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ABSTRACT 

The aim of this research was to explore the potential of photopolymer Holographic 

Optical Elements (HOE) for use in the collection of light from a moving source, such as 

the sun, and its direction into a fixed detector/convertor for application in solar 

concentrators. In order to increase the acceptance angle and the wavelength range of 

operation of the holographic device, low spatial frequency holographic recording was 

explored. The challenge was to record high diffraction efficiency HOEs at this spatial 

frequency, since it requires a material with relatively fast monomer diffusion. The 

acrylamide-based photopolymer developed at the Centre for Industrial and Engineering 

Optics has been selected, because it has previously shown such diffusion properties. In 

order to achieve large acceptance angle, the theoretical modelling of the angular and 

wavelength selectivity of the HOEs was carried out. The theoretical results confirmed 

that the gratings with just a few hundred lines per mili meter were of most interest in 

this study because the selectivity is lower. 

The next challenge was to fabricate off-axis holographic spherical and cylindrical lenses 

with large range of operation in the photopolymer. This was achieved by stacking a 

number of gratings and focusing elements on top of each other. The stacked devices 

were characterised in two ways: (i) the regular Bragg diffraction characteristics of the 

stack devices were measured (ii) a set up was constructed to analyse their performance 

in a non-tracking system with a moving source and fixed detector/converter. The results 

show significant improvement for the collection of light from the higher angles. 

The effect of using the HOE elements with unpolarised light has also been explored. For 

the first time, the photopolymer was used to fabricate a combined element with 

symmetrically arranged off axis lens elements in order to maximise the collection area 

and avoid unwanted diffraction of light away from the solar cell. The combined device 

was tested using a solar simulator and c-Si solar cell. The maximum 60% increase was 

achieved. 
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CHAPTER SUMMARY 

Chapter 1 describes the basic principles of holographic recording. The different types 

of recording media available for holography are also discussed, as well as outlining 

some of the main applications of holography which are of interest.  

Chapter 2reviews the development of Holographic Optical Elements (HOEs) and 

outlines the main motivation and aims of this research. 

Chapter 3 describes the theoretical simulations of the variation of the diffraction 

efficiency of gratings with angle and wavelength under different conditions and 

modelling results are presented. 

Chapter 4describes the recording set up and the measurement techniques used to 

fabricate and characterize low spatial frequency holographic gratings and holographic 

optical elements. Optimum recording conditions are identified. 

Chapter 5presentthe characterization of spherical/cylindrical HOEs is in terms of 

diffraction efficiency, angular selectivity and wavelength selectivity. 

Chapter 6studies devices fabricated in photopolymer by multiplexing a small number 

of high diffraction efficiency gratings/HOEs to give a larger angular working range , 

This chapter also deals with issues around using gratings as a device in solar collection 

including polarization, multiplexing, directing onto a single location.  

Chapter 7tests the holographic concentrators in use with silicon solar cells and 

compares the performance of solar cells with and without HOEs in place. 

Chapter 8summarises the main conclusions from the PhD research, and discuss some 

potential areas for future work. The outputs resulting from the dissemination of the 

research are also presented. 
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1 Holography 

1.1 General introduction to holography 

The technique of holography, records the complete phase information of the light 

scattered by an object as well as the intensity distribution. In photography only the 

intensity distribution of the light from original object is recorded, in other words, 

information about the relative optical paths to different parts of the object is lost and this 

is the reason why a photograph of a three dimensional image appears as two 

dimensional [1]. 

The roots of holographic imaging were started in X-ray crystallography by Wolfke in 

1920 [2] and were continued by Bragg [3,4]. One of Bragg’s achievements was to form 

the image of the structure of the crystal lattice by recording the diffraction pattern which 

guides the development of the Bragg X-ray microscope. Since unwanted phase 

information was also obtained his method was limited. In 1948, Denis Gabor carried on 

Bragg’s work [5–8]. His aim was to obtain an improvement in the resolution in electron 

microscopy. Gabor suggested a new method to obtain the image of an object from the 

diffraction pattern produced by the object. His method is also known as in-line 

holography. He was awarded a Nobel Prize for his work in year 1971. 

After Gabor, in mid 1960’s, Leith and Upatnieks successfully solved the problem for 

separating the twin image observed in in-line holography by inventing the off-axis 

reference beam technique  [9,10]. After the invention of the laser by T.Maiman in 1960 

[11], they have successfully demonstrated that three-dimensional image can be 

generated by illuminating a photographic plate by using laser light. At the time, laser 
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was first powerful source of coherent light in order to record the holograms of an object 

with considerable depth [12]. 

 

1.2 Holographic process 

A hologram forms when the photosensitive medium is exposed to an interference 

pattern formed by mixing the object beam and the reference beam. After recording, 

when the hologram is illuminated with the same reference beam, the diffracted light will 

be diffracted in such a way that the object wave is reproduced. This is because; during 

recording the optical properties of the photosensitive medium vary depending on the 

intensity of the interference pattern. 

The holographic process can be divided in two steps; the first step is when a hologram 

is recorded using a reference wave coherent with the light scattered or diffracted by an 

object, so that information about the amplitude and phase of these waves is retained; 

then from this recorded interference pattern an image of the original object can be 

reconstructed using just the reference wave [13]. There are many types of holograms, 

depending on the recording geometry they can be classified as transmission or reflection 

holograms, depending on the thickness of the recording medium relative to the spatial 

frequencies that are recorded they can be divided as thin or thick holograms and 

depending on whether amplitude or phase information is recorded they are known as 

amplitude or phase holograms. 
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1.2.1 Transmission holograms 

In a transmission hologram an object beam and a reference beam are incident on the 

holographic photo sensitive medium from the same side. The image can be 

reconstructed when the object beam is blocked and the hologram is illuminated with the 

same reference beam. In slanted transmission grating, the two recording beams are 

incident at different angles with respect to the recording layer’s surface and as a result 

the interference fringes are not perpendicular (nor parallel) to the surface of the 

recording medium; whereas in unslanted holographic gratings, the two beams have 

equal incident angles and the interference fringes are perpendicular to the surface of the 

recording medium. Transmission holographic gratings have been used in this research 

since they have several advantages to be used in solar application for example they can 

be designed to re-direct and focus the light with high efficiency. Due to the fact that the 

reference wave must be transmitted through the hologram in order for the image to be 

reconstructed, this type of holograms are called transmission hologram. 

 

 

 

 

 

 

 

Figure 1-1 Recording of a transmission hologram in a photosensitive medium 
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Figure 1-2Reconstruction from a transmission hologram recorded in a photosensitive medium 

 

 

1.2.2 Reflection holograms 

In a reflection hologram an object beam and a reference beam interfere on the 

holographic photosensitive medium from the opposite sides. Thus, the interference 

fringes are formed nearly parallel to the surface of the recording medium. During the 

reconstruction process, the object beam is blocked and the hologram is illuminated by 

light from the same side of the photo sensitive medium as the viewer. A hologram 

recorded in reflection mode can produce a visible image when reconstructed using the 

white light since they can act as spectral filters. Reflection mode recording can be useful 

in solar applications where reflective elements are needed and where there is a need to 

separate some spectral components. In photopolymer material the efficiency tends to be 

lower than for transmission gratings mainly because of the high spatial frequency. 
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Figure 1-3 Recording of reflection hologram in photosensitive medium 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 Reconstruction from reflection hologram recorded in photosensitive medium 
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1.2.3 Thin holograms 

Holograms can be classified as thin (plane) or thick (volume) holograms depending on 

the thickness of the recording materials and the fringe spacing of the recorded gratings.  

Usually if the thickness of the recording material is smaller than the average spacing of 

the interference fringes, the holograms are known as thin holograms. 

Parameter Q can be used in order to classify whether a hologram is thin or thick, 

parameter Q can be defined by equation 1.1: 

 Equation 1.1 

Where λ is the wavelength, d is the thickness of the recording medium, n0 is the 

refractive index of the recording material and is the fringe spacing.  

Therefore, gratings with the value of Q<1 are considered as thin while the grating with 

the value of Q>1 are considered thick holograms [1,7]. 

 

1.2.4 Thick holograms 

When analysing the diffraction of light by thick gratings, it is necessary to consider that 

the diffraction efficiency can be very high and the incident wave intensity decreases, as 

they propagate through the grating. The coupled wave theory was developed by 

Kogelnik to solve this problem [14] and gives the angular and wavelength selectivities 

for all types of holograms, transmission or reflection, amplitude or phase, with slanted 

or unslanted fringe planes.  
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A particular interest is the ability of thick holograms to convert light into the useful 

reconstructed wave (characterized by the diffraction efficiency) and the angular 

dependence of diffraction efficiency as the incident light deviates from the Bragg angle.  

Coupled wave theory is based on the assumption that monochromatic incident light at 

the Bragg angle is S and P polarized. Only two light waves travel through the gratings; 

the incident reference wave, and the outgoing signal wave, which obey the Bragg 

condition[14]. Kogelnik predicts the relationship between incident angle and diffraction 

efficiency in thick gratings, for specific conditions [14].  

For gratings that are not over-modulated there is a maximum at the Bragg angle and the 

width of the peak depends on grating thickness and spatial frequency. 

Interaction of light with the grating fringes will occur as it travels through the volume 

grating. There are several factors which determine how much light is diffracted into 

each order, including grating thickness, fringe contrast, and whether the Bragg 

condition is met [15]. Maximum diffraction efficiency will be obtained when the 

reconstruction beam is incident on the grating at a particular angle of incidence θ, called 

the Bragg angle. In the case of unslanted transmission grating, the Bragg condition is 

given by equation 1.2 [16,17]: 

Equation 1.2 

where θ is the Bragg angle defined as the angle that the incident beam makes with the 

fringe plane in the recording medium. For thick gratings m=1. 

Kogelnik theory yields equations which can be used to relate the diffraction efficiency 

of the grating to a number of parameters. Equation 1.3 presents the diffraction 

 sin2m
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efficiency, η, of unslanted transmission grating when it is illuminated at the Bragg 

angle: 

                                                   Equation 1.3 

Where d is grating thickness, n1 is refractive index modulation, θ1 is the Bragg angle of 

incidence and λ is the wavelength of the reconstructed beam. 

According to Kogelnik’s theory, the off-Bragg parameter (ξ) can be calculated using 

equation 1.5, allowing us to model how the diffraction efficiency varies with angle of 

incidence, near the Bragg angle (equation 1.4). This allows us to observe how grating 

thickness and spatial frequency affect the angular selectivity of an individual grating: 

 

                                                    Equation 1.4 

 

The parameters ξ and υ are defined as: 

Equation 1.5 

 

Equation 1.6 

 

where d is the thickness of the grating, n1 is the refractive index modulation; λ is the 

wavelength of the reconstructed beam; Δθ is the deviation from the Bragg angle and k is 

interference fringe vector, normal to the fringes with a magnitude 2k /spatial 

period. Equation 1.4 will be used in chapter 3 for the theoretical modelling of angular 

selectivity of the diffracted elements. 

Thick holograms have a narrow angular bandwidth and a narrow spectral bandwidth. 

They can be used to redirect and focus the incident beam. Thin holograms tend to have 

lower diffraction efficiency with a large angular bandwidth and spectral bandwidth and 
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they can be used in some applications requiring a broader angular bandwidth [18]. For 

solar applications where a large spectral and angular bandwidth is needed a very ‘thin’ 

grating with very high efficiency would be the ideal. 

 

1.2.5 Amplitude and phase holograms 

Holograms can be categorised as amplitude or phase holograms depending on the type 

of changes of the photosensitive recording medium during the recording of the 

hologram. The hologram is amplitude hologram when the amplitude transmittance 

depends on the recording intensity, where in phase hologram the thickness or refractive 

index of the hologram is depending on the recording intensity. Amplitude holograms 

have several disadvantages for example they have lower efficiency compared to phase 

holograms. This is because amplitude holograms rely on absorption of the light 

therefore some part of the energy of the reading beam must be lost during the 

reconstruction. This can also cause heating.  

In this research, most photopolymer devices fall into the categories of thick, phase 

transmission holograms. 

 

1.3 Holographic recording materials 

There are several types of holographic recording materials such as silver halide 

emulsions, dichromated gelatin, photoresists, photochromics, photothermoplastics, 

photodicroics, photorefractives and photopolymers. The recording material is chosen to 

best fit the requirements of the holographic application. Ideal holographic recording 

materials must be sensitive to the recording wavelength, achieve high spatial resolution, 
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have low noise, have a linear transfer response, large dynamic range, good 

environmental stability, self-developing and be relatively inexpensive [1,18]. 

 

1.3.1 Silver Halide Emulsion 

Silver Halide materials are the oldest and the most popular holographic recording media 

because of their advantages [1,19–21]; they are highly sensitive with low scattering ; 

they can be sensitised for a number of different recording wavelengths, have high 

stability after recording and have relatively long pre-recording shelf life. These 

materials can be used to record phase, amplitude and colour holograms. The main 

disadvantage of this material is that it requires wet processing, which can introduce 

variations; they are not re-usable and are relatively expensive which make them 

unsuitable for certain applications. 

Kim et al. used Silver Halide Sensitized Gelatine (SHSG) emulsion from Slavich, 

commercial manufacturing company, to record transmission holographic optical 

elements (HOEs). High quality and large format HOEs can be produced in SHSG by 

using a laser with wavelengths anywhere within the visible spectrum [22]. 

The dependence of wavelength selectivity of holographic solar concentrators recorded 

on silver halide plate (PFG-01) has been investigated by Ghosh et al.[23].The 

theoretical results are compared with experimental results for a range of refractive index 

modulation. The results show that change in depth of refractive index modulation of 

holocons cause the exhibits maximum diffraction efficiency in various wavelengths of 

the spectrum. Advantages of using Holocons for concentrated photovoltaic system due 

to twin function of dispersion as well as concentration are explored. 



11 
 

1.3.2 Dichromated Gelatin (DCG): 

Dichromated gelatin has been used in holography since the late 1960s. It’s known as an 

almost ideal recording material for volume phase holograms since it has the following 

advantages: large refractive index modulation capability (as large as 0.08), high 

diffraction efficiency, high resolution, low noise and high optical quality [24]. DCG 

materials are suitable for reflection holography since they can achieve spatial 

resolutions as high as 5000 l/mm. However the main drawback of DCG is that the layer 

fabrication can be complicated and working with this material is time consuming as wet 

processing is required before and after recording. 

Gelatin is water absorbing and has been used in water vapor sensors [25], it can  swell 

or shrink depending on the level of humidity in the environment. 

Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate 

and an epoxy glue to protect the holograms from moisture in the environment. A 

method to improve the stability of sealed DCG holograms is proposed by Liu et al. [26]. 

Investigation of wavelength properties of the sealed DCG holograms has been carried 

out by exposing to different temperature and humidity environments conditions. 

Number of on-axis and off-axis cylindrical holographic lens recorded in dichromated 

gelatin emulsion (PFG-04) and their angular and chromatic selectivity is described by 

Bañares-Palacios et al. [27]. The performance of a volume transmission holographic 

solar concentrator has been reported [27]. It was found that off-axis lens has a better 

performance when the incident light goes out of the Bragg condition however it has 

higher chromatic dispersion. The diffraction efficiency lower than 40%, was achieved. 

The optical concentration ratio was measured 1.94 and 1.67 for on-axis and off-axis lens 

respectively. 
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1.3.3 Photothermoplastics 

 Thermoplastic materials have been used in holographic interferometry for non-

destructive testing applications or can be used to record surface relief holograms when it 

is combined with a photoconductor and charged to a high voltage. On exposure to heat, 

the thermoplastic material is softened. The main advantage of these materials is that 

they don’t require wet processing, can be re-used several times and also they have 

practically high sensitivity over the whole visible spectrum, however they are expensive 

to purchase and less available commercially in recent times. The material can then be 

deformed via a spatially varying electrostatic field. When it is cooled, the pattern is 

fixed and a surface modulation is achieved. The holograms can be erased simply by 

heating the thermoplastic to a higher temperature [28,29]. Currently, American 

company “Tavex” is the commercial producer of thermoplastic cameras which included 

the holograms with area of 32 x 32 mm. Used holograms has special features such as: 

spectral sensitivity between 400-800 nm, capability of 3000 write erase cycles, shelf life 

of more than 10 years [30,31]. To the best of my knowledge, this type of material has 

not been used in solar concentrators. This can be explained by the fact that in this 

material the hologram will be erased on the exposure to the high temperature. 

 

1.3.4 Photoresists 

Photoresists are thin light sensitive organic films which produce a surface relief 

hologram on exposure to UV and blue light. They are widely used in the electronics 

industry because of their ability to produce very small surface features. Positive and 

negative are the two types of photoresist. For negative photoresists, the exposed areas 

become insoluble and unexposed areas are dissolved away by a developer after 
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exposure. Long exposure time is required for negative photoresist material in order to 

be sure that the exposed photoresist adheres to the substrate during development. 

Positive photoresists are preferable where the exposed area is soluble and unexposed 

area is dissolved during the development. The main disadvantage of these materials is 

the need for chemical development. A spatial resolution of up to 1500 l/mm is 

achievable and the scattering is low [32,33]. To the best of my knowledge, this type of 

material has not been used in solar application. 

 

1.3.5 Photochromics 

Photchromics have a property of reversible colour change when it is illuminated with 

light i.e. the optical density and hence the absorption of the material is modulated 

[1,30,33–36]. This allows them to record amplitude holograms. Although this effect is 

reversible, the lifetime of these materials is limited. They can achieve high resolution, 

they are self-developed and can be re-used several times but low sensitivity and low 

diffraction efficiencies are the main drawbacks of these material [1,30,37–39]. 

 

1.3.6 Photopolymer 

Photopolymers can be used to record volume phase holograms which have many 

applications among which are real-time holographic interferometry [40], holographic 

optical elements [41–43] and holographic data storage [44–46]. They are one of the 

most promising material for holographic applications due to their properties such as 

relatively high sensitivity, real-time image development, self-processing, large dynamic 

range, good image stability, high diffraction efficiency and relatively low cost; however 
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disadvantages include the relatively short shelf life of the prepared materials and the 

fact that the material cannot be recycled [47–49]. The recording material used in this 

research is self-processing acrylamide-based photopolymer which has been developed 

at the Centre for Industrial and Engineering Optics. Due to the fact that the present work 

is using acrylamide-based photopolymer materials, their recording process are described 

in more details below.  

The main composition of an acrylamide-based photopolymer consists of two monomers 

(Acrylamide and NN’methylenebisacrylamide), an electron donor (Triethanolamine 

TEA), a dye sensitizer (Erythrosine B, sensitive at 532nm) and a binder 

(Polyvinylalcohol) which keeps all of the components suspended [50–52]. 

The main advantages of acrylamaide-based photopolymer compared to other recording  

materials which has been mentioned before is that there are no further steps such as 

heating or illuminating with UV-light required after the recording process and also all 

the components in acrylamide-based photopolymer are water soluble. 
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1.4 Photopolymerisation 

This process consists of three steps: initiation, propagation and termination. In this 

reaction photons of light are absorbed by photosensitive dye molecules and it will make 

a dye molecule excited to a singlet energy state [18].                                       

1 *DYE h DYE 
                                                                (Excited Singlet state)    

The energy of the molecule in an excited singlet state can be released by returning 

quickly back to the ground state and emitting light of a longer wavelength via 

fluorescence process, or by energy transfer to another molecule (electron donor such as, 

TEA), this process called fluorescence quenching. 

1*DYE DYE h 
                                                              (Fluorescence) 

1*DYE TEA DYE TEA  
        

𝐷𝑌𝐸 ∗1+ 𝑇𝐸𝐴 → 𝐷𝑌𝐸 + 𝑇𝐸𝐴 ∗                                          (Fluorescence quenching) 

The exited dye molecule can be converted to a more stable triplet state dye molecule 

through inter system crossing. 

31 ** DYEDYE 
                                                             (Inter-system crossing) 

The produced triplet state dye molecule can reacts with the electron donor (TEA) to 

produce a free radical. 

 TEADYETEADYE 3*
                                        (Free radical production) 

These radicals can react with the monomers (M) to initiate the polymersation process. 

 MTEAMTEA                                                  (Initiating step) 
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The growing chain continues via propagation when this radical monomer attacks 

another monomer molecule. 

