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Highlights: 

 Correlation between PDLC glazing transmittance and sky clearness index has been 

calculated. 

 Transmitted solar energy and SHGC were evaluated for different clearness index. 

 Single glazing transmittance was recommended for different azimuthal orientation of vertical 

plane PDLC glazing. 
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Nomenclature  
Ai Anisotropy index 

Iglobal,h Incident  global solar radiation on the horizontal surface of 

glazing (W/m
2
) 

Iglobal,v Incident global solar radiation on the vertical surface of glazing 

(W/m
2
) 

Ibeam,h Incident beam solar radiation on the horizontal surface (W/m
2
) 

Idif,h Incident diffuse solar radiation on the horizontal surface (W/m
2
) 

Iextra Extra-terrestrial solar radiation (W/m
2
) 

Isc Solar constant (W/m
2
) 

kd Diffuse fraction 

kg Extinction coefficient 

kT Clearness index 

Ng Number of glass pane 

n  Refractive index 

SHGC Solar heat gain coefficient 

TSEPDLC Transmitted solar energy through PDLC glazing 

Greek symbols  

α Absorptance 

τ Transmittance 

τv Vertical global transmittance 

τdir Direct transmittance 

τdiff Diffuse transmittance 

τg  Ground reflected transmittance 

  Incidence angle 

 

 

 

 

 
Abstract: 

Electrically activated switchable polymer dispersed liquid crystal (PDLC) is suitable for adaptive 

windows. A particular type requires 20V to become 71% transparent while in the absence of power it 

is 27% transparent. Glazing transmission changes with light incident angle. As the clearness of a sky 

changes the fraction changes alter of direct insolation (that has an azimuthally changing incident) and 

diffuse insolation (that has a largely constant incident). Thus, the effective overall incident angle 

determining the glazing transmittance also changes. In this work for the first time, the variation of 
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PDLC glazing transmission with clearness index has been investigated. For diffuse sky condition, 

single glazing transmittance value can be used below a particular clearness index for building energy 

calculation. This threshold clearness index changes with different azimuthal direction. In Dublin for 

south facing vertical plane PDLC glazing, yearly usable single transmittance (38% for transparent and 

25% for translucent state), transmitted solar energy (TSE) (70 W/m
2
 for transparent state and 20 W/m

2
 

for translucent state) and solar heat gain coefficient (SHGC) (0.17 for transparent state and 0.005 for 

translucent state) for transparent and translucent states were investigated.  

 
Keywords: adaptive, switchable glazing, PDLC, SHGC, transmission, clearness index 

 
1. Introduction 

Large glazed façade building elements [1,2] enable commercial and residential buildings to exploit 

heating energy and daylight [3] from sun [4,5]. Electrically actuated switchable material filled double 

glazings in such large façade applications offer better control when compared with non-electrically 

activated switchable glazing. In additions, electrically actuated switchable glazings 

 offer more than one transmittance and intermittence transmittance by applying variable power 

[6–9]; 

 can control glare[7–10]; 

 provide daylight where spectrum has a positive influence on occupant comfort[8–10]; 

 can be powered by connected with PV [11–15]; 

 addition with vacuum glazing [16–18] electrically activated glazing can form a low heat loss 

switchable glazing [19–25]; 

Electrically actuated glazings include electrochromic (EC) [26], suspended particle device (SPD) [27] 

and polymer dispersed liquid crystal (PDLC)[6]  type. Electrically activated EC glazing is powered by 

direct current power supply. Tungsten trioxide (WO3) based EC is the well-studied for glazing system 

[28] in which an ion-conducting polymer or inorganic material based transparent electrolyte is 

sandwiched between nanoporous W and Ni oxide films. These three layers are placed between two 

transparent electrical conductors. The functioning of an EC devices is very similar to an electrical 

battery[29–31]. A voltage applied between these two transparent conductors changes the color of EC 

material to absorb solar spectrum. In the absence of power, the EC is transparent (bleached). An EC 

material can control near infrared solar radiation. Modulation of NIR is also possible of EC glazing 

[26,32]. Colour changes of EC is gradual depending proportionally on the area of the device. An EC 

changes colour between 1 and 30 min, depends on the device area [33].  

