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Highlights

� A hydro-environmental model investigated the consequences of closing a power plant. �Model simulated water quality for three scenarios
before and after closing the plant. � Dilution scenario gave better water quality results than direct discharges scenario. � Direct discharges
scenario showed an increased stratification of the estuary waters.
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21A hydro-environmental model is used to investigate the effect of cessation of thermal discharges from a
22power plant on the bathing water quality of Dublin Bay. Before closing down, cooling water from the
23plant was mixed with sewage effluent prior to its discharge, creating a warmer, less-saline buoyant pol-
24lutant plume that adversely affects the water quality of Dublin Bay. The model, calibrated to data from
25the period prior to the power-plant shut-down (Scenario1), assessed the water quality following its
26shut-down under two scenarios; (i) Scenario2: continued abstraction of water to dilute sewage effluents
27before discharge, and (ii) Scnenario3: sewage effluents are discharged directly into the Bay. Comparison
28between scenarios was based on distribution of Escherichia coli (E. coli), a main bathing quality indicator.
29Scenarios1 and 2, showed almost similar E. coli distribution patterns while Scenario3 displayed signifi-
30cantly higher E. coli concentrations due to the increased stratification caused by the lack of prior dilution.
31� 2013 Published by Elsevier Ltd.

32

33

34 1. Introduction

35 Thermal discharges into marine waters may cause serious per-
36 turbations in the natural marine environment. The change in the
37 temperature regime and the associated reduction in the saturation
38 levels of dissolved oxygen both adversely impact on aquatic and
39 benthic communities (e.g.Choi et al., 2012; Chuang et al., 2009;
40 Martinez-Arroyo et al., 2000; Syed Mohamed et al., 2010).
41 Another major environmental consequence is the increased
42 stratification of receiving waters (e.g. Jiang et al., 2003; Kolluru
43 et al., 2003; Lowe et al., 2009; Wu et al., 2001). These can pro-
44 foundly limit the assimilation of polluting discharges by prevent-
45 ing the mixing between the warmer upper levels and the cooler
46 water underneath. Moreover, if pollutants are added to the flow
47 with, or subsequent to, the thermal discharge the pollution will,
48 nearly invariably, remain in the upper, warmer layer (Ellis, 1989).
49 The presence of pollutants in the discharged cooling water has
50 been reported in a number of studies (see Langford, 1990). These
51 include chlorine (Fernandez Torres and Ruiz Bevia, 2012; Ma
52 et al., 1998; Marcos et al., 1997), heavy metals (Abdul-Wahab
53 and Jupp, 2009; Baba et al., 2003; Gong et al., 2010), and flue-gas
54 desulpherisation effluents (Liu et al., 2003; Mohsen, 2004; Van
55 Den Hende et al., 2011).
56 Discharging municipal wastes to the same receiving waters may
57 considerably exacerbate the stratification. The fate and transport of

58pollutants from sewage works into coastal waters is well-
59documented (e.g. Bouvy et al., 2008; Dhage et al., 2006; Mozetix
60et al., 2008; Nicholson et al., 2011; Vijay et al., 2010), however
61there is a lack in literature on the interaction between municipal
62sewage effluents and thermal discharges from power generation
63plants, when both occur together, despite their importance as
64highlighted by Bedri et al. (2011). The worst case scenario of such
65interaction occurs when municipal sewage effluents are directly
66mixed with cooling water prior to discharge. This was typically
67the case in the Liffey Estuary, Dublin which has received combined
68discharges from Ireland’s largest power generation station at Pool-
69beg and Ringsend sewage treatment plant creating a warm, less-
70saline layer that remained buoyant on the water surface. The effect
71of the combined discharge is two-fold; (i) the heated discharges
72reduces oxygen levels in the Estuary (O’Boyle et al., 2009) which
73in turn negatively impacts on the estuarine fish species, some of
74which are of international conservation importance (Hartnett
75et al., 2011; Jovanovic et al., 2007) and are listed in the EU Habitats
76Directive 92/43/EEC (EEC, 1992), and (ii) the buoyant sewage
77plume affects the compliance of waters of Dublin Bay (into which
78the Liffey Estuary flows) to the microbial standards of the Bathing
79Water Directive 2006/7/EC (EC, 2006) at beaches of high recrea-
80tional and national importance (ERU, 1992; Wilson et al., 2002).
81In 2010, the Poolbeg power generation plant was closed as part
82of a competition agreement with the Irish Energy Regulators to
83facilitate the introduction of additional energy providers to the
84Irish market. As a result the thermal discharges into the estuary
85have ceased and this is expected to alleviate the stress on the
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86 aquatic life in the Estuary. However, due to the continued munici-
87 pal sewage discharge from Ringsend the effect of the shut-down of
88 the power plant on the water quality in the estuary and inner bay
89 requires investigation. The available annual records of microbial
90 water quality monitoring data are not sufficient to investigate this
91 question, because (i) the data records consists of discrete samples
92 collected only during the bathing season (May–September); and
93 (ii) lack of long term data for the period after the Poolbeg plant
94 shutdown. Therefore there is a need to use a numerical model to
95 study the effect of the cessation of thermal discharges on the water
96 quality of Dublin Bay.
97 Numerical models have become valuable tools for studying the
98 effect of discharges into the marine environment. These models
99 vary in level of complexity and modelling approaches as they can

