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Developments in Performance Monitoring of Concrete
Exposed to Extreme Environments

W. J. McCarter1; T. M. Chrisp2; G. Starrs3; A. Adamson4; E. Owens5; P. A. M. Basheer6;
S. V. Nanukuttan7; S. Srinivasan8; and N. Holmes9

Abstract: The performance of the surface zone of concrete is acknowledged as a major factor governing the rate of deterioration of
reinforced concrete structures because it provides the only barrier to the ingress of water containing dissolved ionic species such as chlorides,
which ultimately initiate corrosion of the reinforcement. In situ monitoring of cover-zone concrete is therefore critical in attempting to make
realistic predictions as to the in-service performance of the structure. To this end, this paper presents developments in a remote interrogation
system to allow for continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is made of a multi electrode array
embedded within cover-zone concrete to acquire discretized electrical resistivity and temperature measurements, with both parameters moni-
tored spatially and temporally. On-site instrumentation, which allows for the remote interrogation of concrete samples placed at a marine
exposure site, is detailed together with data handling and processing procedures. Site measurements highlight the influence of temperature on
electrical resistivity and an Arrhenius-based temperature correction protocol is developed using on-site measurements to standardize resis-
tivity data to a reference temperature; this is an advancement over the use of laboratory-based procedures. The testing methodology and
interrogation system represent a robust, low-cost, and high-value technique that could be deployed for intelligent monitoring of reinforced
concrete structures. DOI: 10.1061/(ASCE)IS.1943-555X.0000089. © 2012 American Society of Civil Engineers.

CE Database subject headings: Concrete; Monitoring; Electrical resistivity; Temperature effects.

Author keywords: Concrete; Cover zone; Sensors; Monitoring; Electrical resistivity; Arrhenius; Temperature.

Introduction

The premature deterioration of concrete highway structures be-
cause of corrosion of the steel reinforcement is a world wide
problem. As in most developed countries, the infrastructure has

now reached an age in which capital costs have decreased, but in-
spection and maintenance costs have grown, constituting a major
part of the recurrent costs of the infrastructure. Life-cycle analysis
estimates that indirect costs as a result of traffic delays and lost
productivity resulting from bridge maintenance and superstructure
replacement program are more than ten times the direct cost of cor-
rosion (Yunovich et al. 2001). Demands for enhanced performance
create a pressing need to be able to determine with an acceptable
degree of confidence the anticipated/residual service life of con-
crete structures. Deterioration of reinforced concrete as a result
of corrosion imparts a significant drain on bridge maintenance re-
sources, not only in terms of the remedial work required but also in
the costs associated with periodic inspections and testing together
with the indirect costs noted previously.

Current testing methods tend to be intrusive, time-consuming,
and costly, both in terms of the direct costs involved and in the
indirect costs such as traffic management, road closures, and diver-
sions required during inspection and testing. In the management of
structures, monitoring the performance of the concrete could allow
for the early detection of deterioration and thus assist in the imple-
mentation of appropriate repair strategies. The development of in-
tegrated monitoring systems for new reinforced concrete structures
could reduce costs by allowing timely maintenance interventions
and a more rational approach to the assessment of repair options
and co ordination and the scheduling of inspection and mainte-
nance program.

Integrated monitoring systems and procedures thus have an im-
portant role to play in the total management of structures as this
involves both life-cycle cost and service-life calculations. When
data from monitoring systems are used with improved service-life
prediction models, additional savings in life-cycle costs could
result, thus offsetting the up front installation costs of such moni-
toring systems.
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Background