 2)(MTEAMTEA                                                 (Propagation step) 

The chain size will continue increasing until a termination process occurs.  The 

termination can occur due to two processes: 

TEAMTEAMTEAMTEA nmmn  )(
                      (Combination) 

mnmn MTEAMTEAMTEAMTEA )()( 
            (Disproportionation) 

 

 

Figure 1-5 Photopolymer recording process 
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Figure 1.5 shows the photopolymer recording process, initially in a photopolymer layer 

there is uniform distribution of photosensitive dye and monomer molecules throughout 

the volume. When it is exposed to the light pattern, the dye absorbs the light in the 

bright fringes, the monomer photopolymerisation begins. This involves the monomer 

molecules linking together and forming polymer chains in the exposed area.   Diffusion 

processes also occur and a refractive index change results. 

Currently accepted models describe the recorded pattern formation as a result of 

changes in the density and the molecular polarizability, which accompany 

polymerisation. The magnitude of the refractive index change is also dependent on the 

achieved chain length, which depends on the rate at which the photons are delivered. 

Higher recording intensity leads to faster polymerisation rate and the formation of 

shorter polymer chains, while lower recording intensities result in longer chains[53]. 

The diffusion models [54–60]predict that the dynamics and properties of the recorded 

holographic grating (refractive index spatial profile and modulation) are determined by 

the balance between the polymerisation rate and monomer diffusion rate. Both 

parameters are strongly dependent on the chemical composition of the photopolymer 

system. Information about their ratio is necessary for the determination of the optimal 

conditions for holographic recording, especially at the low spatial, frequencies used in 

this work. 

Two different regimes of holographic recording at given spatial frequency can be 

distinguished with respect to the ratio of the diffusion and polymerisation rate. When 

the polymerisation rate is slower than the diffusion rate, the grating profile closely 

resembles the sinusoidal recording interference pattern and a high saturation value of 

the refractive index modulation can be achieved. When the monomer diffusion rate is 

slower than the polymerisation rate deviation from the sinusoidal profile of the grating 
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is observed and the diffraction efficiency at saturation is lower. The monomer diffusion 

rate is characteristic for a given photopolymer system. In a simplified picture when the 

diffusion dependence on the degree of polymerization is not considered, the diffusion 

time is constant at given spatial frequency. The polymerisation rate, however, depends 

on the recording intensity. By changing the recording intensity one can control the 

polymerisation rate and in such a way to switch between the two regimes – relatively 

slow diffusion compared to the polymerisation rate at high intensity and relatively fast 

diffusion when the intensity and the polymerisation rate are low. Thus in order to 

achieve high diffraction efficiency at low spatial frequency of recording one expects 

that relatively low recording intensity will be required.  

In materials in which the diffusion of monomers is very slow, the response at low 

spatial frequency will be very limited even with low intensity of recording. 

The acrylamide based photopolymer presented in this thesis is characterised by fast 

diffusion rate[61] and this allows for the recording of high diffraction efficiency 

gratings even in the low spatial frequency range of 100-300 l/mm. As it has been 

already established, such low spatial frequencies are preferable when devices with 

larger acceptance angle (broad angular and wavelength selectivity curves) are sought. 
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1.5 Major applications of holography 

Holography is huge field for many years and the range of holographic applications has 

extended by the technique of producing three dimension images of applications in 

display holograms [62], data storage [44,63], holographic optical elements 

[24,40,41,64–67], LCD displays [68–70], Head-up displays (HUDs) [71,72], 

holographic optical tweezers [73–75] , holographic sensors [76–78], optical Metrology 

and industrial applications [79,80] and many other applications. Some of the 

applications are briefly described below. 

1.5.1 Display holograms 

Small display holograms have become commonplace on credit cards and passports, 

licenses, banknotes and tickets for security and also can be used to create holographic 

images of important historical artefacts in the museums [81–83]. Large format 

holographic displays are widely used in advertising, mostly in form of rainbow 

holograms and small embossed holograms. In general there are two types of display 

holograms: the first type can be viewed by white light and the other type would require 

a laser light for reconstruction [30].  

This technology can be implemented by creating holograms on a flat surface which are 

capable of diffracting light beams at different wavelength and intensity in various 

directions, in a controlled manner. The light beams are generated through a light 

modulation system arranged in a specific geometry and the holographic screen makes 

the necessary optical transformation to compose these beams into a perfectly continuous 

3D view. 

Largest photorefractive 3D display(4 × 4 inches in size)have recently reported by Savas 

Tay et al. [84]. This can be recorded within a few minutes, viewed for several hours 
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without the need for refreshing, and can be completely erased and updated with new 

images when desired [84]. 

Photorefractive polymers need to have numerous properties such as: 100% diffraction 

efficiency, fast writing time, hours of image persistence, rapid erasure, and large area 

and capable of recording and displaying new images every few minutes. 

Photopolymer materials and silver halide are the most common recording material for 

display holograms due to their advantages. 

 

1.5.2 Holographic data storage (HDS) 

Currently the main commercially data storage media is CDs, DVDs and hard disk drives 

where in CDs, DVDs the information is stored as optical changes on the surface of the 

recording medium [85] and in hard disk drives the information is stored as a distinct 

magnetic state. However in terms of increasing the storage capacity of media, both 

types are reaching their physical limits[86]. The maximal possible data density of these 

hard disks is approximately 100 Gbit/cm
2
[87]. The big challenge in multi media market 

is to increase the magnitude of storage requirements of data storage. One possibility to 

achieve is have smaller spot sizes by decreasing the wavelength of the laser in order to 

increase the storage capacities for DVDs and/or using a higher numerical aperture [88] 

or by adding more layers to the disk. 

 Holographic Data Storage (HDS) made it possible to increase the storage capacity of 

hard disc drives by storing a large number of holograms in the same place as the data 

can be stored throughout the three-dimensional volume of a recording medium. Unlike 

DVDs and hard disk drives, where data are recorded and recovered on the surface of a 
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medium, holographic data storage systems store data throughout the three-dimensional 

volume of a recording medium. 

An advantage of a holographic memory compared to a conventional storage medium is, 

that the entire data page can be reconstructed at one time. Another unique feature of 

HDS systems is their content-addressability. The pattern for a specific data page can be 

sent over the object beam, if the stored holograms are illuminated with this beam, all 

reference beams will be reconstructed. The intensity of these reference beams is 

proportional to the similarity of the stored data pages and the specific data page sent 

with the object beam. The reference beam with the highest intensity belongs to the data 

page which matches closest to the search pattern. 

The most suited material for HDS require having several physical properties, such as a 

large dynamic range, high photosensitivity, undergo no dimensional changes and be 

capable of forming thick layers. Photopolymers and photorefractive materials appear to 

be ideal recording material for HDS. However, photorefractive materials are reported to 

have low photosensitivity, while they have following features: the recorded holograms 

are rewriteable, large refractive index modulation can be achieved, and also the material 

does not suffer from shrinkage during recording. Unlike photorefractives, 

photopolymers demonstrate high photosensitivity. However, photopolymers also face 

problems such as thickness limitations (approximately 1mm) and shrinkage. 

Holographic recording in thick material is essential for HDS, currently many research 

groups investigating the stability of photopolymers and photopolymer composites for 

HDS [89–96]. 

A Japanese based company, Optware, has developed a new method of holographic 

storage called collinear holography in 2005 [17]. Instead of separate signal and 
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reference beams to create the interference pattern, they used a collinear approach by 

aligning the two laser beams into a single beam of coaxial light to create data fringes.   

An American company, InPhase Technologies carried out several significant technical 

milestones in commercialising photopolymer based HDS systems. InPhase was the first 

company to release the prototype of holographic disc-drive in 2008 [97]. 

Many other commercial companies have been involved in development of possibilities 

of commercialising  HDS; such as IBM, PulseTec, General Electric and Sony are [98], 

however is still unclear how the commercial application of this technology will evolve. 

 

1.5.3 Digital holographic microscopy 

Microscopy is used broadly to study phase objects or imaging purposes in biology [99–

101] and medicine[102] and makes it possible to visualize and quantify transparent 

objects with variation in thickness or refractive index [30,99]. However, most designs 

do not exhibit sufficient spatial resolution for imaging bacteria. 

Grebenyuk et al. recently propose the advantages of off-axis partially coherent digital 

holographic microscopy (DHM) with a comparatively simple optical scheme. 

Theoretical and experimental analysis of the off-axis imaging process in this 

microscope is presented in [103]. 

DHM is excellent tool for investigation of microbial motility, however most of the 

design cannot image the bacteria due to poor spatial resolution. Kuhn et al., proposed an 

off-axis Mach-Zehnder design of a holographic microscope has a spatial resolution of 

better than 800 nm and the ability to resolve bacterial samples at varying densities over 
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a 380 μm × 380 μm × 600 μm with three-dimensional field of view. In addition, the 

design is capable to resolved the larger organisms in details such as protozoa [104]. 

 

1.5.4 Holographic Optical Tweezers 

Optical tweezer are rapidly growing research area since their introduction in 1986 by 

Ashkin, Dziedzic, Bjorkholm and Chu as a technique for trapping  and manipulate a 

large number of object at the same time with scale ranging from nanometers to 

millimetres in wide range of application in biology [105] and physical science [106]. 

Holographic optical tweezers use computer-generated diffractive optical elements to 

diffract a single collimated input laser beam into desired output of beams with 

individual direction which is focused into an optical trap. This approach can be used for 

precise shaping and directing of optical wavefronts in three-dimensional configurations 

[107–109]. Such a device can be used to study mechanical properties of an object which 

are bound together by elastic forces[110]. Recently, holographic optical tweezers are 

used in biology application to understand the change in mechanical properties of tissues 

when a disease occurred [111–113]. 

 

1.5.5 Holographic sensor: 

Holograms can be designed to detect and quantify certain molecules or environmental 

changes. The operation of holographic sensors is mostly due to physical or chemical 

changes in the holograms, such as changing temperature, humidity, pressure which 

cause a change in the refractive index modulation of the hologram or change in fringe 
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spacing of the recorded holograms. These changes usually lead to a visual change in the 

holographic images for example change in colour which can be detected by human eyes. 

Currently the IEO centre has developed prototypes humidity and temperature and 

pressure holographic sensors [77,114–117]. 

 

 

 

 

(a)       (b) 

Figure 1-6 a) The IEO holographic humidity sensor as the relative humidity is increased from 

20-60 % and b) The IEO holographic pressure sensor as the pressure is increased from 10 

N/cm
2
-50 N/cm

2 

 

In the recent years, holographic sensor technologies are studied for applications in the 

medical field. Patients with diabetes, cardiac problems, kidney disorders or high blood 

pressure could benefit from the development of new hologram technology[76,118–122]. 

Currently, the research groups are developing prototype smartphone-based test for 

diabetic patient to monitor glucose levels and urinary tract infections. The device allows 

diabetes patients to self- monitor their blood-sugar levels from home. 
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1.6 Conclusions 

In this chapter, a brief overview of the field of holography has been given. The 

principles behind holographic recording, the different classifications of holograms, the 

main holographic recording media and the mechanism of holographic recording in 

photopolymers have been outlined. In addition to a number of holographic applications 

briefly described, another application of holography is Holographic Optical Elements 

(HOEs), since in this research holographic optical elements are fabricated, and this 

application will be described in more details in the next chapter. 
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2 Holographic Optical Elements 

 Introduction 2.1

The amount of energy from the sun that reaches the earth through the earth atmosphere 

is about 174 PW [1]. If the energy from the sun could be converted into usable energy 

such as electricity, this could produce few times more energy than world needs. 

Currently the world energy usage is 13 TW per year; this is presently supplied by 

conventional energy resources such as fossil fuels and nuclear. By the year 2050 this 

value is projected to triple to approximately 30 TW [2,3]. Solar energy has the 

capability to provide a clean and sustainable energy supply in the future as the sun is 

abundant availability source on earth and the fossil fuel resource is depleting rapidly, it 

is important to find a technology which can meet the ever increasing demand of energy. 

A number of researchers all over the world are focusing to improve the use of 

holographic techniques in solar applications and have suggested and successfully 

demonstrated working designs over last few years due to their potential to collect light 

from a large area and focus or re-direct the light onto a smaller area and increase the 

efficiency of Photovoltaic (PV) devices. 

As discussed in chapter 1, there is a wide range of holographic recording media and 

depending on their advantages and disadvantages they can be the subject of much study 

for many holographic applications. HOEs are just one type of Diffractive Optical 

Element (DOE) and similar diffractive structures can also be made using non-

holographic methods such as direct lithography, moulding and stamping processes. 

Although the production processes are different, the principle of operation is identical, 

the diffractive element changes the path of the incident light through diffraction at the 
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sub micron structures, and these structures have been designed to produce a particular 

output such as focused, deflected or patterned light. 

This thesis concerns the development of a HOE device that aims to improve the 

efficiency of solar energy concentration onto solar cell. 

HOEs are suited to use as solar concentrators because of several unique features such as 

capability to diffract light at large offset angle, Bragg selectivity, flexible design and the 

potential to create multiplexed gratings. Concentrating systems have been developed to 

concentrate the sun light from a large area into small area which can reduce the cost of 

solar energy, as they can replace a large area of expensive photovoltaic cells. Depending 

on the geometry they can be classified as mirror (reflection) or lenses (focussing).The 

aim of this research is to explore the potential of using photopolymer Holographic 

Optical Elements (HOE) to collect light from a large area and focus it onto a small 

detector / solar cell. For solar applications, this should work efficiently for as broad a 

range of incident angles as possible. 

In this chapter, a review of the development of holographic optical elements is 

presented, in order to present the current state-of-the-art in this area. Recent research in 

the field of using Holographic Optical Elements in solar application is discussed, as 

well as outlining the main motivation for this research. Finally, the aims of the PhD 

research project are presented. 
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 Holographic Optical Elements in solar applications 2.2

HOEs can offer significant advantages in many applications as they are thin, flat and 

lightweight and can be easily reproducible by embossing or in the case of volume DOE 

by exposing photosensitive materials such as photopolymer. Their advantages make 

them attractive in many applications and areas for example in optical sensors [4–8], 

fibre-optics [9–11], optical scanners [12–15], optical disk pick-up heads [16,17]as well 

as holographic concentrators [18–42]. Holographic concentrators are discussed further 

below. HOEs can function as gratings, lenses, beam splitter, spectral filter, shear 

elements, mirror, birefringent elements, multi-function elements, etc. 

 

 

 

 

 

 

 

 

 

Figure 2-1 Holographic Optical Element functions examples 

 

In general the HOEs can be classified as two different types depending on their effect 

on the incident light: 
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 Non focussing elements: optical elements that are used simply to redirect or split 

the light; 

 Focussing elements: optical elements that produce a converging wavefront, 

having the same effect as spherical or cylindrical lenses and mirrors. The focal length of 

the focussing elements can vary depending on the devices; they can have a dual role in 

solar collectors by focusing the light and redirecting the beam[43]. 

Diffractive optics is subfield of physical optics which includes refraction, reflection and 

diffraction processes. Any light concentrator can be replaced by a holographic optical 

element such as lens, diffraction grating, and mirror. HOEs can be defined as diffractive 

structures that are recorded holographically by interfering at least two incident beams.  

One of the key features of holographic elements is their ability to simultaneously 

perform multiple functions such as: concentration and spectral beam splitting filter all in 

the same area of the HOE. The HOE can be made with large numerical aperture in a 

very lightweight photosensitive material. HOEs are relatively cheaper to be 

manufactured as there is no grinding or polishing of optical glass required [44]. 

The development of the HOEs started with the imaging properties in mid 1960 [45,46]. 

The theoretical analysis and understanding of the diffraction behaviour of volume or 

thick HOEs was advanced significantly by Kogelnik’s coupled wave theory which 

modelled  the behaviour of thick volume gratings[47]. The couple wave theory was 

improved by Loewen et al. [48], Gaylord et al. [49], Moharam et al.[50]. 

In 1971, Lin and Doherty proposed the method where HOEs were recorded with He-Ne 

laser and reconstructed with blue argon laser [51]. Reconstruction of the holograms at 

different wavelength changes the scale of reconstruction and magnifies/de-magnifies the 

object field. This method was introduced based on Gabor’s proposal on the potential of 
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holography technique to magnify the object [52]. Following up on that, the fabrication 

of hololens was developed by Silvennoinen and Jaaskelaine [53] where 488nm laser 

was used for the recording the holograms and it was reconstructed using a 628 nm. 

In 1986, Herzig [54] reported two step methods for recording of high efficiency off-axis 

HOE for near infrared. HOE were recorded in visible (514 nm) using dichromated 

gelatin on Kodak 649 F photosensitive material and reconstructed in infrared (800 nm). 

In this method all the wavelength dependent parameters such as Bragg angle, focal 

length and astigmatism required careful control. This method can be applied to fabricate 

aberration free holographic lenses for semiconductor laser at 800 nm. This can be 

extended to 1500 nm by changing the recording parameters. The experimental results 

showed that the lens with focal length of 300 mm can be produced with an aperture of 

about 15 mm and the diameter of the diffracted spot at 800 nm was found to be 40 µm. 

This method can be used in many applications such as focusing deflectors for laser 

printers and focusing gratings for diode-laser spectrum analysers. 

A computer design tool was proposed by Awatsuji et al. in 2001[55,56]to fabricate a 

HOE light concentrator taking into account the wavelength shift. The design had 

capability to analyse reconstruction and imaging characteristic and provided easier 

operation for the users to simulate and obtain the required parameters. In 2002, 

Matsuura et al. presented an optimum HOE lens recorded by visible laser beams for an 

infrared two-dimensional vertical cavity surface emitting laser (VCSEL) array. The 

hologram computer-aided design tool was used for designing holograms and analysing 

their reconstruction and imaging characteristics. The optimum HOE had high diffraction 

efficiency and a small amount of aberration. This design can be used to fabricate optical 

elements for application in parallel optical interconnects and optical computing [57]. 
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 Holographic Optical Elements in solar applications 2.3

During the last year numbers of other researchers have demonstrated novel designs of 

holographic optical elements for use in solar applications including volume 

transmission phase holograms, spherical lenses and cylindrical lenses. Particularly, the 

most recent ones suggested avoiding the tracking system. 

In order to design a holographic solar concentrator, the position of the sun at different 

times of the day and year needs to be considered. In 1982, Ludman suggested HOEs 

could be used in solar applications because they have the capability to redirect, 

concentrate or block the incident light [58]. 

Dispersive and concentrating devices (DISCO) based on volume phase transmission 

gratings has been introduced by Bloss et al in 1982 and intended for solar applications. 

Figure 2.2 shows the main concept of this method. Volume HOEs are suitable for 

multiplexing; a range of HOEs with various angles between the recording beams can be 

recorded in one photosensitive layer and this allows spatial separation of the red and the 

blue spectral ranges of sunlight into different areas. Three solar cell systems with 

various band gaps and multiplexed HOEs were tested [59]. In this design, the incoming 

solar radiations are focused and redirected into solar cell 1 and 2. The performance of 

the PV generator system is increased using DISCO system which separates the spectral 

regions. The maximum conversion efficiency with the all three band gaps that can be 

achieved was 42% while the concentration ratio (c= 100) for diffracted wavelengths 

was about. 
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Figure 2-2 DISCO system using three solar cells with different band gaps 

 

One commercial example is Prism Solar Technologies; this company manufacture a 

solar cell concentrator incorporating an HOE. Using Holographic Planar Concentrator 

(HPC) has many advantages such as: the ability to collect both direct and diffuse 

sunlight without tracking and also it reduced the cost of PV module by replacing the PV 

cells material with low cost holographic concentrating elements. Figure 2.3 is 

reproduced from [18] shows the side view of holographic planar concentrator. The 

sunlight is reflected and concentrated onto the photovoltaic cell (PV) with all 

components supported by a substrate. Where APVC is the area of the PV cell, AH is the 

hologram area, d is the thickness of the substrate, n1 is the refractive index of the 

substrate, n2 is the refractive index of the cover glass over the hologram, θinc and θdiff are 

the incident and diffracted angles relative to a normal to the substrate.  

 

 

 

 

Figure 2-3Schematic side view of a holographic planar concentrator 
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HOEs have also been used in collection of light and demonstrated by increasing the 

light collection from fluorescence-based biochips[60]. The HOEs increased the 

transmitted fluorescence intensity and also served to filter out the undesired 

wavelengths. This was possible due to their high angular selectivity the diffracted 

intensity of the HOE was measured to be about 50% of that of the incident beam. The 

diffraction efficiency was relatively low due to a complexity of the recording process 

that covers a large spatial frequency range (0-2800 lines/mm). The transmitted light 

intensity distributions were acquired on the CCD, with and without the HOE, with the 

fluorescing spot located over the centre of the HOE. It was found that the HOE gave an 

enhancement efficiency of approximately 4 times. 