100 be length scale and entrainment models (e.g. Daviero and Roberts,
101 2006; Donker and Jirka, 2007; Frick et al., 2003; Jirka, 2004, 2006),
102 or particle tracking models (e.g. Havens et al., 2010; Korotenko
103 et al., 2004; Miyake et al., 2009; Perianez and Caravaca, 2010), or
104 hydrodynamic models (e.g. Casulli and Walters, 2000; Falconer,
105 1986; Hervouet, 2007; Lesser et al., 2004; Warren and Bach,
106 1992). While the first two types are most suitable for representing
107 the mixing processes in the vicinity of the discharge outfalls (near-
108 field), hydrodynamics models allow for accurate and robust repre-
109 sentation of processes in both near- and far-fields regions of the
110 discharge outfalls. Hydrodynamic models can be two-dimensional
111 (depth-averaged) for well-mixed conditions (e.g. Abbaspour et al.,
112 2005; Cea et al., 2011; Kashefipour et al., 2006) or three-dimen-
113 sional where vertical mixing is absent/limited in the vicinity of
114 the outfall due to density variation (e.g. Bedri et al., 2011; Kolluru
115 et al., 2003; Liu et al., 2007; Signell et al., 2000). Hence a three-
116 dimensional hydrodynamic model is needed in the current case
117 study to represent the density-driven flow processes.
118 The three-dimensional model, TELEMAC-3D (EDF, 1997; Hervo-
119 uet, 2007), is used in this study to simulate the stratification status,
120 in the estuary before and after the power-plant shut-down, and its
121 subsequent effect on the transport and fate of pollutants. The mod-
122 el was first calibrated based on measured hydrodynamic and water
123 quality data from the period before the cessation of thermal dis-
124 charges (Scenario1). Then, the calibrated model is used to assess
125 the bathing water quality in the inner Bay for the period following
126 the shut-down of the power generation plant and continued sew-
127 age discharges, under two likely scenarios: (i) do nothing scenario
128 where sewage effluent is discharged directly into the Estuary, and
129 (ii) dilution scenario: where a continued abstraction of estuary
130 water is used to dilute sewage effluent before being released into
131 the estuary.
132 In this paper, Section 2 describes the study area and the main
133 environmental pressures on its water quality. The main equations
134 of TELEMAC-3D are outlined in Section 3, followed by a description
135 of the configuration of the model to represent the study area and
136 choice of the modelling scenarios to study. The modelling results
137 are presented in Sections 5 and 6, and the conclusions drawn from
138 these results are summarised in Section 7.

139 2. Case study

140 The study area comprises the Liffey Estuary and Dublin Bay, on
141 the east coast of Ireland. Dublin Bay, bounded by the rocky head-
142 lands of Howth Head and Dalkey on its Eastern side (Fig. 1), is
143 about 10 km wide at its mouth and has an area of about
144 100 km2. The bed of the bay slopes gently seawards (to the East)
145 from low water to a depth of about 12 m, thereafter it slopes more
146 steeply to reach 20–25 m approximately on the line between the
147 headlands. The Bay receives freshwater inflows from the Liffey
148 River.

149The Liffey Estuary covers a wide area of 5 km2 and is narrowed
150down at its outlet by the North and South Walls. The Estuary is
151macro-tidal (Dyer, 1973) having a mean tidal range of 2.75 m
152and average mean spring and neap tides of 3.6 m and 1.9 m respec-
153tively (Mansfield, 1992).
154The main freshwater inflow into the Estuary is from the Liffey
155River which flows through the City of Dublin. This is regulated
156by an upstream hydro-electric plant and dam resulting in a
157smoothly varying inflow of freshwater (approx. 12.42 m3/s) with
158considerable attenuation of its floods. The river is tidal all the
159way through the City of Dublin up to distance 10.5 km upstream
160of Poolbeg.
161Two main structures lie, close together, on the south bank of the
162Liffey Estuary: the Electricity Supply Board (ESB) power generation
163plant at Poolbeg and Ringsend Sewage Treatment Works. The ESB
164power generating facility at Poolbeg, Dublin (Fig. 2) was, when work-
165ing,thelargestgasandoilplantinthecountrywithaninstalledcapac-
166ity of 1020 MW.
167The steam-driven generating equipment required 2.1 million
168cubic metres a day of once-through seawater to cool the heat
169exchanger and discharged the heated water into the estuary at a
170temperature of 7–9 �C above ambient. Before being discharged
171(approximately 120 m upstream of the discharge weir), the cooling
172water from this plant was mixed with the sewage effluent from
173Ringsend Treatment Works creating a warm and less saline pollu-
174tant plume that remains buoyant on the water surface in the Estu-
175ary. The ESB power plant was closed down in 2010 following an
176agreement between the ESB and the Irish Energy Regulators.
177In 2003, Ringsend (STW) was expanded to cater for a population
178equivalent of 1.7 million. A 10.5 km submarine pipe (Fig. 2) was
179constructed to bring wastewater from North Dublin to Ringsend.
180The plant includes primary, secondary treatments, and Ultra-Violet
181disinfection (used only during the bathing season) to help meet EU
182Bathing Water Directive (2006/7/EC) standards for microbial water
183quality indicators (Escherichia coli (E. coli) and Intestinal Entero-
184cocci (IE)) at recreational beaches on the north and south inner
185Bay (e.g. Dollymount, Sandymount and Merrion Strand).
186In the past, prior to the Poolbeg plant shut-down, a number of
187ad hoc water quality surveys were conducted (e.g. Bedri, 2007;
188Crisp, 1976; DCC, 2002, 2003; Mansfield, 1992) to monitor water
189quality parameters including E. coli and IE in the Liffey Estuary
190and Dublin Bay. At the present, the only on-going monitoring pro-
191gramme is that carried out by Dublin City Council (DCC) during the
192months of May–September at bathing sites to test their compliance
193with the E. coli and IE standards of the EU Bathing Water Directive
194(2006/7/EC). However, the E. coli and IE data record is insufficiently
195detailed to deduce any changes in the microbial water quality
196trends after the shut-down of the power plant at Poolbeg and
197therefore it has not been included in the current study.

