader in one lane meeting a frequent truck in the other 

lane, as in Fig. 11(c) for Slovenia. For low transverse distribution, one-truck events are more 

common and the single truck tends to have a GVW significantly heavier than any observed as in 

Fig. 11(d) for Slovakia. 

5. CONCLUSIONS 

Extensive collections of high-quality WIM measurements have been used to calibrate a bridge 

traffic loading model which seeks to capture all significant aspects of heavy vehicle traffic. The 

measurements are considered by the authors to be reasonably representative of traffic on European 

highways in recent years. The model is site-specific in that each simulation run is based on 

statistical distributions of parameters measured at a particular location, but can be used for any site 

where WIM measurements are available. The simulated results for load effects are shown to match 

those for measured data. The model can be used to estimate maximum bridge load effects over a 

chosen time span and can be used either in the assessment of existing bridges or for the verification 

and re-calibration of bridge design or assessment codes. The model is designed to extrapolate in a 
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consistent way from measured traffic to vehicles that are heavier and have more axles than any that 

have been observed. 

This paper models static loading of traffic, and further research is needed on the dynamic 

interaction between the extremely heavy vehicles featured here and different types of bridge 

structure. Dynamic effects are usually introduced by applying a dynamic amplification (impact) 

factor to the results from static analysis, but a more sophisticated probabilistic approach may be 

more appropriate. A relatively simple model for lateral distribution of loading has been employed 

here, and there is scope to enhance the model by using bridge-specific influence surfaces. The 

development of permit policies by road and bridge owners, and the effectiveness of overload 

detection and enforcement also need further study.  

Results are dependent on the method chosen for extrapolating measured GVWs to estimate lifetime 

maximum weights, and on the assumptions used in generating vehicles with a greater number of 

axles than any observed in the WIM data. The results are particularly sensitive to the modeling 

assumptions regarding axle spacings and wheelbase. Results for loading events which feature two 

or more trucks in the same lane are sensitive to the modeling of inter-vehicle gaps. If vehicles are 

simulated to travel more closely together, there is a higher probability of a greater concentration of 

load on the bridge. However, this type of loading event has not been found to be critical in the 

lifetime of the bridge spans considered. 

Previous approaches using Monte Carlo simulation have required many simplifying assumptions. 

The model described here aims to remove as many limitations as possible and to develop a 

simulation model that is generally applicable to many different vehicle types. While design and 

assessment codes usually separate special vehicles requiring permits from normal traffic, the model 

presented here includes the entire population of highway-speed vehicles that a bridge is likely to 

carry during its lifetime. 

The simulation process has been optimized to allow very long runs to be done, in excess of 1000 

years, and this greatly reduces the variability of results and largely avoids issues about the selection 

of suitable statistical distributions for extrapolation from short simulation runs. Estimates with low 

variance can be calculated for characteristic 1000-year load effects and for the distributions of 50- 

and 75-year lifetime maxima that can be used for reliability-based design and assessment. The 
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approach described here does not remove the uncertainty inherent in estimating lifetime maximum 

loading from data collected over time periods which are much shorter than the bridge lifetime. 

The long-run simulations make it possible to examine in detail the types of loading events that give 

rise to the characteristic load effects. Bridge loading for the spans considered at these sites is 

governed by single-truck and 2-truck meeting events. The 1-truck events often feature trucks 

significantly heavier than any observed. The 2-truck events generally feature an extremely heavy 

truck meeting an average truck (Turkstra’s rule), with the weight of the heavy truck often within the 

range of the observed data.  

In general, special vehicles well above normal legal weight limits govern bridge loading. For bridge 

owners, the monitoring and control of these “special” vehicles is essential. Reducing the frequency 

of crane-type vehicles would reduce the probability of these meeting other heavy trucks on a bridge. 

Extremely heavy low loaders are rarer at all sites, but controlling the gross weight of these would 

also reduce the characteristic maximum-in-lifetime loading. 
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