Deterioration in concrete comprises an initiation period and a
propagation period. The initiation period is characterized by
changes that occur within the concrete cover zone in response
to the exposure environment and continues until a stage is reached
at which damage begins to propagate. The propagation period be-
gins at a point in time defined when a particular event occurs
(e.g., loss of steel passivity as a result of chloride ingress) and con-
tinues until a specified limit state is reached. The initiation and
propagation stages of deterioration processes result from a complex
interaction of physical, chemical, and electrochemical phenomena.
A prediction of the field performance of reinforced concrete thus
requires numerous data inputs, particularly, the response of the con-
crete to the changing ambient environment in the vicinity of a spe-
cific structural element or part of a structure. Currently, the most
predominant process associated with concrete deterioration is the
ingress of water contaminated with chloride ions. Chloride ions
come from deicing salt used on roads for winter maintenance pur-
poses or from the marine environment in which, for example,
bridges span tidal estuaries. In addition, the extent of reinforcement
corrosion, freeze thaw damage, sulfate attack, and alkali–silica
reaction all depend on the availability of moisture.

Because it is the concrete cover zone that protects the reinforc-
ing steel from the external environment (i.e., the surface 20–50 mm
or so), the protective properties of this zone are crucial in attempt-
ing to make predictions as to the in service performance of the
structure with regard to likely deterioration rates for a particular
exposure condition and compliance with specified design life.
The ability to continuously monitor the cover zone would thus
allow for a more informed assessment of the current and future per-
formance of reinforced concrete structures. The development and
deployment of sensors and associated monitoring systems to assess
cover-zone performance would form an important component in
the inspection, assessment, maintenance, and overall management
of reinforced concrete structures.

This paper presents developments in a monitoring system that
could be exploited for the intelligent monitoring of reinforced con-
crete structures. In this context, intelligent monitoring is defined as
“automated monitoring which explicitly provides information on
current condition and deterioration rates to assist in predicting
the remaining life of a component or structure” (Buenfeld et al.
2008). The focus of the work presented highlights the applicability
of an embedded electrode array and associated remote monitoring
system allowing interrogation from the office setting, thereby pro-
viding virtually continuous, real-time data on the performance of
cover-zone concrete exposed to natural environments.

Testing Methodology

Regarding cover-zone properties, it is the permeation properties
that are important, and terms such as diffusivity (moisture and
ionic), permeability (air and water), and sorptivity are used in this
respect (Basheer 1993). As a result, a number of surface-applied
techniques have been developed and used to assess permeation
properties, for example, the initial surface absorption test (ISAT)
[British Standards Institution (BSI) 1996; Wilson et al. 1998]; Figg
hypodermic methods (Figg 1973); water and air permeability tests
(Meletion et al. 1992; Basheer 1993; Andrade et al. 2000b); the
covercrete absorption test (CAT) (Dhir et al. 1987; Blight and
Lampacher 1995); cumulative absorption and sorptivity methods
(Hall and Yau 1987; BSI 2011; McCarter 1993). What has pre-
cluded their direct application in the field environment is their
dependence on moisture distribution within the surface region

just before testing. Many surface-applied, water absorption
techniques also tend to be ultra-short in duration; for example,
ISAT and CAT values are typically quoted after 10 min absorption
(Classie et al. 1999). Furthermore, the depth to which surface-
applied methods are assessed is unknown; in connection with
rebar corrosion, it is the full cover depth that should be assessed
(i.e., the surface 20–50 mm or so) and not just the surface few
millimeter.

Because the flow of water under a pressure gradient (hence per-
meability) or the movement of ions under a concentration gradient
(hence diffusivity) is analogous to the flow of electrical current
under a voltage gradient, it is understandable that the electrical
resistivity of the concrete (or its reciprocal, conductivity) could
be of practical significance in assessing the durability of concrete
structures (e.g., Andrade et al. 1993, 2000a; Polder and Peelen
2002; Shi 2004; Andrade 2010; Poursaee and Weiss 2010).
Furthermore, once passivity is lost, research indicates that the
single most important factor affecting the corrosion rate of the
reinforcing steel is the resistivity of the surrounding concrete
(e.g., Langford and Broomfield 1987; Alonso et al. 1988; Millard
and Gowers 1992; Lopez and Gonzalez 1993; Fiore et al. 1996;
Broomfield 1997; Brite-EuRam 1998; Gowers and Millard 1999);
Table 1 presents empirical resistivity thresholds for depassi-
vated steel.