1983. TELEMAC-3D model

199The TELEMAC-3D model, developed by the National Laboratory
200of Hydraulics and Environment of Electricité de France, was
201selected for the study because it includes the following essential
202features: (1) the use of a finite element unstructured grid which al-
203lows selective refinement of the mesh at key locations in the
204domain and boundary fitting (sigma transformation) method for
205vertical discretisation; (2) density-driven hydrodynamics allowing
206for a robust treatment of the stratified plume, essential for this
207study; (3) heat exchange with the atmosphere; (4) the availability
208of a range of options for vertical turbulence modelling including
209the facility to incorporate a user-defined subroutine which has
210been used in the current study to fine tune the vertical tempera-
211ture and salinity profiles to measurements; (5) the provision of a

2 Z. Bedri et al. / Marine Pollution Bulletin xxx (2013) xxx–xxx
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212 subroutine for the modelling of source/sink of tracers which has
213 been used in this study to incorporate a time- and space-varying
214 decay rate of E. coli (the first published attempt to incorporate a
215 time- and space-varying E. coli decay rate in TELEMAC-3D).

216 3.1. Flow hydrodynamics

217 The finite element model TELEMAC-3D (Hervouet, 2007) solves
218 the 3D Reynolds-Averaged Navier-Stokes (RANS) equations for
219 free-surface flow environments (e.g. estuaries, seas, streams, lakes,
220 and coastal waters). The current study applies the hydrostatic ver-
221 sion of TELEMAC-3D which reduces the equations to:
222
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234 where x, y, and z are the Cartesian axes, u, v, and w are the velocity
235 components in the x, y, and z directions (m s�1), t is the time in sec-
236 onds, Z is the water surface elevation (m), p is the pressure (N m�2),

237 qo and Dq are the reference density and variation in density respec-
238 tively (kg m�3), Sx and Sy are velocity source terms (wind, Coriolis
239 force, etc.) (m s�2), mH and mZ are the eddy viscosity in the horizontal
240 and vertical direction respectively (m2 s�1) resolved through turbu-
241 lence modelling in Section 3.3 below.

242 3.2. Transport of Tracers

243 The mass-balance equation below (Eq. (5)) simulates the tem-
244 poral and the spatial variations of: (i) active tracers (those that
245 influence water density; in this study, these are temperature and
246 salinity), and (ii) passive tracers (E. coli in the current study).
247
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250 C is the concentration of tracer, QC is the tracer source or sink (e.g.
251 decay of E. coli below), and KH and KZ are the eddy diffusivity coef-
252 ficients in the horizontal and vertical directions respectively
253 (m2 s�1) resolved by the turbulence models (Section 3.3).
254 The values of temperature and salinity calculated for any point
255 in space or time are used to compute the water density at that
256 point using the state equation (Hervouet, 2007):
257

q ¼ qo½1� ½ðT � ToÞ2 � 7� 750S� � 10�6� ð6Þ259259

260 With qo = 999.972 kg m�3 (reference density), To = 4 �C (reference
261 temperature), and S is the salinity measured in Practical Salinity

262Units (PSUs). The density variation in the flow field (Dq/q in Eq.
263(4)) is hence calculated.
264While the tracer mass-balance equation (Eq. (5)) readily
265resolves advection and dispersion of tracers, the process of de-
266cay/die-off of E. coli needs to be incorporated via the source/sink
267term (Qc in Eq. (5)). The modelling of E. coli die-off required: (i) a
268literature search for a suitable formula to represent the process
269and (ii) FORTRAN programming of the chosen formula in a user-de-
270fined TELEMAC-3D subroutine.
271A literature search of the available approaches for modelling
272die-off of bacteria (e.g. Auer and Niehaus, 1993; Beaudeau et al.,
2732001; Chapra, 1997; Darakas, 2002; Kashefipour et al., 2002,
2742006) has highlighted an interesting process-based first-order
275kinetics formula developed by Mancini (1978) who integrated
276the findings of a number of studies on the decay of coliform bacte-
277ria in both fresh and marine waters and included the effects of
278temperature, salinity, and solar radiation (Crane and Moore, 1986).
279Mancini’s formula was used in the current study to produce a
280time- and space-dependent die-off rate (k) of E. coli:
281