Holographic solar concentrators have been theoretically modelled [61] and several 

useful aspects of holographic gratings have been investigated for use in these 

applications. The basic relationships for designing holographic elements have also been 

presented. This is helpful to improve the design and fabrication of new devices. 

The Holographic Planar Concentrator (HPC) concept is distinguished from the 

Holographic lens concentrator. Transparent plates with gratings recorded on surface or 

within the plate result in diffracted light being guided by total internal reflection to a 

reduced area of solar cell collector attached to the plate [62–64]. A similar technology 

has commercially demonstrated by Prism Solar Technologies. 

The design and optimization of photopolymer based holographic solar concentrators 

was recently reported in [25]. The authors demonstrated the recording of a broad band 

spectrally splitting holographic solar concentrator in HoloMer photopolymer material 

with an efficiency of 70% and an average efficiency of 56.6% for a wavelength range 
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from 633nm to 442 nm. The recorded elements showed a narrow angular selectivity 

hence tracking would be required for an effective photovoltaic concentrator system. 

A simple technique to realize a compact with large angle collection solar energy 

concentrator using a volume holographic element is presented in [22]. In this study PQ 

doped PMMA photopolymer was used to record volume holograms. The theoretical 

modelling of the HOE predicts up to a fivefold increase in concentration of energy per 

unit area of photovoltaic material. This means the collection area of the volume 

hologram is 5 times that the area of the solar cell. The experimental results show that 

the collected angle can be significantly increased from 0.01 degree to 6 degrees. Figure 

2.4, taken from the recent publication [22], show the optical design for proposed 

volume holographic concentrator. 

 

 

 

 

(a)                                                            (b) 

Figure 2-4 Illustration of Optical Design a) recording geometry and b) configuration of volume 

holographic concentrator. 

 

A solar radiation receiver as shown in figure 2.5 is described in [27]. This combined 

system uses a holographic film to concentrate the solar radiation and to optimize the 

efficiency of the sensor. The advantage of using combined solar receiver is that there is 

no tracking system required. In the proposed design, there is no need for solar tracking 
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as more efficient utilization solar radiation influencing the 1 m
2
 surface. However, the 

complexity of the production is one of the disadvantages. 

 

 

 

 

 

Figure 2-5 Schematic view of the combined receiver 

 

Currently there is not much commercial use, possibly due to lack of suitable material, 

device complexity and producer processes. However, commercial materials have begun 

to become available; this leads to recent solar research[65,66]. 

 

 Recent research in solar application 2.4

In 2013, Altmeyer et al. demonstrated the potential of multiplexing of thick 

transmission holograms in photopolymer [67]. The variation of the diffraction 

efficiency of the multiplexed grating respect to the angle of incidence and the 

wavelength are theoretically shown. The experimental results of the angular acceptance 

of the single and four multiplexed holograms are compared with the simulation results. 

The maximum diffraction efficiency of 60% was achieved for the layer with the 

thickness of 16 micron. This demonstrates the potential for recording multiple high 
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efficiency elements in photopolymer layer. However further work is required to design 

combinations of elements that direct the light in single direction. 

The most recent applications of HOE in solar systems are briefly reviewed in the 

following section. In 2015, Sreebha et al. [68] have reported preliminary results on 

recording transmission holographic optical elements in silver halide. The wavelength 

selectivity and focusing properties of a holographic lens was used to design a 

concentrator for solar application. The fabricated holographic lenses were coupled with 

dye sensitized solar cells in order to measure the efficiency enhancement of the device. 

It was stated that fabricated holographic lens has achieved 32.9% energy enhancement 

using the HOE in place while the dye cells were only collecting the yellow radiation of 

the simulator light source. However tracking would be required in a usable device as the 

enhancement is just at one angle and it is challenging to mass produce silver halide. 

Bañares Palacios et al.[69]in 2015 reported the development of ray tracing techniques to 

analyse the energy performance of holographic optical elements as solar concentrators. 

Holographic lenses were recorded in dichromated gelatin with on-axis and off-axis 

focusing effect. A maximum optical efficiency of 40% was achieved for each recorded 

lens. It was found that the on-axis lens achieved 16.1% higher average concentration 

ratio compared to off-axis lens. Comparisons of the experimental and theoretical results 

for each holographic lens were performed and reported in details for both chromatic and 

angular selectivity. This work is very interesting because of the detailed analysis of the 

working device on and off the Bragg angle. However, the concentration ratio for the 

lenses is very low (approximately 2). 

Some systems use tracking as well as holographic elements, for example holographic 

solar application described in [26] uses a sensor and feedback system to maintain 0.5 
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degree tracking accuracy with one-axis tracking holographic planar concentrators 

(HPCs). It was found that in the polar one-axis tracking HPC system the efficiency 

increases by 43.8% compared to non-tracking HPC systems due to high optical 

efficiency and higher levels of irradiance in overall module.  

HOEs have also been used for radiant control in buildings to facilitate the optimization 

of energy use for heating, cooling and day lighting in the past decades [40,70].  

 

 Motivation for development of Holographic Optical Elements for 2.5

solar applications 

From the above discussion it is clear that more research in this field is needed. In our 

investigation, a mass-producible inexpensive material is used. The focus is on making 

low spatial frequency elements in order to increase the working range and testing the 

HOE devices with broadband source. 

The collection of light from a moving source (such as a sun) which exhibits a broad 

spectral range of wavelengths is a complex task. HOEs have the potential to perform a 

range of functions in one element thus providing a solution to this problem, possibly 

without the need for tracking or mechanical movement. For the collection of light from 

a moving source, slanted, high efficiency gratings can provide an efficient means to re-

direct light from many directions into one location where it can be converted. A careful 

design was priority to ensure that the collection of light is at single location. This is why 

volume gratings and photopolymers are of particular interest. Holographic optical 

elements can be designed to act as on or off axis focusing elements. Figure 2.6 shows 
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the schematic diagram of a light beam being focused by an on-axis and off-axis 

focusing HOE element recorded on a photopolymer layer. 

 

 

  

  

  

                                                                 (a) 

 

 

 

 

 

 

       (b) 

Figure 2-6 Reconstruction of a) on-axis HOE and b) off-axis HOE recorded in photopolymer 

layer 

 

Such slanted gratings can be produced relatively easily by holographic recording in a 

photopolymer. This involves creation of a grating in the volume of a layer of polymer 

by interfering beams of light to produce the required refractive index distribution. The 

slant angle can be very high, and fringes can even be produced parallel to the plane of 

the medium (reflection holograms). Higher orders are suppressed by the sinusoidal 

nature of the interference pattern that creates the grating. The absence of higher orders 
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is an advantage over binary and multilevel surface gratings; an added advantage is that 

since the refractive index variation is produced in the volume of the material not the 

surface, devices can be protected with a plastic cover without affecting performance. 

Assuming the HOEs can be produced at low cost the key technical challenges are in 

providing a significant concentration factor so that smaller areas of PV can be used and 

maintaining this over a range of incident angles  in order to limit the need for tracking.  

This work focuses on optimization of the holographic recording in photopolymer to 

maximize their applicability to solar collection. Figure 2.7 illustrates the concept of the 

holographic concentrators using off-axis holographic lens. The incoming solar radiation 

is focused and redirected on solar cells utilize HOE. 

 

 

 

 

 

 

 

 

Figure 2-7 illustration of the concept 
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 Research objectives 2.6

 To model the angular and wavelength selectivity of holographic optical elements 

at typical thicknesses for highly efficient recording in acrylamide based 

photopolymer in order to identify the conditions which will maximize the 

operational angular range of the individual elements. 

 

 To develop and record protocol for recording highly efficient holographic 

optical elements at appropriate spatial frequencies, exposure energy and 

thickness in order to find the optimum recording parameters. 

 

 To characterize a range of spherical and cylindrical focusing elements on plastic 

or glass substrate.  

 

 To develop a combined device to be used in solar collection applications and 

demonstrate the capability of the acrylamide-based photopolymer for 

holographic concentrator, specifically to collect the light from a large angle and 

concentrate it on small centre part of c-Si solar cells. 

 

 To test the performance of acrylamide-based photopolymer devices in use with 

c-Si solar cells. 
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 Conclusion 2.7

In this chapter, the history of the development of holographic optical elements has been 

summarised. Following this, a review of the developments made to date in using 

holographic techniques in solar application has been given. This was done in order to 

introduce the research presented here, which is the fabrication of holographic optical 

elements with large range of operation to be used in solar applications. The motivation 

behind this is to develop a photopolymer holographic concentrator with the large range 

of operation, in order to reduce the size of detectors for collection of the energy.  Also 

the main objectives of the research are listed. 
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3 Theoretical modelling of performance of holographic optical 

elements 

3.1 Introduction 

The main purpose of the simulation work was to identify the best grating characteristics 

for recording devices suitable for solar collection applications. In this chapter, the 

numerical simulations of the variation of the diffraction efficiency with angle and 

wavelength are presented. The use of Kogelnik’s theory [1]has been already discussed 

in chapter 1 and is well known for its success in predicting the behavior of volume 

photopolymer holograms. Therefore the theoretical modeling was carried out using 

Kogelnik’s theory for gratings with various thicknesses at a range of spatial frequencies. 

In this chapter, theoretical model was then used to determine the angular FWHM of 

gratings at a range of spatial frequencies and thicknesses typically required to produce 

efficient gratings in the acrylamide based photopolymer layers. The number of gratings 

needed in order to collect light from an angle of ±22.5° was then calculated (based on 

the FWHM values). 

Because the devices are expected to work in unpolarised or partially polarized light, the 

theoretical modeling of the performance of holographic components when probed with 

light of different polarization states is also presented. 
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3.2 Theoretical modelling of the angular selectivity of volume gratings 

The most important optical characteristics of a HOE to be used in solar applications are 

the angular and wavelength selectivity, the diffraction efficiency and the stability of 

exposure to the sun. For a given material, the maximum achievable diffraction 

efficiency depends on the thickness of the holograms, but increasing the thickness also 

increases the selectivity, which restricts the range of angles of incidence for which the 

device will diffract light and also the wavelength range of operation.In order to optimize 

efficiency in these photopolymer a significant layer thickness is required. This means 

that there is significant angular and wavelength selectivity. Since each grating/HOE can 

only cover a certain range, it will be necessary to multiplex or stack a number of 

holograms in order to cover a larger angle and wavelength range. However, it is also 

known that selectivity depends on the spatial frequency of the grating. At a given 

thickness, a grating with a lower spatial frequency will have a much greater angular 

working range. 

In order to explore this, the angular selectivity was modeled for a range of grating 

thickness between 25 µm-150 µm for six different grating spatial frequencies. In this 

way an optimum angular selectivity could be chosen to be tested in experimental work. 

This relationship can be explored using Kogelnik’s theory [1] which is a widely 

accepted model used to relate diffraction efficiency and angular selectivity of volume 

gratings to the gratings’ physical characteristics (thickness, spatial frequency and 

refractive index modulation). According to Kogelnik’s theory the diffraction efficiency 

(η) can be calculated using equation (3.1), allowing us to model how the diffraction 

efficiency varies with angle of incidence, near the Bragg angle. This allows us to 
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observe how grating thickness and spatial frequency affect the angular selectivity of an 

individual grating: 

……..………………………………Equation 3.1 

 

The parameters ξ and υ are defined as: 

……………………………………..Equation 3.2 

 

……………………………………. Equation 3.3 

Where d is the thickness of the grating, n1 is the refractive index modulation; λ is the 

wavelength of the reconstructing beam; Δθ is the deviation from the Bragg angle and k 

is grating vector, normal to the fringes with a magnitude k= 2π/spatial period.  

It can be seen from equation 3.2 that increasing the spatial period (reducing spatial 

frequency) is as effective as decreasing thickness in controlling the angular selectivity.  

Figure 3.1-3.6 shows the variation of the diffraction efficiency with the incidence angle 

for gratings of various thicknesses at various spatial frequencies ranges between 100 

lines/mm to 1000 lines/mm. It can be seen in figure 3.3 that for example at spatial 

frequency of 250 lines/mm, the lowest thickness of 25 µm has a wider Full Width Half 

Maximum (FWHM) of 7.5° and the highest thickness of 150 µm has a narrower FWHM 

of 1.2°. In use as a solar collector, this will mean that the thinner grating will accept 

light from a larger range of angles than the thicker one, reducing the number of gratings 

needed to cover the full angular range of the moving sun. Kogelnik’s theory shows that 

high diffraction efficiency can be achieved by controlling the thicknesses of holographic 

sample, spatial frequency/fringe spacing and depth of refractive index modulation. 
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Figure 3-1 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 100 l/mm. 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 200 l/mm. 
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Figure 3-3 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 250 l/mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 300 l/mm. 
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Figure 3-5 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 500 l/mm. 

 

 

 

 

 

 

 

 

Figure 3-6 Numerical simulation of the variation of the diffraction efficiency with the incidence 

angle for gratings of various thicknesses, calculated for spatial frequency of 1000 l/mm. 

13 14 15 16 17

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
if
fr

a
c
ti
o

n
 E

ff
ic

ie
n

c
y
 ,

 %

 25 µm

 50 µm

 75 µm

 100 µm

 150 µm

 

 

Angle, Degree

5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

D
if
fr

a
c
ti
o

n
 E

ff
ic

ie
n

c
y
, 

%

Angle, Degree

 25 µm

 50 µm

 75 µm

 100 µm

 150 µm



66 
 

The theoretical model was then used to determine the angular FWHM of gratings at a 

range of spatial frequencies and thicknesses typically required to produce efficient 

gratings in the acrylamide based photopolymer layers. The number of gratings needed 

in order to collect light from an angle of 45
 o

 was then calculated (based on the FWHM 

values) and is shown in figure 3.7. 

 

 

 

 

 

 

 

 

 

Figure 3-7 Calculation of the number of multiplexed gratings required to cover a working range 

of 45 degrees versus spatial frequency. Markers indicate the positions of calculated values. 

 

From figure 3.7 one can see that collection from angles of 45
o
 is possible with a 

reasonably small number of gratings for spatial frequencies of 100 to 300 l/mm. 

however with gratings of 1000 l/mm spatial frequency over 20 gratings are required 

even at the lowest thickness (25 microns) in order to cover the 45° acceptance angle. 
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Since the lower spatial frequencies provide the most achievable numbers, holographic 

recording at 100, 200 and 300 l/mm was investigated experimentally.  

In previous work 35 gratings with very low diffraction efficiency were multiplexed 

successfully in an acrylamide based photopolymer [2] for data storage applications. 

More recently, sets of three and five higher diffraction efficiency gratings and focusing 

elements have been multiplexed into a single layer of photopolymer [3], at spatial 

frequencies 450-1700 l/mm and thickness 100-120 microns. This demonstrated the 

ability to multiplex gratings but the angular range of each individual grating was small. 

The challenge for solar collection is to multiplex/combine a smaller number of high 

diffraction efficiency, low spatial frequency gratings in order to achieve efficiency 

redirection of the light to the fixed detector for incident angles spanning 45°. 

This chapter focuses on identifying the optimum spatial frequencies for achieving lower 

angular selectivity by using the well known Kogelnik theory and then the next chapter 

looks into the optimization of the grating recording process experimentally for these 

grating elements at a range of layer thicknesses. 

Figure 3.8 shows the summary of the variation of the FWHM for range of spatial 

frequency using the theoretical simulations curves. It can clearly be observed that the 

FWHM is larger for the gratings recorded at lower spatial frequencies. Also indicate the 

dependence of the FWHM values on the thickness of the gratings. The result verifies 

that the lower spatial frequencies are more suitable for capturing the light from larger 

angle. 
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Figure 3-8 FWHM values vs spatial frequency for the range of photopolymer thicknesses 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

12

14

16

18

 

 

F
W

H
M

 ,
 D

e
g
re

e

Spatial frequency, lines/mm

 Thickness 25 µm

 Thickness 50 µm

 Thickness 75 µm

 Thickness 100 µm

 Thickness 150 µm



69 
 

3.3 Theoretical modelling of the wavelength selectivity 

The wavelength selectivity was also modelled for a range of grating thickness between 

25 µm-100 µm for six different grating spatial frequencies. Knowledge of dependence 

of diffraction efficiency on wavelength is also of key importance for solar applications, 

this is influenced by hologram recording angle, thickness of the recording media and 

refractive index modulation. Kogelnik theory (equation 3.1) was again used [1].  

This allows us to model how the diffraction efficiency varies with wavelength in visible 

range of spectrum. The parameter ξ is represented here in terms of wavelength:  

 

                                                                                        Equation 3.4 

 

Where d is the thickness of the grating, n0 is the refractive index modulation; Δλ is the 

deviation from the recording wavelength; θB is the Bragg angle and k is interference 

fringe vector, normal to the fringes with a magnitude k = 2π/spatial period.  

Figure 3.9-3.14 shows the variation of the diffraction efficiency with the wavelength for 

gratings of various thicknesses at various spatial frequencies ranges between 100 

lines/mm to 1000 lines/mm. The results show that the wavelength selectivity also 

depends on the spatial frequency and the thickness of the gratings, but at special 

frequency of lower than 500 l/mm they are not very selective over the visible 

wavelength range. At 250 lines/mm the FWHM for a 100 micron thick grating is more 

than 350 nm. The theoretical modelling result confirms that recording holographic 

optical elements at lower spatial frequencies are more suitable for solar applications.  
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Figure 3-9 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 100 

l/mm. 

 

 

 

 

 

 

 

 

Figure 3-10 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 200 

l/mm. 
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Figure 3-11 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 250 

l/mm. 

 

 

 

 

 

 

 

 

Figure 3-12 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 300 

l/mm. 
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Figure 3-13 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 500 

l/mm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14 Numerical simulation of the variation of the diffraction efficiency with the 

wavelength selectivity of gratings of various thicknesses, calculated for spatial frequency of 

1000 l/mm. 
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3.4 Theoretical modelling of dependence of diffraction efficiency for S 

and P polarization of the probe beam 

The dependence of the diffraction efficiency of the gratings on S-polarization (when the 

electric field vector is parallel to the fringes of the grating) and P-polarization (when the 

electric field vector is perpendicular to the fringes) of the incoming beam at range of 

spatial frequencies between 100 l/mm – 2500 l/mm is investigated. 

In the laboratory most gratings and HOEs are tested by illumination with laser light, 

however, in many real-world applications diffractive devices need to re-direct light that 

is not plane polarized, monochromatic, collimated laser light. Angular and wavelength 

changes have been discussed above, but another factor, polarization state of the incident 

light can also be modelled with Kogelnik’s theory. As the sun produces un-polarized 

light, the difference in diffraction efficiency for S and P polarization of the recorded 

elements is of some importance. 

This difference can be modelled using Kogelnik’s theory and has previously been 

exploited in order to make specific types of holographic elements. Habraken et al 

reports a design for polarizing holographic optical elements. The presented theoretical 

and experimental results confirmed the possibility of making polarizing beam splitters 

by carefully controlling the relationship between the diffraction efficiency for S and P 

polarized light for plane diffraction gratings [4]. These were demonstrated 

experimentally in DCG recording material.  

The polarization properties and the first order diffraction efficiency of the volume phase 

holographic transmission grating are also discussed by Baldry et al. The importance of 

considering the separate polarization states and the possibility of creating S-P-phased 

gratings which could achieve 100% efficiency with using unpolarized light at specific 
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angle has been described [5]. Also the variation of the diffraction efficiency versus 

Bragg angle using Kogelnik to determine the first order diffraction efficiencies at the 

Bragg condition was presented [1]. For unpolarized light the diffraction efficiency is 

given by: 

η =
1

2
sin2 (

πΔn21d

λcosα
) +

1

2
sin2 (

πΔn21d

λcosα
cos(2α))                      Equation 3.5 

where the first term is for S-polarized light and the second term is for P-polarized light 

and Δn1 is the refractive index modulation, d is the grating thickness and λ is the 

wavelength of the reconstruction beam and α is defined as the angle between the 

incident beam and the grating fringes. 

In order to model the variation of diffraction efficiency versus grating thickness for the 

S and P polarization, equation 3.5 was used for the slanted grating recorded in 

acrylamide based photopolymer, with the fixed refractive index modulation of 

approximately 0.005 and fixed probe wavelength of 633 nm for a range of spatial 

frequency between 100 l/mm – 2500 l/mm which correspond to the fringe spacing 

between 10 µm – 0.4 µm. The angle 𝛼 was calculated for each case inside the medium 

(assuming a 1.5 refractive index) depending on the geometry of reconstruction. 

