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Highlights 

 

 Appraises the necessity of use of pessimistic default U-values in energy labelling. 

 Recommends a statistically relevant selection point for default U-values. 

 Assesses impact of default use on building performance certification quality. 

 Highlights inappropriate use of default U-values as energy model inputs. 

 Highlights how default use may impact uptake of residential upgrade measures. 

 

Abstract 

 

In the EU, Energy Performance Certificates (EPCs) are issued for dwellings whenever they 

are constructed, sold or leased.  Where requiring data would be prohibitively costly, 

nationally applicable default-values for the thermal transmittance coefficients of the building 

envelope are employed. Use of such worst case default U-values ensure that a poor dwelling 

does not attain a better energy rating than is merited. In the absence of empirical data in 

Ireland thermal-default U-values, as in many other EU member states, are determined by the 

type and date of construction and then prevailing building codes.  Using 463,582 dwellings 

representing 32% of the total Irish dwelling stock, this work assesses the relevance of current 

default U-values. Significant levels of retrofits have been found to lead to the default U-

Values used now being higher that is typical in reality,  thus decreasing the accuracy, and 

hence credibility, of an EPC.  Lack of certification accuracy also inhibits investment in 

energy efficiency.   

 

Keywords: Default U-values, energy performance certification, Irish housing stock, detached 

house 
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1 Introduction 

 

Building energy classification allows inter-comparison of building energy use [1, 2].  The EU 

Directive on Energy Performance of Buildings (EPBD) [Directive 2002/91/EC] mandates 

comparable energy performance classifications, in the form of Energy Performance 

Certificates (EPCs), be issued for buildings constructed, sold or leased across the European 

Union [3, 4].  Different approaches to calculating the energy classification of dwellings have 

been adopted across EU Member States [2, 5].  In Ireland and in the UK the energy 

classification of a building compares energy consumption and CO2 emissions theoretically 

calculated for an actual building, with a standardised benchmark building of the same 

typology and floor area as shown in Eqs. (1) and (2) below [6];  

 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑎𝑐𝑡𝑢𝑎𝑙

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
= 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 [

𝐾𝑊ℎ

𝑚2.𝑎𝑛𝑛𝑢𝑚
]                         

(1) 

 

𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑐𝑡𝑢𝑎𝑙

𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
 = 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 [

𝑘𝑔𝐶𝑂2

𝑚2.𝑎𝑛𝑛𝑢𝑚
]                                                       

(2) 

 

An EPC: 

 Presents the calculated energy performance coefficient of the building on a scale of A 

(which should have the lowest fuel bills) to G  [2].  

 Uses the same scale to define the impact a home has on the environment through 

greenhouse gas emissions.  

In Ireland [7] and in the UK [8] publically-available EPC methodologies are used to calculate 

the energy classification of dwellings.  EPC methodologies at the national level need to have:  

 credibility and accuracy so that buildings with better labels should use less energy [2, 

9], 

 applicability to a wide variety of buildings balancing some loss of accuracy with 

remaining representative [5], 

 clarity so that users should be able to understand a) the overall result and b) the effect 

of choices (input) on the calculation result [5, 9], 
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 reproducibility so that for a specific building the underlying method used leads to the 

same result; irrespective of subjective or arbitrary choices and independent of the user 

[2, 5], 

 transparency and encourage improvement to ensure the energy label of a given 

building is relevant and useful [2, 5, 9], 

 cost-effectiveness 

 obtaining the building data needed for an energy performance certificate must 

not be too labour intensive to avoid significantly adding to the cost of the label 

particularly compared to the impact of the certificate on the energy 

performance [5].  

 complexity and user skills - avoiding poorly user-interfaced complex 

simulation programmes that require a high training level for the programme 

user [10]. 

 

The results outputted by EPC methodologies can only offer an estimation of the actual 

building energy consumption since input data is often based on default operating conditions 

for inter alia external temperatures, internal loads, system efficiencies, prices and occupancy 

patterns [2, 9, 11-16].  There can thus be a major gap between the theoretical prediction and 

actual energy consumed in homes when occupied by real people [2, 11, 17]. In general, and 

as shown in Fig. 1 theoretical predicted energy consumption tends to be [11]; 

 Overestimated for average and less energy-efficient dwellings.  This is explained 

partly by the ‘prebound effect’ [14] wherein occupants consume 30% less heating 

energy on average than the theoretical predicted rating, and 

  underestimated when observing new or retrofitted dwellings.  This is explained partly 

by the ‘rebound effect’ [18] wherein thermally retrofitted dwellings enable higher 

internal comfort temperatures more affordable leading to increased energy 

consumption rather than reduced energy bills [11, 19-22].   