An SPD glazing consist of an SPD film, sandwiched between two glass panes, adhesive films, 

retaining films and a transparent conductor [34] . An SPD film is made of needle-shaped, rod-shaped, 

or lath-shaped dihydrocinchonidine bisulfite polyiodide or herapathite particles less than 1 μm in 

linear size [35,36]. These particles exhibit large optical anisotropy. In the presence of alternating 

current power supply, these particles become aligned to pass light through the film. In the absence of 

power, the particles exhibit Brownian movement. Thus, the light passing through the cell can be 

transmitted, absorbed or rejected, depending upon type and concentration of particles and the energy 

content of the light. The optical change of SPD glazing from transparent to opaque and from opaque 

to transparent both needs only few seconds [20,37,38]. However, particular example of this glazing 

needs high 110V AC to become transparent. Long term durability of this technology is also not fully 

understood [38]. 
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Alternative current (AC) powered electrically activated switchable liquid crystal (LC) is another 

switchable glazing technology [39]. Polymer dispersed liquid crystals (PDLC) are the best suited for 

glazing application as they do not need a polarizer to operate compared to twisted nematic, 

ferroelectric [40,41]. In a PDLC glazing, liquid crystal particles are dispersed into a matrix. The 

presence of a power supply, orients the particles to allow light pass through. In the absence of power, 

these particles are randomly oriented so lights is scattered.  Droplets with radii smaller than the 

incident light wavelength allow light to pass through without scattering. For large size droplets mainly 

forward scattering ensues [42]. Reverse mode PDLC have also been investigated in which the glazing 

is unpowered when transparent and powered to be opaque[43,44]. Figure 1 shows the working 

principle of PDLC glazing.  

 

 

Figure 1: Schematic working principle of PDLC glazing in its transparent and translucent states. 

Transmitted incident solar radiation through a glazing system depends on the optical properties of the 

glazing and incident-angles of the direct, diffuse and ground reflected solar radiation components. 

Incident angle for a vertical glazing façade also changes with time of a day and season [45–49]. Thus, 

calculated solar energy for a building based on constant glazing transmittance often leads to an 

overestimated result. For building energy calculations, incident solar radiation and glazing 

transmittance are essential parameters. Horizontal global and horizontal diffuse solar radiation data 

are often available for a particular location. However, glazings are usually installed vertically to 

receive vertical solar radiation. Clearness index uses global horizontal solar radiation to determine 

how “clear” a sky is [50–52]. Theoretically, the relation between glazing transmission and clearness 

index was investigated for selected European locations and surface orientations by Waide and Norton 

[53]. Experimentally correlations between SPD glazing [54], vacuum glazing [17] and SPD-vacuum 

glazing [19] with clearness index had also been investigated.  

In this work, the first correlation between clearness index and measured PDLC glazing transmittance 

has been evaluated.  

2. Methodology 

A schematic of south facing vertical plane PDLC glazing is shown in Figure 2. 
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Figure 2: Schematic diagram of a south facing vertical plane glazing with incident angle and solar 

elevation angle. 

 

The clearness index is given by  

,global h

T

extra

I
k

I
                                                                                                                                         (1) 

 1360
1 0.033cos cos cos cos sin sin

365
extra sc
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I I     

 
   

 
 

scI  is the solar constant , n1 is the day of year ,  latitude angle,  declination angle   hour angle 

Most often glazing transmittance value associated with only normal solar incidence. Glazing 

transmission is not a constant parameter; it changes with incident angle [47–49]. Incident angles also 

change due to diurnal variation of solar radiation. The transmittance of the vertical glazing is given by 

[53]                                                   
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where  
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                    (3) 

and direct diffuse and reflected transmission can be calculated from [55]  

dir  when dir                                                                                                                            (4) 

dif   when 259.68 0.1388 0.001497dif                                                                       (5) 

g   when 290 0.5788 0.002693g                                                                               (6) 

