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Abstract 
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Abstract 

 

In this work the impact of nanomaterial, specifically silver nanostructures, on sensing 

techniques is investigated. The work can be divided in to three sections, preparation 

and characterisation of silver nanoparticles, their application as a nanocomposite 

based chemiresistor humidity sensing device and finally their application within the 

surface enhanced (resonance) Raman spectroscopy, SE(R)RS, technique. 

In the first study silver nanoparticles were prepared as aqueous colloidal dispersions. 

The colloids were of either a defined diameter (average diameter ~ 20 nm) with high 

silver loading or lower loaded colloids of tuneable morphology and hence optical 

properties. 

 

In a subsequent study the high load colloid when cast on platinum interdigital 

electrodes as a nanocomposite coating proved to be useful as a humidity sensor. The 

sensor gave a reversible, selective and rapid response which was proportional to 

humidity levels within the range of 10% RH to 60% RH. An investigation into the 

mechanism of the sensor’s response was conducted and the response was found to 

correlate well with a second order Langmuir adsorption model. 

 

The final study was multi faceted as it first determined the suitability of the tuneable 

colloids as SE(R)RS substrates using a number of probe molecules. A clear sensing 

trend was observed, where the Raman signal emitted was significantly enhanced by 

the addition of silver nanoparticles. This prompted an additional investigation where 

both colloids were again cast as films (fabricating alternative SERS substrates) to 

determine the degree outside factors could influence the enhancement seen by the 

SERS technique. The suitability of the SERS substrates in a real world application 

was investigated, with SERS being used to monitor the action mechanism of 

components of a commercially available volatile corrosion inhibitor.  
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1. General Introduction 

1.1 Nanotechnology 

“There’s plenty of room at the bottom”; this statement by Richard Feynman in 1959 

during a presentation to a meeting of the American Physical Society, is widely 

accepted as the spark that initiated the present ‘nano’ age 
1
.  

Nano, “dwarf” in Greek, is defined as one billionth, it follows that the nanoscale is 

measured in nanometres, or 10
-9

 m. To put this in perspective; the average strand of a 

human hair is roughly 75,000 nm in diameter, or from the other extreme 1 nm is the 

length of 10 hydrogen atoms lined up end to end.   

Nanotechnology can be difficult to define, as its definition is often engineered to suit 

the researcher and their field; this resulted in a need of a general working definition, 

which the national nanotechnology initiative (NNI) established 
2
. Nanotechnology is 

thus defined as possessing the following features; 

 

• Nanotechnology involves research and technology development at the 1 nm to 

100 nm range. 

• Nanotechnology creates and uses structures that have novel properties because 

of their small size. 

• Nanotechnology builds on the ability to control or manipulate at the atomic 

scale. 

 

1.2 Appeal of nanomaterials  

According to the definition above a clear emphasis is placed on size. This is because 

nanomaterials/nanostructures often exhibit novel and considerably different physical 

and chemical properties in comparison to their bulk counterparts 
3 – 4 

and herein lies 

their appeal. These properties often arise as a result of the physical size (and thus high 

surface to volume ratio) of the particles themselves. This phenomenon is primarily 

due to the scale of the ‘nano world’ (figure 1.1), the area “between the realm of 

individual atoms and molecules (where quantum mechanics rules) and the ‘macro 

world’ (where the bulk properties of materials emerge from the collective behaviour 

of trillions of atoms.)” and affords the ‘nano world’ a flexibility where set laws of the  



General Introduction          Chapter 1 

 

  2 

 

Figure 1.1: Size comparison scale – macro to nano 
5 

 

macro scale may be manipulated and distorted to suit a project’s design 
6
. This inbuilt 

flexibility is the key driving force behind a ‘nano’ revolution, allowing researchers of 

multiple disciplines massive scope for the development of both new materials and 
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techniques. This gives nanotechnology the potential to significantly impact on 

multiple aspects of modern life whether as a result of the production of superior 

lightweight materials, advanced computing, medicine (diagnostics and treatments), or 

energy production 
7 - 8

.  

The influence of scale is most clearly illustrated by changes in the physical properties 

of metallic nanostructures. For example gold nanoparticles not only display a ruby 

colour 
9 – 10

 rather than the yellow of bulk gold, but the optical absorbance spectra of 

these gold nanostructures is also size dependent; spherical nanoparticles of diameter 

22, 48 and 99 nm have λ max’s of 520, 540 and 580 nm respectively 
11

.  

So the size of nanostructures (particularly metallic) has a significant impact on their 

properties; this is also true of the shape/morphology of the nanoparticle/structure. 

Therefore the ability to reliably tailor the morphology of nanostructures (and hence 

their very nature) has become increasingly important.   

Being able to control the size and shape of the nanoparticle influences its properties 

and ultimate use. This has directed research focus on the development of reliable 

fabrication methodologies of nanostructures with controlled morphologies 
12 – 15

.   

  

1.3 Fabrication at the nanoscale 

Nanostructures can be produced by one of two methods ‘top down’ or ‘bottom up’. 

The distinction between the two techniques is that conventional manufacturing 

processes are "top down," where a material is produced in bulk and then shaped into a 

finished part through a variety of processes (e.g., casting, moulding, rolling, forging, 

extruding, machining, and etching fine features such as in electronic circuits). In these 

processes, the positioning of each atom is not individually controlled during the 

operation resulting in defects and impurities.  

Top down techniques are most evident in the computer industry with the fabrication 

of microprocessors by lithography now the standard operating practice for industry 

leaders such as Intel 
16 - 17

.   Alternatively, bottom up "atom by atom" manufacturing 

processes involve self-assembly, in which the position of individual atoms are 

controlled during fabrication by inducing conditions for the self-organised growth of 

structures to produce the desired material 
18 - 19

.
 
 

There are several synthetic routes available in the bottom up technique including 

photochemistry, thermochemistry, sonochemistry, biochemistry, electrochemistry and 

wet chemistry 
20 – 26

. Bottom – up techniques are often the preferred synthetic route 
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for nanostructures synthesis; this has been attributed to the surface deficiencies 

associated with particles prepared by the top – down route 
27

.
 
 A common bottom up 

fabrication technique in the literature, (and the method of preparation utilised in this 

study), for the preparation of metallic nanoparticles is synthesis via the preparation of 

a colloid.  

Colloids “consist of a dispersed phase (or discontinuous phase) distributed uniformly 

in a finely divided state in a dispersion medium (or continuous phase)”. The 

dimensions of the dispersed phase in the ‘simple’ colloids (a clear distinction between 

the two phases is possible) prepared in this study are within the range of 1 – 100 nm. 

As a result, the colloids have a large surface to volume ratio, which gives the colloid’s 

particles different physicochemical properties, as the influence of the particle’s 

surface chemistry increases 
28 - 30

. Synthesis via colloidal dispersion allows the 

specific control of the morphology of the nanoparticles/structures by directing their 

self-assembly through variation of the synthesis parameters.  

 

1.4 Colloidal preparation 

Chemical reduction is the most common method for the preparation of metal colloids 

in aqueous or organic solvents 
31 - 32

.
 
Common reducing agents include borohydrides, 

citrates, ascorbates and elemental hydrogen 
33

. 

The major route reported in the literature is by the production of colloidal dispersions 

27
 using chemical – reduction methods 

34
, which classically involve the reduction of 

the metal by chemical means. This technique’s popularity is due to the relative ease of 

production; the advantages being mild reaction conditions, low energy consumption, 

and simple separation procedures coupled with high yields, good stability and 

relatively short reaction times 
35

.   

 

1.5 Colloidal stability 

Although the fundamental principles of thermodynamics maintain that a system at 

constant temperature should spontaneously change to lower its free energy, colloidal 

systems often remain stable at an elevated energy state. This is because, for a system 

to undergo the change necessary to move to a lower energy state, a mechanism for the 

change must be available. 

D.H. Everett provides a simple demonstration of a system, which remains stable at a 

higher energy state using a skittle as an example 
28

 (figure 1.2). ‘‘The free (or 
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potential) energy of the pin may be measured, relative to the surface, by the product 

hmg∆ , where m  is the mass of the skittle; g  is the acceleration due to gravity, and 

h∆  the height of the centre of gravity of the pin above the surface. In the 

configuration shown in figure 1.2 A the skittle has a higher free energy than that in 

the flat position (figure 1.2 C). The tendency to fall to the position of lower free 

energy cannot, however, manifest itself unless the pin is sufficiently disturbed (e.g. by 

the impact of a ball) so that it reaches the intermediate configuration shown in figure 

1.2 B.” An increase in the systems energy is necessary therefore for the system to 

progress from the higher metastable equilibrium state (figure 1.2 A) to lower (figure 

1.2 C) energy state of stable equilibrium.    

 

Figure 1.2: Three types of stability of a skittle, (A) metastable, (B) unstable,  

(C) stable 
28

. 

 

Therefore it is useful to consider the stability of colloids in terms of the free energy of 

a colloidal dispersion, primarily because of the large interfacial area between the 

dispersed phase and the surrounding dispersion medium. This results in the dispersed 

phases’ molecules contributing to the thermodynamic properties of the system, 

particularly its free energy and determining its overall stability. Surface chemistry 

therefore, plays a significant role in the manner in which colloids are stabilised.   

Colloidal particles in a dispersion medium always show Brownian motion and hence 

collide with each other frequently. The stability of colloids is thus determined by the 

interaction between the particles during such a collision. There are two basic 

interactions: one being attractive and the other repulsive. When attraction dominates, 

the particles will adhere to each other and finally the entire dispersion may coalesce. 
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When repulsion dominates, the system will be stable and remain in a dispersed state 

36
.Van der Waals forces are the primary source of attraction between colloidal 

particles. These forces are always present between particles of similar composition. 

Therefore, a colloidal dispersion is said to be stable only when a sufficiently strong 

repulsive force counteracts the van der Waals attraction. 

The Deryagin-Landau-Verwey-Overbeek (DLVO) theory 
37 - 38

 states that the stability 

of a particle in solution is dependent upon its total potential energy function 
T

V . This 

theory recognizes that 
T

V  is the balance of several competing contributions: 

 

SRAT
VVVV ++=  1.1 

 

S
V  (the potential energy due to the solvent) usually only makes a marginal 

contribution to the total potential energy over the last few nanometres of separation. 

More important is the balance between Van der Waals attractive (
A

V ) and electrical 

double layer repulsive (
R

V ) forces. 

The stability of a colloidal system therefore, is determined by the sum of 
A

V  and 
R

V  

that exist between particles as they approach each other due to Brownian motion. This 

theory proposes that an energy barrier resulting from the repulsive force prevents two 

particles approaching one another and adhering together. Therefore, if the particles 

have a sufficiently high repulsion, the dispersion will resist flocculation and the 

colloidal system will be stable. However, if a repulsion mechanism does not exist then 

flocculation or coagulation will eventually take place. To maintain the stability of the 

colloidal system, DLVO theory states that the repulsive forces between the particles 

must be dominant.
 
The colloid’s stability is maintained by electrostatic stabilisation, 

steric stabilisation or a combination of the two.  

 

1.6 Electrostatic stabilisation  

If a colloidal particle is brought within a short distance of another particle, they are 

attracted to each other by the van der Waals force. If there is no counteracting force, 

the particles will aggregate and the colloidal system will be destabilised. Colloidal 

stability is achieved due to repulsion forces between the particles balancing or 

exceeding the attraction forces.   
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The dispersed particles in aqueous colloids are often electrically charged; this charge 

contributes to the colloid’s overall stability.  

Coulomb’s fundamental law of electrostatics states that the force of attraction or 

repulsion between two charged particles in a vacuum is inversely proportional to the 

square of the distance between them (equation 1.2) 

 

)4(
2

0

21

d

qq
F

πε
=    1.2 

    

where 0ε  is the permittivity of free space. In a colloid, where a medium surrounds 

both charged particles, the force is reduced and is dependent upon the permittivity, or 

dielectric constant, ε , of the dispersion medium. Hence the work required to bring 

two charges together from an infinite separation to d  is (equation 1.3). 

 

∫
∞
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d

d
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Electrostatic stabilisation therefore, is due to the presence of an electric double layer, 

which surrounds each dispersed particle in the colloid.  

The double layer model describes the ionic environment in the vicinity of a charged 

surface. The electrical state of a surface depends on the spatial distribution of free 

(electronic or ionic) charges in its environment, i.e., where there is a charged surface, 

there must be a balancing counter charge. The distribution of charge in the system is 

usually idealised as an electrochemical double – layer. Current models of the 

electrical double – layer are based on the premise that one layer of the double-layer is 

a fixed charge or surface charge attached to the particle or solid surface, while the 

other layer is distributed diffusely in the liquid in contact with the particle.  

The resulting solid – liquid interface may be described by a number of theories of 

which, the Helmholtz double layer is the simplest. It states that the surface charge, 

0Φ , is neutralised by the presence of oppositely charged counter ions at a set 

increment d  from the charged surface. The distance, d , will be that to the centre of 

the counter ions, i.e. their radius. However the Helmholtz theoretical treatment does 
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not adequately explain all the features, since it hypothesizes rigid layers of opposite 

charges.   

In the Guoy Chapman model of the double layer, Gouy suggested that the interfacial 

potential at the charged surface could be attributed to the presence of a charge of 

given sign at the surface, and to an equal number of ions of opposite charge in the 

solution.  In other words, counter ions are not rigidly held, but tend to diffuse into the 

liquid phase until the counter potential set up by their departure restricts this 

tendency.  The kinetic energy of the counter ions will, in part, affect the thickness of 

the resulting diffuse double layer.  Gouy and, independently, Chapman developed 

theories of this diffuse double layer in which the change in concentration of the 

counter ions near a charged surface follows the Boltzmann distribution (equation 1.4) 

 

)exp(0
Tk

ze
nn

B

Ψ
−=   1.4 

 

where 0n   is the bulk concentration, Ψ is potential, z  is the charge on the ion, e  is 

the charge on a proton and 
B

k  is the Boltzmann constant. 

However, the derivation assumes that activity is equal to molar concentration, this is a 

sufficient approximation for the bulk solution, but is not true near a charged surface. 

Since the double layer is diffuse, rather than a rigid double layer, it is necessary to 

consider the volume charge density rather than surface charge density when studying 

the Coulombic interactions between charges.  The volume charge density, ρ , of any 

volume, i , can be expressed as  

 

ρi  = Σzieni       1.5 

 

The Coulombic interaction between charges can, then, be expressed by the Poisson 

equation.  For plane surfaces, this can be expressed as  

 

ddx

d πρ4
2

2

−=
Ψ

   1.6 
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where Ψ  varies from  0Ψ  at the surface to 0 in bulk solution.  Thus, we can relate the 

charge density at any given point to the potential gradient away from the surface.  

Combining the Boltzmann distribution with the Poisson equation and integrating 

under appropriate limits yields the electric potential as a function of distance from the 

surface.  The thickness of the diffuse double layer, therefore, may be expressed as 

 

2

1

22
]

4
[

∑
=

ii

r

double

zne

kT

π

ε
λ  

  
 1.7 

 

and at room temperature this can be simplified as 

 

2

1

6103.3

zc

r

double

ε
λ

×
=      1.8 

 

where 
r

ε  is the dielectric constant of the solvent and c  is concentration. This 

equation predicts that, the double layer thickness decreases with increasing valence 

and concentration.  

Further modification of the Gouy – Chapman model by Stern provided a better 

approximation of reality than the Helmholtz theory.   

Stern, stated that unlike Helmholtz theory (which assumes that ions behave as point 

charges and that there are no physical limits for the ions in their approach to the 

surface.), that ions do indeed have finite size and so cannot approach the surface 

closer than a few nanometres.  Therefore the first ions of the Gouy-Chapman Diffuse 

Double Layer are not at the surface, but at some distance δ  away from the surface, 

this distance is usually taken as the radius of the ion (figure 1.3).  The potential and 

concentration of the diffuse part of the layer is low enough to justify treating the ions 

as point charges.  

Stern also assumed that it is possible that some of the ions are specifically adsorbed 

by the surface in the plane δ , and this layer has become known as the Stern Layer.  

Therefore, the potential will drop by 0Ψ  - 
δ

Ψ  over the "molecular condenser" (ie. the 

Helmholtz Plane).  
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Figure 1.3: Stern layer.  

 

Within a colloidal dispersion the double layer is formed in order to neutralize the 

charged surface of the nanostructures (figure 1.4) and, in turn, causes an electrokinetic 

potential between the surface of a nanoparticle and any point in the mass of the 

dispersion medium. The magnitude of the surface potential is related to the surface 

charge and the thickness of the double layer. Away from the surface, the potential 

drops off roughly linearly in the Stern layer and then exponentially through the 

diffuse layer, approaching zero at the imaginary boundary of the double layer. The 

potential curve is useful because it indicates the strength of the electrical force 

between particles and the distance at which this force comes into play.  

A charged particle will move with a fixed velocity in a voltage field. This 

phenomenon is called electrophoresis. The particle’s mobility is related to the 

dielectric constant and viscosity of the suspending liquid and to the electrical potential 

at the boundary between the moving particle and the liquid. The relationship between 

zeta potential and surface potential depends on the amount of ions in the solution. The 
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zeta potential is related to the mobility of the particle and although it is an 

intermediate value, Zeta potential is sometimes considered to be more significant than 

surface potential as far as electrostatic repulsion is concerned and is therefore used as 

a measure of electrostatic stability (particles with zeta potentials of ±≥  30 mV are 

normally considered stable).  

 

 

Figure 1.4: Double layer of a nanoparticle.  

 

Coulombic repulsion is an effective method of colloidal stabilisation, however it is 

limited to dispersion media with low ionic strengths. This is because the thickness of 

the double layer depends, on the ionic strength (equation 1.9) of the dispersion 

medium.  
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Where 
i

z  is the charge and 
i

c  is the molar concentration of the ions, for 1:1 

electrolytes, the ionic strength is equal to the concentration. Here we will use the 

concentration c  to represent ionic strength. At low ionic strengths (electrolyte c  =10
-

3
 M), the thickness of the double layer is about 5 – 10 nm, which is of the same order 

as the attractive Van der Waals forces between particles.  

However the thickness of the double layer is reduced significantly with increasing the 

ionic strength. At ionic strengths for electrolyte c  > 10
-1 

M, the thickness of the 

double layer is less than 1 nm. In that case, the range of double layer electrostatic 

repulsion is usually insufficient to counterbalance the Van der Waals attraction 
39

. As 

a result colloids are highly sensitive to the ionic strength of the dispersion medium. 

 

1.7 Steric stabilisation  

The stability of many colloids of both natural and man-made origin can be improved 

by the presence of macromolecules or polymers, e.g. fatty acids in milk are stabilised 

by the presence of casein.  

Polymers increase viscosity of a colloidal dispersion, altering the sedimentation 

behaviour. This, coupled with their high molecular weights, results in only a small 

concentration being necessary to achieve this. Originally this method of stabilisation 

was referred to as protection because on addition, these macromolecules in essence 

form a protective coating around each colloidal particle by attaching (grafting or 

chemisorption) to the surfaces of the particles (figure 1.5), which prevents them from 

aggregating. However, following systematic studies with a variety of synthetic 

polymers acting as the capping agents (where the polymers possess chain dimensions 

that are comparable to, or in excess of, the range of the attractive Van der Waals 

forces
 39

), the mechanism of stabilisation has been illuminated and renamed as steric 

stabilisation. Here the presence of the ‘protecting’ agent affects the inter-particle 

forces by either influencing the particles’ attractive (van der Waals) forces or 

introducing a repulsive force between the particles 
28,

 
40

. For example, poly vinyl 

alcohol (PVA) is a commonly used steric polymer stabiliser. It works by partially 

adsorbing to the particle surface, while the remainder of the macromolecule solvates 
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and expands away from the interface, preventing other particles from approaching. 
27, 

41– 45
.  

 

Figure 1.5: Schematic of steric stabilisation.  

  

Electrostatic and steric stabilization can be combined as electrosteric stabilisation 

where the electrostatic component is either a net charge on the particle’s surface 

and/or charges associated with the polymer attached to the surface. 

 

Steric stabilisation has several distinct advantages over electrostatic stabilisation: 

 

• Steric stabilised colloids are relatively insensitive to the presence of 

electrolytes, whereas for 1:1 electrolytes (
i

cI ≈ ), a charge-stabilized 

dispersion will be unstable once the electrolyte’s concentration exceeds        

10
-1

 M.  

 

• Steric stabilisation is equally effective in both aqueous and non-aqueous 

dispersion media. Charge stabilization is less effective in non-aqueous 

dispersion media than in aqueous media. This is due to the low relative 

dielectric constant (< 10) of most non-aqueous media. As a result, steric 

stabilisation is generally preferred for non-aqueous colloids. 

 

• Steric stabilisation is independent of a colloid’s solids content. While for 

charge stabilised non-aqueous colloids, the thickness of the double layers can 

be so large, (due to the low dielectric constant of the dispersion medium), that 

the preparation of high solids dispersions can force the particles too close 

together leading to coagulation. Whereas in aqueous based colloids, 

preparation of charge-stabilized particles at high solids dispersions is often 



General Introduction          Chapter 1 

 

  14 

difficult because of interactions between the double layers surrounding 

individual particles. 

 

• Reversibility of flocculation. The coagulation of charge - stabilized particles 

by the addition of electrolyte is often irreversible. In contrast, flocculation of 

sterically stabilized dispersions can usually be reversed spontaneously by mere 

dilution of the concentration. This is because sterically stabilised dispersions 

may be thermodynamically stable while charge stabilised dispersions are only 

thermodynamically metastable. As a consequence, for charge - stabilised 

dispersions, the coagulated state represents a lower energy state and the 

coagulation can be reversed only after input of work into the system.  

 

Electrosteric stabilization, a combination of these two stabilisation mechanisms is 

used in this study. 

 
 

1.8 Silver nanoparticles 

In this study silver nanoparticles were synthesised, characterised and applied, as both 

a sensing device and as the basis of a spectroscopic analytical technique. Why silver? 

As mentioned in the previous section metallic nanoparticles often display novel 

properties. This is particularly true of silver, a relatively inexpensive noble metal
 10

. 

One of silver’s most desirable properties has been its anti microbial action. Ionic 

silver (Ag
+
) has long been considered a useful antimicrobial, effective against a broad 

range of microorganisms, with low concentrations documented to have therapeutic 

activity.
 “

Silver has been described as being ‘oligodynamic’ because of its ability to 

exert a bactericidal effect at minute concentrations” 
46 – 47

.
 