 

Eqs. (1) and (2) show that the benchmarking process is a comparative analysis [2] that also 

informs an associated advisory report recommending feasible energy efficiency measures 

from both technical and economical perspectives [2, 9, 15].  The underlying premise being 

that a householder decisions are predicated on financial savings. Informing the household 

about cost-effective energy-saving measures is anticipated therefore to result in marked 
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behavioural change to reduce their energy costs [23, 24].   However even when the majority 

of recommendations are economically advantageous, consumers are not generally persuaded 

to act rationally to adopt these measures [23-25].  A barrier perceived by homeowners is 

inaccuracy wherein the financial savings in reality smaller that the label estimates [17].  To 

overcome this barrier energy consumption associated with improving an EPC label after a 

specific energy saving intervention in a particular dwelling should reflect closely the actual 

decrease in energy consumption [3, 11].  The effectiveness of the rating therefore depends on 

the proper selection of default data [2, 13].   Where accurately obtaining all of the required 

building envelope data would be excessively labour-intensive and/or invasive, national 

default values are sometimes employed.  Default values are normally pessimistic so as to  [5]; 

 avoid offering a better than merited energy rating, 

 allow the homeowner to know the energy advantage of carrying out retrofits, 

 encourage the homeowner to maintain records of energy upgrades that inform EPCs, 

and  

 encourage assessors to seek out information to improve the energy rating. 

 

An illustrative case of two identical buildings is examined in Table 1 [5]. Where for one 

building the data item is not observable on site or via documentary evidence so a default is 

used, while for the other building the actual data available was used. 

 

Information on the thermal characteristics of older dwellings is often more difficult to obtain 

than for recently constructed dwellings.   If  an improvement in the energy performance 

certification is the basis for renovation, use of pessimistic default values may lead to higher 

improvement expectations in the EPC rating [5, 11].  Arkestijn and van Dijk (2010) [5] raised 

the policy-related question of whether it is fair to give a worse energy rating simply because 

less information is available.  Furthermore, if the lack of information associated with the 

building is to be penalised - how tough should the penalty be? In other words how pessimistic 

should the default value be?  

A thermal transmittance coefficient or U-value of a building element is the rate of heat 

transfer (in watts) through one square meter of the building element divided by the difference 

in temperature across the element structure expressed in W/m2K.  The U-Value is used to 

inform the heat energy consumption characteristic of a dwelling.  The optimum choice of a 

default U-value characteristics should be based on empirical evidence. In the absence of such 



6 
 

empirical data and as shown in Table 2, Irish thermal default U-values (similar to many other 

EU member states) were determined from [26, 27]; 

 building element type, 

 the date of construction for pre-thermal regulation dwellings (pre-1978). 

 prevailing draft or finalised building codes by period of construction for post-thermal 

regulation dwellings (1978 – 2006) - allowing a grace period of generally two to three 

years after a proposed change in draft or finalised regulations for a dwelling to be 

completed [27]. 

 

 

Ireland [28, 29] along with Italy [30], Spain [31] and Austria [32] use methodologies to 

calculate residential stock energy consumption using default U-Values applied to equally 

default dwelling typologies classified by period of construction.  The objectives of this work 

are to use the recently published Irish national empirical energy performance certification 

database [33] and SPSS® software, to: 

 Assess the relationship of current default U-Values relative to the empirical 

statistical distribution. 

 Make recommendations for updated default U-value’s relative to the empirical 

statistical distribution. 

 Discuss the potential impact of default U-Value selection on the validity of, 

 energy performance certification, 

 use of default U-values as key inputs to national building energy consumption 

models. 