Remote Interrogation and Field Monitoring Program

Remote (i.e., wireless) monitoring techniques, when used in con-
junction with suitable sensor systems, have been developed and
exploited in structural health monitoring applications to study,
for example, vibration, deformation, and strain. In the work pre-
sented, this is extended to study the long-term performance of
reinforced concrete.

Electrical Measurements

This study uses a multi electrode array (McCarter et al. 1996) that
was embedded within the cover zone of concrete specimens and
allowed for the monitoring of the spatial distribution of electrical
resistance. Such measurements can be used to study water and ionic
movement within the surface region (Raupach and Schiessl 2000;
McCarter and Chrisp 2000; Chrisp et al. 2002; Rajabipour et al.
2005; Rajabipour and Weiss 2007). The array also had the facility
to monitor temperature distribution through the cover region. In
summary, the array comprised a series of electrode pairs mounted
on a polyvinyl chloride (PVC), T-shaped former, with the former
being secured onto two stainless-steel bars, as shown in Fig. 1(a).
These bars allow for the attachment of the array to the reinforce-
ment, and their length is tailored to suit the reinforcement detailing;
the bars are electrically isolated from the steel reinforcement at the
points of contact. Each electrode on the array comprised a stainless-
steel pin sleeved with insulation to expose a 5-mm tip; in each
electrode pair, the pins had a (horizontal) center-to-center spacing

Table 1. Empirical Resistivity Thresholds for Depassivated Steel
Reinforcement (Langford and Broomfield 1987; Broomfield 1997)

Resistivity (kΩ-cm) Probable corrosion rate

<5 Very high
5–10 High
10–20 Moderate/low
>20 Low
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of 5 mm. All stainless steel was marine grade 316. The pairs of
electrodes were positioned at discrete distances from the base of
the former [Fig. 1(b)] and in this study, were located at 5, 10,
15, 20, 30, 40, and 50 mm from the concrete surface; four therm-
istors were also mounted on the former and positioned at 10, 20,
30, and 40 mm from the concrete surface to enable temperature
measurement. Before installation, the electrodes on the array were
calibrated in solutions of known resistivity, thereby enabling the
measured resistance, R (in ohms), to be converted to resistivity,
ρ (in ohm-cm), or conductivity, σ (in S∕cm), hence

ρ ¼ 1

σ
KR ohm − cm (1)

where K = calibration factor for the array, which was 1.25 cm�5%
and represented an averaged value over the electrode pairs; values
presented for each electrode pair are thus within this range of
scatter.

Electrical resistance measurements were obtained using an auto
ranging logger that measured the resistance of the concrete between
each electrode pair using an A.C. voltage of amplitude 1.0 V at a
fixed frequency of 1 kHz. Previous studies indicated that the chosen
operating voltage and frequency would ensure electrode polariza-
tion effects were minimized (McCarter and Brousseau 1990).
Thermistor measurements were also acquired using the same
system. The logger served a dual purpose because it also acted as
the system controller, further details of which are presented
subsequently.