@C
@t
¼ �kC ð7aÞ 283283

284

k ¼ ½0:8þ 0:006ð%swÞ � 1:07ðT�20Þ þ IA

keH
½1� e�keH� ð7bÞ 286286

287%sw is the salinity expressed as percentage seawater (in the original
288form of equation by Mancini (1978)). In implementing the Mancini
289model, it was assumed that 100%sw corresponds to 35.5 PSU, one of
290the highest salinity value recorded in the study area.
291H is the mixed water depth (m), but due to the absence of infor-
292mation about H, it has been treated as a parameter (i.e. a ratio of
293the total water depth which is calculated by the hydrodynamic
294equation). A possible range of values (0.0–1.0) for this ratio has
295been attempted and the best match between measured and simu-
296lated E. coli was achieved when the ratio was 1.0 (i.e. when the
297mixed depth is taken as the total water depth). This has produced
298values of decay rates that are quite comparable to those in the
299literature.
300IA is the average daily surface solar radiation (langleys/h)
301recorded at the nearest weather station (Dublin Airport), and ke

302is the light extinction coefficient (m�1) computed using the
303formula:
304

ke ¼
1:7
SD

ð7cÞ 306306

307where SD is the depth at which Secchi disc is no longer visible (m),
308obtained from measurements in the Liffey Estuary and Dublin Bay.
309The Mancini decay rate formula (Eq. (7b)) has two components:
310the first is a three-dimensional term for which the decay rate var-
311ies with depth and is calculated from the values of temperature
312and salinity at each point and time in the model. The second term
313gives spatially-variable, but depth-averaged values of decay rate.
314The decay rate of E. coli is generally expressed in terms of T90

315(the time taken for the E. coli concentration to be reduced by
31690%). The relationship between k and T90 is:
317

k ¼ 2:303
T90

ð7dÞ 319319

3203.3. Turbulence modelling

321Turbulence models set the spatial (horizontal x–y) and vertical
322scale of velocities and tracers in the model domain. In this study,
323horizontal turbulence is modelled using the sub-grid scale
324Smagorinsky scheme (Smagorinksy, 1963 cited in Hervouet,
3252007). This scheme allows for the formation of smaller vortices
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326 where turbulence can be inhibited by the mesh, rendering it a suit-
327 able choice for this study where the element size of the finite ele-
328 ment mesh varies considerably over the domain.
329 For the resolution of the vertical diffusion coefficients (the eddy
330 viscosity mz in Eqs. (2) and (3) and the eddy diffusivity Kz in Eq. (5)),
331 the mixing length turbulence closure approach was applied.
332

mz ¼ /ml2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@u
@z

� �2

þ @v
@z

� �2
s

ð8aÞ
334334

335

Kz ¼ /T l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@u
@z

� �2

þ @v
@z

� �2
s

ð8bÞ
337337

338 where l is the mixing length, um and uT are the damping functions
339 of velocity and tracers respectively to account for the decrease of
340 eddy viscosity and diffusivity with increasing stratification. These
341 empirical functions can be used to fine-tune the vertical profiles
342 of velocity and tracers to measurements, and can take several
343 forms; the most commonly used form is the Munk and Anderson
344 (1948) type of formula:
345

/m ¼
mz

mzo
¼ mð1þ bRiÞa ð9aÞ347347

348

/T ¼
Kz

Kzo
¼ nð1þ bRiÞa ð9bÞ350350

351

352 Ri is the Richardson number defined by:
353

Ri ¼ �g
1
q
@q
@z

ð@u
@z Þ

2 þ ð@v
@z Þ

2 ð10Þ
355355

356 mz and mzo are water vertical viscosity in stratified and neutral con-
357 ditions respectively, and Kz and Kzo are the tracers vertical viscosity
358 in stratified and neutral conditions respectively. m, n, b, a, b, and a
359 are empirical coefficients.
360 In this study, we compare two mixing length formula; the
361 Classical Prandtl (1925) cited in Hervouet (2007) and the Nezu
362 and Nakagawa (1993) models (Table 1):
363 In order to achieve a suitable match to the vertical profiles of
364 temperature and salinity, a collection of decay functions, obtained
365 from the literature and coded in a FORTRAN subroutine to be
366 applied to the current case study (Table 2). These were then com-
367 pared to measured profiles of temperature and salinity (Section
368 5.2).

369 4. Methods

370 4.1. Modelling approach

371 A finite element mesh of the model domain (Fig. 1) was con-
372 structed based on Delauney triangulation EDF, 1998) using bathy-
373 metric data obtained from a number of surveys and Admiralty
374 charts. The domain extends for a distance of 29.5 km in the east-
375 west direction and 38.5 km in the north-south direction with a
376 mesh size ranging from 750 m at the open sea boundary to
377 12.5 m in the vicinity of the ESB discharge outfall. The vertical grid
378 consisted of 6 layers of varying thickness.
379 Using the mesh, initial and boundary conditions (described in
380 Section 4.2), the TELEMAC-3D model simulated the water flow
381 fields and distributions of temperature, salinity and E. coli in the
382 Liffey Estuary and Dublin Bay for a baseline scenario from the per-
383 iod prior to the cessation of thermal discharges for which mea-
384 sured data is available. A mean neap tide (of a range of 1.9 m)
385 was selected for the simulations because; (i) previous studies
386 showed that neap tide conditions generally tend to be critical for

387water quality in Dublin Bay, and (ii) the availability of measured
388current velocity, temperature, salinity and E. coli taken on days in
389which mean neap tide conditions prevailed (Bedri, 2007; Crisp,
3901976; Irish Hydrodata, 1994). Model adjustment to measurements
391was achieved through calibration of bottom friction, vertical turbu-
392lence, and E. coli decay rate (Section 4.3).
393This calibrated TELEMAC-3D model was then used to simulate
394and compare two discharge scenarios of the period following the
395shut-down of the ESB plant.