The results for unpolarized light, S and P states are presented in figure 3.14-3.20, which 

show the efficiency increasing with thickness for both polarization states and also an 

average of the two. The difference is of course more pronounced for greater thickness. 

For the graphs representing the higher spatial frequencies (> 1000 lines/mm, Λ=1 µm) 

there is an observable difference at the higher thickness. This confirms that the lower 

spatial frequencies are again better suited to these elements. The effect of polarisation 

on diffraction is more obvious at high spatial frequency. 
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Figure 3-15Dependence of ±1order diffraction efficiency on grating thickness for range of HOE 

at spatial frequency of 100 lines/mm. The theoretical results are presented for unpolarized light

, S  and P  polarization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16Dependence of ±1order diffraction efficiency on grating thickness for range of HOE 

at spatial frequency of 300 lines/mm. The theoretical results are presented for unpolarized light

, S  and P  polarization. 
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Figure 3-17Dependence of ±1order diffraction efficiency on grating thickness for range of HOE 

at spatial frequency of 500 lines/mm. The theoretical results are presented for unpolarized light

, S  and P  polarization. 

 

 

 

 

 

 

 

 

Figure 3-18Dependence of ±1order diffraction efficiency on grating thickness for range of HOE 

at spatial frequency of 1000 lines/mm. The theoretical results are presented for unpolarized light

, S  and P  polarization. 
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Figure 3-19Dependence of ±1order diffraction efficiency on grating thickness for range of HOE 

at spatial frequency of 2000 lines/mm. The theoretical results are presented for unpolarized light

, S  and P  polarization. 

 

 

 

 

 

 

 

 

Figure 3-20 Dependence of ±1order diffraction efficiency on grating thickness for range of 

HOE at spatial frequency of 2500 lines/mm. The theoretical results are presented for 

unpolarized light , S  and P  polarization. 
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3.5 Conclusion 

The materials used here perform well at low spatial frequency but need a minimum of 

25-50 microns grating thickness in order to produce good diffraction efficiency 

gratings, for this reason reducing spatial frequency rather than thickness gives better 

experimental results. The results from modelling confirmed that lower spatial 

frequencies are more suitable for capturing light over a wide range of angles. At the 

thicknesses most commonly used in acrylamide based photopolymers, spatial 

frequencies as low as a few hundred lines per millimetre are necessary in order to keep 

the number of multiplexed gratings used in a solar collector low. The wavelength 

selectivity simulation shows that at low spatial frequency the gratings are not very 

selective and they can achieve high diffraction efficiency in full visible range of 

spectrum.  Results confirmed that the difference in the diffraction efficiency for S and P 

polarization depends on the spatial frequency and the thickness of the layer. At higher 

spatial frequencies, the dependence of the diffraction efficiency on polarization state 

was observed to be greater compared to the lower spatial frequency. This indicates that 

lower spatial frequency is again preferable for use HOE in solar application, so that any 

fall-off in diffraction efficiency for P polarized components is minimized  

The overall results indicate that the spatial frequency of below 300 l/mm is an optimum 

spatial frequency and will be used for further study in this application where the HOE 

lenses with relatively high diffraction efficiency are needed. It is necessary that the 

diffraction efficiency is not overly dependent on the polarization of the incident light. 

The next chapter investigates holographic recording in photopolymers at these low 

spatial frequencies in order to find the conditions for achieving devices with optimum 

diffraction efficiency. 
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4 Optimisation of the recording parameters for low spatial 

frequency photopolymer transmission gratings 

 Introduction 4.1

In this chapter the recording set up and the measurement techniques used to characterize 

the diffraction efficiency of recorded holographic gratings and holographic optical 

elements are explained in detail. The aim of this chapter is to record low spatial 

frequency gratings. The modelling carried out in the previous chapter shows that 

lowering spatial frequency will maximize the operational angular range of the 

individual elements. In this chapter we seek to record with the lowest spatial frequency 

possible in the photopolymer gratings without compromising the high diffraction 

efficiency. Optimum conditions for recording high diffraction efficiency gratings at low 

spatial frequencies are determined. Transmission gratings were recorded at range of 

three low spatial frequencies for a number of sample thicknesses and at various 

recording intensities. The diffraction efficiency of each recorded grating is measured in 

real time. The results are presented below. 

Recording intensities ranging from 1 to 3 mW/cm
2
 were investigated, for exposure 

energies of 5 to 55 mJ/cm
2
. This exposure energy dependence study was carried out at 

three different spatial frequencies: 100, 200 and 300 l/mm and range of layer thickness 

50-150 µm. The gratings were compared in terms of their maximum diffraction 

efficiency and the FWHM angular working range.  

This chapter focusses on optimizing the diffraction efficiency and the angular 

selectivity, so that the individual gratings and /or focusing elements can reach the 

required parameters. Some of the results that are presented in this chapter have been 

published in [1]. 
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 EXPERIMENT 4.2

4.2.1 Sample preparation 

4.2.1.1 Stock solution of polyvinyl alcohol (PVA) 

9% polyvinyl alcohol (PVA) was prepared by adding 10 grams of polyvinyl alcohol 

with specified molecular weight into 100 ml of deionized water which was slowly 

heated up to temperature of about 80°C; The component were stirred until completely 

dissolved by using an electrical stirring plate.  

4.2.1.2 Stock solution of dye 

The 0.11% wt/v of dye solution was prepared by dissolving 0.11 grams of erythrosine B 

in 100 ml of deionized water. The solution was stirred until all the dye was dissolved. 

The solution was always kept in the dark.  

4.2.1.3 Acrylamide-based photopolymer stock solution 

The material used in this research is a self-developing acrylamide-based water-soluble 

photopolymer as previously described[2]. The composition of this material is 

acrylamide and methylenebisacrylamide monomers, triethanolamine as an initiator, and 

a polyvinyl alcohol binder. The components shown in table 4.1 were mixed well in a 

dark room by using a magnetic stirrer. The average refractive index of the fabricated 

photopolymer layer was measured by an Abbe refractometer and it was found that it is 

n0 =1.50 +/- 0.005 [3]. 
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Table 4.1: Concentrations of the photopolymer composition 

Components Amount  

Acrylamide 11 mmol 

Methylenebisacrylamide 1.3 mmol 

Polyvinyl alcohol (10% wt/v stock) 17.5 ml 

Triethanolamine 15 mmol 

Erythrosine B dye( 0.11% wt/v) 5 µmol 

 

4.2.2 Layer Preparation 

A specific volume of photopolymer solution is spread evenly on a 26 x 76 mm
2
 glass 

plate placed on a levelled surface and allowed to dry. The thickness of the sample is 

controlled by the amount of the solution. The samples were left in dark room to dry for 

usually about 18–24 hours at temperature ranging between 20 - 23 degrees and relative 

humidity ranging 30-40 %. 

4.2.3 Experimental set up 

A two-beam holographic optical setup as shown in figure 4.1 was used to record un-

slanted transmission gratings using a S-polarised Nd:YVO4 laser (532 nm). The spatial 

frequency was altered by changing the angle between the beams used to record the 

gratings. Equation 4.1 was used to calculate the required angle between the two 

interfering beams: 

                                                                                     Equation 4.1 

where λ is recording wavelength, Λ is fringe spacing; θ is half of the angle between the 

two interfering beams. 

During the recording the vibration was minimized by using a Newport optical table with 

pneumatic isolation. Newport magnetic stands were used in order to hold the optical 

equipment. The intensity of the recording beams was controlled using a neutral density 




2
sin
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filter. The absorption of the photopolymer sensitized with Erythrosin B dye is negligible 

at 633 nm, Therefore a He-Ne laser (633 nm) was used as a probe beam. The probe 

beam was arranged at the appropriate Bragg angle in order to monitor the diffraction 

efficiency of the grating, during exposure, in real time. 

In order to characterize the diffracted intensity dependence on the incident angle of the 

probe beam (angular selectivity), the grating was placed on a rotational stage (Newport, 

ESP 300) and an optical power meter (Newport 1830-C) was used to record the 

intensity of the diffracted beam as the sample was rotated. The data was recorded by a 

data acquisition card and LabVIEW program. The rotational stage has accuracy of 

1×10
-3

 deg.  

The diffraction efficiency, η of the gratings is defined in equation 4.2 as the ratio of the 

intensity in the first diffraction order Id and the incident intensity Iin of the probe beam: 

     Equation 4.2 

 

 

 

 

 

 

 

Figure 4-1 Experimental set up: S: shutter, CL: collimating lens, BS: beam splitter, SF: spatial 

filter, M: mirror, PS: photopolymer sample. 
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 Results and discussion 4.3

4.3.1 Comparison of the diffraction efficiency of transmission gratings 

recorded at different spatial frequencies and recording intensities for 

a range of layer thicknesses 

The diffraction efficiency of gratings were measured during holographic recording and 

compared for polymer layers of thicknesses ranging from 50 µm to 150 µm at spatial 

frequency 300 l/mm, 200 l/mm and 100 l/mm. Exposure intensity was varied between 

ranges of 1 mW/cm
2
- 3 mW/cm

2
. The results for all three spatial frequencies with the 

exposure intensity of ranges between 1 mW/cm
2
 – 3 mW/cm

2
 are presented in the next 

few pages. High efficiency achieved at low thickness and low spatial frequency is of 

most interest as these are the gratings that will have the maximum working range. 

The maximum diffraction efficiency observed here was 80% and this was achieved at 

spatial frequencies of 200 and 300 l/mm for layer thicknesses 75 µm and above. 

Samples with thickness 50 µm achieved 75% efficiency at a spatial frequency of 300 

l/mm. For layers of thickness of 150, 100 µm and even 75 µm over-modulation was 

observed at longer exposures. 

Over-modulation indicates that the refractive index modulation is greater than the value 

needed for maximum diffraction efficiency for that holographic recording. As can be 

seen from equation 1.3 the diffraction efficiency will initially increase as the refractive 

index modulation increases. However if the refractive index modulation increases 

beyond the point where the phase difference introduced by the diffraction grating is 

180
o
, the diffraction efficiency will decrease. This is referred to as over-modulation. 
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From these results we observe that the grating recorded at very low spatial frequency of 

100 l/mm does not achieve high diffraction efficiency, but 200 and 300 l/mm perform 

well. It was also observed that layers of thickness as low as 50 µm can achieve high 

efficiency at spatial frequency of 300 l/mm. The low diffraction efficiencies observed at 

100 l/mm are due to a combination of reduced diffusion and loss of light into higher 

orders because the grating is now behaving less like a thick grating. For ease of 

comparison the y-axis on each of the three graphs in figure 4.2- 4.4 are given the same 

scale and range. 
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4.3.1.1 Low recording intensity ( 1mW/cm2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Real time measurements of the diffraction efficiency of gratings recorded in 

polymer layers of various thicknesses; recording intensity is 1 mW/cm
2
 and the spatial 

frequency is a) 100 l/mm, b) 200 l/mm, c) 300 l/mm. 
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4.3.1.2 Moderate recording intensity ( 2 mW/cm2) 

 

 

 

 

 

Figure 4-3Real time measurements of the diffraction efficiency of gratings recorded in polymer 

layers of various thicknesses; recording intensity is 2 mW/cm
2
 and the spatial frequency is a) 

100 l/mm, b) 200 l/mm, c) 300 l/mm. 
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4.3.1.3 Higher recording intensity ( 3mW/cm2) 

 

 

 

 

 

Figure 4-4Real time measurements of the diffraction efficiency of gratings recorded in polymer 

layers of various thicknesses; recording intensity is 3 mW/cm
2
 and the spatial frequency is a) 

100 l/mm, b) 200 l/mm, c) 300 l/mm. 
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The next study examined how the diffraction efficiency evolution during recording 

depends on the recording intensity. The purpose of this study was to identify the 

maximum diffraction efficiency achievable at each spatial frequency by optimizing the 

recording conditions. The summery of the results are presented in table 4.2. 

 

Table 4.2: Concentrations of the photopolymer composition 

Spatial Frequency Thickness of layer Exposure energy Maximum DE 

 

 

100 lines/mm 

50 µm 55 mJ/cm
2 

18 % 

75 µm 20 mJ/cm
2 

30 % 

100 µm 10 mJ/cm
2 

25 % 

150 µm 55 mJ/cm
2 

22 % 

 

 

200 lines/mm 

50 µm 55 mJ/cm
2 

40 % 

75 µm 30 mJ/cm
2 

80 % 

100 µm 30 mJ/cm
2 

60 % 

150 µm 25 mJ/cm
2 

70% 

 

 

300 lines/mm 

50 µm 55 mJ/cm
2 

60 % 

75 µm 55 mJ/cm
2 

63 % 

100 µm 55 mJ/cm
2 

79 % 

150 µm 20 mJ/cm
2 

75 % 
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4.3.2 Dependence of diffraction efficiency on recording intensity at spatial 

frequency of 300 l/mm 

In order to determine the optimum recording intensity at each spatial frequency, results 

for exposure at different intensities was compared for each spatial frequency and 

thickness tested. 

The results presented in figure 4.5-4.8 show the relationship between first order 

diffraction efficiency of the transmission gratings and recording intensity, for a spatial 

frequency of 300 l/mm, in layers of thicknesses with the range between 50µm -150µm. 

From the results, it can be observed that the maximum diffraction efficiency is achieved 

at lower recording intensities. A clear dependence of diffraction efficiency on recording 

intensity was observed in both layers of 50 and 75 µm thickness. Recording at lower 

intensity leads to higher diffraction efficiency. At lower intensity the polymerisation 

process is slower and thus the monomer molecules have enough time to diffuse from 

dark to bright regions and contribute to the final refractive index modulation.  
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Figure 4-5 Measured diffraction efficiency vs. Exposure energy for the transmission gratings 

with various intensities between 1-3 mW/cm
2
 at spatial frequency of 300 l/mm was investigated 

for sample thicknesses of 50 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 Measured diffraction efficiency vs. Exposure energy for the transmission gratings 

0 10 20 30 40 50 60

0

20

40

60

80

100

 

 

 Exposure energy, mJ/cm²

D
if
fr

a
c
ti
o
n
 E

ff
ic

ie
n
c
y
 ,

 %
 Intensity, 1 mW/cm

2

 Intensity, 2 mW/cm
2

 Intensity, 3 mW/cm
2

0 10 20 30 40 50 60

0

20

40

60

80

100

 

 

 Exposure energy, mJ/cm²

D
if
fr

a
c
ti
o
n
 E

ff
ic

ie
n
c
y
 ,

 %

Intensity, 1 mW/cm
2

Intensity, 2 mW/cm
2

Intensity, 3 mW/cm
2



92 
 

with various intensities between 1-3 mW/cm
2
 at spatial frequency of 300 l/mm was investigated 

for sample thicknesses of 75 µm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Measured diffraction efficiency vs. Exposure energy for the transmission gratings 

with various intensities between 1-3 mW/cm
2
 at spatial frequency of 300 l/mm was investigated 

for sample thicknesses of 100 µm. 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 Measured diffraction efficiency vs. Exposure energy for the transmission gratings 
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with various intensities between 1-3 mW/cm
2
 at spatial frequency of 300 l/mm was investigated 

for sample thicknesses of 150 µm. 

4.3.3 Dependence of diffraction efficiency on recording intensity at spatial 

frequency of 200 l/mm 

The same comparison was made for each thickness used a 200 l/mm. At this spatial 

frequency, the maximum diffraction efficiency obtained was about 80% for the sample 

with the thickness of 75 µm. This was obtained at a recording intensity of 1 mW/cm
2
. 

The results reveal that there is intensity dependence at this spatial frequency. As has 

been observed in previous work [4], that delivery of the same energy over a longer time 

period allows longer polymer chains to be formed and increases the diffraction 

efficiency achieved. This is because diffusion rate is high relative to the rate of 

polymerization. This is easier to observe at higher spatial frequency because the smaller 

fringe spacing allows easy diffusion of monomer into the bright fringe regions from the 

dark fringe regions. Figure 4.9-4.12 presents the diffraction efficiency dependence on 

intensity at spatial frequency of 200 l/mm for the range of sample thicknesses between 

50 µm - 150 µm. 
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Figure 4-9 Measured diffraction efficiency vs. Exposure energy for transmission gratings 

recorded with intensity between 1-3 mW/cm
2
 at spatial frequency of 200 l/mm was investigated 

for sample thicknesses of  50 µm. 

 

 

 

 

 

 

 

 

Figure 4-10 Measured diffraction efficiency vs. Exposure energy for transmission gratings 

recorded with intensity between 1-3 mW/cm
2
 at spatial frequency of 200 l/mm was investigated 

for sample thicknesses of  75 µm. 
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Figure 4-11 Measured diffraction efficiency vs. Exposure energy for transmission gratings 

recorded with intensity between 1-3 mW/cm
2
 at spatial frequency of 200 l/mm was investigated 

for sample thicknesses of  100 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12 Measured diffraction efficiency vs. Exposure energy for transmission gratings 

recorded with intensity between 1-3 mW/cm
2
 at spatial frequency of 200 l/mm was investigated 

for sample thicknesses of  150 µm. 
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4.3.4 Dependence of diffraction efficiency on recording intensity at spatial 

frequency of 100 l/mm 

The experiment was repeated for spatial frequency of 100 l/mm. The results presented 

in figure 4.13-4.16 show the relationship between first order diffraction efficiency of the 

transmission gratings and recording intensity, for a spatial frequency of 100 l/mm, in 

layers of thicknesses with the range between 50 µm -150 µm. From the graphs it can be 

clearly seen that the diffraction efficiency achieved at each exposure is not highly 

dependent on recording intensity (in the studied intensity range) at this particular spatial 

frequency. 

This observation could be explained by the large fringe spacing, 10 µm. Both 1 

mW/cm
2
 and 2 mW/cm

2
 lead to similar values of the maximum achievable diffraction 

efficiency. Recording with 3mW/cm
2
 intensity leads to a slight decrease in the 

diffraction efficiency. The maximum diffraction efficiency achieved at spatial frequency 

of 100 l/mm was about 35%. 
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Figure 4-13 Measured diffraction efficiency vs. Exposure energy for transmission gratings with 

intensity from 1-3 mW/cm
2
 at spatial frequency of 100 l/mm investigated for sample 

thicknesses of a) 50 µm. 
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Figure 4-14 Measured diffraction efficiency vs. Exposure energy for transmission gratings with 

intensity from 1-3 mW/cm
2
 at spatial frequency of 100 l/mm investigated for sample 

thicknesses of a) 75 µm. 
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Figure 4-15 Measured diffraction efficiency vs. Exposure energy for transmission gratings with 

intensity from 1-3 mW/cm
2
 at spatial frequency of 100 l/mm investigated for sample 

thicknesses of a) 100 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16 Measured diffraction efficiency vs. Exposure energy for transmission gratings with 

intensity from 1-3 mW/cm
2
 at spatial frequency of 100 l/mm investigated for sample 

thicknesses of a) 150 µm. 
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4.3.5 Bragg selectivity of the transmission gratings 

A set of transmission grating was recorded using the optimum recording parameters and 

the FWHM of each grating were measured. The variation of diffraction efficiency with 

angle of incidence for a grating recorded with various spatial frequencies is shown in 

Figure 4.17-4.19. The thickness of the samples was 75 microns. The solid line shows 

the theoretical relationship predicted using the equations in section 3.2. The 

experimental data matches closely with the theoretical results. From the graph, it can be 

observed that the FWHM of the recorded grating is 3.4 ± 0.1 degrees, 2.0 ± 0.1  degree 

and 0.8 ± 0.1 degree at spatial frequency of 100 lines/mm, 300 line/mm and 1000 

line/mm respectively. 

 

 

 

 

 

 

 

 

 

Figure 4-17 Experimental and theoretical angular selectivity curves for a grating recorded at 

spatial frequency of 100 l/mm with thickness of 75 µm. 
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Figure 4-18 Experimental and theoretical angular selectivity curves for a grating recorded at 

spatial frequency of 300 l/mm with thickness of 75 µm. 

 

 

 

 

 

 

 

  

   

Figure 4-19 Experimental and theoretical angular selectivity curves for a grating recorded at 

spatial frequency of 1000 l/mm with thickness of 75 µm. 
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4.3.6 Initial Life time study 

An investigation into the stability of the diffraction efficiency of an acrylamide-based 

photopolymer HOEs in different environmental conditions was carried out and 

laminating method was improved.  So far, an improvement has been observed in the life 

time of fabricated HOEs by laminating the samples before recording. This allows for 

control over humidity changes in the samples, which can be detrimental to stability. 