Consequently, this has 

resulted in extensive study of silver nanoparticles, which in turn has resulted in the 

production of a range of commercially available healthcare products including silver-

coated catheters, anti-microbial paints, municipal water systems and wound dressings 

e.g. Hydrofiber
®

 dressing 
48 – 50

.  

Antimicrobial effects however useful are not the only string to silver’s bow; nano 

silver also displays novel electro-optical (discussed further in section 1.12), magnetic 

and catalytic properties 
51 – 54 

that have encouraged its application in a wide variety of 

research.  
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Another highly active area of nano silver research, according to the volume of 

research published, is its application in sensing 
55

 with silver nanostructures being 

utilised as DNA detectors 
56

, gas sensors (such as ammonia sensors) 
57

 and as 

herbicide biosensors 
58

 among others. 

T.M. Tolaymat et al. 
27 

describe the properties, synthesis and application of silver 

nanoparticles detailed in the available literature at the time of writing.  

 

Synthesis 

Parameter 

 

Reported Preference 

 

% 

 

Reasoning 

 

Salt Precursor 

 

Silver Nitrate 

 

83 

• Relative low cost  

• High chemical stability compared to alternatives 

 

Solvent 

 

 

Water 

 

80 

• Produces stable and mobile nanoparticles 

• Low cost  

• Readily available  

 

 

Reducing Agent 

 

 

• Sodium Borohydride (23 %)  

• Sodium Citrate (10 %) 

 

 

 

33 

• Traditional reduction agents 

• Established wet chemical methodologies 

• Readily available 

• Low energy/cost  

• Well defined effects 

 

 

Stabilising Agent 

 

 

• Polymers (29 %)  

• Sodium Citrate (27 %) 

 

 

 

56 

• Dependent on stabilisation mechanism 

(electrostatic (citrate) / steric (polymer)) 

•  Both relatively low cost  

• Both have dual role in synthesis process 

                - Citrate as a reduction agent  

        -  Polymer directs morphology  

Particle  

Morphology 

(Shape) 

 

Spherical 

 

90 

• Preparation methodology driven  

• Most thermodynamically stable 

 

 

 

Particle  

Morphology 

(Size Range) 

 

 

 

 

1 - 10 nm 

 

 

 

 

45.5 

Linked to choice of  

• Choice of reduction and stabilising agents  

• Desired application  

- Biological effects are most potent at 

smaller size ranges 

- Whereas larger particles are more 

effective for applications such as SERS 

Table 1.1:  Summary of major findings of T.M. Tolaymat’s et al. review 
27

 (% refers 

to the proportional of articles considered in the review) 

 

The authors found that the major route of fabrication was bottom up (with wet 

chemistry the dominant technique, entailing the chemical reduction of a silver salt), 
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with less then 4 % of the articles reviewed utilising the alternative top down methods 

and document the salt precursors and agents used in the fabrication of the silver 

nanoparticles, the morphology of the particles, their resulting properties (singularly or 

within nanocomposites) and hence the possible applications of the nanomaterials of 

which their findings are summarised in table 1.1. The authors conclude that the 

literature confirms the potential of silver nanomaterials, in a wide range of 

applications, from medical (exploiting silver’s antimicrobial properties) to sensing 

devices (capitalising on nano silver’s unique optical properties). 

  

1.9 Sensing  

Analytical chemistry and analytical techniques are essential tools in the investigation 

of the world surrounding us 
59

. Since any intellectual information structure capable of 

producing theories is dependent upon a reliable input of data the quality of this 

information is important 
60

. A sensor is a device, which measures a chemical or 

physical quantity and converts it into a signal that can be read by an observer or by an 

instrument, thus sensors can be classified according to the type of energy transfer that 

they detect, for example, electromagnetic and chemical
 61

. 

 

The following qualities are essential for an effective sensor. 

 

• Selectivity: the ability to detect one specific species even in the presence of a 

number of other chemical species. 

 

• Reproducibility: it is key that the sensor can be trusted to give the same 

signal/output value for a certain set of conditions over the course of its 

lifetime.  

 

• Accuracy: giving a correct concentration of the species being detected, 

ensuring that the output value that the sensor provides is as close as possible to 

the true value. 

 

• Sensitivity or the limit of detection (LOD): the minimum signal that can be 

interpreted as a meaningful measurement, and  
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• Limit of quantitation (LOQ): the signal, at which quantitative results can be 

reported with a high degree of confidence, should be known. 

 

• Reversibility: ideally the sensing process should proceed equally well in both 

the forward or reverse direction i.e. when the analyte is removed the sensor’s 

response should return to the baseline.  

 

• Stability: the sensor should retain its characteristics when tested or used under 

varying conditions and environments.  

 

• Linearity: over the desired measurement range the sensor’s response should be 

linearly proportional to the concentration of analyte 
61 - 62

.   

 

1.10 Nanomaterials and sensing  

A significant quantity of the unique properties (both physical and chemical) of nano 

silver can be exploited in the sensing domain, particularly by improving an individual 

sensors’ sensitivity, selectivity or stability.  

Research to augment one of these facets has resulted in multiple advances in sensing 

devices and techniques, such as, the production of innovative sensing materials 
62 - 63 

improved data analysis (e.g. pattern recognition, fast Fourier transform, and wavelet 

transform), 
63 - 64

,
 
and sensor fabrication 

65 - 66
.  

Nanoscience therefore has an active role in many aspects of sensor development, 

specifically in terms of exploiting the miniaturisation and unique applications 

afforded by the nanoscale. In this instance metallic nanostructures are notable 

precursors with the use of nanostructured materials in particulate, film or composite 

form increasing rapidly 
3
. 

 
   

Because the size and therefore the properties of the nanoparticles can be varied, a 

wide range of sensors has been developed 
67 – 68

. 

  

1.11 Nanocomposites 

A nanocomposite is a matrix to which nanoparticles have been added to improve a 

particular property of the material. The difference in optical, catalytic or conductive 
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properties between nanocomposites and their constituent components depends largely 

on the chemical nature of each component and how the components interact. This 

interaction depends strongly on characteristics of each component, i.e. interface, size, 

shape and structure. In extreme cases, where there is no or little interaction between 

the components, the composites’ properties should be equivalent to a simple sum of 

the properties of the individual elements. In cases where the interaction between the 

constituents is strong, the properties of the composite system can differ substantially 

from the simple sum of the properties of the individual components. The 

characteristics of the individual components are lost and new features arise as a result 

of the strong interaction
 69 – 70

.  

H. Chik and J. M. Xu 
71 

have described a fabrication method that not only allows the 

addition of a variety of materials, including metals, semiconductors, and carbon 

nanotubes to an anodised aluminium oxide porous membrane but also, through tuning 

of the synthesis parameters, controls the nanomaterials morphology.  

This enabled the authors to engineer the physical properties of the composite by 

determining the shape, size, composition and doping of the nanostructures, as well as 

new properties produced by their interaction with the matrix itself. Some of these 

properties and functions were not intrinsic to the individual nano-elements but were 

due to the collective behaviour of the nanostructures within the membrane. The novel 

nanocomposite platform described potentially offers a wide range of applications in 

various fields including electronics, optics, mechanics and biotechnologies. 

Work by J. Li and J.Z. Zhang
 69

, highlights the ability to capitalise on the unique 

properties of nanoparticles, through their incorporation into composites. The authors 

also noted that the composites’ properties could be tailored by controlling the 

nanostructures’ morphology and optical interfaces. This affords the nanocomposite 

multiple potential applications in different fields, including bio-labelling (silica-

coated CdSe/ZnS core/shell quantum dots), light energy conversion (nano doped 

silicon in photovoltaic cells) and hygienic materials (the addition of antibacterial 

copper or silver ions into plastics and paints). 

 

1.12 Electro-optical properties of silver nanomaterials 

When light interacts with the surface of a metal; the free electrons of the metal move 

in a background of fixed positive ions, which ensure overall neutrality of the system. 
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This movement of electrons forms a plasma; the free electron plasma. The optical 

response of the plasma governs the optical response of the metal itself. 
71 – 72 

 

 

 

Figure 1.6: Schematic representation of the plasmon oscillation for a spherical 

metallic nanoparticle, irradiated by light, the oscillating electric field causes the 

conduction electrons to oscillate coherently. 
9 

 

1.13 Origin of plasmons 

When an external electro-magnetic field such as light is applied to a metal, the 

conduction electrons move collectively so as to screen the perturbed charge 

distribution in what is known as plasma oscillation. The Surface Plasmon Resonance 

(SPR) is therefore a collective excitation mode of the plasma localised near the metal 

surface (LSPR). In the case of a metal nanoparticle, the surface plasmon mode is 

'restricted' due to the small dimensions to which the electrons are confined, i.e. the 

surface plasmon mode must conform to the boundaries of the dimensions of the 

nanoparticle 
24

.  Therefore the resonance frequency of the surface plasmon oscillation 

of the metal nanoparticle is different from the plasma frequency of the bulk metal. 

Among the metal nanoparticles known to exhibit LSPR, silver nanoparticles have an 

especially strong LSPR.  

These unique surface plasmons determined by the nanoparticle’s own physical 

properties, can be observed in the electromagnetic spectrum 
9, 73 - 75

.
 

Surface 

interactions can alter the optical properties and influence the spectral profile of the 

light scattered by the LSPR of the metal nanoparticles.  This feature can be employed 

as an indicator in sensing interactions. Particle size may be determined using Mie 

theory, which solves Maxwell’s equations 
76

.  Mie theory can also describe the spectra 
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of colloids of spherical particles of arbitrary size (extinction = scattering + 

absorption).  

Silver colloids (nanoparticles) have been extensively characterised by UV – Vis 

spectroscopy because they exhibit an intense absorption band in this region, known as 

the surface plasmon absorption band (SPAB), which is a product of the colloid’s 

nanoparticles physical properties, including their size, shape, surrounding dielectric 

medium, coupling of the colloids and adsorbed solutes.  

The colloids SPAB may also be used to monitor the size of nanoparticles. There is 

also experimental information concerning the interpretation of the absorption spectra 

for ionic silver clusters. It should be noted that a number of factors could affect the 

properties of the SPAB of a silver colloid; these include the synthesis process, 

aggregation of the nanoparticles, adsorption of metallic ions or protective polymers 

onto the nanoparticles’ surfaces or changes to the particle’s morphology and/or 

electron density.  

The formal solution of the problem of the light absorption and scattering by small 

particles is described by the Mie theory 
4, 77 – 78

, whose complete mathematical basis 

developed the theory of absorption and scattering of light by spherical nanoparticles. 

When a beam of light irradiates a metallic nanoparticle, the oscillating electric field 

causes a collective excitation of the conduction electrons, the LSPR/SPAB, this 

displacement of electrons results in the polarisation of the nanoparticle. The 

absorbance of the colloid may in the case of non – aggregated spherical silver 

nanoparticles, with clean surfaces be calculated using, 
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where, λπNk 2= ,ℜ is the real part of the scattering coefficients 
n

a  and 
n

b , which 

are dependent on the particle’s radius.  

When the particle size is smaller than the mean free path of the conduction electrons 

(52 nm for silver), the magnitude of the real )(' ωε  and imaginary parts )('' ωε  of the 

dielectric function of the particle is also affected, 
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where ω `is the light frequency, 
p

ω , the plasmon frequency and 
d

ω is the bulk metal 

damping constant.
r

ω , the metal particle damping constant (or the inverse of the 

collision time for conduction electrons), can be calculated by 

 

r

v
B

f

dr
+= ωω   1.14 

 

where 
f

v  is the electron velocity at the Fermi level and B is a constant. 

Usually the calculations of absorption spectra of metallic nanoparticles are presented 

as the extinction cross – section or extinction efficiency of a single nanoparticle, but 

for experimental UV – Vis results of metallic colloids (their optical properties), it is 

more useful to be able to interpret the absorption spectra themselves. As the 

fundamental characteristics of SPAB, such as peak position, maximum absorbance 

and bandwidth at half – maximum absorption are heavily influenced by the particle 

size, morphology and surrounding medium. For example, where the plasmon 

absorption peak shifts to higher wavelengths as the particle size increases, as 

described by equation 1.15 
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where a  is a constant. It also states that the absorbance increases as 
ext

C  increases, 

while an increase in the particle radius decreases the absorbance and that the position 

of the plasmon peak and the shape of the absorption band is determined by 
ext

C .  

This is evident throughout the literature where spherical silver nanoparticles possess a 

single plasmon peak between ~ 390 – 480 nm whereas triangular silver nanostructures 

may display a number of peaks over a greater absorbance range, with their out of 

plane dipole band generally around 330 nm and the in plane dipole plasmon band at ~ 

550 – 630 nm 
79 – 81

. 

Recent advances in nanoscience and nanotechnologies have fuelled a renewed interest 

in the interaction of metals and light (plasmonics); with particular emphasis on the 

fabrication and application of plasmon supporting substrates.  These surface plasmons 

can be observed in the electromagnetic spectrum, their energy being determined by 

the morphology and dielectric constant of the metal particle 
9, 73 - 75

.
  

 

SERS substrates can be classified into three categories 
82 

  

• metallic nanoparticles in suspension; utilising the simplest methodology, 

reproducibility and potential sampling challenges. Suspensions are widely 

used due to their effective performance, good stability and ease of fabrication  

 

• metallic nanoparticles immobilized on solid substrates generated by 

immobilising the nanostructures on planar platforms. Adhesion of the particles 

to the support is usually very poor, which has lead to the development of 

immobilisation techniques to improve the integrity and the performance of the 

substrate’s stability  

 

• nanostructures fabricated directly on solid substrates, which includes 

nanolithography and template synthesis of nanostructures 
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Currently SERS is one of the most sensitive analytical techniques available, and is 

rapidly developing into an analytical tool in numerous fields, with a wide range of 

applications. For example in biomedical research, where Picorel et al. 
83

 used SERS 

to examine the complex structure of three different protein complexes, and their 

orientations on an electrochemically roughened Ag electrode. Whereas other groups 

such as Vo-Dinh’s and Bartlett’s have used SERS for DNA detection using a variety 

of substrates 
84 – 88

.
 
 

A number of SERS substrates obtained by immobilizing particles onto a solid support 

have shown potential in environmental monitoring. For example, sol–gels doped with 

nanostructures 
80

 and permeability-selective polymer coated metal nanoparticles 
90 

not 

only provided large surface areas to trap environmental pollutants and bring them 

close to the metallic surface, but their inherent protective coating improved their 

stability and shelf life, SERS substrates consisting of C-18 alkylsilane and short chain 

thiol modified nanostructures 
91

 can selectively adsorb organic molecules.  

J. Shi et al.
 77

, summarised a range of chemical sensors that apply the optical 

principles of nanomaterials for the detection of multiple chemical and biochemical 

analytes. These include colorimetric biosensors based on gold nanoparticles, gas 

sensing semi-conductors which exhibit changes to their optical transmittance when 

exposed to gases such as NO, and CO and optical humidity sensors based on changes 

in cobalt oxide films’ absorbance in the visible wavelength. 

 

1.14 Optical Sensors 

The interaction of light and matter can be measured in a multitude of ways; the 

principle techniques are absorption, emission or scattering. The manner in which a 

molecule interacts with light is governed by the energy levels of the molecule, which 

is dictated by the movement of the compound’s atoms (motional energy states, e.g. 

vibrational) or the movement of electrons (electronic energy levels) within the system 

71
. 
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Figure 1.7: Jablonski diagram, a schematic representation of the electronic and 

vibronic (rotational/vibrational) energy levels of a molecule. 
93

 

 

Figure 1.7, illustrates the transitions which can occur between molecular states due to 

a molecule’s interaction with light. These include electronic, (between two electronic 

states) and vibronic transitions. These transitions may be further classified as either 

radiative or non-radiative transitions.  

Radiative transitions are a consequence of the molecules interaction with a photon and 

are considered dipole allowed; they involve the absorption or emission of a photon, 

whereas non-radiative transitions are a product of the molecule’s interaction with the 

surrounding environment.  

Optical processes primarily involve the absorption and emission of photons, these 

include: 

 

1.15 Optical Absorption  

There are two major types of optical absorption, where a molecule is excited to a 

higher energy state via its interaction with a photon, 
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• Electronic absorption, an electron is excited to a higher electronic state, 

transitions occur typically in the UV (~ 200 – 400 nm) and visible (~ 400 – 

800 nm) region. It follows that the electronic structure of molecules may be 

examined through UV- Vis Spectroscopy. 

 

• Infrared absorption, again a photon excites a molecule to a higher vibronic 

level within a given electronic state, the energy absorbed during these 

transitions are in the infrared or far infrared ( λ  = 3 – 100 µ m). Molecules’ 

vibrational structure can be determined using infrared, IR, spectroscopy. 

 

1.16 Optical Emission (Luminescence) 

The mirror image of absorption, emission is a product of the relaxation of a molecule 

to a lower energy level from a higher energy state. Radiative emission occurs between 

vibrational states, however it is mainly observed during transitions between electronic 

states.  Two major emission processes are possible in the presence of an incident 

beam, 

 

• Stimulated emission, where incident photons interact with an excited molecule 

to give the emission of an identical photon. 

 

• Spontaneous emission occurs in the absence of an incident photon and 

therefore may occur at any energy once the transitions are allowed. 

 

Luminescence is not solely based on the simple mechanism of photon absorption by a 

molecule followed by its subsequent reemission; there are preceding and/or 

competing nonradiative processes which are also in effect. 

When a molecule in the ground state absorbs a photon (to go from one electronic state 

to another), the time required to do so ( ≈ 10
-15

 s) is relatively short compared to the 

time required for all other electronic processes and nuclear motion.  It can be assumed 

that immediately after excitation a molecule has the same geometry and is in the same 

environment as it was prior to excitation. In this case the molecule can do one of two 

things depending on its environment:  
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• Emit a photon from the same vibrational level to which it was excited initially; 

this occurs in the gas phase, as the emission of an infrared photon is the 

molecule’s only means to lose vibrational energy to return to the ground state. 

 

• Undergo changes in vibrational levels prior to emission of radiation, (for 

molecules in solution). The excess vibrational energy of the excited state of 

the molecule may be lost through thermal relaxation from the solute molecule 

to the solvent. The process of thermal relaxation is so efficient (occurs within 

10
-13

 to 10
-11

 s) that all the excess vibrational energy of the excited state is lost, 

so, before an excited molecule in a solution can emit a photon, it will undergo 

vibrational relaxation, and therefore photon emission will always occur from 

the lowest vibrational level of an excited state. 

 

Once a molecule arrives at the lowest vibrational level of an exited singlet state, a 

number of processes can occur, 

 

• Fluorescence, which consists of photon absorption by a molecule to go to an 

excited singlet state, relaxation from higher vibrational levels of that state to 

its lowest vibrational level and photon emission to the ground state. 

Fluorescence decay has the same lifetime as an excited singlet state and is 

approximately 10
-9

 to 10
-7

 s. 

 

• Phosphorescence, similarly, consists of photon absorption by a molecule to go 

to an excited singlet state (population of triplet states by direct absorption from 

the ground state is insignificant), followed by intersystem crossing (a spin-

dependent internal conversion process involving vibrational coupling between 

the excited singlet state and a triplet state), relaxation from higher vibrational 

levels of the triplet state to its lowest vibrational level and photon emission to 

the ground state. As phosphorescence originates from the lowest triplet state, it 

will have a decay time approximately equal to the lifetime of the triplet state: 

10
-4

 to 10 s. 
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1.17 Elastic and inelastic scattering  

Scattering process involve the simultaneous absorption of an incident photon and the 

emission of another ‘scattered’ photon, light scattering processes are divided into two 

distinct groups 

  

• Elastic (Rayleigh) scattering, here incident and scattered electrons have the 

same energy; this process leaves the molecule at the same energy level, i.e. no 

transfer of energy occurs between the photon and molecule, and fails to excite 

the molecule’s internal structure. 

 

• Inelastic scattering, here the scattered photon has a different energy ES to the 

incident EL, this difference in energy corresponds to transitions between 

molecular states. 

  

One of the most important forms of inelastic scattering is Raman scattering, involving 

vibrational and rotational transitions, which reveal much of the internal structure of a 

molecule.  

 

Figure 1.8: Different types of scatter 
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1.18 Raman scattering  

Raman Spectroscopy utilises the light scattered by an analyte, if a molecule were 

excited by phonons with the energy hν0 the majority of the scattered light would 

possess energy (frequency) identical to that of the incident light, designated as 

Rayleigh scattering (figure 1.8). A portion of the diffused photons, however, undergo 

a shift in frequency, (indicating a loss or gain in energy) this is Raman scattering 
73, 94

.
 
     

 
Stokes Raman scattering is a result of the incident photon transferring energy to the 

analyte, and causes the analyte to migrate to a higher energy state. Stokes Raman 

typically corresponds to the excitation of the analyte molecule from the vibrational 

ground state 0=v  to the first excited state 1=v . The energy of the vibration is given 

by the difference between the incident and scattered photon 
SLv

EEh −=ω . 

If energy is transferred from an excited molecule to the incident photon, thus reverting 

to the lower energy state the scattering is termed anti – Stokes Raman scattering. Here 

the analyte molecule has relaxed from an excited vibrational ( 1=v ) state to its ground 

state ( 0=v ) and the vibrational energy is determined by 
LSv

EEh −=− ω . 

Generally experimental Raman results can be described in the following terms, where 

individual molecules are treated as simple harmonic oscillators. The electric field of 

the incident light may be described as, 

 

)2cos( 00 tvEE π=   1.16 

 

Where, E  is the time – dependent field factor, 0E  is the maximum amplitude and 0v  

the frequency. This electric field generates in the target molecule a dipole µ  defined 

as, 

 

)2cos( 00 tvEE πααµ ==   1.17 

  

Where the proportional constant, α , is the polarisability. Equation (1.17) may be 

expressed in three dimensions in both Cartesian and matrix form
 93

. If α  is 

independent of time, the radiation discharged by the induced dipole is Rayleigh 

scattering (the same frequency as the incident radiation). However, if the 

polarisability, α , is dependant on time, and hence vibrational frequencies of the 
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molecule, i.e. )(tαα = , then the incident energy will be altered and a portion of the 

radiation scattered at different frequencies. If the scattering molecule has vibrational 

modes, 
k

Q , they may be denoted as,  
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0
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Where 
0

k
Q  is the maximum amplitude and 

k
v  is the oscillation frequency. The 

polarisability of the dipole can be extended as follows in a Taylor series,  
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considering only the first order term and multiplying by E yields,  
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Where )2cos( 000 tvE πα  denotes Raleigh scattering, and the frequency terms with  

(
k

vv −0 ) and (
k

vv +0 ) describe Stokes and anti – Stokes Raman scattering, 

respectively. As the ground state is more populated than the excited state, it follows 

that Stokes scattering is the more intense of the two.  