The total solar energy transmitted through a PDLC glazing is given by; 

   
 

 

, , , , ,

,

1 cos
1

2

1 cos
                      

2

PDLC glazing beam h dif h i dir b dif h i dif h
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TSE I I A r I A

I


 


 


    


                                      (7) 

anisotropy index (Ai) is given by  

,beam h

i

extra

I
A

I
                                                                                                                                                           (8) 

Solar heat gain coefficient (SHGC) for a glazing indicates the fraction of the incident solar radiation 

that enters a room after passing through the glazing [56][57]. The dynamic solar heat gain coefficients 

(SHGC) is calculated from  

,

PDLC

global v

TSE
SHGC

I
                                                                                                                                (9) 

 

 

 

3. Measurements & results 

In this work, one PDLC glazing from Polytron technology as shown in Figure 3 was investigated. 

This glazing had dimension of 0.2 m × 0.15 m × 0.01m. It became 71% transparent in the presence of 

a 20V AC power supply and 27% transparent without a power supply [6]. In the powered state, it had 

a low diffuse transmittance (7%) and high regular/specular transmittance (64%). In the switch off 

state it has high diffuse transmittance of 26% and low specular transmittance of 1% [57]. The 

unpowered state showed 83% haze.  Spectral transmittance of this glazing was measured using 
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AvaSpec-ULS2048L Star Line Versatile Fiber-optic spectrometer for both states results are shown in 

Figure 4. 

 

Figure 3: Viewing through the investigated PDLC glazing for it transparent and translucent states. 

 

 

Figure 4: Transmission spectra of the particular PDLC glazing investigated in its “translucent” and 

“transparent” states. 

A 0.7 × 0.7 m × 0.7 m test cell as shown in Figure 5 was manufactured from wood lined inside with a 

0.15 m thick polystyrene insulation material with unobstructed solar illuminance. Internal surfaces 

were painted with 0.8 reflectance matt white paint. The area of glazing on the test cell was in a ratio 

of 1:9. Horizontal plane global solar radiation, horizontal plane diffuse solar radiation, vertical plane 

global solar radiation was measured using Kipp and Zonen pyranometers [13-14,20-23,38,]. AvaSpec-

ULS2048L Star Line Versatile Fiber-optic spectrometer measured transmission of this glazing. 5 

minutes interval data were recorded using delta T type data logger. Experiment was performed from 
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1
st
 of January to 1

st
 of December 2016, on the roof of Kevin street building, at Dublin Institute of 

Technology, Dublin (53.3478°N, 6.2597°W).   

 

 

Figure 5: (a) Photograph of test cell, (b) schematic details of experimental set up for optical properties 

measurement of PDLC glazing using test cell, pyranomter, illuminance sensor and spectrometer. 

Figures 6 shows correlation between PDLC glazing transmission with incident angle in Dublin, 

Ireland, for PDLC glazing in “transparent” and “opaque” states. In Dublin for vertical plane south 

facing glazing, incident angle varied from 53
0
 to 13

0
 on 1

st
 of January from 7 am to 12 pm. In the 

month of July, this incident angle varied from 82
0
 to 59

0
 from 7 am to 12 pm. Lower elevation angle 

offers higher transmission during wintertime. 
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Figure 6: Variation of PDLC glazing 71% and 27% transmission for different incident angle. 

 

Correlation between calculated clearness index and measured PDLC glazing transmission has been 

represented in Figure 7. Correlation between calculated clearness index and calculated transmitted 

solar energy (TSE) through PDLC glazing in its transparent and translucent states has been presented 

in Figure 8. Figure 9 shows the correlation between clearness index and PDLC glazing SHGC in 

transparent and translucent states. 
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Figure 7: Change of PDLC glazing 71% and 27% transmissions due to clearness index.  

 

 

Figure 8: Dependency of transmitted solar energy (TSE) through PDLC glazing “transparent” and 

“translucent” states with clearness index. 
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Figure 9: Dependency of SHGC of PDLC glazing “transparent” and “translucent” states with 

clearness index. 