 Highlight the potential contribution of their use to prebound effect in existing 

dwellings 

 

2 Case Study – The housing stock of Ireland 

 

2.1 Context 

 

As can be seen in Fig 2, rural detached, oil-heated dwellings, Ireland’s predominant house 

typology, comprises 18 % of the total dwelling stock. This dwelling typology makes a good 

case study dwelling as;  
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 it qualifies as a reference dwelling under the European Commission delegated 

regulation no. 244/2012 [34], 

 shown in Fig. 3, whilst Ireland has the highest proportion of single family dwellings 

in Europe [35] it is not extraordinary in this regard. Countries such as The UK, 

Greece, Norway and The Netherlands have similar profiles.  

 34 % of the EU 28 population lived in detached houses in 2013 [36].  

 67 % of European housing was built prior to 1980 [37] and the introduction of 

meaningful thermal regulation of the housing sector. Mirroring this, 70 % of Irish 

detached dwellings were constructed before the mid 1970’s when constructional 

changes caused primarily by amendments to draft or actual thermal regulations led to 

increased levels of thermal insulation in Irish dwellings [27, 28, 38].    

 

2.2 Methodology 

 

EPCs  in Ireland are generated through a methodology embodied in the national Dwelling Energy 

Assessment Procedure (DEAP) software programme administered on behalf of the state by the 

Sustainable Energy Authority of Ireland (SEAI).  SEAI made this detailed national empirical dataset 

publicly available in 2014 [39].   463,582 dwellings representing 31.7 % of the total dwelling 

stock constructed up to 2006 received an EPC by August 2014 [33].   Rural, detached, single 

and two-storey, oil centrally-heated and naturally-ventilated dwellings were isolated from the 

larger dataset. Dwellings carrying a ‘provisional’ certificate were also filtered. As shown in 

Table 3, this resulted in a sample of 50,236 dwellings representing 11 % of the available 

database.  Table 2 shows that the refined dataset compares well with the national distribution 

of detached dwellings by date of construction [27].  Due to older dwellings changing 

ownership less often, EPCs have been carried out on older dwellings less frequently than 

newer housing.  Newly-constructed detached dwellings are thus more represented in the 

empirical dataset [33].   

 

Fig 4 (a) shows an illustrative typical U-value frequency distribution for a real thermal 

building element extracted from the Irish national empirical dataset using SPSS® software 

[33].  The frequency distribution reveals the thermal characteristics of Ireland’s reference 

dwelling envelope to be normally bi-modally distributed with “Mode 2” reducing relative to 

“Mode 1” likely due to retrofit interventions.  The position of current default value relative to 
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the statistical distribution was examined.  Statistical probability tests performed found the 

default value to often have no statistical significance to the empirical distribution.  Moreover, 

as more retrofit interventions are carried in the housing sector current defaults become less 

relevant to the real statistical distribution over time especially with respect to “Mean 1”.   The 

default U-value was thus filtered from the database and hence the solver tool in EXCEL® was 

used to employ the method of maximum log likelihood as the best method [40] for estimating 

the best fit curve for probability distribution of large datasets. Fig. 4 (b) shows how a curve 

was fitted to the real data. Thermally upgraded or Mode 1 dwellings show a tighter and more 

pronounced distribution profile than Mode 2 dwellings which have yet to undergo significant 

thermal upgrades. In general and as illustrated in Fig.4 (b), the standard deviation for Mode 2 

tends to be greater than that of Mode 1; this is attributed to thermal retrofits achieving a more 

harmonised level of thermal insulation. 

 

2.2.1 How pessimistic should the default U-Value be? 

 

If it is accepted that pessimistic default U-values should be employed when producing EPC’s 

to (i) keep the cost of certification at an affordable level and, (ii) aid the reproducibility and 

robustness of the method for situations where information is lacking. When selecting how 

pessimistic default U-Values should be, the key issue, is the potential impact of that selection 

point on the EPCs accuracy. Table 4 discusses the implications whilst Figure 5 outlines the 

scale of default selection options relative to a normalised statistical distribution of a dwelling 

elements thermal characteristic.  

 

Table 4 outlines how the selection of; 

a) ‘moderately optimistic’ to ‘very optimistic’ default U-values are not desirable as it 

may act as a disincentive to carrying out thermal energy efficiency upgrades in the 

housing sector,  

b) ‘Very pessimistic’ default U-values are likewise not desirable due to the significant 

risk of  

i. greatly overestimating the potential saving from retrofit intervention and  

ii. the creation of a very punitive system for existing dwellings where 

information is often difficult to obtain. 
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c) ‘Realistic’ statistically derived means will often lead to an underestimation of the 

potential to improve the energy performance rating.   