3964.2. Initial and boundary conditions

397The simulations of the Dublin Bay model start from quiescent
398conditions (i.e. zero water velocities and a constant mean sea
399water level). Initial/background temperature and salinity in the do-
400main were obtained from depth measurements at a number of
401locations in the Liffey Estuary and inner Bay on days where mean
402neap tide conditions prevailed. The background E. coli concentra-
403tion was set to zero.
404The boundary conditions of the model were:

405(i) Open Sea boundaries: These are time-varying mean neap tidal
406elevations at the north and south boundaries. Only the tidal
407constituents with amplitudes greater than 10 mm (identi-
408fied from measurements at gauges in Dublin Bay as M2, S2,
409N2, K2, K1, and O1) were selected to drive the hydrodynamic
410model (Hussey, 1996; Mansfield, 1992). Background values
411of temperature, salinity and E. coli were assigned.
412(ii) Eastern Seaward boundary: Flow observations and current-
413meter measurements at the outer bay (see Bedri et al.,
4142011) demonstrated that the flow is predominantly North–
415South in this region of the Bay. Therefore a mirror-type
416boundary was used in which flow is permitted parallel to
417the boundary but not across it. Also here, background values
418of temperature, salinity and E. coli were assigned.
419(iii) ESB outfall: This is where the combined discharges of the
420Poolbeg power generation plant and Ringsend Sewage Plant
421enter the Estuary. Temperature at this inflow boundary was
422considerably higher, and salinity was lower than those of the
423ambient waters. Discharged E. coli concentrations, obtained
424from measurements by local authorities, were subjected to
425a dilution factor of 8 to account for the effect of mixing with
426the cooling water from the ESB Thermal Plant at Poolbeg.
427(iv) River Liffey: The regulated river flow of 12.42 m3/s may
428increase during high flow period when streams and com-
429bined sewer overflows contribute to the inflow into the
430bay. However, in the case under study, dry weather pre-
431vailed over the week preceding the sampling/simulated
432days; thus, it was reasonable to ignore the riverine input
433of E. coli which, in such circumstances, contributes less than
4341% of the total E. coli load to the Bay (Wilson, 2005). Back-
435ground temperature and salinity values of the Liffey River
436were established from previous measurements (Crisp,
4371976; O’Higgins and Wilson, 2005).

Table 1
TELEMAC-3D mixing length models.

Mixing length model Formula of mixing length (l)

Classical Prandtl (1925) l = kz if z 6 0:2h
l = 0.2 kh if z P 0:2h

Nezu-Nakagawa (1993) l ¼ kz
ffiffiffiffiffiffiffiffiffiffiffi
1� z

h

p
k is the von Karman constant (0.41), z is the distance to the bottom and h is the
water depth.
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438

439 4.3. Model parameters: sensitivity and calibration

440 The most sensitive parameters that significantly influence the
441 outputs of the model were identified as bottom friction, vertical
442 turbulence scheme, and E. coli decay rate.

443 4.3.1. Bottom friction
444 The bottom friction (Chezy coefficient) of the TELEMAC-3D mod-
445 el was subsequently varied to achieve a match with the measured
446 velocities. First, a value for the bottom friction was estimated and
447 the model was run until its hydrodynamics variables demonstrated
448 a quasi-steady state. The model outputs (three-dimensional water
449 velocity) were then compared against velocity measurements taken
450 on days which had a tidal range of approximately 1.9 m at eight
451 locations (locations H1–H8 in Fig. 2).

4524.3.2. Turbulence modelling
453In these simulations (Table 2), the vertical turbulence model
454and damping functions were subsequently varied to improve the
455fit between the measured and simulated vertical profiles of tem-
456perature and salinity at S12 and S10 (Fig. 2). All selected damping
457functions have the structure of the Munk and Anderson formula
458(Eqs. (9a) and (9b)). In all test cases (Table 2), except for the Park
459and Kuo function (TURB5), the value of damping functions become
4601 when there is no stratification. However, the Park and Kuo func-
461tion was used in the study because it offers some flexibility by
462allowing the calibration of two parameters m (or n) and B(or b)
463to fit measured profiles of velocity, temperature or salinity.

4644.3.3. E. coli decay
465Initially, a number of simulations were carried out using a range
466of constant values of decay rate to test the E. coli model sensitivity.

Table 2
Vertical turbulence model schemes tested.