In figure 7, below clearness index of 0.5, isotropic diffuse transmission was dominant.  Above 0.5 

clearness index, direct solar radiation was dominant and glazing transmittance was linearly correlated 

with clearness index. In western European location, it is possible to use only one single transmittance 

value for vertical plane glazing which is associated with isotropic diffuse solar component. This single 

value will reduce large computational time and/or resources for building design studies. In Dublin, for 

below 0.5 clearness index, south facing vertical plane PDLC glazing transmission of 38% was found 

which could be used for building performance using PDLC glazing over the year with negligible 

error. For different azimuthal direction a threshold clearness index is attainable below that one single 

glazing transmittance can be used with less than 1% error, which is listed in Table 1. 

Table 1: Yearly usable single transmittance value of PDLC transparent and translucent state for 

different azimuthal and monthly clearness index due to isotropic diffuse solar radiation component.  

  Single diffuse component 

dominant 

 Up to a 

clearness 

index 

Inclination Azimuthal 

orientation 

PDLC “transparent” (71% 

maximum transparent) 

transmittance 

PDLC “translucent” (27% 

maximum transparent) 

transmittance 

Mean 

monthly 

clearness 

index 

 North 38 25 0.7 

Vertical South 38 25 0.5 

Plane East 38 25 0.6 

PDLC  West 38 25 0.6 

glazing North east 38 25 0.6 

 North 

west 

38 25 0.6 
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Glazing transmittance has direct influence on transmitted solar energy and SHGC both as shown in 

equation 7 and 9. Thus, below 0.5 clearness index, vertical plane south facing PDLC glazing offers 

single yearly useable transmitted solar energy of 70 W/m
2
 and 20W/m

2
, SHGC of 0.17 and 0.05 for 

transparent and translucent states respectively. These values can be used for building energy 

calculation with less than 1% error. Vertical plane PDLC glazing single transmitted solar energy and 

SHGC for different azimuthal direction and threshold clearness index for that particular azimuthal 

direction are listed in Table 2.  

Table 2: Yearly usable single SHGC and TSE value of PDLC transparent and translucent state for 

different azimuthal and monthly clearness index due to isotropic diffuse solar radiation component.  

 

  Single diffuse component 

dominant 

   Up to a 

clearness  

index 

Inclination Azimuthal 

direction 

PDLC 

“transparent”

/ON  

SHGC 

PDLC 

“translucent”

/OFF 

 SHGC 

PDLC 

ON  

TSE  

(W/m
2
) 

PDLC 

OFF  

TSE 

(W/m
2

) 

Mean 

monthly 

clearness 

index 

 North 0.17 0.05 70 20 0.7 

Vertical South 0.17 0.05 70 20 0.5 

plane  East 0.17 0.05 70 20 0.6 

PDLC West 0.17 0.05 70 20 0.6 

glazing North east 0.17 0.05 70 20 0.6 

 North west 0.17 0.05 70 20 0.6 

 

 

4. Conclusions 

 

Clearness index is an influential parameter for solar energy application but requires only one 

measured solar radiation intensity to evaluate. Correlation between clearness index and glazing 

transmittance, transmitted solar energy (TSE) and solar heat gain coefficients (SHGC) has been 

evaluated for PDLC glazing in its two switched states. Below a clearness index of 0.5, the majority of 

transmission is of the diffuse solar radiation. Above a clearness index of 0.5, the glazing transmission 

is dominated by direct component of solar radiation. However, using a single value of transmission, 

SHGC, and TSE is possible for PDLC glazing transmission calculation for clearness indices below 

0.5. In Dublin, a south facing vertical plane PDLC glazing below 0.5 clearness index offer 38% 

glazing transmittance, 70 W/m
2
 TSE and 0.17 SGHC for transparent state and 28% glazing 

transmittance, 20 W/m
2
 TSE and 0.05 SGHC for translucent states.  These can be used for calculation 

at all terms of year with less than 1% calculation error.  
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