‘Moderately pessimistic’ and ‘pessimistic’ thus remain. Fig. 5 shows how the use of; 

d) ‘moderately pessimistic’ default U-values (50th to 84.1st percentile point), results in a 

slight loss of validity and a better comparative energy performance rating of the two 

identical buildings examined in Table 1, however there is significant risk of 

overestimating the potential savings from a retrofit intervention for dwellings 

occupying the 84.1st to 100th percentile point (15.9 % of the dwelling stock assuming 

a normal distribution).   

e) ‘pessimistic’ default U-values (84.1st to 97.7th percentile point) will lead to a greater 

loss in validity than that of moderately pessimistic U-values, but only a slight risk of 

overestimating the potential savings from a retrofit intervention for dwellings 

occupying the tail of the distribution (15.9 to 6.7 % of the dwelling stock).   

Assuming the empirical data to distribute normally, it is relatively straightforward to pick a 

‘reasonably pessimistic’ default U-value between the 85th or 90th percentiles as shown in Fig. 

5. Selection of a default U-Value in this zone will ensure a reasonable level of accuracy for 

the certificate but also allow the home-owner to perceive the energy advantage of carrying 

out thermal retrofits.  As Mode 2 dwellings are yet to engage in upgrade measures, Mode 2 is 

the relevant mode for analysis to recommend empirically derived defaults U-values.  The 

dataset [33] was thus analysed to recommend default U-values based on the 90th percentile 

point of the Mode 2 distribution - assuming it accounted for a meaningful proportion of the 

dwelling stock.   

2.3 Results 

2.3.1 Position of current defaults relative to average empirically derived (real) U-Values 

 

Pre-thermal regulation building elements are generally assumed to be have been originally 

constructed without insulation [27].  Fig. 6 demonstrates that building energy assessors were 

often able to identify the presence of insulation in pre-thermal regulation dwellings, 

demonstrated by the gap between the maximum regulation default wall U-value and the real 

mean U-values by period of construction.  The data indicates that end-users either; 

(i) constructed to better specifications than required by thermal regulation prevailing at 

the time or  

(ii) have carried out autonomous energy-efficiency improvements 
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Greater deviation from the current default wall U-values is observed in pre-thermal regulation 

dwellings constructed pre-1900 and up and until circa 1978. A high degree of autonomous 

energy-efficiency improvements is noted in dwellings constructed between 1950 and 1977.  

These dwellings were found to have the worst heat loss characteristics within this typology, 

which may have provided greater motivation for the end-user to invest in upgrade measures 

[28].  In post-regulation dwellings constructed between 1978 and 2006; and as time 

progresses the disparity between the default and real U-value lessens. Notably however, in 

the period between 2005 to 2006, 6 to 7 % of dwelling walls surveyed were not compliant 

with the prevailing thermal regulations.  This may be attributable to a lax adherence to 

building control measures during Ireland’s recent housing construction boom [41]. 

 

In 2014, 58 % of walls and  64 % of roofs were found to have significant levels of  insulation; 

an increase from 3 % and 7 % in 2001 - 2002 [42].   Roof U-values range from 0.13 to 0.29 

W/m2K and, as shown in Fig. 7, do not significantly vary by period of construction.   Roof U-

values are generally lower than wall U-Values; wall U-values range from 0.15 to 0.41 

W/m2K for pre-thermal regulation dwellings (with the exception of pre-1900 two-storey 

walls at 1.13 W/m2K) and 0.28 to 0.31 W/m2K for post-thermal regulation dwellings.  The 

improved thermal characteristic of roofs is attributable to the relative ease and lower cost of 

retrofitting attic insulation compared to wall insulation.  

 

Figures 6 and 7 demonstrate that; 

(i) the strong association of a dwellings age with its energy efficiency is diminishing as 

retrofits in the sector are carried out, and 

(ii) the use of pessimistic default thermal characteristics as inputs to national energy 

consumption models considerably overestimates the energy saving potential of the 

existing housing stock.   

2.3.2 Assessment of level of thermal retrofits for Ireland’s predominant housing 

typology 

 

The percentage of significantly retrofitted or Mode 1 dwellings by period of construction and 

building type is presented in Table 5. Table 5 indicates that 44 % of walls and 47% of roofs 

in pre-thermal regulation dwellings have undergone significant thermal retrofits, whilst 71 % 

of walls and 80% of roofs in post-thermal regulation dwellings have either undergone 
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autonomous energy efficiency upgrades or were constructed to better the maximum allowable 

U-value of the time.   