Materials and Specimens

In the current trial work, concrete specimens were exposed to a
marine environment to include the spray, tidal, and submerged
zones. Concrete mixes were chosen to satisfy the requirements
for all exposure conditions specified in BS-EN 206-1:2000
(BSI 2000b) and are presented in Table 2. Dredged river gravel
and matching fine aggregate were used; the binders comprised
CEM I 42.5N portland cement (PC) to BS-EN197-1:2000 (BSI
2000a); CEM I cement blended with ground granulated blast-
furnace slag (GGBS) to BS-EN15167-1:2006 (BSI 2006b); and
CEM I cement blended with fly ash to BS-EN 450-1:2005
(BSI 2005). Specimens were 300 × 300 × 200 mm (thick) slabs,
with the working face cast against plywood formwork. An array,
similar to that described previously, was placed at the plan center of
each slab, although the stainless-steel bars were replaced with two
15-mm-diameter, mild-steel ribbed reinforcing bars positioned
within the slab at a distance of 50 mm from the exposed surface,
as shown schematically in Fig. 2(a). The cut ends of the rebar were
coated with epoxy and also had a 50-mm cover. Electrical connec-
tions were made to these bars to allow for half-cell potential
measurements. On demolding, the samples were wrapped with
damp hessian and polythene for a period of seven days. All surfa-
ces, apart from the surface cast against the formwork, which
was the exposed working surface, were then sealed with several
coats of an epoxy-based paint to ensure one-dimensional (1D)
moisture and ionic movement. Cabling from the array was color
coded and taken into a watertight glass-reinforced plastic (GRP)
enclosure placed in the face opposite to the working face; a 37-pin,
multi pole female D connector was used to terminate all wires.
The seal on the lid of the GRP box had been pressure tested to
1 MPa to ensure watertightness under a hydrostatic head. Fig. 2(b)
displays a slab with the lid removed to show the GRP enclosure and
37-pin D connector.

A total of 18 specimens of each mix were transported and
placed at a marine exposure site on the Dornoch Firth (Scotland)
[Fig. 3(a)] and secured in galvanized steel frames [Fig. 3(b)]; six
specimens per mix were positioned at three exposure environments
(BSI 2000b, 2006a) as follows: (1) above high-water level in the
airborne spray zone, classed as XS1 exposure; (2) just below high-
water level in the tidal/splash zone, classed as XS3 exposure;
and (3) below midtide level, classified as the submerged zone,
XS2 exposure.

Fig. 1. Showing (a) the multi electrode array and rebar attachment
facility; (b) the distribution of electrodes on the array

Table 2. Concrete Mixes Used in Site Trials

Mix designation
PC

(kg∕m3)
GGBS
(kg∕m3)

Fly ash
(kg∕m3)

20 mm
(kg∕m3)

10 mm
(kg∕m3)

Fine
(<4 mm) (kg∕m3)

WR
(l∕m3) w/b

F28

(MPa)

CEM I 42.5N 460 — — 700 350 700 1.84 0.4 70
CEM III/A 270 180 — 700 375 745 3.60 0.44 53
CEM II/B-V 370 — 160 695 345 635 2.65 0.39 58

Note: WR = water reducer; w/b = water–binder ratio; F28 = 28-day compressive strength.
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Remote Monitoring of Cover-Zone Response
During the early stages of the study, site visits were required, with
measurements on the specimens recorded manually; however, be-
cause of the remoteness of the site, data collection was erratic
with little data obtained because of the placement of the samples
in 1998. Clearly, to gain a more informed understanding as to how
the cover-zone concrete was/is performing and its response to
changing environmental conditions, the periodicity of data collec-
tion needed to be increased. As a consequence, the authors devel-
oped a system to allow for remote interrogation of the specimens,
thereby virtually providing a continuous feedback of site data and
eliminating the need for site visits. This system has been under trial
since November 2010.

In the current trial, a total of six samples were hard wired back to
the interrogation system (described subsequently) by means of
individual multi core cables: three samples, one of each mix, at
the XS2 environment and a corresponding number at the XS3 envi-
ronment. In summary, 37-pin, male D connectors were secured at
the ends of the connecting cable; one end was connected to the
interrogation system and the other end connected to the female
D connector on the sample. The entire male–female connection
[see Fig. 2(b)] at the sample end was sealed in the GRP box by
flooding the box with an epoxy-based potting compound.