 

1.19 Raman spectroscopy 

Raman spectroscopy is both non-destructive and non-invasive, which utilises the 

inelastic scattering of monochromatic light such as that obtained through laser 

excitation to study vibrational, rotational and other low-frequency modes of a 

molecule 
94 – 96

. Raman elucidates the molecular profiles of systems by measuring 

frequency shifts that adhere to a selection rule, whereby changes in polarisability of 

the analyte is required 
97 – 98

. However, the usefulness of Raman in practical 

applications is hindered by the very weak signal produced by Raman scattering as 
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typically only one in 10
6
 – 10

8
 photons undergo inelastic (Raman) scattering when 

interacting with a sample 
99 – 101 

This results in the need to use high power lasers or 

long sampling times to counteract the inefficient scatter for adequate spectral 

acquisition in real world applications
 102

.
 
 

This lack of sensitivity has encouraged the development of the technique with 

emphasis on improving / augmenting the signal output. Resonance Raman discovered 

by Shorygin, has had a significant impact on Raman’s usefulness. Shorygin found that 

although many substances, especially coloured ones, may absorb laser beam energy 

and generate strong fluorescence, which contaminates the Raman spectrum, under 

certain conditions some types of coloured molecules produce strong Raman scattering 

instead of fluorescence.  

This resonance Raman effect takes place when the excitation laser frequency is 

chosen in a way that it resonates with the frequencies of the analyte’s electronic 

excited states. The intensity of Raman bands, which originate from electronic 

transitions between those states are enhanced 3 – 5 orders of magnitude, improving 

the technique’s sensitivity 
115 – 116

.
  

As explained above, resonance Raman scattering occurs when using a laser excitation 

wavelength that approaches or coincides with a sample’s UV–visible absorption band, 

and the resonance effect can give a large increase in the scattering intensity enabling 

spectra to be recorded from samples at low concentrations. In addition this 

enhancement occurs only for the Raman bands of the species giving the UV–visible 

absorption band in resonance, such that an appropriate choice of laser wavelength can 

provide not only sensitivity but also selectivity. 

However, a potential disadvantage of the technique is that a laser wavelength that 

coincides with a sample UV–visible absorption band can result in fluorescence 

emission that may be much stronger than the Raman scattering, and which, in some 

cases, may be so strong that a resonance Raman spectrum is effectively unobservable 

above the emission background.  

Resonance Raman spectroscopy offers good potential for the analysis of coloured 

compounds such as dyes because a laser excitation wavelength in resonance with a 

dye absorption band may typically be expected to provide high sensitivity and 

selectivity for the dye, provided that fluorescence does not obscure the Raman signal 

117
. Recently Raman spectroscopy as a technique is undergoing a nano evolution, with 

the emergence of SERS, Surface Enhanced Raman Spectroscopy. 
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1.20 Surface Enhanced Raman spectroscopy, SERS 

Surface Enhanced Raman Scattering (SERS) is another technique used to amplify the 

weak Raman signal and involves a substrate, typically of the nanoscale. The 

substrates may be produced in a variety of ways (figure 1.9); including, metal 

colloids, electrode roughening, vapour deposition of metal particles onto a substrate, 

lithography produced metal spheroid assemblies and metal deposition over a 

deposition mask of polystyrene nanospheres 
103 

(figure 1.10). 

 

Figure 1.9: An assortment of SERS active nanostructures 
104

.
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• Surface: SERS is a surface spectroscopy technique. Enhancement of an 

analyte’s Raman signature is seen only if the compound is at (or close to) the 

metal’s surface. Hence the frequent issue in practical application of the SERS 

technique is the transfer of analyte molecules from a volume to a surface. 

 

• Enhanced: signal augmentation is produced by plasmon resonances in the 

metal substrate (note; the SERS substrate is generally in the form of metallic 

nanostructures).  

 

Interest in the application of SERS as an effective analytical tool is increasing, with 

the potential of the development of highly selective and sensitive detection 
105 – 107

. 

Plasmons are at the heart of SERS enhancement therefore it’s unsurprising that 

advances in plasmonics (section 1.13) hugely benefit SERS. It is necessary therefore 

to consider the origin of the plasmon activity. Due to the presence of free conduction 

electrons, silver, gold, copper and aluminium are known to display different optical 

properties from standard dielectrics.   

 

 

Figure 1.10: Silver nanostructures fabricated through metal deposition. 
82 

 

SERS can significantly amplify (10
5
 – 10

6
 
108

) the weak Raman signal. This coupled 

with improved methodologies; equipment and the possibility of tailor made 

substrates, gives SERS remarkable potential within many sensing fields 
103, 105

. 
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Most materials exhibit a SERS spectrum that correlates well with the original Raman 

spectrum (under the same excitation conditions), particularly the distinctive Raman 

fingerprint peaks 
118

.
 
However, there are some considerations for interpreting SERS 

spectra, as it is not simply a case of obtaining an augmented Raman signal.  

This is due to the complex origin of SERS spectra, the Raman spectrum of a 

molecule, in the gas phase, is determined by the molecule in question and the incident 

radiation.  

Therefore its spectrum can be described by first determining the stationary vibrational 

energy levels of the molecule and second, defining the intensity, monochromaticity 

and polarisation of the incident radiation and finally establishing the interaction 

between the radiation field and the molecule, combining the resulting energy changes 

with the selection rules to constitute the molecule’s spectrum 
109

.           

In contrast, the basic components of the SERS spectrum also include the metallic 

nanostructure, thus introducing a greater level of complexity to the SERS experiment, 

mostly as a result of the interaction of the nanostructure with light and / or the analyte 

molecule itself
 106

.  

As a result of this innate complexity of the SERS spectrum, the application of SERS 

within quantitative analytical applications has been hampered (considering its initial 

perception by Fleischmann et. al. in 1974 
110

) due to the difficulty in producing 

reliably reproducible nanostructures 
105

. Recently research in the area has produced 

specifically fabricated substrates 
111 – 112 

to eliminate this issue.  

The development of simple models (spherical and spheroidal) based on the theory of 

an electromagnetic enhancement mechanism have also assisted with both spectral 

interpretation and experiment design. It should also be noted that the plasmon 

resonances (the major contributor to SERS enhancement) of the metallic nanoparticles 

are wavelength dependent, producing a non-uniform distribution of plasmon 

resonance, which can result in different levels of signal enhancement of the analyte’s 

spectrum
 113

. 

 

1.21 SERS enhancement mechanisms 

As described above Raman spectra are produced through the interaction of a photon 

with a polarisable analyte, and using SERS the Raman spectroscopy’s sensitivity is 

significantly enhanced. The two enhancement mechanisms for SERS are 

 



General Introduction          Chapter 1 

 

  34 

• Electromagnetic, which involves enhancements in the field intensity as a result 

of plasmon resonance excitation 

 

• Chemical, where an enhancement in polarisability is observed due to chemical 

effects such as charge transfer excited states. 

  

The intensity of Raman scattered radiation is proportional to the square of the 

magnitude of any electromagnetic fields incident on the analyte. 

 

2
EI

R
∝

  
1.22 

 

where 
R

I  is the intensity of the Raman signal, and E  is the total electromagnetic 

fields coupling with the analyte; and where 

 

pa
EEE +=   1.23 

 

a
E  is the electromagnetic field on the analyte in the absence of any roughness 

features  (normal Raman) and 
p

E  is the electromagnetic field emitted from the metal 

nanostructure. Clearly the presence of the SERS substrate and its electromagnetic 

field contributes to the total magnitude of E  and therefore the overall Intensity of the 

Raman signal. 

However, as the surface electrons of the metal SERS substrate are confined to the 

particle, the particle’s plasmon excitation is also confined to the metal nanostructure 

requiring that the analyte be in near proximity to the metal particle. It also follows that 

the analyte adsorbed between two SERS – active particles will be further enhanced 

than the analyte proximate to only one such particle. 

Based on the proposed mechanism electromagnetic enhancements should be 

chemically non-selective; that is, providing the same enhancement for different 

analyte molecules adsorbed onto the same type of metal surface. However this is not 

the case, for example, N2 and CO enhancements can differ by a factor of 200, despite 

possessing similar polarisabilities (adsorption orientation differences wouldn’t 

account for the large difference in enhancement). 
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Therefore an additional enhancement mechanism must be in effect; chemical 

enhancement although less understood than the electromagnetic mechanism, this 

occurs as a consequence of the manner of the analyte molecule’s interaction with the 

metal nanostructure, particularly if the molecule is adsorbed onto the substrate’s 

surface.  

The proximity of the metal adsorbate can allow electronic couplings, which produce 

charge – transfer intermediates that possess higher Raman scatter than the individual 

analyte or that the molecular orbital of the adsorbate (analyte) broaden into the 

conducting electrons of the metal (substrate), altering the analyte’s chemistry and thus 

its Raman intensity 
114

.  

 

1.22 Chemiresistor Sensors 

One of the sensor disciplines in which nanotechnology is having a significant impact 

is in chemiresistor – based sensors, whose resistance changes in the presence of an 

analyte. Metal nanoparticles embedded in a matrix have proven highly effective, 

producing a nanocomposite that can utilise not only the nanoparticulates properties, 

but those of its base as well (e.g. polymers, sol gels etc.) 
115

. The use of resistive – 

type polymeric sensors is also of huge interest, as they are easy to prepare, 

inexpensive, have a fast response and also have good compatibility with modern 

circuit technology 
101

. J. Riu et al 
68

, have described the development of multiple 

nanosensors highlighting their potential and current applications in environmental 

analysis. The authors describe a variety of sensor types, including localised surface 

plasmon resonance (LSPR) and luminescence biosensors based on monitoring how 

individual nanoparticle’s and nanocluster’s novel optical properties are affected by the 

surrounding environment.  

Other sensing devices characterised in the work include highly sensitive, selective, 

and reversible electrochemical sensors established on nanocomposite materials. These 

sensors have the added advantage of inherent flexibility as their composition can be 

tailored for the analyst’s needs. For example the authors describe simple resistance 

based sensors that incorporate nanostructures with different organic matrices for the 

detection of a diverse range of analytes, including ammonia and toluene. 

As described above, chemiresistor sensors have many potential applications, 

particularly in environmental monitoring, 
8
 however the sensors can become unstable 

in extreme environments. The preparation of a nanocomposite can counteract the 
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existing weaknesses of conventional sensors by combining the strengths of 

nanoparticles with the composite material 
117

.
  

 

1.23 Humidity  

Humidity Refers to the water vapour content in air or other gases. It can be measured 

in a variety of terms and units. The three more commonly used terms are 

 

• Absolute humidity, the ratio of the mass of water vapour to the volume of air 

or gas, expressed in grams per cubic meter. 

 

• Dew point, expressed in °C or °F, is the temperature and pressure at which a 

gas begins to condense into a liquid. 

 

• Relative humidity (RH), expressed as a percentage, refers to the ratio of the 

moisture content of air compared to the saturated moisture level at the same 

temperature and pressure.  

 

Relative humidity is the most useful and most often used in real world situations and 

therefore will be the focus of this discussion.  

 

1.24 Commercial humidity sensors 

Rapid advancements in semiconductor technology, such as thin film deposition, ion 

sputtering, and ceramic/silicon coatings, has resulted in the commercial production of 

highly accurate humidity sensors with resistance to chemicals and physical 

contaminants. No single sensor, however, can satisfy every application with 

environmental conditions dictating the choice of sensor. It is also the case that the 

majority of commercial RH sensors are either capacitive or resistive with each 

technology offering distinct advantages 
118

. 

Capacitive RH sensors consist of a substrate (typically glass, ceramic, or silicon) on 

which a thin film of polymer or metal oxide is deposited between two conductive 

electrodes. The sensing surface is coated with a porous metal electrode to protect it 

from contamination and exposure to condensation.  
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The sensor’s mechanism is based on the proportional changes to the dielectric 

constant of the sensing layer by the relative humidity of the surrounding environment. 

The capacitive RH sensors are widely used in industry as they are characterised by 

their low temperature coefficient, ability to function at elevated temperatures (up to 

200 °C), full recovery from condensation, relatively short response times (30 to 60 s 

for a 63% RH step change), and reasonable resistance to chemical vapours 

Modern capacitive sensors take advantage of semiconductor manufacturing methods 

to yield sensors with minimal long-term drift and hysteresis.  However they can be 

limited by the location of the sensing element in the signal conditioning circuitry, this 

is due to the capacitive effect of the connecting cable with respect to the relatively 

small capacitance changes (0.2 – 0.5 pF per 1% RH change) of the sensor 
119 – 121

.  

Resistive humidity sensors measure the change in electrical impedance (typically an 

inverse exponential relationship to humidity) of a hygroscopic medium such as a 

conductive polymer, salt, or treated substrate. Impedance is measured because the 

"resistive" sensor is not purely resistive, as in capacitive effects are present for 

resistances greater than 10 – 100 MΩ.  

Resistive RH sensors consist of noble metal electrodes either deposited on a substrate, 

coated with a salt or conductive polymer, by either photoresist techniques or wire – 

wound electrodes on a plastic or glass cylinder. At elevated humidities the sensor 

absorbs water vapour and the ionic functional groups of the sensing coating are 

dissociated, resulting in an increase in its electrical conductivity.  

Resistive RH sensors are also used throughout industry because of their small size, 

low cost, rapid response times (10 to 30 s for a 63% RH step change) and long-term 

stability (general life expectancy of over 5 years). Another desirable quality is that 

resistive humidity sensors are generally field replaceable, this is because of the 

sensor’s interchangeability, within ± 2 % RH, which allows the electronic signal 

conditioning circuitry of the resistor to be calibrated at a fixed and known RH, 

eliminating the need for humidity calibration standards 
122 – 124

.  

Resistive RH sensors can be damaged by exposure to chemical vapours and other 

contaminants such as oil mist, which may lead to premature failure of the sensor. 

Other drawbacks of some resistive sensors are their tendency to shift values when 

exposed to condensation if a water-soluble coating is used and significant temperature 
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dependencies when installed in an environment with large (> 10 °C) temperature 

fluctuations.  

To counteract such limitations in environments where condensation occurs, resistive 

humidity sensors have been developed using a ceramic coating. The sensors consist of 

a ceramic substrate with noble metal electrodes deposited by a photoresist process and 

coated with a conductive polymer/ceramic binder mixture (a ceramic powder 

suspended in liquid form). After the surface is coated and dried, the sensors are heat 

treated resulting in a clear non-water-soluble thick film coating that fully recovers 

from exposure to condensation 
125 – 127

. 

 

1.25 Humidity Sensing Materials 

Humidity sensing materials can be grouped into two types; ceramics and polymers. 

Both possess good chemical and thermal stability, environmental adaptability and a 

wide range of working temperatures. Often the sensing mechanisms these materials 

employ are their surface electrical conductivity or the dielectric constant, which are 

affected by the adsorption of water vapour. Polymer-based humidity sensing materials 

possess some advantages in comparison to ceramics; including a higher sensitivity, 

decreased humidity hysteresis, low cost, flexibility and easy processability 
92 - 93

. For 

example, J. Wang et al. 
128

 describe the improved humidity sensing capability and 

stability seen by combining nano BaTiO3 with acrylic resin as a nanocomposite 

humidity sensor. The authors determined that the electrical properties of the sensor, 

including resistance versus relative humidity, humidity hysteresis, response recovery 

time and long term stability of the composite sensor were better than that of a sensor 

composed just of the nano BaTiO3. Work by P.G. Su and L.N. Huang 
129

, comparing 

resistive type humidity sensors fabricated from pure polypyrrole and a TiO2 

polypyrrole nanocomposite came to the same conclusion, as sensors based on the 

nanocomposite showed higher sensitivity and better linearity, smaller hysteresis, 

faster response / recovery times and better long – term stability than the sensor 

without TiO2 nanoparticles.  

Similar research has lead to multiple reports on chemical polymerisation and 

electrochemical techniques for the preparation of polymer nanocomposites for gas and 

humidity sensor applications 
130 – 132

. 
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1.26 Impedance Spectroscopy 

Resistance is the ability of a circuit to resist the flow of current; this concept of 

electrical resistance is well known and is defined by Ohm’s law 

 

I

V
R =    1.24 

   

where R  is resistance in ohms, V  is voltage in volts, and I  is current in amperes. 

Ohm’s law, however, is limited to one circuit element, the ideal resistor. This has 

several simplifying properties: 

 

• It follows Ohm's Law at all current and voltage levels. 

• Its resistance value is independent of frequency. 

• AC current and voltage signals though the ideal resistor, are in phase with 

each other. 

 

 As many real world systems exhibit more complex behaviour it is necessary to 

develop the concept of impedance. Like resistance, impedance is a measure of the 

ability of a circuit to resist the flow of electrical current. Unlike resistance, impedance 

is not limited by the simplifying properties listed above 
133 – 136

.  

  

ac

ac

I

V
Z =   1.25 
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Figure 1.11. A sine wave voltage applied to an electrochemical cell and the current 

response as a function of time. 

 

When a sine wave voltage applied to an electrochemical cell, for example, the current 

response is also a sine wave, but it is shifted in time due to the slow response of the 

system. This time shift can be expressed as an angle, Θ  (figure 1.11). 

The magnitude of the system’s impedance, Z , can be determined from the ratio of 

the size of the voltage, and that of the current.  

Impedance is expressed graphically using a Bode plot (often used to display 

Electrochemical Impedance Spectroscopy, EIS, data), where both the magnitude, Z , 

and phase, Θ , of the impedance as well as the frequency, f  (in cycles per second, or 

Hertz), at which it was measured is reported (figure 1.12). 
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Figure 1.12: Bode Plot with One Time Constant  

 

 

 

 

Figure 1.13: Vector representation, polar coordinates (A) and Complex Plane 

representation, Cartesian coordinates, (B) both specify the same point. 

 

The Z  and Θ information from the Bode plot can also be displayed either in polar 

form as a vector, (figure 1.13A) the length of the vector is equal to Z  and the phase 

angle, Θ , is the rotation of the vector.  

It is possible to express the end position of the vector in Cartesian coordinates as 

shown in Figure 1.13B. This means that point in the complex plane can be identified 

either as ( Z , Θ ) in the polar coordinates or as ( X ,Y ) in the Cartesian coordinates. 
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Moreover by re – labelling the axes as Real (X axis) and Imaginary (Y axis), the point 

in the Complex Plane may also be expressed as a complex number (Real, Imaginary) 

 

jYXZ +=  where 1−=j   1.26 

 

The “complex” or “imaginary” number ( j ) is a mathematical way of expressing and 

manipulating the impedance vector. The values of the “real” ( X ) and the “imaginary” 

parts of the impedance (Y ) are as 'Z  and ''Z  respectively. The magnitude of a 

complex number (or the magnitude of an impedance) can be easily calculated by 

 

ZZZZ
magnitudeimre

==+
22

  1.27 

 

Plotting the impedance measured at a number of frequencies on the Cartesian axes, 

gives a Nyquist plot. 

 

Figure 1.14. Nyquist plot magnitude and phase 

 

Both plotting formats are used because each has its strengths and certain features that 

are difficult to identify in the Nyquist plot may be readily apparent in the Bode plot, 

and vice versa.  

The Bode plot shows the frequency directly and small impedances are identifiable in 

the presence of large impedances. The Nyquist plot also allows individual impedances 

to be resolved, but the frequency is not explicitly shown. Small impedances in a 

Nyquist plot may be difficult to identify in the presence of large impedances.  
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Electrochemical Impedance Spectroscopy (EIS) is a useful technique for both the 

analysis and modelling of electrochemical systems, this is because electrochemical 

systems such as coated surfaces or corroding metals often behave like simple 

electronic circuits, using EIS a few simple circuit elements can be examined and 

modelled.  

For example a simple resistor was discussed earlier in terms of Ohm’s law when a 

sine wave voltage is applied across a resistor, the current will also be a sine wave, 

because the current through a resistor reacts instantaneously to any change in the 

potential applied across it.  

The current sine wave would be in phase with the voltage sine wave meaning there 

would be no time lag so the phase angle of a resistor’s impedance (
acac

IVZ = ) is 0°. 

Furthermore as the current sine wave is exactly in phase its amplitude depends only 

on the resistance R  (in ohms) and the amplitude of the voltage sine wave. This means 

that the impedance of a resistor is easy to write as a complex number. Since the phase 

angle is always 0, the end of the “vector” always lies on the X , or real axis. The Y  

(imaginary) component is always zero. 

 

imreresistor
jZZZ +=   1.28 

     0jR +=  

     R=  

 

Consequently the Bode plot for a resistor is quite simple as the impedance of a 

resistor is independent of frequency, the Bode magnitude plot is just a horizontal 

straight line.  

 

Another simple yet useful, electronic circuit element is a capacitor; its impedance 

current would be out – of – phase with the voltage by 90 °. As a result the sine wave 

voltage waveform applied results in a cosine current waveform with the current 

reaching a maximum when the voltage crosses through zero.  

The magnitude of the current also depends on frequency. The higher the frequency, 

the more rapidly the voltage changes, and the higher is the voltage sine wave. Since 

IVZ = , a larger current at higher frequencies leads to a smaller impedance therefore 

as the frequency approaches zero, the current also approaches zero and the 
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impedance, Z , becomes infinitely large. The impedance of a capacitor can be 

expressed as 

 

 

  
imrecapacitor

jZZZ +=   1.29 

         )]2(1[0 fCj π−+=  

          )]2(1[ fCj π−=  

 

Because the impedance of a capacitor varies with the inverse of the frequency the 

Bode magnitude plot for a capacitor is a straight line with a slope of –1 and because 

the phase shift of a capacitor is always 90°, the Bode phase plot is a horizontal line at 

–90°. 

Through the combination of these two simple circuit elements it is possible to model 

electric circuits using EIS. 