 

2.3.3  Recommendation to revise default U-Values 

 

Due to the difficulty of (i) retrofitting floor insulation in an occupied dwelling [28], and (ii)  

identifying the presence of floor insulation retrospectively, the empirical database did not 

reveal any thermal upgrades of floors. Table 6 thus presents recommendations for walls and 

roofs only. The thermal performance of single storey and two-storey dwellings - with the 

same thermal characteristics - will differ owing to a different volume to surface area ratio.  

One and two-storey dwellings are thus distinguished. 

 

Irish thermal default U-values, similar to many other EU member states, were determined; 

(i) from the type and date of construction for pre-thermal regulation elements and; 

 Walls – Recommendations for updated default U-values in table 6 reasonably 

approximate current default U-value of 2.1 W/m2K.  A small average reduction of - 

10 % of the ratio of standard deviation over the mean or Relative Standard 

Deviation (RSD) for single-storey walls and - 8 % RSD for two-storey walls is thus 

recommended. 

 Roofs – Recommendations for updated default U-values in table 6 deviate 

significantly from the current default U-value of 2.3 W/m2K.  An average 

reduction - 60 % RSD for single-storey roofs and - 38 % for two-storey roofs is 

thus recommended. The difference between single and two-storey dwellings might 

be attributed to the fact roof surface area on single storey dwellings impacts the 

dwelling heat loss characteristic to a much greater extent than in the equivalent two 

storey-dwelling.  This may have provided more motivation to the home- owner to 

carry out thermal upgrades to this element. 

(ii) by the maximum allowable U-value at time of construction for post-thermal regulation 

elements; 

 Walls - Pre-thermal regulation single and two-storey walls behave similarly; 

however post-thermal regulation, single-storey dwelling walls tend to perform 

better thermally than their two-storey counterpart.  Therefore an average reduction 

of - 19 % RSD to the current thermal default is recommended for single-storey 
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detached dwellings while an average - 7 % RSD reduction is recommended for 

two-storey walls.  Dwellings constructed between 1978 and 1982 see the largest 

deviation of 30 and 14 % for one and two-storey dwellings respectively, this may 

be attributable to the 1979 oil crisis making people more aware of the value of 

insulation and the positive effect of the draft thermal building regulations published 

in the mid 1970’s. 

 Roofs – post-regulation, roofs show a better approximation to the current default 

with an average RSD of +/- 11 and 10 % for single and two-storey dwellings 

respectively.  Oddly between 2000 and 2006 the recommended defaults are greater 

than the current defaults, this is also attributed to a lax adherence to building 

control measures during Ireland’s recent housing construction boom [41]. 

3. Discussion & Recommendations 

 

The building sector, and especially pre-existing housing, is often identified as providing 

‘enormous’ [43, 44] potential for CO2 reduction.  Monitoring of the energy performance of 

the building stock has generally provided knowledge, analysis and evidence insufficient to 

[11, 35]; 

 track the progress and impact of policy implementation,  

 make comparisons between different policy and market regulatory environments, 

 recommend best practice to achieve energy efficient buildings. 

This results work highlights how use of pessimistic default thermal characteristics as inputs 

to national energy consumption models will cause the model to considerably overestimate the 

energy saving potential of the existing housing stock for pre-regulation dwellings (prebound 

effect).  The practice of employing default characteristics in energy consumption models 

questions whether [14, 17, 22]; 

 the energy saving potential of the building sector is as large as previously thought and  

 the burden for CO2 reductions on this sector is realisable. 

Ambitious CO2 reduction targets exist for the existing housing stock [2, 14, 35]. EPC 

databases are rich in information that represents a significant opportunity to 

contemporaneously inform empirically derived residential energy consumption models.  

Gathering the information necessary to populate an EPC database is also expensive and 

labour intensive. The inclusion of pessimistic defaults in resultant EPC databases means that 
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these rich databases cannot act as an accurate tool for monitoring the energy consumption of 

the dwelling stocks in line with the original intention of the EPBD directive. It is strongly 

recommended that intelligent databases should continually analyse EPC data to produce 

empirically derived housing typologies, by period of construction and by percentage of the 

dwelling stock applying - Mode 1 and Mode 2 as shown in Fig.4 (b).  These databases then 

more accurately inform national residential energy consumption models and policies thus 

narrowing the energy performance gap. 