The interrogation facility at the exposure site comprises
two watertight enclosures [Fig. 4(a)] secured to a concrete pier
stem, the latter forming part of another related research program
(Nanukuttan et al. 2008). One enclosure contains a multiplexing
unit [Fig. 4(b)]; the other contains the controller and resistance
measurement circuitry [Fig. 4(c)]. The multiplexing unit and con-
troller are permanently connected. The cabling from the embedded
arrays was connected to the multiplexing unit in Fig. 4(b), with a
total of six samples connected to the unit in this trial. The commu-
nications interface with the controller is provided by a modem
using a dial-up approach and a computer mounted software utility
to establish a data connection to the modem, effectively creating a
transparent link between the office-based computer and the serial
port on the site-based system controller. Data are recovered in the
same way as a direct RS232 connection using standard ASCII com-
mands by means of the computer’s modem. The controller is ac-
cessed through the mobile telephone network [Fig. 4(d)], and the
entire system is powered by a battery that is trickle charged using a
solar panel [Fig. 4(d)]. The time interval between measurement
cycles is configured remotely from the office and in this current
trial, is set on a 12-h cycle.

Electrode array 

200mm 
Sealed 

Exposed surface 

300 mm 

GRP Enclosure 

Sealed 

m/s rebars 

(a) 

(b) 

Fig. 2. Schematic diagram of (a) embedded array and cable termina-
tion; (b) GRP enclosure and lead termination at a 37-pin D
connector Fig. 3. (a) Location of marine exposure site; (b) slabs secured in

galvanized steel frames showing the GRP enclosures
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During a measurement cycle, cover-zone resistance and therm-
istor data are recorded for all embedded arrays, with each array
returning seven resistance and four thermistor measurements that
are subsequently stored by the controller. The systems then sleeps
until the next measurement sequence is triggered by the controller.
By operating in a wake/sleep mode, the overall power consumption
is reduced by drawing minimal current between logging events. For
the modem to answer calls, it must be powered continuously but
only draws about 10% of full power when not actively communi-
cating. The data carrier detect line on the modem serial port is used
to wake up the controller when an incoming data connection is de-
tected (i.e., the system is interrogated from the office). The data
stored by the controller can be accessed and downloaded at any
time. If the storage capacity of the controller is exceeded, a warning
is returned to the office. All measurements are returned from site as
a Microsoft Excel spreadsheet, which allows for the ease of data
manipulation and is discussed subsequently.

Results and Discussion

This section highlights data handling and processing protocols and
presents data taken over the initial 150-day period after the instal-
lation of the remote interrogation. Because of the considerable
number of measurements collected, only typical measurements
are presented for illustrative purposes. For clarity, only every
fifteenth data marker is presented in these figures.

Resistivity Measurements

Figs. 5(a–c) present the variation in cover-zone resistivity (in
kΩ-cm) for the three concrete mixes at the XS2 environment

[i.e., below mid–(c) tide level] over the initial 150-day period after
the installation of the remote interrogation system. Over the period
presented (November–March), it is clear that the resistivity of the
samples with replacement materials [Figs. 5(b and c)] is signifi-
cantly greater than that of the samples with plain portland cement
binder [Fig. 5(a)], the relevance of which is discussed subsequently,
and also that the resistivity of the samples fluctuates markedly over
the test period; it is evident that these fluctuations occur at similar
times in all concrete mixes.

Regarding the resistivity of the samples, discussed in the pre-
ceding paragraph, above, because electrical conduction through
concrete will be dominated by ionic conduction effects by means
of the continuous pore network between the electrodes it will, as a
consequence, be temperature dependent (Whittington et al. 1981;
Castellote et al. 2002). Whereas in the laboratory, ambient temper-
ature can be controlled, this is not the case for concrete exposed
to the natural environment, in which the temperature can vary
markedly. The following discussion outlines a protocol to standard-
ize in situ resistivity measurements to a reference temperature. This
is of considerable importance if the methodology is to be exploited
as a viable monitoring procedure because it is essential to distin-
guish between changes in resistivity as a result of temperature and
changes caused by wetting/drying action and ionic ingress.