Test case Mixing length model Damping function Velocity damping
coefficients

Tracer damping
coefficients

b a m B a n

TURB1 Classical Prandtl (1925) Munk and Anderson (1948) 10 �0.5 1 3.33 �1.5 1
TURB2 Classical Prandtl (1925) Viollet (1977) cited in Viollet (1988) 14 �1.5 1 14 �0.75 1
TURB 3 Classical Prandtl (1925) Lehfeldt and Bloss (1988) 3 �1 1 3 �3 1
TURB 4 Classical Prandtl (1925) Bowden and Hamilton (1975) 7 �0.25 1 1 �1.75 1
TURB 5 Nezu and Nakagawa (1993) Park and Kuo (1994) with calibrated parameters (m = n) and (B = b) 1.5 �0.5 0.035 1.5 �1.5 0.035

8 6 4 2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Time Relative to High Water (hr)

Ve
lo

ci
ty

 M
ag

ni
tu

de
 (m

/s
)

Measured   0.3* Water Depth
0.5* Water Depth
 0.7* Water Depth
Simulated  0.3* Water Depth
0.5* Water Depth
0.7* Water Depth

Station H2
Neap Tide 

8 6 4 2 0 2 4 6
0

60

120

180

240

300

360

Time Relative to High Water (hr)

C
ur

re
nt

 D
ire

ct
io

n 
(D

eg
re

es
 w

rt.
 N

or
th

) Measured   0.3* Water Depth
0.5* Water Depth
0.7* Water Depth
Simulated  0.3* Water Depth
0.5* Water Depth
0.7* Water Depth

8 6 4 2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Time Relative to High Water (hr)

Ve
lo

ci
ty

 M
ag

ni
tu

de
 (m

/s
)

Measured 3.05m above bottom
3.05m below water surface
Model 3.05m above bottom
3.05m below water surface

Station H5
Neap Tide 

8 6 4 2 0 2 4 6
0

60

120

180

240

300

360

Time Relative to High Water (hr)

C
ur

re
nt

 D
ire

ct
io

n 
(D

eg
re

es
 w

rt.
 N

or
th

)

Measured 3.05m above bottom
 3.05m below water surface
Model 3.05m above bottom
3.05m below water surface

Fig. 3. Simulated and measured current speed and direction at points H2 and H5.

6 Z. Bedri et al. / Marine Pollution Bulletin xxx (2013) xxx–xxx

MPB 5641 No. of Pages 13, Model 5G

10 April 2013

Please cite this article in press as: Bedri, Z., et al. Environmental consequences of a power plant shut-down: A three-dimensional water quality model of
Dublin Bay. Mar. Pollut. Bull. (2013), http://dx.doi.org/10.1016/j.marpolbul.2013.03.025

http://dx.doi.org/10.1016/j.marpolbul.2013.03.025
Original text:
Inserted Text
E.coli 

Original text:
Inserted Text
Friction

Original text:
Inserted Text
1.9m 

Original text:
Inserted Text
H1-H8 

Original text:
Inserted Text
Modelling

Original text:
Inserted Text
(Equations 9a 

Original text:
Inserted Text
9b). 

Original text:
Inserted Text
n) 

Original text:
Inserted Text
B(or β) 

Original text:
Inserted Text
E.coli Decay

Original text:
Inserted Text
E.coli 



467 For a chosen value of decay rate (T90), the model was run until a
468 quasi-steady state was reached (after 8 tidal cycles). The model
469 outputs of the last tidal cycle were then used for comparison with
470 measured E. coli concentrations taken at the water surface at loca-
471 tion M1 shown in Fig. 2. Thereafter, simulations of E. coli distribu-
472 tion were performed using the variable decay rate in Eq. (7b)
473 which is based on time- and space-varying simulated variables
474 (temperature, salinity, and water depth). These were compared
475 with measurements at locations M1 and M2.

476 4.4. Model scenarios

477 Finally, the model calibrated to the base-line scenario (Scenario
478 1) was used to simulate two hydrodynamic and water quality sce-
479 narios to predict the bathing water quality in the inner Bay for the
480 period following the ESB plant shut-down. The scenarios are:

481 (i) Scenario 2 – Dilution scenario: Cessation of ESB thermal dis-
482 charges but continued extraction of estuary water to dilute
483 wastewater discharges from Ringsend STW.
484 (ii) Scenario 3 – Do nothing scenario: where the sewage effluent
485 is discharged directly into the estuary without prior dilution.
486 This is the current scenario practiced at Ringsend STW.
487

488 5. Results: model calibration

489 5.1. Tidal hydrodynamics

490 A Chezy coefficient value of 50 produced the best match be-
491 tween simulated velocities and measurements. The detailed results

492for two representative points (Points H2 and H5) are discussed
493below.
494The model replicated the measured velocity pattern at both sta-
495tions reasonably well (Fig. 3). The simulated velocity at Station H5
496generally matched the measurements better than Station H2. At
497Station 5, both the simulated velocities at 3.05 m below the water
498surface and 3.05 m above the bottom were comparable to mea-
499surements, particularly after the time of high water. At Station
500H2, the simulated velocities at 0.3 of the water depth gave a better
501fit to measurements compared to the model outputs at 0.5 and 0.7
502of the water depth.
503Station H5 replicated well the residual currents of the neap tide
504(these are random velocities of small values that occur close to the
505time of turn of the tide, caused by the nonlinear interactions of ti-
506dal currents and irregular bathymetry). These were underesti-
507mated by the model at Station H2 by approximately 0.1 m s�1.
508The observed flow direction was adequately simulated by the
509model at both stations but better at Station H5.