 

1.27 Overview of Study 

The development of nanotechnology has produced new opportunities for research, it 

is also clear that the unique properties of silver nanoparticles has resulted with them 

being one of the most commonly investigated in multiple scientific fields 
27

. This 

work involved the synthesis of silver nanoparticles and the investigation of their 

usefulness in sensor based research.  

Primarily the study involved chemiresistor sensors; through the preparation of a 

simple polymer (PVA) nanocomposite and its application as a chemiresistor gas 

sensor. The sensor showed promise as a humidity sensor, giving a rapid and reversible 

response at standard temperature and pressure, the response was selective and 

proportional to % RH with a range of 10% to 60% RH 
137

.  

The focus of the work then shifted to the inherent optical properties of silver 

nanoparticles, and the development of a rapid synthesis for tuneable silver colloids 
138

, 

followed by their application in the SERS technique. Here the nanostructures 

displayed SERS activity whether as colloids or cast as films. This prompted further 

investigation of the film substrate’s capabilities and the influence of external 

parameters on signal response. Finally, the effectiveness of the films for SERS as an 

analytical technique for a real world application was investigated. 
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2. Synthesis and Characterisation of Silver Nanoparticles 

2.1 Introduction 

Metallic nanoparticles may be synthesised by a variety of methods, which can 

produce particles of multiple morphologies for a diverse range of applications 
1-5

. The 

major route reported in the literature is by the production of colloidal dispersions 

using chemical – reduction methods. This method of metallic nano synthesis, long 

established 
6
, which classically involves the reduction of the metal by chemical 

means, is very popular due to the relative ease of production of nanomaterials. The 

process’ advantages being, mild reaction conditions, low energy consumption, and 

simple separation procedures, coupled with high yields and relatively short reaction 

times 
7
.   

General methods of colloid synthesis like the Lee – Meisel method 
8 

are 

uncomplicated and hence popular modes of producing silver colloids. In such 

processes, initially, solutes are formed to yield a supersaturated solution, leading to 

nucleation. The formed nuclei may further grow by a diffusive mechanism. The 

resulting primary particles aggregate to form secondary particles. This latter process is 

sometimes facilitated by changes in the chemical conditions in the system: the ionic 

strength may increase, or the pH may change, causing the surface potential to 

approach the isoelectric point. Formation of the final (secondary) particles, of narrow 

size distribution, is a diffusion-controlled aggregation process, proceeding via the 

addition-polymerization type growth by irreversible capture of primary particles by 

the aggregates.  

 

 
 

Figure 2.1: Chemical colloid synthesis 

 

The final morphology of the nanoparticles is mostly determined by experimental 

conditions such as, the reducing and stabilising agents 
7
. It follows that adjustments to 
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the fabrication technique can give significant changes to the nanoparticles 

morphology, for example using citrate as the reducing agent requires additional 

energy (e.g. increased temperature) to produce a colloid whereas sodium borohydride 

readily reduces the silver ions in a solution; this is also true for the choice and 

concentration of stabilising agent used for instance, smaller particles are obtained by 

increasing the stabiliser concentration 
9 – 10

. 

Moreover as the potential applications of metallic nanoparticles continue to increase, 

current industry needs now demands quicker, simpler, greener, more cost effective, 

robust and reliable means of nanomaterial production. The demand for customised 

nanostructures is application driven; due to the novel features exhibited by silver 

nanomaterials that are dictated by the particle’s structure.  

This is highlighted in the work of J.M. Kelly et al. 
11 – 12 

where the colour and hence 

plasmonic properties of silver nanostructures are process directed. The authors outline 

a two step synthesis process where the basis from which the subsequent coloured 

colloids are grown. A seed solution is produced through; the chemical reduction of a 

silver salt (AgNO3) by sodium borohydride while being stabilised by citrate in the 

presence of polymer (poly vinyl pyrrolidone, PVP or poly (sodium styrene 

sulphonate), PSSS) which further stabilises the nanostructures while simultaneously 

directing the particles morphologies. The growth process involves the addition of the 

seed solution to set volumes of the polymer and citrate stabilisers, silver salt and 

ascorbic acid. The colour change was controlled by the nanostructure’s size which, in 

turn is determined by either the concentration of citrate
 11 

or the seed itself
 12

. The 

authors aim to capitalise on the unique and controlled optical properties of these silver 

nanostructures through their integration with spectrochemical analysis techniques 

such as surface enhanced Raman spectroscopy SERS (discussed later in chapters 4 – 

6).   

The development of composite materials is another area of interest as researchers 

attempt to exploit nanostructure’s distinctive features by coupling them with other 

materials in nanocomposites. This is particularly evident with the development of 

nanoparticle – polymer composite sensing coatings, such as nanocomposite gas 

sensors (see chapter 3). These sensors are often resistance based and their mechanism 

of action is dependent on the conductivity of the composite coating. The composite is 

generally made up of polymer protected metallic nanostructures, with the organic 

compound in place to prevent aggregation. The particles presence alters the dielectric 
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constant of the polymer medium, as electric conduction between the metal particles is 

possible, thus establishing a set resistivity of the nanocomposite layer/coating. The 

introduction of a target analyte to the system may be monitored by a change in the 

property of the polymer, with the absorption of the vapour swelling the polymer and 

increasing the distance between the conducting metallic nanoparticles 
13 – 15

. This and 

similar sensing nanocomposite mechanisms are dependent on the consistent 

fabrication of nanoparticles with uniform features and hence properties.       

In this work silver nanoparticles were synthesised by a chemical reduction process in 

order to produce aqueous colloidal dispersions. The synthesis method was specific to 

the nanostructures intended application. Therefore two general methods were utilised, 

a one step/pot synthesis (nanocomposite with high Ag load and uniform particles) and 

a heterogeneous nucleation (nanoparticles with tuneable optical properties).  In both 

cases the resulting colloids were then characterised by a combination of UV-Vis 

spectroscopy, dynamic light scattering, X-Ray diffraction and transmission electron 

microscopy. 

Tolaymat
2
 reported in an extensive review (section 1.8) that the most popular 

synthesis processes involved the chemical reduction of silver nitrate by either sodium 

borohydride or sodium citrate.  

 

 −−
+++→+ 3622

0

43 2
1

2
1 NOHBHAgBHAgNO   2.1 

 

=+−−
++++→+ 32

2

545

03

7563 222 NOCOHOHCAgOHCAgNO   2.2 

 

It should be noted however, that throughout the literature the ratio between +
Ag  and 

−

4BH  is not quantified. Rather it is stated that −

4BH  was added in excess, as −

4BH  is a 

strong reducing agent it often reduces water in a simultaneous competing reaction and 

thus its effectiveness is diminished. However excessive addition of −

4BH  can result in 

unwanted aggregation of the nanoparticles, and limit synthesis control. Therefore 

Job’s method was conducted to confirm the stoichiometry of the reaction.  

‘‘Job’s method or the method of continuous variation, is a simple and effective 

approach to the determination of chemical reaction stoichiometry and is based on the 

following principle: if a series of solutions is prepared, each containing the same total 



Synthesis and Characterisation of Silver Nanoparticles           Chapter 2 

  56   

number of moles of A and B, but a different ratio, R, of moles B to moles A, the 

maximum amount of product, D, is obtained in the solution in which R = k (the 

stoichiometric ratio)” 
5
. 

 

2.2 Experimental  

2.2.1 Reagents 

Silver nitrate (purum p.a. > 99.0%), sodium borohydride (reagent Plus 99%) 

polyvinyl alcohol (PVA), (99 + % hydrolyzed, typical M.W. 89000-98000 gmol
-1

), 

tri-sodium citrate (TSC), (purum p.a., ≥ 99.0%) and hydrazine (reagent grade, N2H4) 

were all purchased from Sigma Aldrich and used as received without further 

purification. 

 

2.2.2 Apparatus  

Characterisation of the silver nanoparticles involved several techniques including UV-

Vis absorption spectroscopy and dynamic light scattering (DLS), which were 

conducted using a Perkin Elmer Lambda 900 Spectrometer and a Malvern nano series 

Zetasizer, respectively. Transmission Electron Microscope (TEM or STEM) images 

were captured with a JEOL, 100CX Transmission Electron Microscope or a Hitachi 

SU 6600 FESEM and X-Ray diffraction (XRD) analysis was conducted using a 

Siemens Diffractometer, Model D500. 

 

2.3 Silver nanocomposite / colloid synthesis 

In the nanocomposite preparation, the silver nanoparticles were synthesised by 

chemical reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4) in an 

aqueous medium with PVA as the capping (stabilising) agent. The role of PVA as a 

capping agent is well-documented 
16

, and it was observed that, in this case, without 

the presence of the PVA, the stability of the colloids was drastically reduced with 

metallic silver formed due to aggregation of nanoparticles. PVA has been widely used 

for polymer nanocomposites due to its water solubility allowing a simple ‘green’ 

water based synthesis 
17

.  
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2.3.1 Silver nanocomposite / colloid recipe  

The overall aim of this portion of the study is to utilise the prepared nanoparticles, 

within a composite coating for chemical (in the form of a gas) sensing – detailed in 

chapter 3. As explained previously optimisation of the colloidal recipe was necessary 

to ensure the nanoparticles are reasonably monodisperse and have a nanoparticle to 

monomer volume ratio of approximately 1:1, 
14 – 15

. To do so the relative volume of 

the polymer to silver was determined using the simple “marbles in a box” model.                                              

 

 

      Volume of Cube: L
3  

 

Volume of Sphere: 4/3 ππππ r
3
                                      

                                                                         r = L/2 

⇒  Volume of Sphere: 4/3 ππππ (L/2)
3 

                               

                                                      
                                4.1762 (L

3
/8)

 

                                                                    0.52 L
3
 

⇒ Sphere occupies ~ 52% of the cubes volume.                                                                                

Basing this on a colloid of total volume 10 cm
3
, 

Volume of Ag in the colloid was determined as, 

0.5 cm
3
 of 1 M AgNO3 was present in each colloid,  

Atomic weight of AgNO3: 169.67 g/dm
3
 

Atomic weight of Ag: 107.90 g/dm
3
 

⇒ In 0.5 cm
3
 of 1M AgNO3 there is 53.92 x 10

-3 
g of Ag 

     Density of Ag: 10.50 g/cm
3  

⇒ Volume of silver in colloid and resulting film: 53.92 x 10
-3

/10.5 = 5.14 x 10
-3 

cm
3
 
 

      = 52% of cubes volume. 

⇒ Volume of polymer (PVA) required = (5.14 x 10
-3

 /52) x 48 = 4.74 x 10
-3 

cm
3
 

⇒ Mass of PVA required = Volume x Density = 4.74 x 10
-3

 cm
3
 x 1.2690 g/cm

3
 

      = 6.02 x 10
-3 

g  

Using 1% PVA solution ⇒ 1 g / 100 cm
3 
⇒ 0.0100 g/cm

3
  

⇒ Volume of 1% PVA required = 6.02 x 10
-3 

g / 0.0100 g/cm
3
 = 0.602 cm

3 

This recipe ensured that colloids were of high Ag concentration (~ 5000 ppm). A        

1 Ag : 1 PVA monomer was prepared. Experimentation proved that best results were 

observed where the reagents were kept at low temperatures ( ≤  4 
o
C – on ice) during 
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synthesis. Characterisation of the silver nanoparticles was then conducted to confirm 

their uniformity.  

 

2.3.2 High load silver nanocomposite / colloid preparation 

1 M AgNO3 (0.5 cm
3
) and 1% PVA (0.66 cm

3
) were mixed together with deionised 

water (Millipore, 2.84 cm
3
) in a beaker (50 cm

3
) and placed in an ice bath with 

constant agitation. To this cold ( ≤  4 
o
C) 0.001

 
M NaBH4 (6 cm

3
) was added 

dropwise, producing a dark brown colloid. 

 

2.4 High load silver nanocomposite colloid characterisation 

2.4.1 UV-Vis analysis – Perkin Elmer, Lambda 900 Spectrometer 

The absorption spectrum of the colloid, shown in Figure 2.3, indicates the production 

of the nanoparticles where the presence of a plasmon absorption band at ~ 400 nm is 

characteristic of silver nanoparticles 
18

.  
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Figure 2.3: UV-Vis spectrum of stable aqueous colloidal Ag polymer mixture, with λ 

max of 391 nm.  [Ag
+
] = 1M (0.5cm

3
), [PVA] = 1% wt/wt (0.66 cm

3
), [NaBH4] = 

0.1M (6cm
3
) diluted to 10cm

3 
and maintained at a low temperature. 

 

The spectrum illustrated in
 
figure 2.3 displays the characteristic Surface Plasmon 

Resonance (SPR) of silver nanoparticles, commonly seen in the literature
 19 – 21

.  
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2.4.2 Job’s Method 

The stoichiometric ratio of Ag
+
 to BH4

-
 in the PVA stabilised colloids was determined 

using Jobs method 
22

. A series of solutions was prepared, each containing the same 

total number of moles of Ag
+
 and BH4

-
, but utilising different ratios. The solution 

with the maximum amount of product (nanoparticles) yields the stoichiometric ratio 

19
.
 
The maximum absorbance at 400nm for the range of solutions prepared was 

observed in the solution, which corresponded to a ratio of 1:1 for +
Ag  and −

4BH as 

can be seen in
 
figure 2.4.  
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Figure 2.4: Graphical representation of the findings of Jobs method analysis, 

stoichiometry of AgNO3 and NaBH4 shown to be approximately 1:1 

 

2.4.3 Dynamic light scattering, DLS – Malvern nano series Zetasizer 

DLS, shown in Figure 2.5a, confirmed the production of particles ranging in size 

between about 8 nm – 38 nm, with an average diameter of 21 – 22 nm  

Size analysis by DLS utilises the Brownian motion that particles, emulsions and 

molecules in suspension undergo as a result of bombardment by solvent molecules. If 

the particles are illuminated with a laser, the intensity of the scattered light fluctuates 

at a rate that is dependent upon the size of the particles as smaller particles are “hit” 

more frequently by the solvent molecules and move more rapidly. Analysis of these 
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intensity fluctuations yields the velocity of the Brownian motion and hence the 

particle size using the Stokes-Einstein relationship 
23

.
   

 

r

Tk
D

B

πη6
=    2.4 

 

Where D  is the diffusion constant (m
2
s

-1
), 

B
k  is Boltzmann's constant (JK

-1
), T  is 

the absolute temperature (K), η  is the viscosity of the solvent (kgm
-1

s
-1

) and r  is the 

particle radius (m). It should be noted that this technique does assume that the 

particles analysised are spherical. 

 

 

Figure 2.5a: Distribution of particle diameters within the Ag PVA colloid determined 

by DLS. This sample was prepared in an identical manner to that in figure 2.3. 

 

2.4.3.1 Zeta potential  

As described in section 1.6, zeta potential is a good indicator of colloidal stability. 

Figure 2.5b shows the zeta potential distribution for the aqueous colloid, with a zeta 

potential of - 43.4 mV the colloid can be considered sufficiently stable. 
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Figure 2.5b Zeta potential distribution of the aqueous based Ag PVA colloid. This 

sample was prepared in an identical manner to that in figure 2.3. 

 

2.4.4 Transmission electron microscopy, TEM – JEOL, 100CX Transmission 

Electron Microscope 

Using TEM, an image of the nanoparticles, (Figure 2.6a) was obtained arising from 

the interaction of the composite and the beam of electrons transmitted through it. 

Before analysis, the colloidal sample (prepared in the same manner as Figure 2.3) was 

diluted in methanol and sonicated for 30 mins, before being cast onto the TEM grid 

(Agar scientific, formvar/carbon 200 mesh (Cu)) by drop coating. The average 

diameter of the nanoparticles was determined to be in the range of 21 – 22 nm, using 

ImageJ software 
24

 which is in good agreement with the DLS result. Figure 2.6b gives 

a breakdown of the diameters determined from a sample group of 250 nanostructures.  
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Figure 2.6a. TEM image of silver nanoparticles stabilised with PVA. Colloidal 

dispersion was prepared as in Figure 2.3 and then diluted by a factor of 10 with 

methanol. The average diameter of nanoparticles were 21 – 22 nm, was determined 

using Image J.  

 

Figure 2.6b.Distribution of diameters of silver nanoparticles for 250 TEM 

measurements analysised with ImageJ. 
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2.4.5 X-Ray Diffraction, XRD – Siemens Diffractometer, Model D500 

X-ray diffraction (XRD) analysis was conducted on the nanocomposite after it was 

cast onto a glass substrate. A number of strong Bragg reflections were observed which 

correspond to the (111 - ~ 39
o
), (200 - ~ 45

o
), (220 – ~ 66

o
), (311 – ~ 79

o
) reflections 

of face centred cubic silver 
25 - 28

, figure 2.7, indicating that the silver nanoparticles 

within the coating are crystalline. It should be noted that the peak at ~ 48
o
 can be 

attributed to the presence of residual sodium 
29

 arising from the synthesis process. 

Figure 2.7: XRD pattern recorded from a drop-coated film of nanocomposite on glass 

substrate. 

 

2.4.5.1 Scherrer equation 

In XRD a perfect crystal would extend in all directions to infinity, therefore no crystal 

is perfect due to its limited size. Such a deviation from perfect crystallinity leads to 

the broadening of the diffraction peaks (Bragg reflections). This type of peak 

broadening is negligible when the crystallite sizes are larger than 200 nm, however it 

may be used to correlate the size of nanoparticles 
30

. 

 

θβ

λ
τ

cos

K
=      2.5 

    

where K  is the shape factor a dimensionless shape factor has a typically about 0.9 

(assumes that nanoparticles are spherical), λ  is the x-ray wavelength, β  is the line 
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broadening at half the maximum intensity (FWHM) in radians, θ  is the Bragg angle 

and τ  is the mean size of the ordered (crystalline) domains. In this case again with 

the assumption that the nanoparticles were spherical it was determined that the 

nanostructures had a diameter of the order of 21 – 22 nm. 

 

2.5.1 Colloids with tuneable optical properties 

Another series of silver colloids were prepared by heterogeneous nucleation 
19 – 20

. 

First a seed solution was prepared by the chemical reduction of AgNO3 with NaBH4 

in the presence of a stabiliser and capping agent, polyvinyl alcohol (PVA)
 17

. The seed 

solution was then added to a mixture of tri sodium citrate (TSC) and hydrazine 

(H4N2), and agitated to produce a homogeneous ‘growth’ solution.  To this, set 

volumes of AgNO3 were added, producing the different colloids by crystal growth. 

The different volumes of excess AgNO3 that were added to the growth solution 

determined the morphology, and therefore the colour, of the nanoparticles in the 

solution. 
 

 

 

Figure 2.8: Colloids of tuneable optical properties. 

 

2.5.2.1 ‘Seed’ production 

0.001 M AgNO3 (2 cm
3
) and 1% PVA (2 cm

3
) were mixed together in a beaker (50 

cm
3
), to this cold ( ≤  4

o
C) 0.001

 
M NaBH4 (2 cm

3
) was added dropwise, producing 

the ‘seed’ solution, a golden yellow colloid. 

 

2.5.2.2 Preparation of coloured colloids 

In a beaker (250 cm
3
) 1% PVA (1 cm

3
), the ‘seed’ solution (1 cm

3
), 0.1 M TSC (3 

cm
3
) and 0.1 M H4N2 (5 cm

3
) were mixed producing a pale green solution. To this, set 
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volumes of 0.001M Silver Nitrate were added to produce the appropriate colloid, see 

table 2.1 

0.001 m AgNO3 (cm
3
) Colour 

0.40 Yellow 

1.00 Orange 

1.30 Red 

2.50 Purple 

6.00 Blue 

20.00 Green 

Table 2.1:  Summary of volumes of 0.001 M AgNO3 and the resulting colloids. 

 

2.5.2.3 UV-Vis analysis – Perkin Elmer, Lambda 900 Spectrometer 

The absorption spectrum of the ‘seed’ colloid, shown in Figure 2.9, again indicates 

the production of the nanoparticles with the presence of a characteristic plasmon 

absorption band 
18

.  
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Figure 2.9: UV-Vis spectrum of stable aqueous colloidal Ag seed solution, with λ 

max = 393 nm. [Ag
+
] = 0.001M (2.0 cm

3
), [PVA] = 1% wt/wt (2.0 cm

3
), [NaBH4] = 

0.001M (2.0 cm
3
), with a total volume of 6cm

3
. 
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Figure 2.10: UV-Vis spectra of aqueous coloured Ag colloids. General make up of 

colloids [PVA] = 1% wt/wt (1.0 cm
3
), seed solution (1.0 cm

3
), [TSC] = 0.1M (3.0 

cm
3
), [H4N2] = 0.001M (5.0 cm

3
) + [AgNO3] = 0.001M (X cm

3
).  

 

The absorbance spectra of the different coloured colloids in figure 2.10, clearly 

changes as the nature of the colloids themselves do. It should be noted that for smaller 

particle size ranges e.g. Yellow, a narrower/sharper absorbance band is observed 

while Blue with a wider particle size range clearly has broader peaks. The λmax shifts 

position with changes in the nanoparticles size and shape.  

The different nature of each colloid is also highlighted in the UV-Vis spectra of the 

green colloid where two distinct absorbance peaks are observed as a result of the 

interaction of two species (types) of nanoparticles i.e. the larger blue nanoparticles 

and the smaller yellow nanoparticles, (these are the most likely species contributing to 

the green as the peaks are seen to have similar λmax’s – Yellow 445 nm, Blue 670nm, 

Green band 1, 405 nm, band 2, 648 nm) while the other colloids exhibit just one 

distinct band (which can however display a shoulder, but this could be attributed to 

band broadening due to the wider particle size range).  

 

2.5.2.4 Dynamic light scattering, DLS – Malvern nano series Zetasizer 

The DLS results for each colloid fit the expected trend indicated by the previous UV-

Vis analysis. A breakdown of the UV-Vis, DLS results is supplied in table 2.2. It can 
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be seen that the λmax shifts with particle size as seen elsewhere in the literature
 11 – 12, 19 

– 21, 28 – 33
.  Note that although the methodologies of preparing the seed solution and the 

high load are quite similar, a single change in the relative concentration of the capping 

/ stabilising agent (significant increase) drastically affects the size 
9 – 10

 of the 

nanoparticles produced from ~ 20 nm to ~ 8 nm as can be seen in figure 2.11.  

 

Figure 2.11 a: Distribution of particle diameters within the ‘seed’ Ag colloid. 