Cover-Zone Temperature

Thermistor measurements were converted to temperature using the
Steinhart-Hart equation:

T ¼ ½Aþ B ln Rþ Cðln RÞ3�−1–273.15 (2)

where R = measured resistance of the thermistor (ohms); T =
temperature (°C); A, B, and C = coefficients, which depend on

Watertight Enclosure 

Multi-pin D-
connectors from 
embedded sensor 
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Trickle-charger for battery 
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Fig. 4. (a) Watertight enclosures for monitoring and telephony equipment; (b) termination of cabling from sensors at multiplexing unit; (c) combined
system controller/measuring unit, battery, and trickle charger from solar panel; (d) solar panel and aerial for wireless connection
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the type of thermistor; and ln = natural logarithm. For the therm-
istors used in the current work, A, B, and C were 1.28 × 10−3 K−1,
2.36 × 10−4 K−1, and 9.31 × 10−8 K−1, respectively.

Fig. 6 displays the variation in the mean cover-zone temperature
(determined from the four thermistor values) for the concrete mixes
presented in Fig. 5. It is apparent that the resistivity fluctuates in
sympathy with the changing temperature, and it is important to dis-
tinguish between changes in resistivity as a result of temperature
effects and changes in resistivity as a result of ionic ingress, chang-
ing levels of moisture content, or hydration effects; considering
the age of the specimens, however, the influence of hydration is
negligible.

An Arrhenius relationship is used to model the influence of tem-
perature on resistivity as follows:

ρ ¼ ρoe
½ Ea
RgTk

� (3)

where ρ = resistivity (kΩ-cm); TK = absolute temperature (K);
ρo = pre-exponential constant (kΩ-cm); Rg = gas constant

(8.3141 × 10−3 KJ∕mole∕K); and Ea = activation energy for con-
duction processes in concrete (kJ∕mole). If ρx and ρy are the resis-
tivity measurements at temperatures Tk;x and Tk;y, respectively,
then, from Eq. (3):

ρx ¼ ρye
Ea
Rg
½ 1
Tk;x

− 1
Tk;y

�
(4)

From Eq. (4), a value of resistivity, ρy, recorded at a tempera-
ture, Tk;y, could then be used to obtain an equivalent resistivity, ρx,
of the material a temperature, Tk;x, through a knowledge of the
Ea∕Rg ratio for the conduction process. This formalism enables
measurements to be standardized to a reference temperature,
thereby removing the influence of temperature on electrical resis-
tivity. In the current work, the reference temperature (Tk;x) is taken
as 25°C (298.15 K).

Evaluation of Ea∕Rg from In Situ Measurements
The ratio Ea∕Rg for the concrete between each pair of electrodes on
the array can be obtained from the in situ measurements and allows
for the evaluation of this parameter for a particular concrete mix
and electrode pair. Eq. (3) can be written as

ln ρ ¼ ln ρo þ
Ea

RgTk
(5)

Hence, the plot of ln ρ versus 1∕Tk will be a straight line of slope
Ea∕Rg. This value is then used in Eq. (4) to standardize the resis-
tivity values to 25°C. Using in-situ site measurements are more
relevant than a determination of this value form controlled
laboratory tests.

As way of illustration, Fig. 7 presents the resistivity values in
Fig. 5(a) for the CEM I concrete mix plotted against the mean
cover-zone temperature in the format of Eq. (5) for data obtained
over a period of 150 days. The Ea∕Rg ratio (slope) obtained from
these curves and the calculated activation energy (Ea) at each elec-
trode pair are presented in Table 3; for comparison, the respective
values obtained for the other mixes are presented.

Having obtained values for the Ea∕Rg ratio, the measured resis-
tivity can now be standardized to the reference temperature using
Eq. (4) at each electrode pair on the array. Figs. 8(a–c) display the
measurements standardized to the reference temperature of 25°C
for the concrete mixes. Because the resistivity remains virtually
constant over the test period, the fluctuations in resistivity measure-
ments displayed in Fig. 5 are entirely caused by changes in temper-
ature. This also indicates that the Arrhenius approach is adequate in
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explaining the influence of temperature on electrical resistivity
measurements and could be used as a procedure for standardizing
field data.