This characterisation needs to be continued in much more detail for different 

environmental conditions. This work involves development of a protocol for sealing 

photopolymer gratings, and a study of the lifetime of sealed gratings in a range of 

environmental conditions such as at room temperature, below room temperature and 

open to atmosphere changes. Their diffraction efficiency was monitored at appropriate 

intervals over 15 months. 

Some primarily results are shown in figure 4.20. In this study first set of samples were 

recorded on plastic substrate while the samples were laminated using the hot plate 

before recording. A range of slanted and unslanted holographic gratings at low spatial 

frequency were recorded on plastic substrates. Three samples from each set were placed 

in three different environmental conditions, at room temperature, laboratory cooling 

fridge and outdoor. In order to characterise the performance of each sample after time 

under each conditions, the diffraction efficiency of each sample was measured every 

week for the first two months and then it was monitored only every few months. Due to 

poor lamination, the samples which were left in outdoor were damaged after three 

months. This can be explaining by dropping the temperature in winter time so that the 

plastic substrate was cracked and the samples were damaged by absorption of water 

from the rain.  
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It can be observed that the diffraction efficiency of the grating remains constant after 4 

months; however in some of the sample about 10% decrease in diffraction was 

observed. This can be explained by the weather exposure. The primarily results confirm 

that the gratings recorded in photopolymer material have a relatively long shelf and the 

maximum diffraction efficiency over 85% was achieved after 15 months. 

  

 

 

 

 

 

 

 

Figure 4-20 Life time study of laminated holographic grating 
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 Conclusions 4.4

The holographic recording capability of the acrylamide based photopolymer in 

transmission mode of recording has been characterised for low spatial frequency 

gratings 100-300 lines/mm. The purpose was to determine how low the spatial 

frequency could be lowered without compromising the diffraction efficiency. 

The intensity dependence of the growth of low spatial frequency gratings was also 

measured in order to maximize the recorded diffraction efficiency. This showed that 

low intensity of the recording beams produces higher efficiency gratings. Maximum 

diffraction efficiencies of 75% and 80% were observed in photopolymer layers of 50 

µm and 75 µm thickness at these spatial frequencies. This means that 80% of the 

incident light was measured in the diffracted beam with no correction for reflection, 

absorption or other losses.  

The FWHM of the grating recorded at range of spatial frequencies was also compared 

with the theoretical results and it was in good agreement. The advantage of using 

thinner layers and lower spatial frequency of recording in this application is the larger 

angular range of the optical component. Figure 4.21, shows the photograph of gratings 

recorded with optimum recording parameters under diffuse light. 

 

 

 

 

 

 

Figure 4-21 Photograph of holographic grating recorded on photopolymer at spatial frequency 

of 300 l/mm. 
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5 Fabrication and testing of low spatial frequency off-axis 

focussing HOEs 

 Introduction 5.1

In agreement with volume holographic grating theory [1], the theoretical work in 

chapter 3 showed that HOEs recorded on thinner layers at low spatial frequencies have a 

much greater acceptance angle [2]. Chapter 4 showed through experimental 

investigation that in this photopolymer 50 and 75 micron layers could produce highly 

efficiency HOEs even at spatial frequencies as low as 200 and 300 lines/mm. This 

chapter presents the results for experimental recording and characterisation of off axis 

lens elements based on the optimal parameters determined by the preceding chapters.  

The photopolymer material responds by producing a local variation in refractive index 

that records the interference fringe planes. In order to produce a focussing diffractive 

element, the object beam is formed as a spherical or cylindrical wave, which can 

interfere with the reference wave. This produces an interference pattern that will cause 

diffraction of light incident at the appropriate angle, to achieve the desired focussing 

effect (more detailed explanation of how HOEs work is presented in Chapter 2.) 

Controlling the interference pattern allows control of the diffraction properties of the 

element recorded. The fact that the photopolymer records a thick phase grating allows 

for high transparency and efficiency in the device.  

In this chapter, a range of high diffraction efficiency HOEs (spherical/cylindrical) are 

recorded and their performance is characterised in terms of diffraction efficiency and 

angular and/or wavelength selectivity. The optical recording processes are described 

and the results are discussed. 
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 Experiment 5.2

5.2.1 Materials 

The photopolymer used for the preparation of samples is water-soluble and consists of 

acrylamide (monomer), N, N’ - methylenebisacrylamide (cross linking monomer), 

triethanolamine (electron donor), polyvinylalcohol (binder) and Erythrosine B 

(photosensitizer). The photosensitive layer was prepared with the composition described 

in the previous chapter. Briefly, the monomers, 0.6 g acrylamide and 0.2 g of N,N’ 

Methylene-bisacrylamide and 2 ml of triethanolamine was added to 17.5 ml stock 

solution of polyvinyl alcohol (PVA) (10% w/w), the components were mixed well by 

using a magnetic stirrer and 4 ml of Erythrosin B dye was added finally to sensitise at 

532 nm. Specific volumes of photopolymer solution were spread evenly on a 26 x 76 

mm
2
 glass plate placed on a levelled surface and dried for 18-24 hours at temperature 

ranging between 20 -23 degrees and relative humidity ranging 30-40 %. 

 

5.2.2 Methods 

A 532 nm Nd:YVO4 laser was used in a holographic optical setup shown in Figure 5.1 

to record off-axis lenses. The angle between two recording beams was set as 9.14
o 

(ratio 

of the two beam was 1:1) in order to obtain a central spatial frequency of about 300 

l/mm. The exposure time was kept constant at 60s, thus exposure energy of 60 mJ/cm
2
 

in a layer of thickness 50 ± 5µm was achieved. Optical lenses with a range of focal 

lengths (3-10 cm) were placed in the object beam, (see Figure 5.1). In order to 

maximize the aperture of recorded HOE, it was essential that the object beam and the 

reference beam fully overlapped at the photosensitive layer. 
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In order to maximize this overlap, it is typical to focus a large collimated beam into a 

smaller diameter at the photosensitive layer, however, this requires large collimating 

optics in one of the recording beams; this was not feasible due to the small angle 

between the two beams. The same aperture of HOE was fabricated without the need for 

large optics by using a diverging beam; the HOE element can then be used to focus the 

light by reversing the recorded HOE. The distance from the photopolymer sample to the 

focus point of lens, defines the focal length of the recorded HOE at the recording 

wavelength. The distance between optical lens and photopolymer layer was adjusted 

depending on the focal length of optical lens in order to record all spherical/cylindrical 

HOEs with a same focal length of 5 cm. 

The recording intensity was controlled by a variable neutral density filter. In order to 

measure the diffraction efficiency of the recorded HOEs, the focusing beam was 

blocked and the collimated beam was used to probe the HOE. The intensity of the 1st 

order diffracted beam was measured near the focus point of HOE using an optical power 

meter (Newport 1830-C) to determine the diffraction efficiency of the recorded lenses. 

A vertically polarized Helium-Neon laser (He-Ne) at 633 nm was used as a probe beam 

at the Bragg angle in order to measure the angular selectivity of the HOE lenses. The 

probe beam was at the centre of the HOE unless otherwise noted. When the incident 

beam is probing the HOE lenses at the Bragg angle the diffraction efficiency is at its 

maximum. 

After recording, the thickness of the layers was measured using a white-light surface 

profiler (Micro XAM S/N 8038), and was found to be 50 ± 5 µm. 
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Figure 5-1 Experimental setup for recording off-axis focussing HOEs: S: shutter, CL: 

collimating lens, BS: beam splitter, SF: spatial filter, M: mirror, FL: focusing lens, PS: 

photopolymer sample. 

 

5.2.3 Theoretical calculation of Minimum and Maximum spatial frequency 

of the fringes produced by the experimental set up 

The illustration of the experimental arrangement used in this work is shown in figure 

5.2. Using simple geometry it is possible to calculate the range of spatial frequencies 

expected in a HOE for various recording parameters such as lens focal length and 

position, diameter of the recording beam and the angle between the recording beams. 

The HOE is a complex diffractive element which can be thought of as a series of slanted 

gratings that re-direct the incident light towards the focal point and the spatial frequency 

and slant angle of the grating planes vary across the HOEs. It is helpful to estimate the 

expected spatial frequency range and slant angles produced during recording in order to 

better interpret the HOEs influence on the diffracted beam produced during 

‘reconstruction’ or use as an optical device.  
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In this research, the experimental set-up was assembled as shown and typical values for 

the dimensions would be: d1= 0.7 cm, d2= 4.9 cm, d3= 6 cm and d4= 37.3 cm. Where d1 

is the half of the diameter of the recording beam; d2 is the focal length of lens used in 

the set-up; d3 is the distance between the centre of recording beam and the mirror and d4 

is the distance between the mirror and the sample holder. It is essential to find the angle 

between each recording beam in order to calculate the minimum and maximum spatial 

frequency of holographic set up. The angle of θ and γ were calculated to be 8° and 81° 

respectively, therefore the angles of α and β can be calculated by inserting the 

corresponding values into equations (5.1) and (5.2): 

Equation 5.1 

Equation 5.2 

Finally the values of α = 17° and β=1° were used in equation (5.3) and (5.4), in order to 

find the minimum and maximum spatial frequency of the recorded HOEs. 

                                                Equation 5.3 

                                                Equation 5.4 

It was found that the spatial frequency of HOEs (f HOE= 5cm) recorded with an intended 

central spatial frequency of 300 lines/mm varies in the range from 38 line/mm to 559 

line/mm. 

Table 5.1 show the range of spatial frequencies that can be achieved within the HOE for 

various focal lengths and diameters of HOEs. As expected, it can be seen that the 

variation in range of spatial frequency is much narrower for the HOEs with smaller 

diameter. 





2
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Table 5.1: Variation of spatial frequency within the recorded HOEs 

HOE focal 

length 

Recording lens 

focal length 

HOE 

diameter 

Minimum/maximum  

spatial frequency 

fHOE= 5 cm f= 25mm dHOE=1.4cm 38 l/mm< 300 l/mm < 559 l/mm 

fHOE= 5 cm f= 50mm dHOE=1.0cm 112 l/mm< 300 l/mm < 485 l/mm 

fHOE= 5 cm f= 80mm dHOE=0.8 m 150 l/mm< 300 l/mm < 450 l/mm 

 

 

 

Figure 5-2 Illustration of experimental set up, used for estimation of the minimum and 

maximum spatial frequency recorded in a focusing element. 
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 Results and discussion 5.3

5.3.1 Spherical HOEs 

5.3.1.1 Characterisation of the diffraction efficiency of HOEs recorded at a 

range of exposure intensities 

In order to investigate the high diffraction efficiency focussing elements, a range of 

holographic lenses with an off-axis focusing effect were recorded at a range of 

intensities. The recorded HOEs have a central spatial frequency of 300 l/mm. The focal 

length of the recorded spherical/cylindrical lens element was 5 cm and the element 

diameter was approximately 1.4 cm. The diffraction efficiency of each HOE was 

determined using equation 5.5, by measuring the diffracted beam’s intensity close to the 

focal point.  

                                                                                          Equation 5.5 

Where Id is the diffracted beam intensity, I0 is the transmitted beam intensity and η is 

the diffraction efficiency of the grating. 

As real-time monitoring of the diffraction efficiency was not possible in this instance, 

the diffraction efficiency was determined for a series of HOEs made using different 

exposure energy. The results are shown in figure 5.3 for the sample recorded in layers 

of 50 µm thickness; it is observed that the diffraction efficiency reaches a maximum of 

about 75% with the exposure energy of about 80 mJ/cm
2
. The results are with good 

agreement with the optimization of the grating which have been demonstrated in the 

previous chapter. Also comparison with the real-time measurements for gratings of 

similar thickness and spatial frequency shows that recording is very similar for gratings 

and focusing elements. 

100
0


I

I d
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The results in figure 5.3 show that the same trend as seen in the gratings (chapter 4) was 

observed throughout the experiments. The HOEs recorded with the lower intensities 

achieved higher diffraction efficiency. The diffraction efficiency of over 75% was 

achieved for the sample with thickness of 60 ±5 µmat the exposure energy of about 80 

mJ/cm
2
 and higher.  

 

 

 

 

 

 

 

 

Figure 5-3 Diffraction efficiency vs. Exposure energy for range HOE lenses recorded with 

various intensity between 1 mW/cm
2
 – 10 mW/cm

2
 at the spatial frequency of 300 l/mm was 

investigated for sample thickness of 50 ±5 µm. 
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5.3.1.2 Dependence of the diffraction efficiency of the HOEs on diameter of the 

probe beam 

The experiment was carried out in order to characterise the dependence of the 

diffraction efficiency of the recorded HOEs on the diameter of probe beam. As 

explained in section 5.2.3, the spatial frequency and slant angle of the grating planes 

vary across the HOE. For example, the spatial frequency of the grating at point A in the 

figure 5.4 will be much greater than the spatial frequency at point B, but the slant angle 

of the grating planes will be greater at B than A. The material used must be capable of 

recording the desired range of spatial frequencies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 Schematic of the Holographic Optical Elements (HOEs) which redirects the incident 

light to an off axis focus point, with inset showing typical fringe structure. Where Λ is the fringe 

spacing and φ is the angle between the fringes and the normal to the plane. 
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The variation of the diffraction efficiency of the recorded HOE with the diameter of the 

probe beam was investigated. Numbers of the HOEs with the focal length of 5 cm were 

recorded using the exposure energy of about 1 mW/cm
2 

on the layer with the thickness 

of 50 µm. The results shown in figure 5.5 indicate that there is about 15% decrease in 

diffraction efficiency as the diameter of the probe beam was increased due to the range 

of spatial frequency within HOE and the Gaussian intensity profile of the recording 

beams. Results can be improved by using a non-gaussian exposing beam.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 Diffraction efficiency vs. diameter of the probe beam for the HOE lenses recorded 

with exposure intensity of 1 mW/cm
2
 at spatial frequency of 300 l/mm for the layer with the 

thickness of 50 µm. 

 

The results showed that diffraction efficiency of HOEs varies depending on the probe 

beam diameter. For the comparison of the performance of the device in the real 

application, the experiment was carried out and the FWHM of the focusing elements 

was measured. The results will be discussed in the next section. 
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5.3.1.3 Dependence of the diffraction efficiency and FWHM of the HOEs on 

position of probe beam at the sample 

The diffraction efficiency of the HOE was measured when the unexpanded probe beam 

was exposed to the same grating at various lateral positions. The probe beam was placed 

at the centre of the gratings and then was shifted 4 mm to the left and/or right side of the 

grating from centre to edge. 

The efficiency and angular selectivity of the diffractive lenses was measured for the 

same sample but the probe position was varied cross the sample. Results for the range 

of probe position are shown in figure 5.6. In this study, the diameter of the probe beam 

was kept constant at 3 mm. Therefore in this set of data only position varies cross the 

HOE. 

The result in figure 5.6 indicates that due to the variation in spatial frequency across 

HOE, the diffraction efficiency and the FWHM can be vary depending on the position 

of the probe the HOE. In this set of data, approximately 10 % decrease in diffraction 

efficiency and about 0.5±0.1 degree change in FWHM was observed. The change in 

diffraction efficiency can be explain due to the Gaussian beam profile during recording 

and the variation in beam ratio due to the focused beam. Where the variation in FWHM 

values is due to the change of slant angle and spatial frequency. This is simply due to 

the fact that there is a range of spatial frequency, slant angle across each recorded 

elements. 

For simple comparisons during the research presented in this thesis, the probe beam is 

routinely placed at the centre of the diffractive lenses. However, for testing the device 

for real applications, in the next section the performance of the holographic device is 

characterised using an expanded beam which fills the entire HOE. 
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Figure 5-6 Angular selectivity curves for a spherical diffractive lenses recorded at spatial 

frequency of 300 l/mm in layers with thickness of 50 µm at various probe position. Focal length 

of HOE was 5 cm. 
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5.3.2 Cylindrical HOEs 

5.3.2.1 Dependence of the angular selectivity of the HOEs on numerical 

aperture of the lens 

The overall aim of this set of experiments is to compare the characteristics of 

holographic lenses recorded using three cylindrical lenses with different focal lengths to 

focus the object beam. 

Cylindrical lens elements are of interest because they focus light in one plane only, 

forming a line at the focus rather than a spot. Although the concentration factor may be 

lower than for spherical lenses, because the light is concentrated along one axis only, 

the linear shape of the focussed light is compatible with certain solar conversion 

systems, particularly thermal systems. Holographic techniques can be used to make thin 

lightweight cylindrical HOEs which will re-direct and focus incoming light to the 

desired ‘line’ for conversion. 

The first step was to record and compare a range of holographic lenses with the same 

focal length, but different numerical apertures. Standard refractive cylindrical lens with 

focal lengths of 25 mm, 50 mm, 80 mm were placed in the object beam of the recording 

set up. As shown in figure 5.7 the distance from the cylindrical lens to the photopolymer 

layer was varied in order to record holographic elements with approximately the same 

focal length. This allows us to investigate how the HOE performance is affected by 

increasing the numerical aperture without changing the focal length. The performance 

of three HOEs was compared in terms of diffraction efficiency and the angular 

selectivity.  
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The focal length of the HOE that has been recorded using the lens with focal length of 

25 mm and the optical set up with the centre spatial frequency300 lines/mm is about 5 

cm. The minimum focal length HOE possible in the current setup is about 5 cm in order 

to avoid the lens impinging on the reference beam, the HOEs focal length was kept 

constant at 5 cm throughout this research. The HOE with much shorter focal length at 

low spatial frequency can be achieved by recording on-axis focusing elements. The 

HOEs with the focal length of 5 cm was successfully recorded using all three cylindrical 

lenses. 

 

Figure 5-7schematic diagram showing the various focal lengths of the optical lenses and 

aperture of HOEs. 

 

Then the angular FWHM of each recorded elements was characterised. The angular 

selectivity of the recorded HOEs with focal length of 5 cm recorded with various lenses 

in the object beam is shown in figure 5.8. The probe beam was positioned 

approximately 1 mm away from the edge of the HOEs while the size of the probe beam 
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was kept constant at 3 mm. It can be observed that the FWHM of the HOE lenses 

recorded with the lens with the shorter focal length is larger compare to HOE lenses 

with the longer focal length as it was discussed in section 5.2.3. The FWHM of the 

grating recorded with 25 mm, 50 mm and 80 mm focal length lenses (but the arranged 

to give the same focal length HOE) are respectively about 4.4°, 4.1°, and 2.2°.This is 

because of the more highly convergent/divergent object beam, which gives rise to a 

greater range of spatial frequencies in the HOE. Using the lens with longer focal length 

can achieve the HOEs with the focal length of only few millimetres, although this does 

reduce the aperture of HOE significantly. 

The third step was to probe the gratings at three different positions. This study further 

illustrates how the spatial frequency, FWHM and diffraction efficiency varies across the 

HOE. 

The results in figure 5.8, demonstrate that range of spatial frequency increase through 

HOE from right to left of the gratings. It can be clearly seen that the FWHM of recorded 

HOEs was increased left to right toward to the lower range of spatial frequency. 
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Figure 5-8 The angular selectivity of the HOEs recorded on the layer with the thickness of 60 

±5 µm with the range of cylindrical lens with focal lengths (a) 25 mm, (b) 50 mm and (c) 80 

mm. 
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In the next section, the angular selectivity of the cylindrical HOEs using the expanded 

beam will be presented. 

5.3.2.2 Angular selectivity of HOE using expanded beam 

Results from the previous section confirm that HOEs are complex devices and consist 

of a range of spatial frequencies. Figure 5.9 shows that HOEs recorded using the lens 

with shorter focal length can achieve wider FWHM, as the diameter of the recorded 

HOE is greater and the range of spatial frequencies is greater. In order to use our device 

with solar cells (silicon cells, dye cells) we would prefer the HOEs with the short focal 

length (one millimetre would be the ideal).  

In order to characterise the total efficiency and the acceptance angle of the device for 

solar application, the probe beam was expanded to the same size of the grating by using 

additional two lenses in the probe set up. Then the total intensity of the incident beam 

for the first order of each grating was measured at the range of angles. From the results 

we can conclude that there is clear dependence of the numerical aperture of the 

recording beam which can be customized by using the lens with various focal lengths. 