5105.2. Vertical turbulence schemes

511Using the adjusted value for bottom friction coefficient, simula-
512tions of TELEMAC-3D (denoted by continuous lines in Fig. 4) were
513performed for each of the vertical turbulence schemes in Table 2.
514Measurements of depth profiles of temperature and salinity
515(shown as points in Fig. 4) at locations S10 and S12 were taken
516close to the time of low water where stratification is believed to
517be greatest. These were taken at HW+6.9 and HW+6.5 h respec-
518tively and were repeated 1 h later (HW is the time of high water).
519The measured temperature at the water surface was higher (and
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Fig. 4. Measured and simulated temperature and salinity vertical profiles at S12 and S10 using different damping schemes.
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520 the salinity lower) at location S12 than S10 due to being nearer the
521 discharge outfall.
522 TELEMAC-3D simulations in Fig. 4 show that the largest tem-
523 perature and salinity gradients occur with the Viollet scheme (at
524 S10) and the Viollet and the Bowden & Hamilton (at S12). The
525 Munk & Anderson and Park & Kuo schemes gave identical vertical
526 profiles at both stations.
527 The root mean squares of errors (RMSEs) were computed (Table
528 3) for each of the simulations to assess the goodness of fit of sim-
529 ulated temperature and salinity profiles to measurements at S12
530 and S10. Both temperature and salinity profiles at S10 fitted the
531 measurements better than S12. This is reflected in the RMSE values
532 (Table 3) which are significantly higher at S12 than at S10. This is
533 perhaps due to the close proximity of S12 to the discharge weir,
534 therefore being in the zone of radial flow of effluents. This mixed
535 flow field may have caused a less-defined response compared to
536 S10 which is under the influence of unidirectional tidal flow into
537 the estuary.
538 The lowest values for RMSE at S12 were achieved by the Viollet
539 and Lehfelt and Bloss schemes while at S10, the Park and Kuo
540 scheme gave the lowest RMSE (except for temperature at
541 HW+7.5 h). An overall comparison of the RMSE values at S12 and
542 S10 indicates that the Park & Kuo scheme generally produced the
543 best match to measurements and hence is used in the simulations
544 discussed in Sections 4.3.3 and 4.4.

545 5.3. E. coli model

546 Simulated E. coli at M1 and M2 demonstrated a distinctive pat-
547 tern over the tidal cycle (Fig. 5) where concentrations reached
548 their peak values at around the time of mid flood (HW�2 to
549 HW�4 h) then gradually decreased to a minimum around the
550 time of low water (HW+6 and HW�6 h). In contrast, measured
551 E. coli concentrations exhibited considerable random variation
552 over the tidal cycle although the values remained within one or-
553 der of magnitude.
554 Using a constant decay rate of E. coli (Fig. 5a), simulations
555 showed that the decay rates T90 = 3, 6 and 12 h have produced
556 a suitable envelope to match the order of magnitude of measured
557 E. coli with a T90 value of 6 h being slightly better. The simulation
558 using a variable decay rate, improved somewhat on the constant
559 decay rate results At M2, the simulated E. coli concentrations
560 (using the variable decay rate) showed a reasonable fit to some
561 measurements on the flooding stage (HW�6 to HW�3 h). How-
562 ever, the model has underestimated observed E. coli concentra-
563 tions around the time of low water (HW+4 to HW+6). The same
564 has been observed at location M1 (Fig. 5a). The comparison be-

Table 3
Varying vertical turbulence models: Root Mean Squares of Errors (RMSEs) between measured and computed temperature and salinity at S12 and S10.

Simulation Station (sampling time)

S12 S10

HW+6.9 h HW+7.9 h HW+6.5 h HW+7.5 h

(1) Munk and Anderson temperature salinity 1.377
0.843

1.455
0.738

0.290
0.512

0.452
0.326

(2) Viollet temperature salinity 1.016
0.573

1.339
0.673

0.441
0.695

0.427
0.382

(3) Lehfledt and bloss temperature salinity 1.194
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Fig. 5. Comparison of simulated and measured E. coli concentrations at Points M1
and M2 (in Fig. 2).
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565 tween measured and simulated E. coli concentrations at M1 and
566 M2 show that the variable decay rate model captures the order
567 of magnitude of measured E. coli, and fits some of the measure-
568 ments. However, it was not possible to accurately predict the
569 measured E. coli concentrations because of their highly random
570 variation over a tidal cycle. This random variation in measured
571 E. coli concentrations can be due to; (i) the complex physical
572 and biological processes that govern the growth and die-off of
573 E. coli even within the confinement of a bottled sample, (ii) the
574 difficulty in achieving the ideal environmental conditions for
575 sample storage and transport, and (iii) the uncertainty in the
576 measurements, particularly in the enumeration of E. coli colonies
577 even under controlled laboratory conditions.