Significance of Resistivity Measurements in Performance
Monitoring
As noted in the introductory section, the permeability, diffusivity,
and electrical resistivity of concrete are inter related, which makes
the measurement of this parameter a simple yet effective way to
study the performance of concrete. To illustrate this, the Nernst-
Einstein equation (Atkinson and Nickerson 1984; Garboczi and
Bentz 1992; McCarter et al. 2009) relates the diffusion coefficient
of a porous material, Deff , and resistivity through the following
relationship:

Deff

Do
¼ ρp

ρbulk
¼ τ (6)

where τ = tortuosity; ρbulk = bulk resistivity of the saturated
material; ρp = resistivity of the interstitial pore fluid;Do = diffusion
coefficient of the desired ion in pure water (e.g., the Do value for
chloride in pure water is 2.032 × 10−9 m2∕s). Hence, a measure-
ment of electrical resistivity gives an indirect assessment of diffu-
sivity and could allow the performance concretes to be ranked.
Those electrodes on the array positioned furthest from the concrete
surface (i.e., at 50 mm) could be exploited in this respect.

The bulk resistivity of the concrete, ρbulk, noted previously, will
be directly related to the tortuosity, connectedness, and diameter of
the capillary pores within the binder; and the electrical resistivity of
the pore fluid contained within the capillary pores.

Regarding the tortuosity, connectedness, and diameter, these
could be classified as microstructural changes resulting from the
hydration of the cement. The use of supplementary cementitious
materials (SCM), such as fly ash or blast-furnace slag, result in fur-
ther longer-term refinement to the pore structure in terms of pro-
ducing a more tortuous and disconnected capillary pore network.
Chloride binding effects would also serve to alter the pore structure
(Midgley and Illston 1984; Suryavanshi and Scantlebury 1995) be-
cause it is known that replacement materials increase the chemical
binding reaction between the cementitious component and the chlo-
ride ion (Arya et al. 1990; Dhir and Byras 1993). Concrete contain-
ing SCM would thus be expected to have a higher electrical

resistivity than a plain portland cement concrete. This is shown
by the data presented in Fig. 8 as the resistivity (standardized to
25°C) of the concrete mixes varies between 2–5 kΩ-cm for the plain
portland cement concrete [Fig. 8(a)], 10–18 kΩ-cm for the slag
concrete [Fig. 8(b)], and 12–25 kΩ-cm for the fly ash concrete
[Fig. 8(c)]].

It should be emphasized that the as-measured resistivity should
not be discarded, and it is important to use both standardized and
as-measured data. If concrete resistivity is to be used as a parameter
in the assessment of the corrosion rate for depassivated steel (see
Table 3), then the as-measured value will also be important. As the
temperature of the concrete decreases, the concrete becomes more
resistive, and the corrosion current flowing between the anodic and
cathodic sites on the rebar will decrease. Because the resistivity of
the concrete will be a rate-controlling parameter, the corrosion pro-
cess will become slower as the temperature decreases.

Because the electrode array can monitor changes in the electri-
cal properties of concrete both spatially and temporally, then the
movement of chloride ions from the marine environment into
the cover zone can be tracked. From the electrical resistivity of
the pore fluid, the resistivity of the concrete will be directly influ-
enced by ionic concentration in the pore fluid, which would include
the influence of ions entering the pore network from the external
environment (e.g., chlorides, in the case of the marine environ-
ment). Resistivity will be inversely proportional to the ionic con-
centration; hence, as chloride gradually diffuses through the cover
zone, the ionic concentration increases within the pore fluid and the
measured resistance, and thus resistivity, will decrease. A resistivity
gradient will be established, with resistivity increasing with depth
from the exposed surface. Regular monitoring of resistivity would
then allow the depth of penetration of chloride to be evaluated,
becoming an early warning indicator of incipient problems.