 

 

Figure 2.11 b: Distribution of particle diameters within the Blue Ag colloid. 
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Figure 2.11 c: Combined graphical representation of the distribution of particle 

diameters of the nanoparticles in the coloured Ag colloids. Individual DLS graphs are 

included in appendix A.2.2. 

 

Colour UV-Vis λλλλ max DLS DLS 

  Particle Size Range Average Size Range 

Seed 393 nm 5 – 14 nm 8 – 9 nm 

Yellow 445 nm 6 – 28 nm 20 – 22 nm 

Orange 473 nm 11 – 38 nm 30 – 33  nm 

Red 495 nm 21 nm – 60 nm 40 – 42  nm 

Purple 555 nm 35nm – 70 nm 51 – 54 nm 

Blue 670 nm 57 nm – 105 nm 58 – 65 nm 

Green 405 nm & 648 nm 11 – 250 nm 91.1 % 20- 21 nm & 8.9 % > 60 nm 

Table 2.2: Summary of Colloids UV-Vis λ max’s and DLS results. 

 

2.5.2.5 Electron microscopy – JEOL, 100CX Transmission Electron Microscope / 

Hitachi, SU 6600 FESEM 

Images of the nanoparticles (figure 2.12) were obtained from the interaction of a beam 

of electrons transmitted through a dried film of the colloid. Before analysis, the 

colloidal samples (prepared in the same manner as outlined in Figure 2.9 and Table 

2.2) were diluted in ethanol and sonicated for 30 mins, before being cast onto the 

TEM grid (Agar scientific, holey carbon 200 mesh (Cu)) by drop coating. The 



Synthesis and Characterisation of Silver Nanoparticles           Chapter 2 

  69   

average diameters of the nanoparticles were determined, using Zeiss axiovision 

software 
34

 and correlated well with the DLS results. Note; additional TEM and 

STEM images appear in appendices A.2.3 and A.2.4 respectively.  

 

 

Figure 2.12a : A TEM image of silver nanoparticle (seed  colloid) with an average 

diameter range of   ~ 9 nm. 
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Figure 2.12b : A STEM image of silver nanoparticles (blue colloid) with an average 

diameter range of 58 - 60 nm. Image taken by Anne Shanahan MSc. - Instrumental 

Support – Focas Institute 
 

2.5.2.5.1 Shape of silver nanostructures of tuneable colloids 

 Whereas the majority of silver nanostructures described in the literature are spherical 

(table 1.1, section 1.8), it would be incorrect to assume that this is always the case. A 

not insignificant percentage of silver nanoparticles may be prepared in a variety of 

shapes. Alternative shapes as expected, produce different properties for the 

nanostructures. For example against gram negative bacterium Escherichia coli   

triangular silver nanoparticles have a stronger biocidal action than spherical or rod 

shaped particles 
35

.   

The different shapes of silver nanostructures may be readily observed in their 

absorption spectra, (sections 1.13 and 2.5.2.3). Figure 2.10 shows clear shifts in the 

colloid’s λ max depending on the colloid’s colour, these shifts when compared to others 

reported in the literature 
11 – 12, 36 

and those available commercially 
37

 infer that the 

nanoparticles in the tuneable colloids are not spherical as the λ max shift is too great.  

The electromagnetic microscopy data however does indicate that the structures are 

rounded, this points to the nanostructures being disc or ‘hockey puck’ shaped.    
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2.5.2.6 Colloid Stability 

The prepared colloids proved highly stable when stored appropriately (best results 

observed when stored in dark), with repeat spectroscopic (UV-Vis) analysis of the 

individual colloids over time (after a 6 month period) correlating well with initial 

analysis (figures 2.13 and 2.14). 
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Figure 2.13: UV-Vis spectra of aqueous colloidal Ag polymer mixture over a 6 month 

period, colloid was stored at room temperature 18 ± 2 
o
C in the dark. With a total loss 

of absorbance after 6 months of ~ 9.5% 
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Figure 2.14: UV-Vis spectra of blue colloid over a 6 month period, colloid was stored 

at room temperature 18 ± 2 
o
C in the dark. A % decrease of ~ 14% was observed after 

6 months. 

 

2.6 Alternative high load colloid recipes 

Following the successful application of PVA as a stabilising agent, the application of 

alternative solvent and stabilisers were investigated. Preliminary studies involved the 

use of methanol-based colloids as a means of speeding up the casting process of the 

nanocomposite films. However the use of these solvents had a detrimental affect on 

the colloid’s stability, most likely as a result of a decrease in the electrostatic 

stabilisation of the colloid due to methanol being less polar than water (section 1.6); 

confirmed by a significant drop in the observed zeta potential (figure 2.15) from         

- 43.4 mV for the aqueous based colloids to – 22.9 mV for the methanol dispersed. 

This resulted in greater concentrations of PVA being required to stabilise the system, 

negating the initial work to optimise the nanocomposite structure through defining the 

monomer to metal ratio.  

This prompted the investigation of the effectiveness of different stabilising agents 

polyvinyl chloride and a surfactant, Triton 100x.  

The surfactant (Triton 100x) was suitably effective as a stabilising agent, producing 

nanoparticles with a size distribution range of 6 – 20 nm and an average diameter of 8 

– 10 nm (figure 2.16) and displaying reasonable stability over time (figure 2.17). 
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Figure 2.15: Zeta potential distribution of the methanol based Ag PVA colloid.  

 

 

Figure 2.16: Distribution of particle diameters within the Triton stabilised Ag colloid 

 

PVC demonstrated some effectiveness as a capping agent, however its size 

distribution range was wider, 28 – 70 nm with a larger average diameter (figure 2.18). 

This wider distribution range is clearly indicated by the broad plasmon band in its 

absorbance spectra (figure 2.18).  
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Figure 2.17: UV-Vis spectra of methanol dispersed colloidal Ag Triton stabilised 

mixture over a 6 month period, colloid was stored at room temperature 18 ± 2 
o
C in 

the dark. With a total loss of absorbance after 6 months of ~ 22.3% 

 

 

 

Figure 2.18: Distribution of particle diameters within the PVC stabilised Ag colloid 
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Figure 2.19: UV-Vis spectra of PVC stabilised methanol dispersed Ag colloid over a 

6 month period, colloid was stored at room temperature 18 ± 2 
o
C in the dark. With a 

total loss of absorbance after 6 months of ~ 33% 

 

2.7 Conclusions 

Silver-polyvinyl alcohol colloidal dispersions were successfully prepared by the 

reduction of aqueous AgNO3 with NaBH4 using PVA as a capping agent. The 

colloid’s properties may be divided into two distinct sub groups; colloids with high 

silver loads, one step synthesis, or colloids with tuneable optical properties, 

heterogeneous nucleation.  For the synthesis of both sets of colloids, the 

stoichiometric molar ratio of AgNO3:NaBH4 was determined as 1:1 

The initial focus of the work was to prepare high load colloids for nanocomposite 

fabrication. Here the effect of experimental parameters was clearly evident with best 

results observed at lower temperatures (< 4
o
C). Preparation of the colloids at low 

temperatures coupled with the use of the stabilising/capping agent, PVA, also had a 

positive effect on the uniformity of the prepared nanostructures, verified by UV-Vis 

spectroscopy and Dynamic Light Scattering measurements. 

The absorbance spectra of the colloids, initially confirmed the presence of silver 

nanoparticles with the characteristic plasmon band, the narrow peak of the band 

indicating a narrow particle size range, DLS analysis determined the particle size 

range of the high load colloids to be 8nm – 38 nm (with an average of 21 – 22 nm) in 
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the colloids, which correlated well with the findings of TEM analysis where silver 

nanoparticles were observed to have an average size of 22 nm. 

A simple heterogeneous nucleation (building block) process was used to produce 

silver colloids with tuneable λ max’s (where only the concentration of one reagent 

AgNO3, is changed). The synthesis was both rapid and repeatable at room temperature 

with the resulting colloids displaying good stability over time. The optical features of 

the resultant colloids were found to be dependent on the size of the particles. The 

synthesis method utilised here showed some advantages over other techniques 

reported in the literature, with a total synthesis time from seed to coloured colloids, of 

less then 5 minutes, with no need for specialised equipment, centrifugation, 

temperature control or ‘ageing’ of the seed or reagents required. The methodology is 

also ‘greener’ then other techniques using PVA, which is deemed “Not Hazardous” 

according to directive 67/548/EEC unlike other stabilising materials. The process 

proved sufficiently robust to be used as an introductory undergraduate practical (see 

appendix, A.2.1) in the institute, highlighting the novel optical properties of metallic 

nanoparticles through the demonstration and UV-Vis monitoring of their localised 

plasmon resonance and the Tyndall effect. 
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3. Humidity Sensor 

3.1 Introduction 

In the recent past, development of nanoscale science and technology has continued at 

a rapid pace, as demand for miniaturised devices increases. Due to the novel 

physiochemical properties metallic nanostructures often exhibit and the ease at which 

such properties may be tailored, this has resulted in a marked increase in the 

fabrication of ‘smart’ materials for applications in numerous fields, including 

biomedicine, electronics, optical and magnetic devices 
1
.
 
 

Nanocomposites are multiphase solid materials where one of the phases has one, two 

or three dimensions on the nanoscale, or structures having nano-scale repeat distances 

between the different phases that make up the material. They usually combine a solid 

bulk matrix, (generally ceramic, metallic or polymer) and nanostructured ‘filler’ 

phase, the presence of which influences the mechanical, electrical, thermal, optical, 

electrochemical or catalytic properties of the nanocomposite leading to the 

nanocomposite exhibiting markedly different properties from those of the component 

materials. This is due to the exceptionally high surface area to volume ratio of the 

nano phase 
2
, which can be readily exploited in sensor applications. 

Previously, polymers have been widely utilized in a wide range of sensing devices 

with definite roles, either in the sensing mechanism or through immobilizing the 

species responsible for sensing of the analyte component. This is possible as polymers 

may be tailored for particular properties 
3 – 5

, are easily processed, and may be 

selected to be inert in the environment containing the analyte; this flexibility and 

relative low cost also means they are appealing to industry. 
6
  

Hence the coupling of specific polymers with select nanostructures 
7 

affords 

researchers the ability to further develop new and enhance existing sensing devices. 

This is illustrated best in the continued development of gas sensors, where the high 

surface area to volume ratio of nanomaterials greatly improves sensitivity as a greater 

interaction between the analyte and sensor is permitted 
8 – 14

.  

Humidity is a major component of our environment, significantly impacting on not 

only human comfort but a broad range of technologies as well. Thus relative humidity 

(RH) detection and its control are important in a wide range of industrial applications 

(see figure 3.1) including the pharmaceutical, food and electronics industries. The 

close monitoring of RH during processes can help maintain product quality and can 

also be necessary during transport of materials 
15 – 17

.
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Figure 3.1: A range of the various applications of humidity sensors in industry 
18 

 

Existing humidity sensing methodologies rely upon optical, gravimetric, capacitive, 

resistive, piezoresistive and magnetoelastic properties of selected materials 
19

. 

RH is generally measured and controlled by meters that detect change in a physical 

property of a thin film, such as capacitance, resistivity, or thermal conductivity 

(sections 1.24 – 1.26) 
20

 In this work the sensor is based on a polyvinyl alcohol (PVA) 

silver nanoparticle composite cast on an interdigital electrode array. Gas sensing films 

containing nanoparticles (chains) have been used to sense multiple analytes. 

Previously in the literature it was observed that the inter particle conductivity of films 

was reduced when the gas (analyte) penetrated and interacted with the polymer aspect 

of the composite film, causing the polymer to swell and disrupt the nanoparticle 

chain, increasing the resistivity of the film 
1, 6, 13 – 14, 21

. Based on this evidence the 

composite’s makeup was optimised to ensure that the ratio of insulating polymer 

(PVA) and Ag nanoparticle was ~1:1, see chapter 2, section 2.3. The aim of this study 

was to determine the Ag – PVA composites suitability as a sensing film, in terms of 

sensitivity, selectivity and repeatability.   

 

3.2 Experimental 

Sensor coatings were produced by casting the colloid Ag/polymer composites onto 

platinum interdigital electrodes (CC2.W2), or graphite interdigital electrodes 

(CC1.W4), purchased from BVT Technologies and used as received (figure 3.2). 0.1 

ml of the colloid was deposited by drop coating onto the surface of the electrodes and 

air drying over a period of 12 – 15 hours. Coating thickness was measured using a 

Reichert-Jung optical microscope. 
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The behaviour of the resulting coating as a humidity sensor was investigated as 

follows; a constant potential of 1V was applied across the interdigital electrode using 

a Thompson ministat potentiostat and the resulting response measured. The sensor’s 

response is a voltage signal which develops across the 1kΩ ‘counting’ resistor on the 

potentiostat. The sensing membrane’s responses to selected vapours were collected 

using a high-resolution data logger (PICO ADC 16).  

All experiments were conducted at room temperature (20 ± 2
o
C) and N2 (oxygen free 

99.998%, BOC Gases) was used as the reference gas. These vapour streams were 

produced by bubbling dry N2 gas using a bubbler apparatus, as shown in Figure 3.4. 

 

 

Figure 3.2: Schematic of BVT Technologies CC2.W* (*) conductometric sensor 

substrates, A= 4.00 ± 0.05 mm, B & C = 3.00 ± 0.05 mm 
22 
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Figure 3.3: BVT Technologies interdigital electrodes, bare (left) and with 

nanocomposite sensing coating (right) 

 

 

Figure 3.4: Bubbler apparatus schematic, the Dreschel flasks typically held a volume 

of 40 cm
3
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The sensitivity of the film’s response and suitability as a humidity sensor was further 

investigated by exposure of the sensor to a series of selected known humidity levels. 

A controlled environment chamber with a humidity control system (Electro-Tech 

systems model 503-20) was used to set each humidity level. The relative humidity 

within the chamber was maintained at a set level in the range of 10 - 100% RH ± 1% 

RH.  In addition the temperature of the environment was maintained at 21.3 ± 0.1 
o
C. 

 

3.3 Humidity measurements 

A clear response was observed when the coated substrates were exposed to water 

vapour. This response was found to be both rapid and repeatable over time. Figure 3.5 

shows the sensor’s response to repeated exposures at regular time intervals; the 

response is immediate, with a relatively consistent maximum peak height, with a total 

response time (despite a slight lag in the decay of the response signal) observed of 5 - 

10 seconds.  

Early results indicated that the coatings possessed a relatively good selectivity as a 

humidity detector. Vapour streams were produced by bubbling N2 through the 

appropriate solvent contained in an insulated Dreschel flask, (Figure 3.4), in order to 

maintain a constant temperature and thus vapour pressure/concentration. A clear 

response for water vapour was observed with no obvious response for other non-polar 

vapours such as cyclohexane, as shown in Figures 3.6 and 3.7 and summarised in 

Table 3.1. 

It can be seen from Figures 3.6 and 3.7 and Table 3.1 that there is a dramatic 

difference in response between water and a quite polar vapour, methanol. On 

magnification of the response (Figure 3.7) there is a small peak due to methanol and 

acetonitrile. However, these peaks are significantly smaller than those that would 

have been expected on the basis of their dielectric constants.  

An investigation was conducted by placing the coated interdigital electrode in a 

precisely controlled environment chamber with a humidity control system. Here the 

sensor’s response to increasing % RH at a constant temperature of 21.3 ± 0.1
o
C was 

found to be constant and relatively linear over the 10-60% RH range. Before each 

measurement, the sensor was ‘powered off’ i.e. no voltage was applied across it and 

the environment set to the % RH of interest. Before each reading, the environment 

was allowed to equilibrate for 30 mins. Figure 3.8 shows the steady state response 
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obtained in this analysis. In this case, the humidity levels being measured were 

already constant before ‘sensing’ occurred, resulting in a response with none of the 

ramping up or down seen previously in Figures 3.5 and 3.6 where the amount of water 

vapour was altered during the measurement.  

 

Figure 3.5: Representative plot of sensor’s response to a change in environment. The 

sensing membrane was repeatedly exposed to water vapour at regular time intervals. 

(1mV=1µA) 

 

 

Figure 3.6: Sensor’s response to exposure to various solvent vapours, summarised in 

Table 3.1. Exposure was conducted using the bubbler apparatus, where the streams 

passing over the sensing membrane were ‘switched’ from the reference gas to either 

the test solvent (T.S.) or water vapour as indicated. 
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Figure 3.7: Magnification of the sensor’s base line response of the results displayed in 

figure 3.5, illustrating the negligible response of certain test solvent (T.S.) vapours.  
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Table 3.1: Summary of sensor’s response during exposure to different vapours. All 

vapour solvents were maintained at 30
o
C. 

 

 

Figure 3.8: Graphical representation of sensor’s response to increasing % RH over 

time at a constant temperature of 21.3 
o
C. 

 

Vapour B.P. at 1 Bar (
o
C) 

Dielectric constant at 

20
o
C Response 

Water 100 

 

80.4 
23 a

 Yes 

Acetonitrile 81 

 

37.5 
23 b

 Negligible 

Methanol 68 

 

32.6 
23 c

 Negligible 

Ethanol 78 

 

24.3 
23 d

 Negligible 

Cyclohexane 80.7 

 

2 
23 e

 No 
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Typical results for repeated exposures of the same film (exposed repeatedly to set % 

RH humidities in the 10 – 60 % RH range) are summarised in Figure 3.9. It is thought 

that the mechanism of the sensing layer in this study may involve the presence of 

electrolyte remaining from the synthesis in the polymer. Introduction of water vapour 

allows hydration of the electrolyte, increasing its mobility, which allows an increase 

in current. It should be noted if the values of the responses for each % RH in Figure 

3.9 were plotted; the resulting line would be relatively linear. However, it would 

produce a positive intercept. As prior analysis indicated that at 0 % RH, no response 

occurred, the sensor’s response was modelled with a Langmuir adsorption equation 
24

, 

both first and second order, equations 3.1 and 3.2, respectively. The second order 

model was observed to be the best fit as indicated in Figure 3.9 by the broken lines.  
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The fit parameters 
b

K  and 
S

S  are the binding constant and the relative signal at 

saturation respectively and C  is the relative the % RH 
25

. In Figure 3.10, the 

responses of four different sensing layers at incremental levels of humidity at the 100 

second measurement time are compared graphically. 

It should be noted that variations were observed for different sensors (same coating on 

similar substrates). This variation may be attributed to the composition of the sensing 

layer in each case, particularly in terms of the coatings thickness. Preliminary results 

with the Reichert – Jung optical microscope indicated that the coating’s thickness 

ranged from 10 – 15 µm. As the sensing layer conductivity increases with greater 

analyte levels and since the film contains ions, the observed response was initially 

thought to be due to ionic movement. In order to determine the role of silver 

nanoparticles (if any), a similar composite of the same ionic strength was prepared 

(using NaNO3 instead of AgNO3) which yielded no response to any of the analytes 

investigated under the same experimental conditions. This suggests that the suspected 
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migration of anions in the composite on exposure to water vapour is not the sole 

sensing mechanism. 
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Figure 3.9: The sensor’s response to repeated exposures to varying % RH at set time 

intervals. The dotted lines are the Langmuir model of the experimental data according 

to second order kinetics (equation 3.2). 

 

 

However, layer thickness is not yet well defined using the drop casting process 

resulting in a significant variation in coating thickness which can be assumed to have 

an impact on the reproducibility of the sensitivity for each layer as seen in Figure 3.9, 

thus more work is required to optimise the thickness of the coating. 
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Figure 3.10: Responses of four different sensors prepared separately. The slopes for 

the lines are 5.4, 5.5, 7.2 and 8.2 ( RHmV % ). 

 

3.4 Cyclic Voltammetry 

The cyclic-voltammetry study of the cast film on the interdigits, (2 electrode system), 

indicated that the sensor coating appears to act as a background electrolyte in the 

presence of water vapour. No sensor response (i.e. current) was observed when the 

coating was exposed in the N2 vapour stream. However, while the film displays a 

clear electrochemical response in a higher humidity environment, figure 3.11, (where 

there was an anodic peak that was attributed to Ag oxidation and a cathodic peak 

corresponding to Ag
+
 reduction.) in the resulting voltammograms, both the silver 

nanoparticles and the ions within the coating appear to have an active role in the 

sensor’s mechanism. 

Analysis of a typical voltammogram indicated that approximately 6x10
-10

mols of 

silver within the coating undergoes oxidation and reduction; a fraction (~1/10,000) of 

the molar silver content of the cast nanocomposite coating. This may explain why, 

although the sensor’s observed response appears to be migration controlled, no drop 

off of the steady state signal is observed during prolonged periods of exposure. In 

‘dry’ conditions (N2 stream) only a minute baseline current is observed as shown in 

figure 3.11. 
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Figure 3.11:  Cyclic voltammograms of sensing coating in both dry and humid 

conditions, initial E = 0.5 V, high E = 0.5 V, low E = - 0.5 V with a scan rate of 0.1 

Vs
-1

. 

 

3.5 Electrochemical Impedance Spectroscopy, EIS 

Impedance measurements were carried out over the frequency range of 1 Hz to 1 

MHz using a Solartron Electrochemical interface, SI 1287 and a Solartron 1255B 

frequency response analyser. Humidity levels were established using closed vessel 

humidity saturated salt solutions, sodium hydroxide for 6%, potassium hydroxide for 

9%, potassium acetate for 20%, calcium chloride for 35% and calcium nitrate for 55% 

RH 
26

. For each humidity level before the response was measured the sensor was 

placed in the relevant sealed container (figure 3.12) and left overnight to equilibrate. 

All measurements were carried out at a constant temperature of 20 ± 2 
o
C. Figures 

3.13 and 3.14, show typical (multiple measurements were conducted) electrochemical 

impedance spectra of the sensing coating at different the humidity levels, Nyquist and 

Bode respectively.   
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Figure 3.12: Schematic of EIS experimental set up 
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Figure 3.13: Nyquist plot of effect of humidity on the impedance of the sensing 

coating. 
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Figure 3.14: Bode plot of effect of humidity on the impedance of the sensing coating. 

 

It can be seen that an increase in humidity results in a decrease of the sensing film’s 

impedance. The EIS spectra of the coating at each humidity level can be fitted to a 

modified Randles circuit figure 3.15, the results of which are tabulated in table 3.2. 

Modelling was conducted using Z view 2 software, conductivity of the sensing film 

increases with humidity as illustrated in figure 3.16. 