Dependence of FWHM on the focal length of the lens that has been used during 

recording was measured using an expanded beam is shown in figure 5.9. The FWHM of 

the grating recorded at 25 mm, 50 mm and 80 mm are respectively about 5.7 ± 0.1 

degree, 5.5 ± 0.1degree and 5.1 ± 0.1degree. It can be observed that the FWHM of the 

grating recorded with shorter focal length is relatively wider. 

From the results achieved with the an expanded beam, the optimum focal length of the 

lens to be used in this study is 25 mm and 50 mm, since they would have wider 

acceptance angle. 
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Figure 5-9 The angular selectivity of the HOEs recorded with the range of cylindrical lens with 

focal lengths (a) 25 mm, (b) 50 mm and (c) 80 mm using expanded probe beam. 

 

 

The optical lens with the focal length of 50 mm was used in future studies as it will give 

more flexibility in the experimental set up to record the HOEs with shorter focal length. 

This lens achieved the FWHM of 4.1° and 5.5° for unexpanded and expanded beam 

respectively. 

A number of holographic focusing elements were recorded with the focal length of 5 cm 

using the lens with the numerical aperture of 50 mm. Their angular and wavelength 

selectivity will be compared in the next section. 

 

 

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6

0

20

40

60

80

100

 

 

D
if
fr

a
c
ti
o

n
 e

ff
ic

ie
n

c
y
 ,

 %

Angle , Degree

 25 mm , 1st order, Expand beam

 50 mm ,  1st order, Expand beam

 80 mm,  1st order, Expand beam



123 
 

5.3.3 Investigation of the variation of angular selectivity of both spherical 

and cylindrical HOEs using unexpanded beam 

Spherical/cylindrical HOE lenses were recorded at the central spatial frequency of 300 

l/mm. Plots of diffraction efficiency as a function of the deviation from the Bragg angle 

demonstrate the angular selectivity of the recorded elements. 

Figure 5.10 A, shows the variation of diffraction efficiency with angle of incidence for 

number of the spherical HOEs while figure 5.10 B shows for number of the cylindrical 

HOEs. The results are compared with the theoretical result which is presented in solid 

line. For accurate comparison, the probe beam was placed in the centre of the gratings 

throughout the measurements. The variation in FWHM can be explained due to 

inaccuracy of the position of the probe beam at the sample and thickness variation. The 

FWHM of the lens varies between 3.0 ± 0.1 degrees to 4.0 ± 0.1 degrees for each 

sample. 

 

 

 

 

 

 

 

 



124 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10 Diffraction efficiency vs. angle for HOEs at spatial frequency of 300 l/mm and 

recording intensity of 1 mW/cm
2
 was investigated for A) spherical HOE, B) cylindrical HOE 

with sample thickness of 50 ± 5 µm. 
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5.3.4 Wavelength selectivity of both spherical and cylindrical HOEs using 

unexpanded beam 

The wavelength selectivity of the grating can be observed if the wavelength of the probe 

beam is varied while the incident angle is constant. Volume transmission gratings are 

generally much less selective to variations in wavelength over the visible range than in 

angle. However, in order to confirm that there is a reasonable working range for these 

devices the wavelength selectivity of recorded HOEs was determined using probe 

beams of different wavelengths. 

A range of cylindrical/spherical HOEs was recorded using 532 nm lasers at spatial 

frequency of 300 l/mm with the total exposure energy of 60 mJ/cm
2
. The thicknesses of 

the recorded HOEs were about 50 ± 5 µm. The results are shown in figure 5.11 and 

figure 5.12. The diffraction efficiency of the HOEs was recorded using the laser source 

with the range of three different wavelengths (473 nm, 532 nm and 633 nm).  

Results in figure 5.11 A and 5.12 A, show the normalised diffraction efficiency vs. 

wavelength and compare the theoretical and experimental results. While figures 5.12 B 

and 5.13 B show the angular selectivity curves of the HOEs at each wavelength. It can 

be seen that the spherical HOEs achieved a maximum diffraction efficiency of about 

90% at wavelength of 473 nm, over 75% at wavelength of 540 nm and about 60% was 

achieved at wavelength of 633 nm. The cylindrical HOEs achieved a maximum 

diffraction efficiency of about 98% at wavelength of 473 nm, 93% at wavelength of 

532nm and 75% at wavelength of 633 nm. 

Results for off-axis HOEs confirm that the working range covers a significant portion of 

the visible spectrum for these gratings and the results are in good agreement with the 

theoretical results. 



126 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11 Wavelength selectivity of the spherical HOE at various wavelengths of 473 

nm, 532 nm, 633 nm with the sample with thickness of 50 ± 5µm. 
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Figure 5-12 Wavelength selectivity of the cylindrical HOE at various wavelengths of 

473 nm, 532 nm, 633 nm with the sample with thickness of 50 ± 5µm. 
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5.3.5 Wavelength selectivity of off-axis HOEs using an expanded beam 

The aim of this study is to optimize the device for use in solar applications, it was 

important to characterise the angular and wavelength selectivity of the HOEs using an 

expanded diverging white light source. In order to monitor the maximum diffraction 

efficiency of the HOEs at each wavelength, blue, green and red filter was placed in front 

of the light source. The maximum diffraction efficiency was achieved when the HOEs 

were exposed to the light at the Bragg angle. In this study, the recording set up was re-

arranged in order to make sure that the Bragg angle was equal to the angle of incidence. 

The results are presented in figure 5.13.Maximum diffraction efficacy of over 85% was 

achieved at wavelength of 480 nm and 633 nm. The maximum diffraction efficiency of 

about 70% was achieved at 540 nm. The change in diffraction efficiency at each 

wavelength using the laser source and white light source can be easily be observed. This 

can be explained by analysing the spectrum of the white light source (Chapter 7). 

 

 

 

 

 

 

 

 

Figure 5-13 Diffraction efficiency vs. angle using expanded diverging beam for the HOEs 

recorded at spatial frequency of 300 l/mm with recording intensity of 1 mW/cm
2
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5.3.6 Recording high efficiency Diffractive Optical Elements on flexible 

glasses substrate 

This section describes an exploratory study demonstrating successful holographic 

recording of focusing elements with low spatial frequency and broad working range on 

flexible glass (Corning® Willow® Glass)[3]. This novel glass is beneficial for our 

purpose as it provides better transparency as well as other advantages. The flexible glass 

substrate is dimensionally stable to enable required layer-to-layer alignment, while also 

displaying low scattering, haze, and absorption. The flexible glass substrate has been 

demonstrated to be compatible with roll-to-roll and sheet-level coating, lamination, 

printing processes, as well as stacked multi-layer devices with low parallax [4,5]. 

A spherical holographic lens with an off-axis focusing effect was recorded on Willow® 

Glass of size 26 x 76 mm
2
 and 50 ± 5 µm thicknesses. The layer preparation conditions 

were identical to the conditions used for other substrate. The diffractive lens element 

was recorded with the slant angle of 10.5° outside the medium in order to compare the 

functionality and the performance of the lens element with that recorded on a glass or 

plastic substrate. Figure 5.14 shows the angular response of the 1
st
 diffraction order of 

the number of recorded lens element. For the accurate comparison, the Bragg curves of 

the number of recorded HOEs with the same thickness were compared. The focal length 

of the recorded lens element was 5 cm with diameter of 0.9 cm. It can be observed that a 

maximum diffraction efficiency of over 90% was achieved, where the FWHM was 

approximately 3.5°. These very promising results demonstrate that flexible glass is a 

suitable and stable substrate for holographic recording, while achieving high diffraction 

efficiency with similar working ranges to the lens elements recorded on plastic and 

glass substrates. Also indicate the repeatability of the fabricated devices. 
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The high optical quality of flexible glass (low scattering, birefringence and absorption) 

will enable the fabrication of improved devices in any application where device 

thickness/weight is an issue and where optical losses should be minimized. In addition, 

the conformable nature of holographic photopolymer devices made on optical glass will 

enable new device configurations including laminated stacked holographic devices, 

deformable holographic devices and combinations of holographic and optoelectronic 

devices.  

 

 

 

 

 

 

 

 

 

 

Figure 5-14 Angular selectivity curves for number of lens elements recorded at slant 

angle of 10.5°on flexible glass substrate with the exposure energy of 60 mJ/cm
2
 at 

spatial frequency of 300 l/mm and sample thickness of 50 ± 5 µm. 
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The photograph of one of the photopolymer focusing elements recorded as described 

above is shown in figure 5.15. The photopolymer is sandwiched between two protective 

plastic layers and a single off-axis focusing element is visible towards the centre of the 

layer.  

 

 

 

(a)                                           (b)                                           (c) 

Figure 5-15 Photo taken through holographic lenses recorded in acrylamide 

photopolymer reconstructed with, a) Unexpanded laser beam, b) White light beam, c) 

Diffuse beam. 
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 Conclusions 5.4

A range of on and off-axis focusing HOEs with the diffraction efficiency over 85% and 

large angular selectivity have been recorded successfully in acrylamide-based 

photopolymer. The results demonstrate that the FWHM of the recorded elements was 

varied depending the numerical aperture and the position of the probe beam. 

The lens with the focal length of 50 mm achieved the FWHM of approximately 4.1 ± 

0.1 degree and 5.5 ± 0.1 using unexpanded and expanded beam respectively. The 

thickness of the layers was around 50 ± 5 µm.  

Recalling the results of the theoretical simulation of the HOEs are presented in chapter 

3, the gratings recorded at relatively low spatial frequency are not very selective. 

Recorded focusing elements achieved maximum diffraction efficacy of over 85% at 

wavelength of 480 nm and 633 nm and about 70% at 540 nm. The results confirmed 

that HOEs recorded at optimum recording parameters are not very selective. Therefore 

they are expected to performance well in solar applications. 

In addition a single lens element also successfully demonstrated on a flexible glass 

substrate (Corning® Willow® Glass) for the first time. The diffraction efficiency of 

over 90% with FWHM of around 5 degree was achieved for the later with the thickness 

of 40 ± 5 µm. 
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6 Development of light collecting devices using multiple HOEs 

6.1 Introduction 

The purpose of the diffractive solar collector is to gather sunlight form a large area and 

direct it onto a smaller area, where it can be converted to electric or thermal energy by, 

for example, using PV cells or thermal conversion. The advantage of using a collector is 

that the light can be harvested cheaply from a larger area and the energy per unit area on 

the converter can be increased. As mentioned in previous chapters, diffraction gratings 

can be used to change the direction of a light beam very efficiently but they are only 

efficient over a small range of angles close to the Bragg angle, so they need to be used 

in combination with number of different gratings if they are to be useful in collecting 

sunlight over most of the day. 

The aim of this work is to multiplex/combine a small number of high diffraction 

efficiency gratings with larger angular working range so that efficient redirection of the 

incoming light is achieved for incident angles spanning a larger angle and light from the 

full range of angles falls on a single location.  

An important factor is the design of the component devices or multiplexed holograms. 

In our earlier chapters and publications we modeled the number of gratings needed to 

span a wide angular range by simply adding the FWHM values. Other researchers have 

demonstrated the potential of multiplexed HOE devices [1],with the same approach, by 

recording identical gratings with up to 60% efficiency in the same layer through angular 

multiplexing. Here we demonstrate up to 80% efficiency in stacked gratings recorded 

with a range of slant angles.  
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We also address the issue of collection onto a single detector/convertor in a 

static/passive collection device. Stacked or multiplexed gratings do indeed diffract with 

high efficiency at a range of angles of incidence, but for each combined grating the 

output appears at a different output angle. In a passive collector device, directing all 

beam to the same location is as important as high efficiency, otherwise the energy will 

not be converted. In the work presented here the individual elements are designed so 

that they independently diffract light from a range of angles to the same location, which 

requires control of the slant angles for each recorded grating and careful overlap of the 

grating areas.  

The first part of this chapter will investigate the fabrication of holographic concentrator 

devices by stacking a number of holographic gratings to redirect the incoming beam 

with larger angular working range. A preliminary design for a device for solar collection 

is presented, based on stacked low spatial frequency gratings/HOEs. The strengths and 

weaknesses of this approach are then discussed. The second part of this chapter, will 

demonstrate the fabrication of arrays of high efficiency holographic lenses, while 

making sure that the relative position, focal length and Bragg angle are appropriate to 

the direction of light into one location (the position of a static solar cell). It was 

important to design the final device to focus the incoming beam in order to improve the 

concentration factor. 

In this chapter, the dependence of the diffraction efficiency of the HOEs recorded at 

spatial frequency of 300 lines/mm and 1000 lines/mm on the polarization state of the 

source is investigated. This study will help us to optimize the efficiency of the 

holographic device when used with an unpolarized light source such as the sun. The two 

linear polarization states are compared; S-polarization (when the electric field vibration 

is perpendicular to the plane of incidence and parallel to the fringes in a typical 
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transmission grating) and P-polarization (when the electric vector is parallel to the plane 

of incidence of the incoming beams). 

Throughout this study, the same photopolymer composition was used with optimum 

recording parameters and geometry as explained in chapters 5. 

 

6.2 Stacking methodology 

The aim of this study is to increase the angular working range of the diffractive lens by 

stacking three layers of high efficiency optical elements on top of each other so that 

light is collected (and focused) from a broader range of angles.  The angular range of 

each individual lens element is important, and work has already been done in an 

acrylamide-based photosensitive polymer to broaden the angular range of individual 

elements using holographic recording at a low spatial frequency.  

The design concept for this diffractive solar collector is a combination of several low 

spatial frequency photopolymer gratings laminated or stacked together so that light is 

collected from a broad range of angles. The gratings will form a flat array that will not 

need to move in order to track the sun’s motion across the sky. The low spatial 

frequency ensures that the angular selectivity of each individual grating is low so that 

the range of angles accepted by each individual grating is maximized and the number of 

gratings needed in the combined device in minimized. 

Figure 6.1 shows the basic concept of the device. Here, for simplicity, the concept is 

illustrated for three gratings each having a working range of 6
o
 and a lens/focusing 

element also having a working range of 6
o
 degrees. In practice, a larger number of 

gratings will be needed if the working range for individual gratings is smaller and/or the 
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desired working range is larger. In the schematic in figure 6.1 each element is shown 

separately, but in the practice the gratings will be laminated together without any air gap 

in order to reduce reflections. 

In this example the three gratings are combined to make a device that has a working 

range of 24 degrees (-3
o
 to +21

o
). If light is incident along or near the normal (0

o
 

angular deviation – shown in figure 6.1 (a)) it will pass through the three gratings A, B, 

C and be focused by the focusing element D. This element will efficiently focus light 

over a 6
o
 range or 3

o
 either side of normal incidence. 

For light that is incident at angles between 3
o 

and 9
o
 deviation from normal, the light 

will be transmitted by A and B but will be on-Bragg for grating C, which will then bend 

the light though 6
o
 ensuring its correct alignment for focusing by D (as shown in Figure 

6.1 (b)).  

For light incident with a deviation of 9-15
o
 from normal, the direction is corrected by B 

and then by C before being focused by D. Similarly for light incident at 15-21
o
 all three 

gratings will correct the path of the incident light in sequence before it is focused by D. 

Gratings A,B and C are all identical in terms of  grating spatial frequency and efficiency 

but the grating slant angle increases moving towards the top of the stack. 

Examples of stacked displays on flexible glass substrates have previously been 

demonstrated [2]. Use of flexible substrates also enable high-volume continuous 

manufacturing methods such as roll-to-roll device fabrication [3]. 

As can be seen below, angular range of each individual lens element is important as it 

will determine the overall range and/or number of stacking layers needed. The 

following experimental work is aimed at testing this concept by stacking three layers of 

grating on top of each other. The key challenge is to control the working ranges of the 
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individual holographic elements so that when laminated together the Bragg selectivity 

curves overlap sufficiently with expected working range. For this study, three gratings 

/off axis focusing elements are then stacked together, each designed for a different angle 

of incidence, so that when combined, the stack is capable of focusing light incident 

from a broader range of angles.  

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Schematic of the combined diffractive device showing the path of light incident 

from a range of angles. 
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6.2.1 Experimental study of the acceptance angle of holographic gratings 

before and after stacking 

The first step of this study was to record range of slanted gratings with a central spatial 

frequency of 300 l/mm using exposure energy of 60 mJ/cm
2
and recording intensity of 

1mW/cm
2
. A rotation stage (Newport, ESP 300) was used to record range of slanted 

gratings. Figure 6.2 shows the ray diagram for a) recording b) reconstruction beam 

angles of slanted gratings/HOEs. The absorption of the photopolymer layer at 633 nm is 

negligible even before exposure; therefore a 633 nm He-Ne laser was used as a probe 

beam at the Bragg angle to be enabled to characterize the diffracted intensity 

dependence on the incident angle of the probe beam. An optical power meter (Newport 

1830-C) recorded the intensity of the diffracted beam and the data was transferred to a 

computer via a data acquisition card. A LabVIEW program was used to control the 

experiment and to record the data. 

In figure 6.2, θ1 and θ2 are the angles of incidence of the two recording beams where θ1
’
 

and θ2
’
 are the refraction angles inside photosensitive material according to Snell’s law. 

Angle θB is Bragg angle which is defined as the angle between the incident beam and 

the grating fringes and the fringe spacing, angle φ is the angle between grating fringes 

and the normal, ᴧ is the grating period. 
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     (a) 

 

 

 

 

(b) 

Figure 6-2 Geometry of a) recording and b) reconstruction of a slanted grating fringes in a 

diffractive optical element. 

 

The variation of the diffraction efficiency with angle of incidence in the zero and first 

diffraction order was measured. In the recoding step, the sample holder was rotated (7°, 

10.5° and 14°) away from unslanted positions and at each angle one grating was 

recorded. The recorded grating have a slant angles of (7°, 10.5° and 14°) respectively. 

The angle of the two recording beams in respect to the photosensitive sample was also 

varied.
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The experimental results are shown in figure 6.3. The slant angles and the angle of two 

recoding beams outside medium (figure 6.2 A) and inside medium (figure 6.2 B) were 

calculated using Snell’s law for the relevant wavelengths as shown in Table 6.1. 

 

Table 6.1: Slant angles and incident angle outside and inside medium for recording and 

reconstruction wavelength 

 

 

 

 

 

 

 

Wavelength Slant angle Angle 

(In air) 

Angle 

(Inside medium) 

 

532 nm 

φ = 7 
ͦ
 

φ=10.5 
ͦ
 

φ=14 
ͦ
 

θ1=2.42 
ͦ
, θ2=11.58

ͦ 

θ1=5.92
ͦ
, θ2=15.08

ͦ 

θ1=9.42 
ͦ
, θ2=18.58

ͦ
 

θ1
’
=1.61

ͦ
, θ2

’
=7.69

ͦ 

θ1
’
=3.94

ͦ
, θ2

’
=9.98

ͦ 

θ1
’
=6.26

ͦ
, θ2

’
=12.26

ͦ
 

 

633 nm 

φ = 7 
ͦ
 

φ=10.5 
ͦ
 

φ=14 
ͦ
 

θB1=1.55
ͦ
, θ B2=12.45

ͦ 

θ B1=5.05
ͦ
, θ B2=15.95

ͦ 

θ B1=8.55
ͦ
, θ B2=19.45

ͦ
 

θ B1
’
=1.03

ͦ
, θ B2

’
=8.26

ͦ 

θ B1
’
=3.36

ͦ
, θ B2

’
=10.55

ͦ 

θ B1
’
=5.68

ͦ
, θ B2

’
=12.82

ͦ
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 6-3Angular selectivity curves for a grating with spatial frequency of 300 l/mm recorded 

in layers with thickness of 45±5 µm at range of slant angle: a) 7 degree, b) 10.5 degree and c) 

14 degree before stacking. 
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The maximum diffraction efficiency peaks expected to be around 1.55
 ͦ
, 5.05

 ͦ
 and 8.55

 ͦ
 

respectively at reconstruction wavelengths (633 nm) as shown in table 6.1. The 

experimental result shown in figure 6.3 verifies that the diffraction angles are as 

expected, and identifies any discrepancy. Any discrepancy that occurs can be explained 

by shrinkage of the photopolymer layer. It can also be observed that the diffraction 

efficiency of over 90% was achieved at spatial frequency of 300 l/mm for the layer with 

the thickness of 50 ± 5µm; the refractive index modulation of the layer (Δn) was 

calculated using equation 6.1: 

 

                                                                                                    Equation 6.1 

 

where θB is the Bragg angle, λ is the reconstruction wavelength, d is the thickness of the 

photopolymer layer, η is the diffraction efficiency of the recorded grating at the Bragg 

angle. The refractive index modulation was found to be approximately 5.01 x 10
-3 

which 

is a high regime. The FWHM of the individual grating is approximately 3.0 ± 0.1 

degrees. 