5786. Results: comparison of water quality pre- and post-ESB
579shutdown

580Fig. 6 shows the simulated distribution of E. coli in the Liffey
581Estuary and Inner Bay at two stages in the tidal cycle; low water
582slack and mid flood. The model has satisfactorily replicated the
583observed flow patterns in the Estuary and Inner Bay; the ebbing
584tide pushes the discharge plume eastwards out of the Estuary
585and into the Bay, draining water out of South Bull Lagoon
586(Fig. 2). Once in the bay, the plume flows eastwards and is then de-
587flected northwards, first towards Dollymount Strand and then fur-
588ther eastwards towards Howth Head. During the flood tide, the
589incoming, less polluted, water pushes the plume back into the har-

Fig. 6. E. coli Distribution at the water surface at low water and mid flood stages of the tidal cycle.

Z. Bedri et al. / Marine Pollution Bulletin xxx (2013) xxx–xxx 9

MPB 5641 No. of Pages 13, Model 5G

10 April 2013

Please cite this article in press as: Bedri, Z., et al. Environmental consequences of a power plant shut-down: A three-dimensional water quality model of
Dublin Bay. Mar. Pollut. Bull. (2013), http://dx.doi.org/10.1016/j.marpolbul.2013.03.025

http://dx.doi.org/10.1016/j.marpolbul.2013.03.025
Original text:
Inserted Text
E.coli 

Original text:
Inserted Text
E.coli, 

Original text:
Inserted Text
E.coli 

Original text:
Inserted Text
E.coli 

Original text:
Inserted Text
Comparison 

Original text:
Inserted Text
Water Quality Pre- 

Original text:
Inserted Text
Post-ESB 

Original text:
Inserted Text
E.coli 



590 bour and up the Liffey estuary, while in the inner bay and in the
591 vicinity of the harbour mouth, the flood tide sweeps the discharge
592 plume northwards towards Dollymount Strand.
593 Fig. 6 shows no difference in the distribution of E. coli between
594 Scenarios 1 and 2 in the Estuary and Inner Bay. This is due to the
595 minor effect of heat elimination from the cooling water in Scenario
596 2 on the water density (Fig. 7) and therefore on the flow fields and
597 transported waste.
598 Scenario 3, which is the discharge strategy currently practiced
599 at Ringsend STW, shows considerably higher concentrations of E.
600 coli in the Estuary and Inner Bay in comparison to Scenarios 1
601 and 2 (Fig. 6) due to the absence of prior dilution. The effect of
602 the abstracted dilution water from the estuary was two-fold; (i)
603 it provided dilution to the effluent thus reducing the E. coli concen-
604 trations discharged into the estuary, and (ii) it reduced the salinity

605difference between the effluent and ambient water and hence
606stratification which has a direct effect on the flow field. Therefore
607the absence of dilution means a higher density difference in Sce-
608nario 3 compared to Scenarios 1 and 2 (Fig. 7) which is subse-
609quently reflected on the flow field and a greater rate of delivery
610of pollutants to the Inner Bay.
611In terms of the water quality at the beaches, the mid flood stage
612(Scenario 3) gives higher counts of E. coli at Dollymount Strand
613than does the low water stage. This is because at the high water
614levels during an incoming tide, there is a direct hydraulic connec-
615tion with the estuary over the North Wall (Fig. 2) which is sub-
616merged at flood stage. Also at the time of mid flood, E. coli
617concentrations in the vicinity of Dollymount Strand were 250–
618500 cfu/100 ml (Scenario 3) which are the limits for excellent
619and good quality standards of the EU Bathing Water Directive

Fig. 7. Density at the water surface at low water and mid flood stages of the tidal cycle.
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620 (2006/7/EC). Fig. 6 shows that the water quality at Sandymount
621 and Merrion Strand is less impaired than Dollymount Strand
622 because of the South wall which extends a long distance eastwards
623 into the bay, separating the waters of the beaches on the south side
624 of the bay from the flow exiting the estuary. Hence the south wall
625 prevents the E. coli plume from flowing directly southwards to the
626 beaches of Sandymount and Merrion Strand except when the wind
627 is from the north east direction.

628 7. Conclusion

629 This paper investigates the effect of cessation of thermal dis-
630 charges from a power plant on the stratified flow and its implica-
631 tions to the bathing water quality of Dublin Bay. Before closing
632 down, a practice was in place where sewage effluent from a nearby
633 treatment plant was mixed with thermal discharges before being
634 released into the Liffey Estuary resulting in a warm, less-saline
635 buoyant sewage plume that has reduced mixing properties. The
636 model was first calibrated based on measured hydrodynamic and
637 water quality data from the period before the cessation of thermal
638 discharges (Scenario 1). The calibrated model was then used to
639 assess the bathing water quality under two scenarios following
640 the thermal plant shut down (i) Dilution scenario: where a contin-
641 ued abstraction of estuary water is used to dilute sewage effluent
642 before being released into the estuary (Scenario 2), and (ii) Do
643 nothing scenario where the sewage effluent is discharged directly
644 into the estuary (Scenario 3).
645 Results showed that there was an insignificant difference in the
646 distribution of E. coli between Scenarios 1 and 2. However, Scenario
647 3 resulted in considerably higher E. coli concentrations in the Estu-
648 ary and inner Bay due to the increased stratification caused by the
649 absence of prior dilution.
650 Therefore, continued abstraction of dilution water post-ESB
651 shut-down may be better for bathing water quality than direct dis-
652 charges of effluents into the Estuary.
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