 

 

 

 

Figure 3.15: Modified Randles Circuit Model. 
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Element Modelled Value % Error 

6% RH 

Resistor 4.4924 x 10
6
 Ω 0.16 

CPE-T 3.245 x 10
-10

 F 0.95 

CPE-P 0.93466 0.11 

9% RH 

Resistor 3.1949 x 10
6
 Ω 0.21 

CPE-T 3.227 x 10
-10

 F 0.84 

CPE-P 0.94586 0.09 

20% RH 

Resistor 2.7979 x 10
6
 Ω 0.26 

CPE-T 2.944 x 10
-10

 F 1.25 

CPE-P 0.93466 0.12 

35% RH 

Resistor 2.076 x 10
6
 Ω 0.14 

CPE-T 2.608 x 10
-10

 F 0.74 

CPE-P 0.94586 0.07 

55% RH 

Resistor 0.85 x 10
6
 Ω 0.13 

CPE-T 2.495 x 10
-10

 F 0.93 

CPE-P 0.94877 0.08 

Table 3.2: Summary of sensor’s modelled response during EIS at different %RH 

levels. 
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Figure 3.16: Calibration curve of sensor coatings impedance. 

 

As described in section 1.27, electrochemical impedance spectroscopy can be used to 

analysis and model electrochemical systems. In this case EIS modelled the sensing 

coating as a modified Randles circuit (figure 3.15). A Randles circuit is an equivalent 

electrical circuit (a theoretical circuit that retains all of the electrical characteristics of 

a given circuit) commonly used in Electrochemical impedance spectroscopy (EIS) for 

interpretation of impedance spectra. 

It consists of an active electrolyte resistance 
S

R  in series with the parallel 

combination of the double-layer capacitance 
dl

C  and an impedance of a faradaic 

reaction; often a constant phase element (CPE), is a non-intuitive circuit element that 

models the behaviour of a double layer, which is an imperfect capacitor, replaces the 

double layer capacity (
dl

C ) 
27 – 30

.  

 

3.6 Sensing mechanism 

The precise mechanism of the process is still unclear, although the necessity of silver 

nanoparticles within the sensor was confirmed by comparing the response of a coating 

no silver but of the same ionic strength this was achieved by the replacement of 

AgNO3 with NaNO3 in the coating synthesis. The coating containing no silver showed 

no response to changing humidity levels. One possible mechanism could be a form of 
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ionic migration with the introduction of water vapour during exposure hydrating the 

electrolyte (a result of synthesis process) and allowing the movement of the ions 

surrounding each nanoparticle, with the nanoparticles acting like a chain along which 

the current may flow. As the silver nanoparticles were found to have a negative zeta 

potential in solution, should they maintain a double layer in the cast film. Exposure of 

the film to water vapour could allow hydration of ions enhancing their mobility 

allowing the movement of ions from one nanoparticles double layer to the next. 

 

3.7 Application of other composite films 

The application of the Triton 100x stabilised layer (see section 2.6) was ineffectual as 

the casting of the film proved extremely difficult, with even curing at elevated 

temperatures 80
o
C producing a layer that remained tacky and viscous, this 

methodology of nanocomposite preparation was thus deemed unsuitable. 

PVC stabilised coatings did cast well, and due to the methanol base, dispersed at a 

faster rate than the aqueous colloids, (2 – 3 hours rather than 18 +). The subsequent 

coating did show water sensing capabilities. However, their selectivity was poor, 

showing signal responses for several analytes listed in table 3.1, see figure 3.17.  
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Figure 3.17: PVC stabilised sensor coating’s response to exposure to various solvent 

vapours. Exposure was conducted using the bubbler apparatus, where the streams 

passing over the sensing membrane were ‘switched’ from the reference gas to either 

the test solvent (T.S.) or water vapour at 20 second intervals. 
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The PVC coating’s response was instantaneous with preferential response seen for 

ethanol and methanol, no response was seen for cyclohexane so the sensor was 

deemed to be sensitive to polar vapours, however, this was the limit of its sensitivity. 

 

3.8 Conclusions 

The PVA stabilised aqueous based nanoparticle composite colloid when cast on an 

interdigital electrode array and on application of a constant potential was observed to 

produce a current, which was proportional to levels of humidity from 10% RH to 60% 

RH. The sensor gave a reversible rapid response at standard temperature and pressure. 

The steady state response was selective and increased with increasing levels of 

humidity. 

The manner in which the layer is cast remains an issue, as a lack of uniformity in 

layer thickness impacts on the producing reproducible sensors. Work by groups such 

as M.R Smyth’s in DCU have reported successful methods of inkjet printing 

nanocomposite based films 
31 – 32

 of defined and controllable thickness for sensing 

applications, which supply a possible route for further investigation. 

 A PVC stabilised nanocomposite did respond to polar vapours, however its 

selectivity was low in comparison to the PVA based coating. Further investigation of 

the use of alternative stabilisers / composite matrices could produce similar sensors 

with selectivity for different analytes; however it is more likely that they would 

exhibit a sensing mechanism similar to those described in the literature as compared 

to the one illustrated above. 
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4. Surface enhanced resonance Raman spectroscopy with tuneable silver colloids 

4.1 Introduction 

Chemical sensing is an area where the novel physiochemical properties metallic 

nanostructures often exhibit can make a significant impact on both innovative and 

existing devices and techniques. This is possibly best illustrated by the impact of 

coinage nanoparticles on Raman spectroscopy. Silver nanoparticles have proved to be 

good candidates for use in Surface Enhanced Raman Spectroscopy (SERS), exhibiting 

the dual roles of both substrate and signal enhancers 
1 – 2

. 

SERS amplifies an inherently weak Raman signal using a catalyst, typically of the 

nanoscale. Nanoparticles (NPs) of noble metals have been found particularly useful as 

they exhibit surface plasmon resonance (SPR) 
3 – 4

. This SPR involves a collective 

oscillation of the conduction electrons in resonance with certain frequencies of 

incident light, where the plasmon resonance of the metallic nanoparticles (colloids) 

provides the intense optical frequency fields responsible for the electromagnetic 

contribution to SERS signal 
5 – 9

.
 
It follows that by coupling these two means of signal 

enhancement, resonance Raman and SERS, the sensitivity of Raman as an analytical 

is further enhanced. 

As described in section 1.20 SERS is a surface technique, with amplification of 

analyte signal a consequence of plasmon resonances at the substrate’s surface, it 

follows that the choice of substrate used with the technique is very important. 

Throughout the literature the significant majority of SERS substrates are nano 

metallic (predominately gold or silver) as the two metals exhibit the ‘right’ optical 

properties to support plasmons in the visible / near infrared range. These substrates 

are generally divided into three classes 
10

. 
 

 

• Metallic electrodes; SERS very discovery was through Fleischmann’s work 

with silver electrodes in 1974. Recently the use of electrodes in the technique 

has reduced as the development of other substrates has advanced. 

  

• Metallic particles (generally nano) in solutions – colloids; silver and gold 

colloids are ubiquitous in the literature as SERS substrates, having the 

advantage of stability in water coupled with the ability to maintain the 

necessary plasmonic energy to provide SERS enhancement. Additionally these 
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colloids may be used to fabricate simple planar metallic structures, by 

attachment to a suitable surface or simple drying/casting.   

    

• ‘Planar’ metallic structures, the development of ordered planar nano metal 

surfaces has advanced rapidly in the last decade and continues to be a field of 

extensive research as specific applications, reliability, reproducibility and 

further optimisation/ enhancement of signal drives research. 

 

The application of SER(R)S, (surface enhanced (resonance) Raman spectroscopy), as 

an analytical tool is increasing, with the potential to elevate the sensitivity of an 

already highly selective detection technique 
11 – 12

.
 
  The key to SERS is the surface 

plasmon resonances (SPR) of the SERS substrates. The literature shows that the high 

local electromagnetic fields associated with nanostructures due to their uniform 

electron oscillations, are major contributors to the signal enhancement 
13

.  

As described in section 1.21, many studies have determined that the SPR behaviour of 

a SERS substrate is dependent not merely on the interaction of the analyte and a 

single nanoparticle but the interaction between multiple nanostructures, leading to 

extensive research into the pairing of nanoparticles with the aim of producing ‘hot 

spots’ or areas of massive SERS enhancement 
6, 14 – 15

.  

Classically these hot spots are produced in colloids by the creation of inter – particle 

junctions via the deliberate addition of aggregation agents such as potassium chloride, 

sodium chloride and hydrochloric acid. 

However,
 
these destabilised

 
NPs aggregate in a non uniform manner and are prone to 

coagulate and precipitate, which increases the difficulty of use and ultimately results 

in SERS signals that are difficult to reproduce
 3, 5, 11 – 12, 16 – 17

. Because of this a 

deliberate decision was made to examine the effectiveness of the tuneable silver 

colloids, produced in chapter 2, as SERS substrates without the deliberate addition of 

an aggregating agent.  

 

4.2 Experimental   

The maximum SERS enhancement is expected to take place when the λmax of the 

localised SPR of the nanoparticles is close to that of the excitation (laser) wavelength, 

both the Raman scattered photon and the incident photon are strongly enhanced
 9, 18 – 
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19
. The blue colloid (λmax, 670 nm) was used to enhance measurements excited by the 

660 nm laser.  

SERS active measurements were conducted on three model analytes, crystal violet 

(Cr.V.), malachite green (MG) and Rhodamine 6G (R6G), and were performed with a 

Horiba Jobin Yvon LabRAM HR 800. SERS excitation was provided by solid state 

Diode laser with a maximum power of 100 mW. For conventional operation, the light 

is imaged to a diffraction limited spot (1 µm) via the Olympus m – plan 10 x 

objective, focal length 10.6 mm. The scattered light is collected by the objective in a 

confocal geometry, and is dispersed onto a Peltier cooled CCD array by 600 lines/mm 

grating, allowing the range from 150 cm
-1

 to 4000 cm
-1

. The confocal, microscopic 

system allowed direct measurement of liquids and solutions and all measurements 

were performed with the laser at 1% strength. The spectral region of investigation was 

dependent on the analyte, 700 – 1200 cm
-1

 for Cr.V., 1000 – 1800 cm
-1

 for MG and 

200 – 2000 cm
-1

 for R6G. Emphasis was placed on the use of the technique as an 

analytical tool, and as short sampling times are the ideal, in each case the exposure 

time was 5 seconds with the accumulation set to 20, ensuring that the total sampling 

time was never greater than 5 minutes.  

 

4.2.1 SERS measurements 

The performances of the colloids as SERS active agents were evaluated by their 

SERS activity using Cr.V., MG, and R6G as model compounds (figure 4.1.a). These 

dyes are commonly used as probe molecules for Raman specifically because they 

display intense Raman scatter due to the similarity of their electronic energies to the 

incident radiation, figure 4.1b.   

 

Figure 4.1a: Molecular structures of Crystal Violet, Malachite Green and Rhodamine 

6G. 
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Figure 4.1b: Absorption spectra of probe dyes, Crystal Violet, Malachite Green and 

Rhodamine 6G. 

 

All dyes were made up to 10
-4

 M aqueous solutions; further dilution occurred during 

the sampling process, producing samples with a final concentration of 3.33 x 10
-5

 M. 

(All volumes were maintained at 3cm
3
 ensuring consistent concentrations.) Water 

molecules give very weak Raman scatter allowing analytes in aqueous solutions to be 

readily detected and identified in situ without separation at low concentrations.  

Liquid
 
samples and SERS catalysts also enabled reproducible sampling where the 

constant disorder/movement (Brownian motion) of both the analyte and colloid 

produce a stable and reproducible system. This, coupled with the use of the confocal 

microscope
 
on the Horiba Jobin Yvon LabRAM HR 800, had the advantage of 

creating a high power density in a small volume with a relatively weak laser, where 

the particles readily move in and out of the analysis volume during the measurement. 

This reduces problems with photodegradation that can be seen with other SERS 

substrates 
11

. 
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Figure 4.2a: Raman Spectra of 3.33 x 10
-5

M Cr.V. mixed with each colloid  

with excitation by the 660 nm laser.  [Ag] = 11 x 10
-5

M, for colours makeup please 

refer to Table 2.1 chapter 2. 

 

Figure 4.2a shows the SERS spectra of sample, where the Cr.V. concentration was 

3.33 x 10
-5 

M and the silver concentration was 11 x 10
-5 

M in each case. As expected, 

based on the literature 
9, 20 – 21

, initial analysis of Cr.V with the 660 nm laser shown in 

figure 4.2a indicated that the blue colloid was the most effective SERS catalyst 

because it’s nanoparticle’s LSPR (localised SPR) was slightly longer than that of the 

excitation wavelength. Similarly the purple colloid was found to be the most effective 

(figure 4.2b) with excitation by the 532 nm laser for enhancing the signal. 
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Figure 4.2b: Raman Spectra of 3.33 x 10
-5 

M Cr.V. mixed with each colloid with 

excitation by the 532 nm laser. [Ag] = 11 x 10
-5

M. 

 

Similar results were observed for MG and R6G, figures 4.3a to 4.3c (note R6G 

measurements were only conducted at the 660 nm excitation wavelength as the dye 

fluoresces when excited at 532 nm.) Therefore, for all measurements at the 660 nm 

excitation, the blue colloid’s nanoparticles were used as the SERS substrate and the 

purple colloid’s nanoparticles used for measurements excited by the 532 nm laser. It 

should be noted that as the overall silver concentration of each coloured colloid 

varied, it was necessary to dilute each sample to a set volume (3 cm
3
) after addition of 

the nanoparticles to maintain consistent experimental conditions throughout the study.  
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Figure 4.3a: Raman Spectra of M.G. 3.33 x 10
-5 

M mixed with each colloid with 

excitation by the 660 nm laser. [Ag] = 11 x 10
-5

M. 
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Figure 4.3b: Raman Spectra of M.G. 3.33 x 10
-5 

M mixed with each colloid with 

excitation by the 532 nm laser. [Ag] = 11 x 10
-5

M. 
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Figure 4.3c: Raman Spectra of R6G 3.33 x 10
-5 

M mixed with each colloid with 

excitation by the 660 nm laser. [Ag] = 11 x 10
-5

M. 

 

Comparison of the enhancement observed at both excitation wavelengths pointed to a 

greater enhancement being observed when the experimental conditions were set to a 

laser excitation wavelength of 660 nm, using the blue colloid. 
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Figure 4.3d: Comparison of MG spectra (with best colloid enhancement) at the 

different excitation wavelengths with [Ag] = 11 x 10
-5

M. 

 

4.2.2 Dye and colloid interaction 

It is necessary to determine the effect of the analyte (if any) on the colloids as 

unwanted aggregation of nanoparticles despite the use of PVA as a stabiliser 
22 – 25

 

remains a concern. DLS was used to monitor the particles with increasing 

concentrations of dye. 

 

 

Figure 4.4. Effect of the Dye on the particle size range of the colloidal nanoparticles, 

(a) silver colloid (blue) [Ag] = 1 x 10
-5

M, (b) silver colloid (blue) [Ag] = 1 x 10
-5

M 

with excess crystal violet [Cr.V.] = 5 x 10
-5

M.  
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Some aggregation occurs when the analyte is present, although the extent of 

aggregation is limited the bulk of the nanoparticles maintained an average diameter 

range of 58 – 60 nm.  

This aggregation can have a significant impact on the SERS mechanism, as it is 

generally accepted that the greatest SERS enhancement is produced by 

electromagnetic hotspots that are produced during the interaction of coinage 

nanoparticles, with dimers or small clusters of colloidal coinage particles producing 

the strongest localised fields and hence Raman enhancement 
26 – 28

  

 

4.3 Sensing Trend 

The relevant colloids were then added incrementally to a set volume of the model 

compounds, and their Raman spectra recorded with each increase of the blue colloid’s 

NPs. In doing so, the following trends were observed (figures 4.5 – 4.10). Figure 4.5 

shows the SERS spectra of 3.33 x 10
-5 

M Cr.V. with the blue colloid’s NPs prepared 

as described in section 2.5. Figure 4.6 shows the peak emissions observed with 

increasing concentrations of silver at certain wavelengths taken from figure 4.5. 

Similarly figure 4.8 comes from figure 4.7 where the SERS spectra of 3.33 x 10
-5 

M 

MG with the blue colloid’s NPs is displayed and figure 4.10 comes from figure 4.9 

where the SERS spectra of 3.33 x 10
-5 

M R6G with the blue colloid’s NPs is 

illustrated. The bands of the Raman spectra of each analyte were assigned (table 4.1).  
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Figure 4.5: Raman Spectra of 3.33 x 10
-5 

M
 
Cr.V. with increasing concentrations of 

the blue colloid’s NPs with excitation by the 660 nm laser.    
 
 

 

Figure 4.6: Observed Raman spectra emission trend of 3.33 x 10
-5 

M Cr.V. with 

increasing concentrations of the blue colloid’s NPs with excitation by the 660 nm 

laser.   
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Compound Peak Assignment 
29 – 31

 

Crystal Violet • ~722cm
-1

, In plane benzene ring bend, stretch  

• ~800 cm
-1

, out of plane aromatic C-H ‘breathing’  

• ~914 cm
-1

, ring skeletal radial vibration 

• ~1170 cm
-1

, in plane aromatic C-H bending vibration  

Malachite Green • ~1170 cm
-1

, in plane aromatic C-H bending vibration 

• ~1365 cm
-1

, N-C stretch 

• ~1395 cm
-1

, C-C and C-H in plane motion (aromatic) 

• ~1615 cm
-1

, N-C (φ bond) and C-C stretch  

Rhodamine 6G • ~610 cm
-1

, C-C-C in plane aromatic vibration  

• ~769 cm
-1

, C-H out of plane bending  

• ~1181 cm
-1

, C-H in plane bending 

• ~1316 cm
-1 

and ~1573 cm
-1 

in plane bending 

• ~1361 cm
-1

, ~1508 cm
-1

 and 1648 cm
-1

, aromatic C-C stretching  

Table 4.1: Probe molecules Raman spectra peak assignment. 
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Figure 4.7: Raman Spectra of 3.33 x 10
-5 

M
 
MG with increasing concentrations of the 

blue colloid’s NPs with excitation by the 660 nm laser.  
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In all cases, a clear build up of signal intensity is observed, until the optimum ratio is 

achieved, followed by a decline in signal intensity as the volume of NPs is further 

increased as seen in figures 4.6, 4.8 and 4.10.  

Several explanations for this observed response are possible. For example an 

orientation change. That is at low concentrations, the analyte molecules could 

lie flat on the silver surface. However as the concentration increases, it is possible that 

the analyte ‘stands-up’ so although it is still adsorbed to the nanostructures surface it 

does so in a different way. Therefore the analyte is less able to benefit from the effect 

of the plasmons on the polarisation 
32

.  

Where the amount of NPs relative to the analyte increases, a decrease in signal is 

observed as the NPs block the incident light from accessing the entire analyte sample 

in the cuvette. It is also possible that there is not enough analyte compared to the 

volume of NPs, and thus despite the production of the plasmons from the silver NPs, 

the analyte itself is diluted by sheer numbers. 

 

 

Figure 4.8: Observed Raman spectra emission trend of 3.33 x 10
-5 

M MG with 

increasing concentrations of the blue colloid’s NPs with excitation by the 660 nm 

laser.   

 

This is suggested by the observation that as the concentration of analyte is increased 

or decreased; the concentration of silver NPs is also observed to shift in order to 
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maintain the ratio observed at other concentrations, as illustrated in figures 4.11 and 

4.12 by the SERS spectra of 10
-7 

M Cr.V with increasing nanoparticle concentrations.  

This seems unlikely however as a dropping off of signal is observed at higher 

concentrations of silver, since no change in the spectra was observed  (whereas a 

‘levelling’ of signal would be the expected result, correlating with better known 

adsorption models like Langmuir). 

An alternative explanation could be due to the nature of the nanoparticles themselves. 

Because coinage metals support plasmons, the interactions of nanoparticles within the 

colloid system can generate intense electric fields when illuminated producing high 

SERS enhancement 
30, 32

.
 
Therefore, the continued addition of nanoparticles increases 

the interaction of nanoparticles with each other resulting in a large ‘background’ of 

plasmonic activity, which could mask or shield the very analyte signal that the SERS 

technique aims to enhance.  
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Figure 4.9: Raman Spectra of 3.33 x 10
-5

M
 
R6G with increasing concentrations of the 

blue colloid’s NPs with excitation by the 660 nm laser.  
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It also must be noted that in each case the maximum SERS effect is seen for bands 

associated with the aromatic activity of each dye, bands ~800 cm
-1

 and ~1170 cm
-1

 for 

Cr.V. (figures 4.5 & 4.6), bands ~1170 cm
-1

 and ~1615 cm
-1

 for MG (figures 4.7 & 

4.8) and bands ~1361 cm
-1

 and ~1508 cm
-1

 for R6G 
29 – 31  

(figures 4.9 & 4.10), 

implying that the structure of the analyte too has a role in the sensing mechanism. 

Thus it is unsurprising that Cr.V. and MG show similar sensing trends as structurally 

they share common attributes, in contrast to R6G which is markedly different in 

structure, (figure 6), from the other model dyes.  

 

Figure 4.10: Observed Raman spectra emission trend of 3.33 x 10
-5 

M R6G with 

increasing concentrations of the blue colloid’s NPs with excitation by the 660 nm 

laser.   
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Figure 4.11: Raman Spectra of 3.33 x 10
-7 

M
 
Cr.V. with increasing concentrations of 

the blue colloid’s NPs with excitation by the 660 nm laser. 

 

The role of the analyte’s structure is also emphasised when looking at figures 4.6 and 

4.8, where the dyes Cr.V. and MG both show a maximum signal at ~ 18.5 x 10
-5

 M 

Ag nanoparticles, a maximum signal enhancement at 1170 cm
-1

 and a maximum 

enhancement with the Ag : analyte molar ratio of ~ 5.56 : 1.Whereas R6G (figure 

4.10) shows a maximum signal at ~ 7.5 x 10
-5

 M Ag nanoparticles, a maximum signal 

enhancement at 1508 cm
-1

 and a maximum enhancement with the Ag : analyte molar 

ratio of ~ 2.25 : 1. The Ag : dye ratio for R6G is approximately 40% of that of the 

other two dyes (Cr.V. and MG) which  may indicate a different mode of adsorption, 

and further illustrates the importance of the analyte’s structure. 
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Figure 4.12: Observed Raman spectra emission trend of 3.33 x 10
-7 

M Cr.V. with 

increasing concentrations of the blue colloid’s NPs with excitation by the 660 nm 

laser.   