After characterizing individual gratings, the next step was to stack three layers of 

gratings and compare their angular selectivity before and after stacking. However 

stacking the layers on top of each other require a carful control so that each 

grating/HOEs lies exactly on top of the other grating, there is no air gap between the 

layers and each element has the expected FWHM working range. In order to improve 

the quality of the stack device, range of flexible plastic and glass as well as rigid glass 

substrates was examined.  

d
n B



 )(sincos 1
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The results presented in figure 6.4 are for three layers, recorded as described previously, 

and then laminated into a single stack, with the grating area overlapping. They show the 

variation of diffraction efficiency with angle of incidence for the first order diffraction 

of the stack. Zero corresponds to perpendicular incidence on the top layer. 

It can be observed that there is an apparent increase in the angular working range; 

however, we also observe an overall drop in diffraction efficiency to about 80% as well 

as a very significant fall-off in diffraction efficiency at certain specific angles and in the 

gratings after the stacking. This behavior can be explained by absorption and reflection 

losses at the multiple layers of substrate. Here they are laminated back to back 

(substrate side of one layer of grating was stacked on top of photopolymer side of 

second layer of grating and this was repeated for three layers). The refractive index of 

photopolymer and substrate are both very close to 1.5, nevertheless some losses at the 

boundaries must be expected.  

The decrease in the diffraction efficiency after stacking the layers can be improved by 

investigating further methods of stacking and using different substrate ( for example: 

flexible glasses) where the refractive index will be the same as the refractive index of 

photosensitive medium. In this study the optical power meter was kept at constant 

position relative to the incident beam to collect the light in first diffraction order. 
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Figure 6-4The angular selectivity curves for a three stacked gratings with spatial frequency of 

300 l/mm recorded in layers with thickness of about 50 µm. 

 

6.2.2 Experimental study of the acceptance angle of focussing elements 

(lenses) before and after stacking 

This section reports results on the angular selectivity of stacked diffractive lenses. The 

diffractive focusing elements were recorded at a range of slant angles(7°, 10.5° and 14°) 

using optimum recording parameters as described in chapter 5. The sample holder was 

rotated (7°, 10.5° and 14°) away from unslanted position. 

The variation of the diffraction efficiency with angle of incidence in the zero and first 

diffraction orders for holographic lenses is presented in figure 6.5. In this set of data, 

direction of rotation of the rotational stage at the recording step was opposite to the 

previous section; therefore the peak of the maximum diffraction efficiency was 
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expected to be around 12.45°, 15.95° and 19.45°.The experimental result verifies that 

the diffraction angles are as expected. The discrepancy at larger slanted angles is more 

observable and it can be explained by polymerization induced shrinkage. Assuming the 

shrinkage in photopolymer layer with the thickness of 50±5 µm is approximately 3% 

[4]. The slant angle after shrinkage, φ’, was calculated by using equation 6.2: 

                                                                                          Equation 6.2 

Where φ is the slant angle before shrinkage, τ is the coefficient of shrinkage (3% 

shrinkage correspond to τ = 0.03). 

The slant angles after shrinkage are 7.2°, 10.8° and 14.4° respectively. Therefore the 

diffraction angles are expected to be shifted slightly. 

From the results presented in figure 6.5, it can also be observed that the maximum 

diffraction efficiency of about 80% was achieved for the sample with the thickness of 

50 ± 5 µm while the FWHM was approximately 4.5 ± 0.1 degrees for each lens element. 

When interpreting the results it should be borne in mind that for such HOEs a range of 

spatial frequencies and slant angles are always present and the FWHM values of the 

lens element can be higher than the gratings as described in chapter 5. 
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          Zero diffraction order                                     First diffraction order 

 

 

 

 

                                                           (a) 

 

 

 

 

                                                           (b) 

 

 

 

 

                                                           (c) 

Figure 6-5Angular selectivity curves for diffractive lenses with spatial frequency centered at 

300 l/mm recorded in layers with thickness of 50 ± 5 µm on a plastic flexible substrate, at range 

of slant angles: a) 7°, b) 10.5° and c) 14° before stacking. 
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Figure 6.6 shows the variation of diffraction efficiency with angle of incidence for the 

first order diffraction of the stacked elements. It can be observed that the FWHM was 

increased to collect light from a working range of approximately 12°; however, losses in 

diffraction efficiency have occurred in the gratings after stacking as the diffraction 

efficiency has dropped to approximately 50%. Even though the layers appear to 

laminate together exceptionally well this reduction in efficiency may be caused by 

cumulative losses (scattering and reflection) at the multiple layer interfaces, since there 

are six interfaces in total including substrates. The decrease in diffraction efficiency 

after stacking the layers may be improved by using a different substrate where the 

refractive index will be better matched and moving to a thinner more transparent 

substrate with reduced birefringence, haze and scattering. 

 

 

 

 

 

 

 

 

 

Figure 6-6Angular selectivity curves for range of combined lens elements recorded with the 

exposure energy of 60 mJ/cm
2
 at central spatial frequency of 300 l/mm. 
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6.2.3 Investigation of the acceptance angle of stacked gratings for 

diffraction toward a fixed location 

In the above experiments, the common practice for analysis of Bragg diffraction in 

gratings/HOEs was used; where the angle of incidence is changed by rotating the 

grating/HOEs and keeping the source and detector fixed. However, in applications such 

as solar collection the angle of incidence will change during the day, without any 

relative motion between the grating and the detector or solar cell (assuming a non-

tracking application). 

In order to simulate this, the reconstruction step was repeated, but in this study the 

optical power meter (Newport 1830-C) was attached 1 cm behind the grating so that 

they remain fixed relative to one another. The aim of this study was to capture the total 

amount of incident light that would be concentrated by the holographic device in the 

case of a static grating and solar cell, but moving source. 

In this case, to avoid any instability, the probe beam (He-Ne laser source) was kept in 

the constant position and sample with the attached detector were rotated around the 

source using rotation stage (Newport, ESP 300) as shown in figure 6.7. 

 

 

 

 

 

Figure 6-7 Schematic of proposed reconstruction set up 
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This method allows us to collect the light that is diffracted using holographic 

gratings/elements with a large range of angles and investigate the performance of the 

HOE for the various incident beam angles. In addition, it gives us the closest 

approximation of the efficiency with which the stacked layers will re-direct light to the 

fixed PV cell at wavelength of 633 nm. It brings the analysis a step closer to 

understanding how to design the holographic concentrator to be used in solar 

application. 

The angular selectivity of the individual gratings, stack device and photopolymer layer 

with no gratings was measured using this method and results are presented below. 

Figure 6.8 show plots of the % of light falling on the fixed detector as the angle of 

incidence of the light is varied of the three individual gratings before stacking. The ‘no 

gratings’ line shows the variation in intensity at the detector without the presence of any 

grating (just a layer of transparent polymer) for comparison from these results, 

redirection of the incident beam by the gratings can clearly be observed at the higher 

angles. Light incident at over 25 degrees, which would have otherwise missed the 

detector (or solar cell in a real application) is very efficiently captured using the 

gratings. However, a key issue is highlighted here. As well as directing light from 

higher angles to a lower angle each grating will also do the reverse. This issue was also 

discussed by Ludman in [5]. This is caused by the fact that each grating has two angles 

which the light is ‘on Bragg’ for diffraction (corresponding to the two beams which the 

grating was recorded).  
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Figure 6-8The angular selectivity curves of gratings recorded at different range of slant angles 

with spatial frequency of 300 l/mm in layers with thickness of about 50 µm; The recording 

intensity was 1mW/cm
2
. 

 

The angular selectivity of the stack of the three gratings was also measured using this 

method. The results are shown in figure 6.9. The same effect was observed for the 

stacked device. The results confirm that this method has improved the angular working 

range of the device. However; the increase gained at the higher angel is lost from the 

lower angles so that there is no net gain. Diffraction from higher angles would appear to 

be most useful in circumstances where grating is offset from the main path to the solar 

cell, such as off axis HOEs. In this way the direct light is unaffected, but the grating can 

usefully divert light from higher angles onto the solar cell.  
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Figure 6-9The angular selectivity curves for a three gratings stacked with spatial frequency of 

300 l/mm recorded in layers with thickness of about 50 µm. 

 

The optical properties of three substrates that have been used in this study are measured 

and shown in Table 6.2.The transmittance and reflectance of the three substrates 

available have been compared by using a laser with wavelength of 633 nm incident at 

10.5 degree on the substrate and the results are shown in Table 6.2. Each transmittance 

and reflectance value is an average of 8 readings. The refractive index of the plastic and 

flexible glass substrates were measured using an Abbe refractometer (NAR-3T). 

Table 6.2: The comparison of transmittance and reflectance of three substrates 

Substrate Transmittance Reflectance Refractive Index 

Standard glass 

 

Plastic 

 

Flexible glass 

90.1 ± 0.6 % 

 

89.6 ± 1.6 % 

 

91.9 ± 0.7 % 

6.8  ±  0.5 % 

 

9.7 ±  0.7 % 

 

7.2 ±  0.9 % 

 

1.500 

 

1.503  

 

1.504  
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6.3 Fabrication of arrays of lens 

Given the issues identified with collecting light through gratings, the next stage of the 

research involved recording several holographic elements in proximity to one another 

but not overlapping. A gap of clear polymer directly above the detector/converter 

ensures efficient collection of direct and the holographic gratings are off-set from the 

centre. Using similar methodology as described previously, the study will be extended 

to the fabrication of arrays of HOEs side by side in order to achieve the optimum design 

for solar collection. The challenge here is to record arrays of high efficiency lenses in 

same recording layers while making sure Bragg angle is appropriate for all lenses, the 

focal length is constant and finally the diffracted beam hits the center of the solar cells. 

In order to fabricate the device, the following steps were carried out. 

The first step was to record two cylindrical holographic lenses with the same focal 

length to focus the light with high efficiency using the optimum recording parameters 

and optical set up as described in chapter 5. Two sets of high efficiency cylindrical 

lenses with a focal length of 5 cm were recorded side by side in the same photopolymer 

layer with the thickness of 50±5 µm as shown in figure 6.10 A. The angular selectivity 

and diffraction efficiency of each element was then measured. 

The second step was to make sure the diffracted beam of two lenses recorded close to 

each other, while there is a gap in between. In order to achieve this, first HOE was 

recorded using same method as previously described and then the recording medium 

was rotated by 180 degree and shifted slightly to the side to record the second HOE. So 

when the incident light passes through the center of the device, it can be collected by the 

solar cell as shown in figure 6.10 B. Simply, by using this method the light collected 

from the first HOE is focused with the off-axis to the right hand side with the focal 
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length of 5 cm on the center of solar cell. Then, second HOE can be designed to focus 

the beam in reverse direction with the same focal length. This step was not as straight 

forward as by adjusting the distance between the two HOEs recorded in layer, the 

position of the overlap of the diffracted beams was also varied. In order to avoid this 

issue, the angle of the diffracted beam was calculated for each element individually and 

the optimum distance between each element was found to be approximately 1.6 cm. 

 

 

 

 

 

(a) 

 

 

 

 

 

    

(b) 

Figure 6-10 Schematic of the experimental arrangement a) recording, b) reconstruction 

geometry for recording arrays of lens. 
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The final step was to arrange the optical geometry so the two focusing elements will be 

on the Bragg angle when the incident light is normal to the gratings while the focal 

lengths of HOEs are kept at 5 cm. It was found that the HOEs recorded with slant angle 

of 2.66 degree (inside medium) would achieve a device which allows light to be 

directed to solar cells/detectors with the given specific conditions. 

The performance of the recorded elements was characterised using solar simulator light 

source and the total current-voltage of the device collected by silicon solar cells will be 

presented in chapter 7.The photograph of arrays of photopolymer focusing elements 

recorded as described above under white light source is shown in figure 6.11.  

 

 

 

 

 

Figure 6-11 Photo taken through holographic lenses recorded in acrylamide photopolymer 

reconstructed with solar simulator light source the central band of white is the diffracted, 

focussed light diverted by the two gratings , overlapping at the appropriate position. 
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6.4 Dependence of diffraction efficiency on S and P polarization of the 

incident beam (laser) 

This section investigates one of the issues that arise when gratings are used with natural 

light rather than laser light, namely the polarization condition of the light source and 

tests the HOEs using polarized and unpolarized sources. 

In this section the dependence of the diffraction efficiency of the gratings on S-

polarization and P-polarization of the incoming beam at spatial frequency of 300 l/mm 

and 1000 l/mm is investigated. In order to achieve this, range of holographic gratings 

were recorded at two different spatial frequencies (300 lines/mm and 1000 lines/mm) 

and their performance is characterised by using unpolarised light. 

The dependence of the first order diffraction efficiency of volume phase holographic 

transmission grating on the polarization of the incoming light has been discussed in 

detail by Baldry et al. [6]. 

The theoretical modelling for unpolarized light, S and P states for range of spatial 

frequencies are presented in chapter 3, section 3.4. The result shows that the lower 

spatial frequencies are less sensitive to polarization direction. In order to verify this 

experimentally, the HOEs recorded at spatial frequency of 300 lines/mm and 1000 

lines/mm with the thickness of 50 ± 5 µm. This study explores the potential of HOEs in 

solar application with minimum sensitivity to polarization of the source.  

The diffraction efficiency, η, of the recorded grating is defined here as the ratio of the 

intensity of the first diffraction order and the incident intensity of the probe beam. The 

diffraction efficiency of each HOE was determined by measuring the diffracted beam’s 
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intensity close to the focal point. The laser was rotated 90 degree i.e. P polarized light 

and the experiment was repeated. 

The results are presented in figure 6.12. From the result we can observe around 10% 

decreases in the peak diffraction efficiency for the HOE recorded at 1000 l/mm for S 

and P polarization at this thickness and parameters. In experimental results the 

percentage difference was about 16% for ± 1 diffraction order. However, a small 

decrease (about 6%) was also observed for the HOE recorded at 300 l/mm. 

From the theoretical results presented in chapter 3, it was expected to observe about 

10% and 2% decreases in diffraction efficiency between S and P polarisation for the 

spatial frequency of 1000 l/mm and 300 l/mm respectively for the sample with the 

thickness of 50 ± 5 µm. 
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                  (a)                 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) 

Figure 6-12 Dependence of first order diffraction efficiency on grating thickness for spatial 

frequency of a) 300 l/mm b) 1000 l/mm respectively. The experimental results are presented for 

S and P polarization. 
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6.5 Conclusions 

The photopolymer materials used in this research can be laminated to other transparent 

plastics and/or multiple photopolymer layers, so implementation of stacking design is 

more straightforward than in other materials. The high diffraction efficiency is also 

important in order to minimize losses at multiple gratings. In order to increase the 

angular range further without reducing the diffraction efficiency of each element, a 

number of holograms can be stacked by laminating them together using flexible 

substrates. Off-axis holographic spherical and cylindrical lenses with large range of 

operation were successfully recorded in the photopolymer. The stacked devices were 

characterised in two ways: (i) the regular Bragg diffraction characteristics of the stack 

devices were measured. (ii) A set up was constructed to analyse their performance in a 

non-tracking system with a moving source and fixed detector/converter. The use of 

flexible substrates (such as plastic and flexible glass [7]) has significant advantages over 

conventional thicker glass as is flexible, conforms to the required shape, and has a 

reduced weight as well as thickness, implying lower losses for stacking devices. The 

results show significant improvement for the collection of light from the higher angles, 

and also highlight issues with unwanted diffraction directions in the stack. Light 

incident from higher angles will accumulate more losses because it is diffracted by more 

of the grating elements. The FWHM of the stacked device was increased to collect light 

from a working range of approximately 12°. The proposed method could be used in 

applications such as a solar collection and manipulation of beams in illumination 

systems. 

A maximum diffraction efficiency of 90% was observed in photopolymer layers of 50± 

5µm thickness at this spatial frequency. This means that over 90% of the incident light 
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was measured in the diffracted beam with no correction for reflection, absorption or 

other losses. At this spatial frequency, the HOEs with the thickness of 50 ± 

5µmachieved diffraction efficiency of 80% and 50% in the single lens element and 

combined device, respectively. 

The new approach introduced in section 6.2.3 dealt with the issue that arises with the 

non-tracking systems. This method has many advantages by directing light from higher 

angles to a lower angle; however each grating/HOE will simply undo the work of the 

previous one which can raise another issue. 

Results confirmed that at the higher spatial frequency (Sf>1000 lines/mm), the variation 

in the diffraction efficiency with S and P state of polarization of the probe beam is 

significantly dependant on the spatial frequency and the thickness of the layer. HOEs 

with thickness and spatial frequency allowing for effective operation under illumination 

with unpolarised light were fabricated. The result confirms that our device recorded at 

central spatial frequency of 300 lines/mm works well for both S and P polarisation. 

 

 

 

 

 

 

 

 



161 
 

Reference: 

1.  S. Altmeyer, Y. Hu, P. Thiée, J. Matrisch MW and JS. Multiplexing of 

transmission holograms in photopolymer. DGaO Proceedings. ISSN: 1614-8436; 

2013.  

 

2.  Mourey, D.A., Hoffman, R.L., Garner, S.M., Holm, A., Benson, B., Combs, G., 

Abbott, J.E., Li, X., Cimo, P., Koch, T.R. Amorphous Oxide Transistor 

Electrokinetic Reflective Display on Flexible Glass. IDW 2011, Nogoya. 2011;  

 

3.  Garner, S., Merz, G., Tosch, J., Chang, C., Lin, J., Kuo, C., Tseng, J., Chang, M., 

Lewis, S., Kohler, R., Tian, L., Simpson, L., Owens, M.,. Li, X., Huang, S., Shih, 

J., Wei, A., Lin, M.C., Huang, C.S., Lin, H.T., Lin, C.L., Chang, S.Y., Wang, 

C.T. S. Ultra-Slim Flexible Glass for Electronic Application. MRS Fall Meeting, 

Boston, Nov 28. 2012.  

 

4.  Moothanchery M. Studies of shrinkage in photopolymerisable materials for 

holographic applications. Doctoral. 2013. Available from: 

http://arrow.dit.ie/sciendoc/145 

 

5.  Ludman JE. Holographic solar concentrator. Appl Opt. Optical Society of 

America; 1982 Sep 1;21(17):3057–8.  

 

6.  Baldry IK, Bland Hawthorn J, Robertson JG. Volume Phase Holographic 

Gratings: Polarization Properties and Diffraction Efficiency. Publ Astron Soc 

Pacific. The University of Chicago Press; 2004 May 20;116(819):403–14.  

 

7.  Garner S, Glaesemann S, Li X. Ultra-slim flexible glass for roll-to-roll electronic 

device fabrication. Appl Phys A. 2014;116(2):403–7.  
 

 

 

 

 

 

 

 

 

 



162 
 

7 Enhancement of the performance of a solar cells device 

7.1 Introduction 

The aim of this chapter is to explore the potential of the recorded holographic elements 

for collecting sun light and use PV cell to convert it into electricity. The fabricated DOE 

devices are recorded with either spherical or cylindrical lenses as described in chapter 5. 

A white light solar simulator was used as a light source; silicon solar cells used as a 

detector to convert the light from a solar simulator. The current-voltage characteristics 

of the solar cells were measured with and without the concentrating effect of the DOEs 

in place in front of the solar cell. 

The recorded elements in this study are off-axis elements in order to make best use of 

direct illumination and avoid the problem of unwanted diffraction that has been 

highlighted in the previous chapter. Using off-axis focussing elements allows the direct 

light to pass through to the detector/solar cell and also gather the additional light from 

higher angles and redirects it into the solar cells. 

In this chapter the characterisation of holographic devices in use with solar cells was 

carried out by comparing the I-V characteristics of the c-Si solar cell with and without 

the device. The experimental set up arrangements and results are described in detail 

below. 
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7.2 Theory 

Measurement of the I-V curve is a standard measurement technique that quantifies any 

change in the current generated by the solar cell.The I-V curve shows the relationship 

between current and voltage in the solar when the condition of irradiation and 

temperature are held constant. The total current, I, for the circuit configuration shown in 

figure 7.1 is given by [1,2]: 

          I = IL − I0 (e
q(V+IRs)

nkT − 1) −
V+IRs

Rsh
                      Equation 7.1 

where IL is current generated by the photoelectric effect, I0 is the saturation current of 

the diode, q is the elementary charge, 1.6x10
-19

 Coulombs, k is a Boltzmann constant 

(k=1.38x10
-23 

J/K), T is the cell temperature in Kelvin, n is the diode ideality factor, V 

is the measured cell voltage, and RS and RSH the parasitic resistances the series and 

shunt respectively. A typical circuit configuration that has been used is shown in figure 

7.1 [3]. 