To further highlight the impact of use of default model inputs and virtual dwelling 

typologies on the prebound effect; a sensitivity analysis to the use of statistically derived 

mean U-values to residential energy consumption models is recommended.  Ireland’s national 

EPC empirical dataset could be exploited to create a real validated reference dwelling 

typology by period of construction for Ireland’s predominant housing typology.  The 

resulting data can hence be used as simplified and validated inputs to a bottom-up residential 

energy consumption models.  

 

In order to produce (i) a building energy label, (ii) recommend energy efficiency measures 

and (iii) calculate payback periods; a typical EPC calculation engine for dwellings compares 

the predicted energy consumption of the actual dwelling with that of a standardised 

benchmark building of the same typology as shown in Eqs. (1) and (2) and Fig. 8. 

 

As discussed in Section 1.0, where defaults are employed the program will return 

unrealistically short payback periods for refurbishment works. To,  

(i) remove this known barrier to the uptake of energy efficiency upgrades in the 

residential sector and,  

(ii) allow the end user to make a more informed decision on retrofitting strategies,  

reports of the assessor should  highlight how building element U-Values were determined, 

how accurate they believe those values to be and carry out a sensitivity analysis highlighting 

the impact their assumptions may have on the energy label and/or potential energy savings 

resulting from thermal retrofits.  To produce a range of results in this analysis, it is 

recommended that a typical Mode 2 dwelling by period of construction be characterised to 

replace the actual dwelling of Eqs. (1) and (2) as shown in Fig. 8 and as described by Eqs.(3) 

and (4) below:  
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𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑀𝑜𝑑𝑒 2 𝑇𝑦𝑝𝑖𝑐𝑎𝑙

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐸𝑃𝐶) [

𝐾𝑊ℎ

𝑚2.𝑎𝑛𝑛𝑢𝑚
]                 

(3) 

 

Typical paybacks achieved through refurbishment measures by period of construction could 

also be indicated as shown below; 

 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑀𝑜𝑑𝑒 2 𝑇𝑦𝑝𝑖𝑐𝑎𝑙

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑀𝑜𝑑𝑒 1 𝑇𝑦𝑝𝑖𝑐𝑎𝑙
 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐸𝑃𝐶) [

𝐾𝑊ℎ

𝑚2.𝑎𝑛𝑛𝑢𝑚
]                 

(4) 

 

The consequent realistic payback periods, increase the credibility of the advisory report 

associated with the EPC. 

4. Conclusions  

 

Analysis of Ireland’s predominant housing typology in 2014 finds 58 % of walls and 64 % of 

roofs to have significant levels of insulation; an increase from 3 % and 7 % in 2001 – 2002.  

The results indicate that 44 % of walls and 47% of roofs in pre-thermal regulation dwellings 

have undergone significant thermal retrofits, whilst 71 % of walls and 80% of roofs in post-

thermal regulation dwellings have either undergone autonomous energy efficiency upgrades 

or were constructed to better the maximum allowable U-value of the time.  These significant 

levels of thermal retrofits in Irish housing sector are leading to; 

 a diminishing association between a dwellings age and its energy efficiency, 

 a positively shifting bi-modal distribution  of thermal characteristics, 

 default U-Values chosen as described in Section 1.0, have become increasing 

outmoded. 

The use of outmoded default U-Values to necessarily maintain the cost-effectiveness of EPC 

decreases the accuracy and hence credibility of both the EPC and its associated advisory 

report.  A perceived lack of certification accuracy by the homeowner inhibits investment in 

energy efficiency. 