The focal length of the objective is also relatively long, and as a result there was an 

increase in signal noise due to stray scatter; however the large working distance 

allowed greater flexibility in the experimental setup, particularly in later studies 

(chapters 5 and 6).    

Another issue is the determination of the limit of detection as it is dependent on the 

instrument’s own parameters, adjustment of laser intensity and increasing sample 

acquisition times can have a drastic effect on the intensity of signal obtained. 

However this too can increase total sampling times and costs, which impact 

negatively upon the application of SERS as an analytical technique.   

As Raman is non destructive and highly selective (providing a spectral fingerprint of 

the analyte), this enhancement, coupled with the short sampling time clearly 

demonstrates the potential of SERS as a rapid and highly sensitive sensing technique, 

within analytical chemistry.   

However it is clear that further investigation is necessary regarding the manner in 

which the silver NPs are introduced to the system. Although the colloids clearly 

demonstrated signal enhancement, the level of method optimisation necessary for 

each individual analyte limits the technique, consequently driving significant research 

of the fabrication of reproducible SERS active substrates.  



Surface enhanced resonance Raman spectroscopy with tuneable silver colloids         Chapter 4 

  117 

4.4 Conclusions 

Silver colloids with tuneable λ max’s; produced by a simple rapid and repeatable 

synthesis as outlined in chapter 2, were shown to be useful in the SERS technique, as 

synthesised, without the addition of aggregation agents.  

Significant enhancement of the Raman signal for each dye occurred even with a 

relatively short sampling time. For each model analyte a clear trend was observed 

where with increasing volume of colloid, there resulted an enhancement of signal 

until an optimum ratio of analyte to colloid was established. This optimum ratio was 

found to be consistent for each analyte over a range of concentrations and so can be 

used to further improve sampling times. 

A supplementary study of the nanoparticle’s SERS activity as cast substrates could 

counteract the drop off in signal at elevated silver concentrations, and result in a more 

familiar adsorption model response (investigated in chapter 5). 
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5. Effect of potential modulation of chemically synthesised Ag nanoparticles on 

SERS 

5.1 Introduction 

As the development of SERS continues, a large portion of research is focused on its 

application as an analytical technique. However reproducibility of output is still the 

major obstacle, and this has prompted a lot of work in the development of SERS 

substrates, with a large portion of recent literature describing advances in the 

production of reproducible, uniform SERS substrates 
1
. 

There is a large variety of SERS active substrates in existence (detailed in figure 1.10, 

section 1.20) and development of novel fabrication processes is ongoing. For example 

P.N. Bartlett et al. have developed an electrodeposition technique, which prepares 

reproducible nano ‘void’ substrates, these uniform surfaces offering tuneable optical 

properties that allow the tailoring of substrates for specific analysis.   

SERS was first observed during spectroelectrochemical experiments carried out by 

Fleischmann in 1974. These initial experiments were all conducted using modified 

(roughened) silver electrodes 
2
 Subsequent studies found that coinage metals were 

most appropriate for the SERS effect, as they provide strong localised surface 

plasmons key to the electromagnetic enhancement of the Raman signal 
3 – 5

. As 

described in section 1.13, this plasmon resonance of the silver nanoparticles is a 

product of the uniform oscillation of the particle’s conductance electrons due to 

irradiation by monochromatic light. It follows that any form of electromagnetic field 

applied would also influence the nanoparticle’s electrons and similarly impact on the 

observed SERS spectra.   

An investigation as to whether other outside factors could influence the degree of 

electromagnetic enhancement previously observed was conducted; Electrochemical 

methods were deemed the most suitable means of conducting the investigation, their 

effects controllable, and reproducible.  

Initial investigations proved that running an electrical current through the colloids 

resulted in aggregation of the nanostructures. Therefore it was determined that casting 

the colloids, as films would be the most appropriate method for investigating the 

outside influence.  

 

 

 



Effect of potential modulation of chemically synthesised Ag nanoparticles on SERS       Chapter 5 

  121 

5.2 Experimental 

The experimental process in this study comprised of a number of distinct steps. First 

the preparation SERS substrates, followed by an examination of the effect of varied 

experimental conditions on their suitability. 

 

5.2.1 Materials 

Crystal violet, (ACS reagent, ≥ 90.0% anhydrous basis), was purchased from Sigma 

Aldrich, and used as received without further purification.  

 

5.2.2 Preparation of SERS substrates 

The different substrates utilised in this study may be placed in two subgroups based 

on their support, silver (metal) or carbon. The silver SERS structure was prepared by 

electrochemical roughening in aqueous 0.1M KCl, and involved three successive 

positive to negative cycles from - 0.3 to 0.3 to - 0.3Vs. With a sweep rate of 5 mVs
-1

 

finishing at - 0.3 V, and then maintaining a - 0.4 V for five minutes before removing 

the silver from the circuit and washing with deionised water as described by Kudelski 

6
. The silver plate (1cm

2
 area) was polished with Al2O3 and placed in a three electrode 

cell with a 0.1M KCl Ag|AgCl reference electrode and a platinum counter electrode. 

AFM analysis of both the polished and roughened surface is shown in figures 5.2.a 

and 5.2.b. A clear difference in the morphology is evident when comparing the two 

surfaces ‘roughened’ surface exhibiting a significantly coarser surface than the 

polished electrode.  

The carbon ink support was prepared coating acetate sheets (XEROX, Premium 

Transparencies, type CR) with carbon ink (Electrodag 423SS, graphite – based PTF 

ink), and drying overnight. Colloidal silver (prepared as described in chapter 2) was 

then drop cast onto the inert carbon surface (0.1 cm
3
 per 1cm

2
 portions) and after an 

additional drying period (eighteen + hours) the modified carbon substrates were ready 

for use. 
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Figure 5.1: Silver (left) and carbon (right) SERS electrodes, scale in cm. 

 

5.2.2.1 Atomic Force Microscope analysis – MFP – 3D BIO AFM 

AFM analysis was performed using a MFP-3D BIO AFM (Asylum Research).  

Olympus silicon AC 240 cantilevers were used. Tips had a typical resonant frequency 

of 70 kHz. The AFM operated in AC mode (alternate contact) in order to minimise tip 

sample interaction. Typical free air amplitudes were approx 700 mV and a high 

amplitude set point relative to the free air amplitude was maintained to minimise 

sample/tip damage. All samples were imaged in air at ambient humidity. ARgyleT 

software rendered the images below in 3D and the images obtained contain 512 pixels 

per scan line. 
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Figure 5.2.a: Morphology of polished silver SERS substrate. – Image taken by Dr. 

Luke O’Neill - Instrumental Support – Focas Institute 

 

 

Figure 5.2b: Morphology of roughened silver SERS substrate. – Image taken by Dr. 

Luke O’Neill - Instrumental Support – Focas Institute 

 

5.2.3 SERS measurements 

SERS active measurements were conducted using Crystal Violet (Cr.V.) as the model 

analyte and were performed with a Horiba Jobin Yvon LabRAM HR 800. SERS 

excitation was provided by Solid State Diode laser with a maximum power of 
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100mW. The spectrograph was equipped with a 600 grooves/mm grating, and all 

measurements were performed with a 1 µm entrance slit with the laser at 1% strength. 

The spectral region of investigation was dependent on the analyte, 700 – 2000 cm
-1

 

for Cr.V. SERS has the potential to appreciably impact on the effectiveness of Raman 

spectroscopy as an analytical technique. Once more, emphasis was placed on short 

sampling times, therefore in each case the exposure time was five seconds with the 

accumulation set to twenty, ensuring that the total sampling time was never greater 

than five minutes.  

 

5.2.3.1 SERS measurements experimental setup 

A three electrode, one compartment cell, with the SERS surface acting as the working 

electrode, an Ag|AgCl reference and a platinum counter electrode was used, figure 

5.3. A dilute aqueous solution of the probe molecule, crystal violet, was contained in 

the cell, and potentials applied between the working and reference electrodes using a 

Thompson ministat potentiostat. The system was left ‘open’ to aid SERS analysis, and 

hence all analytes were exposed to the environment, and therefore were not degassed. 

 

 

Figure 5.3: Schematic of spectrochemical cell employed for Raman Spectroscopy 

 

5.3 Effectiveness of ‘roughened’ silver as SERS substrate 

The objective of this study was to determine not only the SERS surfaces (both solid 

silver and nano silver coated carbon) efficiency, but to also determine the influence of 

an outside factor upon it (applied voltage). Initial experiments with the silver substrate 

showed a clear enhancement of the Raman signal (displaying a similar level of 
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enhancement as the colloids in the previous chapter), which was further augmented 

when a potential is applied (as can be seen in figure 5.4). This preliminary work 

shows that the spectral signal is enhanced in the presence of the roughened silver with 

a further enhancement occurring when a potential (- 0.4 V) is applied.  

Subsequent studies with the silver substrate confirmed that the application of a 

potential did impact the observed Raman signal (shown in figure 5.5). The bands of 

the Raman spectra may be assigned as follows; ~722 cm
-1

, in plane benzene ring 

bend, stretch; ~800 cm
-1

, out of plane aromatic C – H ‘breathing’; ~914 cm
-1

, ring 

skeletal radial vibration; ~1170 cm
-1

, in plane aromatic C – H bending vibration in 

plane aromatic C – H bending vibration; ~1365 cm
-1

, N – C stretch; ~1395 cm
-1

, C – 

C and C – H in plane motion (aromatic); ~1615 cm
-1

, N – C (φ bond) and C – C 

stretch. 
7 – 9

 

   

Figure 5.4: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, silver SERS substrate. Note the applied potential was - 0.4 V. 
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Figure 5.5: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, silver SERS substrate, with different applied potentials.  

 

The effect of the systematic application of potential over the silver substrate is clearly 

illustrated in figure 5.5, the resulting intensity of signal at the optimum potential (- 0.1 

V applied highlighted in red) more than double that of the substrate where no 

potential is applied and the colloids of the previous chapter. It was also found that 

repeat analysis was possible if a potential within the range of - 0.4 – 0.1 V was 

applied.  

However if a potential outside this range in signal was applied, a rapid drop off in 

spectra intensity was observed with subsequent studies requiring the nanosurface to 

be re-established via the roughening technique outlined above. This was most likely a 

result of changes the surface undergoes beyond this potential window where 

potentials above 0.1 V result in the oxidation of the silver surface, whereas at 

potentials below - 0.4 V it is possible that the cation dye forms a double layer that 

disrupts the surface’s nanostructures SERS effectiveness. 
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5.3.1 Impact of added electrolyte 

An investigation was carried out where an electrolyte (0.1 M KNO3) was added to the 

experimental system (figure 5.6). Again a clear signal enhancement was seen. The 

presence of an electrolyte also shifted the applied potential necessary to give the 

greatest increase in signal (- 0.7 V highlighted in red figure 5.6), requiring greater 

energy to produce an overall signal enhancement that was approximately half of that 

observed without the added electrolyte. Thus further investigations were carried out 

without adding an electrolyte. The presence of the electrolyte also had a negative 

impact on the repeatability with a ‘fresh’ nano surface needed for each set of analysis. 
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     Figure 5.6: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure 

time and accumulation of 20, silver SERS substrate with different applied potentials 

in the presence of an electrolyte (0.1M KNO3).  

 

The roughened silver surface clearly displayed its utility as a SERS active surface. 

However it should be noted that the surface was produced by electrochemical 

roughening (as described above) and although it gives a nano plane, the substrate does 
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not have a uniform façade, leading to issues regarding uniformity of the SERS active 

surface and reproducibility of spectra.   

 

5.4 Carbon – silver nanoparticles SERS surfaces 

Once again the experimental set up was a three electrode system, with the carbon – 

silver nanoparticle (C – AgNP) surface acting as the working electrode. In the 

previous chapter colloidal nanostructures tuned to exhibit localised surface plasmons 

of λmax close to the wavelength of the incident radiation (laser), showed the maximum 

signal enhancement. As a result the nanostructures present in the blue colloid 

(prepared as described in chapter 2) were cast on the carbon substrate. The cast SERS 

coating clearly demonstrates SERS activity with a clear jump in signal intensity when 

~ - 0.1 V is applied (highlighted in red, figure 5.8). This correlates well with the 

previous study with the silver electrode, suggesting excellent electrical contact 

between the cast silver nanoparticles (of average 60 nm diameter) and the carbon 

electrode. The coating was also found to be stable for the timescale of the experiment 

(~ ≥ 5 hours) despite its use of PVA as the support matrix) 

 Also the possibility of the production of disposable devices exists as the total surface 

silver coverage of the carbon supported SERS substrate, [Ag] = 6.875 x 10
-6 

moles 

cm
-2

, is significantly lower than that of the solid silver plate electrode once a 

methodology for producing a consistent coating is proven.   
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Figure 5.7: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, with C – AgNP (blue colloid) SERS surface and different 

applied potentials. 

 

The potential’s effect varies over the applied range with the spectral intensity 

increasing with applied potentials between - 0.7 V and through to - 0.1 V, and 

whereas the spectra at the lower end of this range correlate with the augmentation 

seen for the corresponding colloid in the previous chapter, it should be emphasised 

that the signal boost at the higher end of the range is over twice the gain that the 

colloid alone provides.  The C – AgNP mirrored the silver SERS substrate with the 

greatest signal enhancement at - 0.1 V, this was also true in terms of repeatability 

where the process gave consistent enhancement if all analysis was conducted in a 

narrow potential range of - 0.3 – 0.0 V. The C – AgNP using the blue colloid supplied 

a viable alternative to the solid silver substrate, with the advantage of using particles 

of a defined size. This prompted an additional investigation with the aim of further 

developing the C – AgNP substrate.   
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5.4.1 Development of the Carbon – silver nanoparticles SERS surfaces 

The literature surrounding SERS consistently attributes the fundamental element of 

the phenomenon to the interaction of not only a single nanoparticle but multiple 

nanostructures with the analyte. Greatest signal enhancement is often reported where 

multiple nanostructures engage to produce ‘hotspots’ of SERS activity. To achieve 

this ideal state a colloid with a high silver load (nanospheres of average 20 nm 

diameter) was used, (preparation described in chapter 2) in the primary investigation 

(figure 5.8).  
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     Figure 5.8: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure 

time and accumulation of 20, with C – AgNP (100% high load colloid – 20nm 

diameter nanostructures) SERS surface and different applied potentials. Note: Raman 

spectra of control 5 x10
-5

 M Crystal Violet, highlighted in blue. 

 

A drastic increase in signal is immediately evident; a signal enhancement greater than 

the best seen using either the tuneable colloids, roughened silver electrode or the blue 

colloid C – AgNP substrate. The level of enhancement however does not appear to be 
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influenced by the various potentials applied. This is most likely due to the substrate’s 

construction, where unlike the roughened silver electrode is not part of the working 

electrode but coated upon it as a nanocomposite too far away from the electrode for 

contact to be made. Coupled with the insulating nature of the composites other 

component (PVA) the surface particles of the composite at which the SERS effect 

occurs are likely outside the applied potentials range of influence. 

To counteract this, but also maintain the nanostructures interaction, the colloid was 

diluted to 10 % of its original concentration, and a new series of SERS active surfaces 

prepared. 

 

5.4.2 C – AgNP SERS surfaces – colloid dilution 

 The subsequent analysis again showed the massive signal boost however there was 

no potential effect (figure 5.9).  
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Figure 5.9: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, with C – AgNP (10% high load colloid  - 20nm diameter 

nanostructures) SERS surface and different applied potentials. 
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This prompted a further dilution of the colloid, to 1 % of its primary concentration 

before the preparation of more C – AgNPs SERS surface.  
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Figure 5.10: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, with C – AgNP (1% high load colloid) SERS surface and 

different applied potentials. 

  

The resulting investigation showed both SERS activity (figure 5.10) and the influence 

of an applied potential, with the greatest intensity enhancement was again at ~ - 0.1 V, 

highlighted in red. Confirming that the manner in which the composite was cast (and 

its resultant thickness) had an effect on the extent of the applied potential’s influence.   

However the level of enhancement was a fraction of that observed for the previous C 

– AgNP surfaces, and less then that seen for both the silver SERS surface and the 

individual colloids in previous studies. This negated the colloid dilution approach as 

the overall aim of signal augmentation was best seen with a SERS surface with high 

nano loads and hence interaction. However, the aim of this study was to show that as 

well as size modification of the nanostructures the surface potential ‘hotspots’ 
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influence the extent of SERS enhancement. Therefore a further attempt to combine 

this enhancement with the observed potential gain was devised. 

  

5.4.3 C – AgNP SERS surfaces – spin coated 

An excess volume of the 20 nm high load colloid was deposited on to the carbon and 

allowed to stand for five minutes to ensure complete coverage. The substrate was then 

rotated at a high velocity spreading the fluid further by centrifugal force. The resulting 

coating was left to stand on the bench overnight (approximately 18 hours) before 

analysis. 
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Figure 5.11: Spectra of 5 x10
-5

 M Crystal Violet, 1% laser strength, 5 s exposure time 

and accumulation of 20, with C – AgNP (100% high load colloid - 20nm diameter 

nanostructures – spin coated) SERS surface and different applied potentials. 

 

This method’s intensity enhancement levels however was significantly lower than 

those of the previous methods. So despite showing SERS activity and the clear 

influence of an externally applied potential this method too displayed little 

enhancement due to inefficient casting of the silver. 
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Figure 5.12: Comparison of enhancement by different substrate/techniques 

 

In figure 5.12 the effectiveness of each method of SERS signal enhancement used in 

the study is compared, note that in each case the optimum conditions for each 

technique were taken, i.e. for the roughened electrode the enhancement at - 0.1 V was 

used. It is clear that the greatest enhancement is achieved using the C – AgNP           

(~ 20 nm 100%) electrode. 
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5.5 Conclusions 

Both full silver and silver nanocomposite coated carbon SERS surfaces demonstrated 

clear signal enhancement. Initial studies showed that when an external potential was 

applied the resulting spectra could be further enhanced within a limited window of 

applied voltage, greater than 0.1 V and oxidation of the silver particles occurred 

fouling the SERS surface and ultimately changing the morphology of the SERS 

electrode thereby inhibiting it’s effectiveness. Whereas at potentials below ~ - 0.2 V 

it’s possible that the cation dye forms a double layer which clouds and thus disrupts 

the surface nanostructure’s SERS effectiveness. The addition of an electrolyte was 

also found to be detrimental to the nanosurface and thus was discontinued. 

Subsequent studies where emphasis was placed on the interaction of the coating 

nanostructures displayed the greatest boost to the signal intensity. However efforts to 

couple this with the amplification of signal due to the applied potential proved 

difficult as the overall enhancement in signal diminished with each attempt.  

The effectiveness of the cast nanostructures (with diameters of ~ 20 nm) as SERS 

substrate was clearly illustrated (figure 5.12) prompting analysis of their utility for 

real world applications, described in chapter 6. 
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6. A study of Volatile Corrosion Inhibitor release using SERS 

6.1 Introduction 

Oxygen and moisture in the air are the major contributors to the atmospheric 

corrosion of metals. The presence of pollutants, dust, acidic compounds or corrosive 

gases can promote the corrosive effect of moisture and oxygen on metals. 

There are multiple routes available to protect metal surfaces against corrosion during 

storage or transit including, the use of inert atmospheres, drying agents and protective 

coatings, all of which have their own strengths and weaknesses 
1
. Ideally the preferred 

protection method would be a technique that does not alter the surface of the metal 

and hence is non – permanent, and readily removed from the metal’s surface before 

the item is used. In this regard ‘permanent’ protective coatings such as paints and 

greases are unsuitable.  A common technique used to prevent corrosion such as 

rusting is the use of desiccants such as zeolites and silica gel, which reduce the 

relative humidity (RH) of the surrounding environment. This offers good protection, 

as below a certain humidity level (typically 40 – 50% RH for most common metals) 

corrosion rates drop to very low levels. However, desiccants can quickly saturate with 

water vapour and thus have limited life spans
 2

.  

Volatile corrosion inhibitors (VCIs) are compounds with the ability to vaporise and 

then protect a metal surface from corrosion by condensing on it and forming a 

temporary surface coating. They are generally intended as a secondary defence 

against corrosion in an enclosed space where moisture may penetrate the container.  

The fundamental advantages of VCIs are that the corrosion inhibitor is rapidly applied 

in a ‘once only’ low dosage via gas phase transport. They may be used to protect 

items that cannot be coated (e.g. electronics) and the humidity level does not need to 

be controlled. They may be administered to inaccessible regions on the metal surface 

where conventional coatings cannot be used and as the protective coatings are 

temporary, they are readily removed and, moreover, do not interfere with the 

subsequent use or treatment of the protected surface. As a result, VCIs are one of the 

most cost effective methods of protecting surfaces against corrosion
 1-5

.
 
 

VCIs work by evaporating or subliming to the vapour phase, and rapidly dispersing 

within the sealed container to form an equilibrium concentration. The corrosion 

inhibitor then condenses upon the metal surface (which has the capacity to penetrate 

into crevices, slots and other hard to access areas) forming a protective barrier layer 

that prevents corrosion.  
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The effectiveness of a VCI depends principally on its vapour pressure (or more 

precisely its ability to sublime), being high enough under atmospheric conditions to 

allow meaningful vapour phase transport of the inhibitor within the container, and the 

VCI’s ability to be adsorbed directly onto the metal’s surface 
7
. 

Here the mechanisms of dissociation of several components of a commercially 

available VCI (kindly supplied by MetPro, MetPro Group, Ballinorig Business Park, 

Tralee, Co. Kerry, Ireland) from an inert surface (carbon) were studied using surface 

enhanced Raman spectroscopy, SERS. 
 

In this study, Raman spectra were first obtained directly from the neat VCI 

components. Modified carbon surfaces (silver nanoparticles, in colloidal dispersions 

prepared as described in chapter 2, had been drop cast upon the carbon surface) were 

then briefly ‘wetted’ with the VCI components and the resulting spectra measured at 

set time intervals to determine the rate of dissociation of the VCI components from 

the substrate’s surface. A subsequent investigation determined the rate at which the 

commonly used inhibitor Benzotriazole, adsorbed onto a ‘clean’ SERS surface over 

time. 