 

 

 

 

Figure 7-1 Equivalent circuit configurations used for the c-Si solar cells 

 

Typical I-V (current-voltage) curve and P-V (power- voltage) curve of a photovoltaic 

device are presented in figure 7.2; these describe the capacity of the energy conversion 

at the specific intensity of light and temperature. It can be observed that the I-V curve 

ranges from the short circuit current (Isc) at zero volts, to zero current at the open circuit 

voltage (Voc). 
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The points which indicate the maximum power point (Imp, Vmp), maximum electrical 

power is achieved and known as “knee’’ of the curve. The flow of electrical charge to 

the external load becomes independent of output voltage when it reached the voltage 

well below Vmp. However, this behavior changes at knee point of the curve. This is 

simply due to the percentage increase of the charges within the solar cells instead of 

flowing through the load. Finally all the charges recombine internally at Voc[4]. 

Several important parameters which can be used to characterise solar cells are as follow: 

Isc (Short-circuit current) - Is the maximum current value. It is produced when the cell 

impedance is low and is calculated when the voltage equals to zero:  I (at V = 0) = Isc. 

Voc(Open-circuit voltage) - Is the maximum potential difference across the solar cell. It 

occurs when the net current through the cell is zero: V (at I = 0) = Voc. 

Jsc (short circuit current density) – Since short circuit current is proportional to the 

area of the solar cell, the short circuit current density can be define as: Jsc = Isc/Area of 

the cell. 

 

 

 

 

 

 

Figure 7-2 Typical Current-Voltage and Power-Voltage curves of a solar cell 
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7.3 Photovoltaic Technology 

Photovoltaic conversion is the method of using semiconductor materials to convert solar 

energy into electricity, and was invented by Alexander Becquerel in 1839 [5]. 

In principle, absorption of a photon is by semiconducting materials such as silicon (Si), 

and Gallium Arsenide (GaAs) promotes an electron from the valence band to the 

conduction band which produces mobile electron-hole pair. The photons will not be 

absorbed by semiconducting materials if they don’t have enough energy to overcome 

the band gap. When the energy of the incident photon is greater than the energy gap of 

the solar cell material, the photon is absorbed and thus the electron and hole can move 

freely through the lattice. The majority of the solar spectrum reaching the earth is 

composed of photons with energies greater than the band gap of silicon. In order to keep 

the electrons away from the hole, the silicon can be doped with other atoms to create p-

n junctions. Where p-type doping adds different atom with fewer electrons and n-type 

doping adds an atom with more electrons in the crystal lattice of the silicon. 

Adding p-type and n-type semiconductor together will lead to depletion region where 

the carriers in negatively charged p-type semiconductor and a positively charged n-type 

semiconductor are recombined as shown in figure 7.3. The difference in potential 

energy will separate the created charges and act as a diode [6]. 
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Figure 7-3 Schematic of a photovoltaic cell 

 

7.4 Experimental 

7.4.1 Solar cell preparation 

In order to connect the solar cells to the source meter to measure the I-V curve, it was 

necessary to connect wires to the solar cells. One wire was attached to the base bar of 

the solar cell which is in front of the cell and the other wire was attached to the back of 

solar cells. The wires were secured using soldering irons and 3 mm solder wire. Then 

the solar cell was attached to a plastic holder in order to be able handle it safely and 

placed it in front of light source and diffractive elements. 

In this study the area of the solar cells was controlled by using variable aperture on top 

of solar cells. Therefore only the specific area of the cell remains active to collect the 

incident light and the rest of solar cell is covered. The concentration ratio can be 

increased by using smaller size of solar cells compare to the size of diffractive elements. 

The photograph of the typical solar cells that has been used in this study is presented in 

figure 7.4. 
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                      (a)       (b)                                     (c) 

Figure 7-4 Photograph of the used solar cells, a) the front side of PV cell, b) the back side of 

PV cell, c) PV cell with the variable aperture 

 

7.4.2 Electrical set up 

The off axis elements were placed at a fixed position in front of the light source so that 

the diffracted beams from the higher angle was directed onto the solar cell while the 

direct beam is not blocked and can pass through into solar cells. The distance between 

the DOE and the silicon cells was arranged to be the same as the focal length of the 

DOEs which in this case was about 5 cm. In this study the size of the solar cells was 

varied between 3x3 mm
2
- 8x8 mm

2
. 
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Figure 7-5 Diagram of the experimental setup for electrical measurements 

 

I-V measurements were performed with a Keithley 2400 SMU (Source Meter Unit) as 

shown in figure 7.6 A with a Labview interface, using a set up described in figure 7.5. A 

metal halide discharge lamp (Griven, GR0262) was used as a light source which is 

shown in figure 7.6 B. The individual current and voltage output from each solar cell 

was read by a data acquisition card (DAQ). The measured current and voltage values 

were read into a computer using NI Labview for process and then the results were 

analysed.  

(a)                                                                          (b) 

Figure 7-6 Photograph of Halogen lamp solar simulator and the source meter unit 
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7.5 Results and discussion 

7.5.1 Characterisation of the solar simulator and the c-Si solar cell 

The solar simulator spectral irradiance was measured using an integrating sphere. An 

optical fiber. A CCD spectrometer (AVASPEC 2048-USB2) was used to monitor the 

photon count rate exiting at the measurement port of the integrating sphere. The results 

were compared to the standard solar spectrum (AM1.5G) given in [7]. The comparison 

is shown in figure 7.7. It was observed that the spectral irradiance of the solar simulator 

was very close to the standard solar spectrum. 

 

 

 

 

 

 

 

 

 

Figure 7-7 Spectral power distribution of the solar simulator and standard spectrum 
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In addition the silicon cell temperature was measured every 5 minutes in order to 

analyse the increase in temperature of the solar cells under the constant illumination 

from the solar simulator light source. The results are presented in figure 7.8. A rapid 

increase in the temperature was observed within the first 10 minutes and then the 

temperature remained constant at approximately 35 degrees. 

 

 

 

 

 

 

 

 

Figure 7-8 Temperature variation for Si cell under constant illumination from the solar 

simulator. 

 

In order to characterise the performance of the solar cells at different intensity of the 

incident beam, the maximum current generated by the c-Si cell was measured for range 

of illuminance using digital lux meter as shown in figure 7.10. The results are presented 

in figure 7.9. It can be observed that there is proportional relation between output 

current and the illumination area. By increasing the light intensity, the current generated 

by the solar cells was also increased. 
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Figure 7-9 Current vs intensity for a c-Si solar cell 

 

 

 

 

 

 

 

 

Figure 7-10 Lux meter 
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7.5.2 Characterisation and I-V curve measurement 

The c-Si cells (3x3 mm
2
- 8x8 mm

2
, Solar capture technologies) were placed in a fixed 

position in front of the light source and the single/pairs of the DOE was placed in front 

of the solar cell in such a way as to re-direct and focus additional light onto the cell, 

while also focusing it (see experimental section). 

The current vs applied voltages of the c-Si solar cell were measured using an electrical 

set up and the I-V curve was obtained as in Figure 7.11.In this study the area of the 

DOE was kept constant at 113 mm². The short circuit current (Isc) output of the 

reference cell, i.e. without the DOE in place, is approximately 3.7 mA. When the 

cylindrical DOE is included, a relative increase in Isc of 16 % is observed in comparison 

to the reference cell. When the spherical DOE is included, an increase of 32 % in signal 

is observed. This is a significant improvement, and is due to the fact that the light is 

focused in two dimensions instead of one. This measurement was then carried out for an 

array of two cylindrical DOEs, which resulted in an increase in the Isc of 40 %.These 

results suggest that the use of larger arrays of cylindrical and/or spherical DOEs can 

achieve higher relative increase in Isc for small areas of solar cells. The value for the 

short circuit current density (Jsc) of the Si solar cell was estimated using the I-V curves 

data for spherical/cylindrical DOE and pair of DOE relative to the solar cell area which 

in this case was 60 mm
2
. The results are presented in Table 7.1. 
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Table 7.1. Calculated Jsc of the c-Si solar cell with range of DOE 

 Isc 

mA 

Δ Isc Δ Isc % 

±0.03 

Jsc 

mA/cm
2 

Bare Si 3.7   0.061 

With Spherical DOE 4.9 1.2 32 0.081 

With Cylindrical DOE 4.3 0.6 16 0.071 

Array of two cylindrical 

DOE 

5.2 1.5 40 0.086 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-11 I-V curves for a c-Si solar cell (Area= 60 mm
2
) without DOE, with cylindrical 

DOE, spherical DOE and array of two cylindrical DOE in place. 

 

The results presented in figure 7.12 show the relative increase in the Isc for the c-Si solar 

cells vs area of solar cells. The area of the DOE remained constant at 113 mm² 
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throughout the experiment while the solar cell area was varied between 9 mm²- 100 

mm². In order to optimize the concentration ratio, the preference is to use solar cells 

significantly smaller than the DOEs. These results show that there is a significant 

improvement in the output current obtained when using the holographic focusing 

elements. 

It has been observed that for solar cells with area of 9 mm
2
, a 52 % increase in the 

output current is achieved for a single spherical DOE compared to 11% for 100 mm
2
 

solar cell. This is because the smaller cell area makes better use of the focusing effect. A 

similar trend was achieved using a single cylindrical DOE; however, the concentration 

ratio was lower. This is due to the fact that the cylindrical DOE focus light in one plane 

only, forming a line at the focus rather than a spot. 

The relative increase was nearly double for an array of two cylindrical DOE compared 

to the single cylindrical DOE. The device is capable of collecting light from a large area 

and redirects it into small centre of the solar cell; this can be beneficial in solar energy 

applications. 

During this research, we had advice and collaboration with the specialist in solar energy 

field Dr. Sarah McCormack, Dept of Civil, Structural and Environmental Engineering, 

Trinity College, Ireland. After discussions it was decided to investigate the final device 

made with arrays of cylindrical lens in order to collect the light from a large angle and 

redirect it to stripe shape PV cells rather than the solar cell with small rectangular shape. 

The PV cells with the dimension of 10 mm x1 mm is relatively cheaper compare to the 

PV cell with the dimension of 1mmx1mm. 
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Figure 7-12 The percentage increase of output current of c-Si solar cells vs. area of the 

c-Si cells for spherical DOE, cylindrical DOE and arrays of two cylindrical DOEs. 

 

This result compares very well with  HOE systems reported in the literature, for 

example  the concentrator  demonstrated by Kostuk et al [8]. Their result shows that 

25% increase was observed in the output from the cell over the output without the 

holographic element. Stacking multiple gratings or multiplexing several gratings in the 

same volume can extend the range of angles over which the devices are useful, as 

shown in previous chapters 
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7.6 Conclusion 

A device was fabricated with the combine symmetrically arranged off axis lens 

elements in order to maximise the collection area and avoid unwanted diffraction of 

light away from the solar cell. The percentage increase achieved by using the device 

with c-Si solar cells and a solar simulator is reported. Relative increase of the output 

current of c-Si solar cells was measured for cylindrical DOE, spherical DOE and array 

of two cylindrical DOE to be approximately 16 %, 32 % and 40 % respectively for a 

cell with an area of around 60 mm
2
. The results show that with arrays of DOE there is 

about 60% improvement in the output current obtained for the solar cells with area of 12 

mm
2
 when the incident light is within the acceptance angle. 

Since the sun move 15 degree every hour, we would expect arrays of two to work about 

30 minutes. This implies that several gratings will need to be stacked according to the 

protocol develop in chapter 6 in order to experience this increase for more hours. The 

collection area/ concentration ratio could also be further improve  
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8 Conclusions and Future Work 

8.1 The main achievements of the PhD research 

In this thesis, the development and characterisation of recording holographic optical 

elements at low spatial frequency in photopolymer material for solar applications has 

been described. The main conclusions from this research are as follows: 

  Theoretical modeling confirm that recording HOEs at low spatial frequencies is 

more suitable for solar application and larger angular and wavelength range of 

operation can be achieved with less number of elements to be multiplexed. It has 

been demonstrated that for the thicknesses most commonly used in acrylamide 

based photopolymers, spatial frequencies as low as a few hundred lines per 

millimetre are required in order to keep the number of multiplexed low for use 

in a solar collector. 

  Detail study of the holographic recording at low spatial frequency was 

successfully carried out as well as intensity dependence in order to find the best 

recording conditions. It was found that the lower intensities achieved higher 

diffraction efficiency at spatial frequency range of 100-300 lines/mm. The 

maximum diffraction efficiency of over 85% was achieved with the recording 

intensity of 1mW/cm
2
 in the layer with the thickness of 50±5 µm.  

  For the first time, the HOEs were recorded in acrylamide based photopolymer 

at spatial frequency of few hundred line per mm.The diffraction efficiency of 

over 85% was achieved for recorded gratings/HOE on a layer with thickness of 

50±5µm. In order to achieve high diffraction efficiency a full characterisation of 

the recording holographic grating in acrylamide based photopolymer was carried 

out at spatial frequency range of 100 lines/mm -300 lines/mm. 
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  Ranges of spherical and cylindrical off-axis focusing elements with focal length 

of 5 cm were successfully recorded in the acrylamide based photopolymer. A 

maximum diffraction efficiency of over 85% was achieved. The dependence of 

the diffraction efficiency on the diameter and position of the probe beam was 

determined in order to characterise the spatial frequency and slant angle of the 

grating component. Experimental results were compared with the theoretical 

results and it was found to be in good agreement with them. 

  The wavelength selectivity of the recorded focusing elements was measured. 

Themaximum diffraction efficacy of over 85% at wavelength of 480 nm and 633 

nm and about 70% at 540 nm was achieved. The results confirmed that HOEs 

recorded at optimum recording parameters are not very wavelength selective at 

these thicknesses. Therefore they are expected to perform well in solar 

applications. 

  Off-axis holographic spherical and cylindrical lenses with large range of 

operation were successfully recorded in the photopolymer. This was achieved by 

stacking number of gratings and focusing elements on top of each other. The 

stacked devices were characterised in two ways: (i) the regular Braggs 

diffraction characteristics of the stack devices were measured. (ii) A set up was 

constructed to analyse their performance in a non-tracking system with a moving 

source and fixed detector/converter. The results show significant improvement 

for the collection of light from the higher angles, and also highlight issues with 

unwanted diffraction directions in the stack. The FWHM of the stacked device 

was increased to collect light from a working range of approximately 12°.  
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  The effect of polarization of the incident light on the diffraction efficiency of 

HOEs when they are used with natural light rather than laser light was 

investigated. The theoretical model predicted about 10% and 2% difference in 

diffraction efficiency between S and P polarisation for the spatial frequency of 

1000 l/mm and 300 l/mm respectively for the sample with the thickness of 50 ± 

5 µm. The experimental results and theoretical results confirm that our device 

recorded at central spatial frequency of 300 lines/mm works well for both S and 

P polarisation. 

  A device was fabricated with the combine symmetrically arranged off axis lens 

elements in order to maximise the collection area and avoid unwanted 

diffraction of light away from the solar cell. The percentage increase achieved 

by using the device with c-Si solar cells and a solar simulator is reported. 

Relative increase of the output current of c-Si solar cells was measured for 

cylindrical DOE, spherical DOE and array of two cylindrical DOE to be 

approximately 16 %, 32 % and 40 % respectively for a cell with an area of 

around 60 mm
2
. The results show that with arrays of DOE there is about 60% 

improvement in the output current obtained for the solar cells with area of 12 

mm
2
 when the incident light is within the acceptance angle. 

Since the sun move 15 degree every hour, we would expect arrays of two to 

work about 30 minutes. This implies that several grating will need to be stacked 

according to the protocol develop in chapter 6 in order to experience this 

increase for more hours. The collection area/ concentration ratio could also be 

further improved.  
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8.2 Future work 

8.2.1 Further increase in working range 

The next stage of the research should involve multiplexing several gratings within the 

HOE, since several gratings will be needed in one photopolymer -layer in order to allow 

light collection from a moving source. It would be interesting to explore other materials 

or formulations. Exposure scheduling will be used to equalize the efficiency of the 

gratings. Algorithms that the Centre for Industrial and Engineering Optics (IEO) group 

has previously developed for equalization of holograms in data storage systems will be 

adapted for this purpose. Our recent work demonstrates the feasibility of this approach 

when used in the acrylamide based photopolymer and outlines the need for optimisation 

of the schedule of recording[1]. 

The optimisation of the scheduling will involve characterizing the recording material by 

recording the growth of the diffraction efficiency of the grating during exposure of the 

photosensitive material to the laser-generated interference pattern, then devising an 

exposure schedule based on the results. The aim is to maximize diffraction efficiency 

across a range of angles. A series of holograms will be recorded using the devised 

schedule, and then studied for efficiency and selectivity. This would be compared to the 

theoretical predictions. Process will be repeated for a number of grating types and 

comparisons drawn. Efficiency will be measured using two methods: a) A laser source 

with photo detector; b) Solar simulator: [Light source (Griven GR0262) metal Halide 

Lamp]. The angular selectivity will be analysed using an additional rotation stage. 

Wavelength selectivity will be analysed with a broadband source (from an optical fibre) 

and a spectrometer. It would be beneficial to design and test the multiplexed device to 

redirect/focus the diffracted beam to a single location as described in chapter 7. 
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8.2.2 Development of holographic solar collectors for diffuse light 

An important step in the characterisation of HOEs for solar applications will be to 

investigate the diffraction efficiency of HOEs for diffuse light sources. 

The diffuse radiation from the sky has different properties in terms of wavelength and 

intensity compare to the direct radiation from the sun. And therefore it changes in 

wavelength, composition, intensity and direction, depending on if the weather 

conditions are stable over a longer period of time (clear sky or heavy overcast) or 

unstable in terms of fast-changing occasional cloudiness. 

The percentage of the energy that can be collected from diffuse light depends on the 

weather conditions. The efficiency of fixed and adjustable orientation collectors has 

been investigated by a group in Serbia [2]. 

Currently Luminescent Solar Concentrators (LSC) are used as an alternative method to 

concentrate the diffused solar radiation, where a large transparent area of high refractive 

index material is doped with suitable inorganic or organic dopant material, and 

surrounded by a low refractive index material[3]. 

There are a number of researchers working to improve the efficiency of concentrators at 

lower cost; HOEs could provide a solution in order to concentrating the diffuse light 

which is challenging. Based on what has been learned from the current research, two 

approaches are worth further investigation.  

The first will aim at the development of a HOE that directs diffuse light towards the 

photovoltaic cell in one step. The second approach will study the possibility of 

developing a more complex device that will consists of multiplexed optical elements 

that perform the same function in a multi-step/cascade manner. 
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8.2.3 Combination of HOE lens and photochemical upconversion layer in 

photovoltaic 

HOE lenses can be developed - whereby a photochemical upconversion layer operates 

as the solar absorber, and is located at the focal distance of the HOE lens. The aim of 

using the HOE lens is to increase the localised incident photon flux and thereby increase 

the overall upconversion efficiency[4]. Long wavelength photons are transmitted 

through photovoltaic cell to an “upconversion layer”. Upconverted photons are then 

converted to electrons at the PV cell, increasing the overall electrical power output of 

the PV cell. The upconversion quantum yield (photons emitted/photons absorbed) is 

known to increase at higher incident photon flux. Therefore, a lens array can be 

introduced between the PV cell and the upconversion layer. Also the upconversion layer 

can be directly attached to the lens (without air gap), or directly to a spacing layer used 

to position upconversion layer at a precise lens position (e.g. at the lens focal length). 

Due to their Bragg selectivity, HOE lenses have the potential to selectively 

diffract/focus specific wavelength regions of interest. 

 

 

 

 

 

 

Figure 8-1 Configuration of the proposed cell 
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8.2.4 Combination of HOE lens in window 

In this study the HOEs with high diffraction efficiency at low spatial frequency 

recorded in acrylamide based photopolymer and their performance were characterised. 

The results confirm that HOEs can be used to redirect and focus the incoming beam. It 

would be interesting to utilize the output of this thesis and the results of recent 

confidential work in IEO to make photopolymer couplers to design additional collection 

elements that can be applied to window glass so that semi-transparent gratings could re-

direct light onto solar panels at the glass edge or window sill. 
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