Adoption of “reasonably pessimistic” statistically relevant default U-Values shall 

underrank the performance of circa 90% of dwellings and, where used, is assumed to be a 

significant contributing factor to the prebound effect in dwellings.   
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Fig. 1 How the prebound and rebound effects may limit energy saving to be less than envisaged 

[14] 

 

 

 

 

 

Fig. 2 Number of Irish dwellings by type [38] 
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Fig. 3 Single family and apartment buildings in Europe [35] 
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Fig. 4 a & b Illustrative typical frequency distribution and analysis of wall and roof U-

values [33]  
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Fig. 5 Relationship of default U-value selection to quality aspects of energy performance 

certification relative to normal statistical distribution 
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Fig. 6 Average wall U-value in the default and empirical dataset over time [28, 33] 

 

 

 

Fig. 7 Roof U-value in the default and empirical dataset over time [28, 33] 
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Fig. 8 Basis of typical pay-back period calculation arising from thermal retrofits  
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Table 1 Building energy rating and payback periods for two identical buildings with 

and without information [5] 
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Table 2 Irish Building Regulation Summary [27] 
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Table 3 Frequency of detached dwellings in representative empirical dataset compared 

with actual dwelling frequency by period of construction [33, 38] 
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Table 4 Implication of default U-value selection on Energy Performance Certification 
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actually worsen the energy rating rather 

than make it better and,                    b) 

assessors and end-users might be less 

motivated to gather detailed 

information about the building where it 

is not readily available.

Increasing loss of accuracy leading to an 

increasingly significant risk of,                                                                                        

a) the results returned by the process greatly 

overestimating the potential savings from the 

retrofit intervention and                        b) a 

punitive system, especially for existing 

buildings.  

Lo
ss

 o
f 

V
al

id
it

y 

Sc
al

e Loss of Validity Loss of Validity

 

 

 

 



27 
 

Table 5 Percentage of walls and roofs which have been significantly thermally 

retrofitted and/or upgraded by period of construction [33] 

single-

storey

two-

storey

single-

storey

two-

storey

< 1900 17% 70% 49% 56% 49% 52%

1900-1929 15% 31% 25% 27% 52% 42%

1930-1949 19% 30% 24% 27% 59% 43%

1950-1966 50% 49% 50% 36% 59% 44%

1967-1977 72% 66% 70% 51% 56% 53%

1978-1982 54% 57% 55% 52% 95% 68%

1983-1993 70% 65% 68% 71% 98% 83%

1994-1999 79% 65% 72% 60% 99% 80%

2000-2004 75% 63% 68% 49% 99% 78%

2005-2006 93% 94% 94% 84% 98% 92% 80%

Walls Roofs

% significantly 

retrofitted or 

autonomously 

upgraded

Weighted 

average

47%
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Period of 

Construction

71%

44%

% significantly 

retrofitted or 

autonomously 

upgraded

Weighted 

average
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Table 6 Recommendation of empirically derived default U-values for detached Irish 

dwellings [33] 

U-value 

(W/m2K)

U-value 

(W/m2K)

U-value 

(W/m2K)

U-value 

(W/m2K)

>1900 2.10 1.92 -9% 2.09 0% 2.30 1.40 -39% 1.62 -30%

1900-1929 2.10 1.83 -13% 1.86 -11% 2.30 1.13 -51% 1.58 -31%

1930-1949 2.10 2.08 -1% 2.02 -4% 2.30 1.00 -57% 1.43 -38%

1950-1966 2.10 1.89 -10% 1.89 -10% 2.30 0.61 -73% 1.32 -43%

1967-1977 2.10 1.78 -15% 1.78 -15% 2.30 0.50 -78% 1.21 -47%

1978-1982 1.10 0.77 -30% 0.94 -14% 0.40 0.36 -10% 0.34 -15%

1983-1993 0.60 0.57 -5% 0.58 -3% 0.40 0.30 -25% 0.36 -11%

1994-1999 0.55 0.45 -18% 0.53 -4% 0.35 0.35 0% 0.35 0%

2000-2004 0.55 0.42 -24% 0.53 -4% 0.35 0.40 14% 0.38 9%

2005-2006 0.37 0.31 -16% 0.34 -9% 0.25 0.24 -6% 0.28 13%

*ratio of standard deviation over the mean or Relative Standard Deviation (RSD)

This table was created from an analysis of the data of the 90th percentile point of  Mode (2) if  it accounted for significant proportional 

of stock; (Mean (2) + [std.dev x (0.9)]    

-7%

Recommended two-

storey default  

RSD  (%)*

Recommended single-

storey default 

-60%

⁺⁄₋ 11%
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Recommended two-
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Wall Roof 

-38%

-19%

Recommended single-

storey default 

-10%

RSD (%)* RSD (%)*

-8%
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