It is evident from Fig. 8(a) that the surface 0–20 mm of the plain
portland cement concrete exhibits very low values of resistivity, and
it could be concluded that sufficient quantities of chlorides from the
sea water have diffused into the cover-zone to reduce the resistivity
in this region; indeed, the low resistivity values (<5 kΩ-cm) would
suggest that chlorides have penetrated through the surface
0–50 mm (i.e., the cover zone). The results from the slag concrete
in Fig. 8(b) indicate that resistivity values over the surface
0–30 mm are much reduced in comparison to the values at
40–50 mm, indicating that chlorides have penetrated through the
surface 30 mm. Results for the fly ash mix [Fig. 8(c)] indicate that
it is the surface 0–20 mm that have been influenced by chloride
ingress because values in this region are considerably reduced rel-
ative to values at greater depths. Copper/copper sulfate half-cell
measurements taken on the mild-steel bars within the plain portland
cement specimens (mix CEM I) were < − 350 mV (high risk of
corrosion); values for the slag mix averaged −275 mV (corrosion
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Fig. 7. Data in Fig. 5(a) plotted in Arrhenius format

Table 3. Ea∕Rg Ratio Determined from Eq. (5); Activation Energy Ea for
Electrical Conduction Processes is Also Presented

Depth
(mm)

CEM I 42.5N CEM III/A CEM II/B-V

Ea∕Rg
(K)

Ea
(kJ∕M)

Ea∕Rg
(K)

Ea
(kJ∕M)

Ea∕Rg
(K)

Ea
(kJ∕M)

5 3,554 29.55 þ þ 3,753 31.20
10 4,027 33.48 4,134 34.37 3,651 30.35
15 3,644 30.30 4,040 33.59 3,790 31.51
20 4,167 34.64 4,053 33.70 3,725 30.97
30 4,113 34.20 4,012 33.36 3,551 29.52
40 4,160 34.59 3,915 32.55 3,817 31.73
50 4,106 34.14 3,920 32.59 3,011 25.03

Note: þ ¼ data lost for 5-mm depth.
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activity uncertain), whereas measurements for the fly ash mix
averaged −160 mV (low risk of corrosion).

Concerning the values for activation energy (Ea) presented in
Table 3, it is interesting to note that there is no marked variation
between the three different concrete mixes that generally lie within
the range 29–35 kJ∕M. Resistivity values, however, can change by
more than an order of magnitude between the plain concrete mix
and the mixes with SCM. This would indicate that concretes with
SCM produce a more disconnected/tortuous pore network in com-
parison to plain portland cement concrete, the detailed discussion
of which is outside of the scope of this paper.

Concluding Comments

The electrical resistivity of concrete is now being recognized as an
important parameter that could be developed to assess concrete
performance and durability. The work presented has developed a

methodology for evaluating this parameter, utilizing an embedded
electrode array together with a remote interrogation system to allow
access to data from an office setting. Furthermore, the measurement
of the electrical resistivity at discrete points allows for an integrated
assessment of both spatial and temporal changes in cover-zone per-
formance. In a broader sense, the use of such monitoring systems
can provide a continuous feedback of real-time data, which can
then be used to assess the current and future performance of the
structure and assist in the scheduling of maintenance programs.

Data handling and processing procedures are detailed; specifi-
cally, the influence of temperature on field resistivity measurements
is highlighted and a standardizing procedure presented that utilized
an Arrhenius relationship between resistivity and temperature. An
important aspect of the procedure entails the use of field data to
evaluate the activation energy for a particular concrete and elec-
trode pair. This ensures that temperature effects can be effectively
removed from field measurements.

Regarding the presentation of resistivity measurements, it may
be more informative to present the relative change in resistivity
values (McCarter and Chrisp 2000) obtained at each electrode
position. This could be quantified by the ratio ρt∕ρo, where ρt
is the measured resistivity and ρo is the resistivity obtained before
exposure to chlorides (e.g., just after construction). This format of
presentation would account for the natural variation in resistivity at
different depths as a result of aggregate distribution around the
electrodes. However, as the monitoring system detailed previously
has just been installed, only resistivity values were presented.
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