 

6.2 Experimental 

6.2.1 Materials 

The VCI components were received from MetPro, benzotriazole (M.W; 119.124 

g/mol, mp; 100 
o
C, bp; 204 

o
C), monoethanolamine 90% (M.W; 61.083 g/mol, mp; 

10.5 
o
C, bp; 171 

o
C), diethanolamine 88% (M.W; 105.136 g/mol, mp; 28 

o
C, bp; 

268.8 
o
C), triethanolamine 90% (M.W; 149.188 g/mol, mp; 20.5 

o
C, bp; 335.4 

o
C), 

morpholine (M.W; 87.120 g/mol, mp; -4.8 
o
C, bp; 128 

o
C) and octanoic acid (M.W; 

144.212 g/mol, mp; 16.5 
o
C, bp; 239 

o
C) 

17
. These were first analysed by FTIR and 

H
1
NMR to ensure their high level of purity before being used as received without 

further purification.  

 

6.2.2 Apparatus  

The experimental process in this study comprised of a number of distinct steps. Firstly 

the characterisations of the VCI components supplied by MetPro, was conducted by 

Fourier transform infrared and nuclear magnetic resonance spectroscopy. A Perkin 

Elmer spectrum 100 FTIR was utilised along with a Perkin Elmer Universal ATR 

sampling accessory with Perkin Elmer spectrum10 software and a Bruckner 400 MHz 
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Ultra Shield with Bruckner TopSpin software. It was necessary to dissolve the VCI 

components in deuterated chloroform (~ 1mg/ml in CDCl3) for NMR investigation.  

This was followed by SERS active measurements on the VCI components, performed 

as described in the previous chapter with a Horiba Jobin Yvon LabRAM HR 800. The 

spectral region of investigation was 400– 4000 cm
-1

. Again total sampling times were 

kept at a maximum of 5 minutes, with exposure times set to 20 seconds and 

accumulation of 5.  

 

6.3.1 FTIR Analysis – Perkin Elmer spectrum 100 FTIR with Universal ATR 

sampling accessory 

When an analyte interacts with electromagnetic radiation its molecules absorb 

radiation of frequencies, which exactly match the frequencies of vibrations within the 

molecule. This is the basis of infrared (I.R.) spectroscopy. The energies associated 

with the vibrations of a molecule may be quantised as absorption of electromagnetic 

radiation in the infrared region for different vibrational states, elucidating the 

rotational and vibrational energies of the molecules, and permitting the determination 

of bond strengths. So through the measurement of an I.R. absorption spectrum over a 

range of energies a series of absorptions corresponding to characteristic vibrations of 

particular bonds is obtained. Analysis of the location of the frequencies of these 

absorptions can assist the identification of the molecules and hence determine the 

analyte 
18

.  

 

6.3.2 NMR Analysis – Bruckner 400 MHz Ultra Shield 

Nuclear magnetic resonance spectroscopy is based on the resonance an analyte’s 

nuclei undergo in a magnetic field. The nuclei absorb and re-emit electromagnetic 

energy, which is at a specific resonance frequency that is dependent on the strength of 

the magnetic field and allows the observation of specific quantum mechanical 

magnetic properties of an atomic nucleus 
18

. Proton NMR, H
1
NMR, analysis of the 

MetPro compounds confirmed their structure and attested to their high purity. 

 

6.3.3 Characterisation of MetPro Samples 

The quality of the samples provided was very high, with no significant contaminants 

found in any of the sample. The IR and H
1
NMR spectra of each component and tables 

assigning the peaks observed in each case are detailed in appendices A.3.1 and A.3.2. 
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6.4 Preparation of SERS surfaces 

Inert carbon surfaces were prepared by coating acetate sheets (XEROX, Premium 

Transparencies, type CR) with carbon ink (Electrodag 423SS, graphite – based PTF 

ink), and then allowed to dry overnight. High load colloidal silver, with an average 

diameter of ~ 20 nm (prepared as described in chapter 2), was then drop cast onto the 

inert carbon surface (1cm
2
 portions) and after an additional drying period (18 + hours) 

the modified carbon substrates were ready for use. 

 

6.5 Raman spectra of neat compounds   

Spectra of the neat compounds are shown in figure 6.1. In this instance the 

spectrometer settings were: 10% laser strength, with an exposure time of 20 seconds, 

an accumulation of 5 and an excitation wavelength of 660 nm.  

It was not possible to obtain a spectrum of morpholine even when it was deposited on 

the modified carbon substrate. Therefore it did not undergo further study. The peaks 

of the Raman spectra for the other components were assigned as reported in table 6.1. 

 

Figure 6.1: Raman spectra of neat MetPro compounds, laser strength 10 %, exposure 

time 20 s, accumulation 5 and excitation wavelength 660 nm. 
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Compound Peak Assignment 
19

 

 

 

 

 

Benzotriazole 

 

• ~ 537 cm
-1 

(in plane ring deformation vibration)  

• ~ 629 cm
-1 

(in plane ring deformation vibration)  

• ~  779 cm
-1 

(out of plane ring deformation vibration)  

• ~  1022 cm
-1 

(Aromatic – NH stretch)  

• ~  1386 cm
-1 

(N – CH, CH deformation vibration)  

• ~  1592 cm
-1 

(Aromatic ring vibrations)  

• ~  3075 cm
-1 

(C – H stretching vibration of heterocyclic aromatic 

compounds)                           

 

 

 

 

 

Octanoic acid 

 

• ~ 893 cm
-1 

(O – H --- O out of plane deformation vibration) 

•  
~ 1301 cm

-1 
(C – O stretch) 

•  
~ 1438 cm

-1 
(combination band due to C – O stretch and O – H vibration)  

•  
~ 1663 cm

-1 
(C = O symmetric stretch) 

•  
~ 2732 cm

-1 
(– OH stretching vibrations)

 
 

• ~ 2874 cm
-1 

(– CH2 stretching vibrations)
 
 

• ~ 2936 cm
-1 

(– CH2 stretching vibrations) 

 

 

 

 

 

Monoethanolamine 

 

• ~ 477 cm
-1 

(CH2 – OH, C – O deformation vibration) 

•  
~ 868 cm

-1 
(N – H, out of plane bending vibration) 

•  
~ 1076 cm

-1 
(straight chain C – C stretch) 

•  
~ 1461 cm

-1 
(alcohols in plane OH deformation vibration)  

•  
~2874 cm

-1 
(CH2NH2, CH2 symmetric stretch)  

•  
~2943 cm

-1 
(CH2NH2, CH2 asymmetric stretch)   

•  
~ 3304 cm

-1 
(NH2 symmetric stretch) 

  
  

 

 

 

 

 

Diethanolamine 

 

• ~ 526 cm
-1 

(CH2 – OH, C – O deformation vibration)  

• ~ 863 cm
-1 

(N – H, out of plane bending vibration)
 
 

• ~ 1065 cm
-1 

(CH2 – OH, C – C – O characteristic stretch)  

•  
~ 1300 cm

-1 
(CH2 – OH, CH2 twisting vibration) 

• ~1465 cm
-1 

(alcohols in plane OH deformation vibration)  

•  
~1582 cm

-1  
(N – H wagging vibration) 

• ~ 2881 cm
-1 

(CH2 – OH, CH2 asymmetric stretch)  
 
 

• ~ 3314 cm
-1 

(NH stretch) 

 

 

 

 

 

 

Triethanolamine 

 

• ~ 879 cm
-1 

(N – H, out of plane bending vibration) 
 
 

• ~ 1027 cm
-1 

(CH2 – OH, C – C – O characteristic stretch) 
 
 

• ~ 1073 cm
-1 

(CH2 – OH, C – C – O characteristic stretch) 

•  
~ 1459 cm

-1 
(alcohols in plane OH deformation vibration) 

•  
~ 1592 cm

-1 
(N – H wagging vibration) 

•  
~ 2889 cm

-1 
(CH2 – OH, symmetric O – H stretch)  

•  ~ 2946 cm
-1 

(CH2 – OH, asymmetric O – H stretch)   

•  
~ 3405 cm

-1 
(NH stretch) 

 

Table 6.1: VCI components Raman spectra peak assignment 
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6.6 SERS analysis of compounds 

6.6.1 Dissociation rate of compounds 

The Raman spectra of each compound were obtained by ‘wetting’ the surface of the 

modified carbon substrate (0.1 cm
3
 of each sample, note: it was necessary to dissolve 

the benzotriazole compound, a 50% w/v solution in CDCl3 was used for SERS 

analysis) the spectra were obtained at set time intervals (hourly) over a period of eight 

hours before a final spectrum was obtained after a period of eighteen hours, figures 

6.2 – 6.6.  
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Figure 6.2: Graphical representation of changes in intensity of the SERS spectra of 50 

% w/v benzotriazole in CDCl3 over time, laser strength 1 %, exposure time 20 s, 

accumulation 5 and excitation wavelength 660 nm.  
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Figure 6.3: Graphical representation of changes in intensity of the SERS spectra of 

octanoic acid over a set time period, laser strength 1 %, exposure time 20 s, 

accumulation 5 and excitation wavelength 660 nm.  
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Figure 6.4: Graphical representation of changes in intensity of the SERS spectra of 

monoethanolamine 90 % over a set time period, laser strength 1 %, exposure time 20 

s, accumulation 5 and excitation wavelength 660 nm.  
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Figure 6.5: Graphical representation of changes in intensity of the SERS spectra of 

diethanolamine 88 % over a set time period, laser strength 1 %, exposure time 20 s, 

accumulation 5 and excitation wavelength 660 nm.  
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Figure 6.6: Graphical representation of changes in intensity of the SERS spectra of 

triethanolamine 90 % over a set time period, laser strength 1 %, exposure time 20 s, 

accumulation 5 and excitation wavelength 660 nm.  

The Raman peaks observed in these SERS spectra correlate well with the VCI 

compounds characterised by FTIR and NMR. Hence the combination of SERS and 

other analytical methods appear to provide useful information on the rate at which 

each VCI compounds disassociate from the SERS substrate. However it was seen that 

the not all the VCI components (morpholine) were Raman active, and thus the 
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absence of Raman peaks for a VCI component is not compelling evidence that the 

VCI is present or inactive. 

  

6.6.2 Dissociation kinetics 

The dissociation of each compound was modelled as diffusion controlled (figures 6.7 

– 6.16).  

 

Figure 6.7: Dissociation of 50 % w/v Benzotriazole in CDCl3 over a set time period. 

 

 

 

Figure 6.8: Modelling of dissociation of 50 % w/v Benzotriazole in CDCl3 over a set 

time period. 
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Figure 6.9: Dissociation of Monoethanolamine 90% over a set time period. 

 

 

Figure 6.10: Modelling of dissociation of Monoethanolamine 90 % over a set time 

period. 
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Figure 6.11: Dissociation of Diethanolamine 88 % over a set time period. 

 

 

Figure 6.12: Modelling of desorption of Diethanolamine 88 % over a set time period. 
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Figure 6.13: Dissociation of Triethanolamine 90 % over a set time period. 

 

 

Figure 6.14: Modelling of dissociation of Triethanolamine 90 % over a set time 

period. 
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Figure 6.15: Dissociation of Octanoic Acid over a set time period. 

 

 

Figure 6.16: Modelling of dissociation of Octanoic Acid over a set time period. 

 

6.6.3 Diffusion Model 

A clear trend is observed for the dissociation of each VCI component, which may be 

modelled as diffusion controlled, indicating a rapid volatilisation of each component, 

essential to their suitability as vapour phase inhibitors. 
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In electrochemistry signal occurs at the electrode interface and so is reliant on the rate 

of flux into the electrode. 
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Equation 6.1 is the Cottrell equation, where i  is current / the signal, C  is 

concentration, k  is a constant, ∞
C

 
is the bulk concentration, 

e
C  is the concentration 

at the electrode and δ  is the diffusion layer. As,  
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the system is diffusion controlled and 
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Q  is the charge / flux within the system. In the VCI SERS monitoring system the 

signal observed is due to surface interaction. Therefore if it is assumed that 

because the system is based on the VCIs action of evaporating to produce an 

equilibrium environment, the systems total flux in should equal the flux out, and 

so if the initial signal observed at 0≈t , is taken as the limiting concentration 

signal, limS , and the signal of desorption after any time is taken as 
t

S . The inward 

signal may be calculated as 'S . Where,  
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however there is an accumulation over time, and hence,  
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indicating a diffusion controlled system if a straight line is the product of plotting 

t
SS −lim   against 2

1
−

t
 
.
 
    

 

6.6.4 Adsorption of benzotriazole onto SERS surface 

The overall mechanism of VCIs as explained above is to rapidly evaporate and 

disperse within a container forming an equilibrium environment; a component of the 

corrosion inhibitor then condenses upon the metal surface to form a protective barrier 

layer preventing the onset of corrosion. Benzotriazole is a VCI component that has 

been observed to condense onto a metal surface 
3
, and was the component on which a 

subsequent study was focused.   

First it was necessary to prepare a sealable container, which would allow SERS 

measurement; this was achieved by the fabrication of a Petri dish with sample stage 

and quartz window in the lid, figure 6.17. The quartz window is necessary as the 

polystyrene that the dish is made of has a particularly intense Raman signal that 

overlaps that of the benzotriazole.  

Benzotriazole was the placed in the well of the container, a SERS substrate placed on 

the container’s stage, as illustrated in figure 6.17 and the container sealed. 

Measurements were taken at set time intervals (figure 6.18). The condensation of 

benzotriazole over time is illustrated in figure 6.19 where after a period of evaporating 

the condensation of benzotriazole is observed; the protective layer appears to ‘build 

up’ rapidly before levelling off to a constant level. The maximum signal at ~ 7 hours 

could be classed as the saturation coverage of the substrate, with the subsequent lower 

SERS signal be due to the system maintaining an desorption/adsorption equilibrium. 
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Figure 6.17: Schematic of sealed diffusion/condensation container with quartz 

window. 
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Figure 6.18: Graphical representation of changes in intensity of the SERS spectra of 

Benzotriazole over a set time period, laser strength 1 %, exposure time 20 s, 

accumulation 5 and excitation wavelength 660 nm. 
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Figure 6.19: Condensation of benzotriazole over a set time period. 

 

The condensation of other components was investigated however they proved to 

operate in an alternative fashion, merely saturating the containers environment rather 

than condensing upon the SERS surface, confirming descriptions of their mechanism 

in the literature 
20

. 

 

6.7 Conclusions 

Silver nanostructured SERS substrates with an inert (carbon) support were shown to 

significantly enhance the Raman spectra of multiple VCI components. SERS was 

found to be suitable for monitoring the volatilisation / desorption of VCI components 

and their subsequent adsorption to a surface within a sealed environment over time. 

The volatilisation was determined to be diffusion controlled.  

Also Raman spectroscopy clearly showed that adsorption of benzotriazole occurs. 

However, the mechanism of adsorption to a surface was less clear as the action of the 

components came in to play, hence only the adsorption of Benzotriazole was 

monitored, the initial evaporation of which appears to be slow suggesting that the 

presence of the other components in the complete VCI ‘catalyse’ the process’ 

mechanism. This confirms SERS potential as a means of monitoring VCI compounds 

in real time, but suggests that analysis of a complete / commercial VCI is still 

necessary.   
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7. General Conclusion & Future Work 

The current and potential future impact nanotechnology could have is most clearly 

evident in the field of sensor research, where it combines with the three realms of 

science, physics, biology and chemistry. The use of nanoparticles in sensors and 

sensing techniques coupled with ongoing research for simple controlled (morphology) 

synthesis of nanoparticles continues to be an active and expanding research field.  

In chapter 2 a simple ‘bottom up’ preparation of silver nanoparticles as PVA 

stabilised colloids with both high loads and tuneable optical properties was developed 

where the nanostructure’s morphology was controlled and optimised.   

In both cases the synthesis was rapid and repeatable producing nanoparticles of 

distinct size and morphology. Best results were obtained when the high load colloids 

were prepared at lower temperatures (≤ 4
o
C). The resulting colloids displayed good 

stability over time when stored appropriately (in the dark).  

The synthesis process for the ‘coloured’ colloids could be carried out at room 

temperature on the bench and so was deemed sufficiently robust that it was adapted as 

an undergraduate laboratory practical, to demonstrate the unique optical properties of 

nanostructures and infer the potential of nanotechnology. The laboratory practical has 

been run for both first and second year students as part of an inorganic module for the 

last two academic years. Whereas previously the classic Turkevich method had been 

used to prepare gold colloids, the silver colloids prepared more prominently displayed 

(through colour change) the impact of particle morphology on the physiochemical 

properties of nanomaterials. 

The application of the high load silver colloid as a nanocomposite chemiresistor 

sensor was investigated in chapter 3. The nanoparticle composite sensor gave a 

selective, reversible, and rapid response that was proportional to increasing humidity 

levels at room temperature and pressure. This was surprising as work throughout the 

literature on nanocomposite sensor coatings suggest that increasing analyte should 

result in a decrease in signal as the overall resistance of the coating increases as the 

composite material (generally polymers) swell with increasing analyte concentration 
1 

– 4
. 

 Although the precise mechanism of the sensing process remained unresolved, it is 

suggested that the ‘scaffold’ proposal 
5
 for the sensing action remains the most likely, 

where a form of ionic migration occurs with the introduction of water vapour 
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hydrating residual electrolyte (a remnant of the synthesis process) in the composite’s 

makeup and allowing the movement of the ions surrounding the silver nanoparticles, 

which in essence act as a scaffold along which the current flows. The primary 

obstacle in the application of the composite coating is the difficulty in depositing 

uniform films. Printing methods such as screen and inkjet printing could solve this 

issue. M.R Smyth et al. have recently reported successful methods of printing of thin 

films, an adaptation of which could be highly useful 
6 – 7

.  

There still exists a lot of scope for the application of similar nanocomposites in other 

sensing applications; a possible route of investigation would be the development of 

non polar composites for VOC (volatile organic compound) detection, using 

compounds like PTFE (polytetrafluoroethylene) as the composite matrix.   

A shift of focus occurred as the optical properties of the nanoparticles were utilised; 

through their application as surface enhanced Raman (resonance) spectroscopy 

substrates in both their colloidal (metal nanoparticles) form and as cast planar 

nanoparticle films. The study and application of the SER(R)S technique underwent a 

marked increase in  recent decades, primarily because of advances in the ‘nano’ field, 

which has contributed to a significant development of the technique specifically in 

terms of the design and fabrication of novel and improved SERS substrates.  

Advances in Raman instrumentation has also benefited the technique, resulting in a 

greater exposure to the wider scientific community. At present the major contributors 

to SERS research are illustrated in figure 7.1.  

 

Figure 7.1: Some of the major contributors to current SERS research 
8
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Significant enhancement of the Raman signal for probe molecules was observed; 

chapter 4 showed a clear trend where with increasing concentration of colloid, there 

resulted an enhancement of signal, until an optimum ratio of analyte to colloid was 

established. This optimum ratio was found to be consistent for each analyte over a 

range of concentrations. 

A supplementary study of the nanoparticle’s SERS activity as cast substrates was 

conducted in chapter 5. Here both full silver and silver nanocomposite coated carbon 

SERS surfaces demonstrated clear signal enhancement. Initial studies showed that 

when an external potential was applied the resulting spectra could be further enhanced 

within a limited window of applied voltage.  

Emphasis was then placed on the interaction of the coating nanostructures in 

subsequent displayed a greater boost to signal intensity, however attempts to apply 

potentials to films of high loaded silver composites failed because the layer was too 

thick. Screen printing methods could alleviate this problem.  

The effectiveness of the cast nanostructures as SERS substrate was clearly illustrated 

prompting investigation into their application in real world situations in chapter 6, 

namely the real time monitoring of volatile corrosion inhibitors. SERS was found to 

be suitable for monitoring the dissociation of VCI components (supplied to us by 

MetPro) from the silver metal nanostructures and their subsequent adsorption to a 

surface within a sealed environment over time. The dissociation was determined to be 

diffusion controlled; the mechanism of adsorption to a surface was less clear as the 

competitive action of the components came in to play. Hence only the adsorption of 

Benzotriazole was monitored. The initial evaporation and dispersion of the 

Benzotriazole appeared to be slow suggesting that the presence of the other 

components in the complete VCI ‘catalyse’ the process’ mechanism. This provides an 

avenue for future work as ideally a follow up analysis of a complete / commercial 

VCI is necessary to fully illuminate the mechanisms involved. 

Finally in conclusion this body of work establishes that nanostructured sensors and 

techniques provide great potential for selective and sensitive analyses through careful 

control of structure and interface interaction properties, coupled with novel physical 

and chemical features, nano – based sensors will undoubtedly be more widespread 

and instrumental in future sensing applications offering multiple advantages over 

traditional analysis.  
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A.C. Power, A.J. Betts, J.F. Cassidy, Development of a Novel Humidity Sensor Based 

on a Polymer Silver Nanoparticle Composite, ECS transactions, 2009, 19, 181-190 
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A.1.2.1 Oral Presentations 

Development of a Novel Humidity Sensor Based on a Polymer Silver Nanoparticle 

Composite, 215th ECS Meeting – Symposium J2 - 35 Years of Chemical Sensors - 
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The Application of a Silver Nanocomposite as a Humidity Sensor, 3
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 Annual 

Materials Ireland Conference, Dublin Institute of Technology, Kevin St., December 

2010 

 

Nanosilver and Sensing, 1st Annual Postgraduate Research Symposium, Dublin 

Institute of Technology, Kevin St., January 2011 

 

Non Aggregated Colloidal Silver Nanoparticles for Surface Enhanced Raman 

Spectroscopy, 6th CASi conference, The Helix, Dublin City University, February 

2011-06-06 
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Development of a Nano-Silver based gas Sensor, Analytical Sciences Conference, 

Waterford Institute of Technology, May 2008 

 

Silver Polymer Nanocomposite based Humidity Sensor, Symposium 11, 61st Annual 

Meeting of the International Society of Electrochemistry, Nice, France, September 

2010 

 

Colloidal Silver Nanoparticles Analogues for Surface Enhanced Raman Spectroscopy 

(SERS), Symposium 11, 61st Annual Meeting of the International Society of 

Electrochemistry, Nice, France, September 2010 

 

Colloidal Silver Nanoparticles Analogues for Surface Enhanced Raman Spectroscopy 

(SERS), INSPIRE BioNano Workshop, Conway Research Institute, University 
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Application of Silver Nanoparticles (Colloids/Films) in Surface Enhanced Raman 

Spectroscopy, Eirelec 2011: Electrochemistry the Future?, Dunraven Arms Hotel, 

Adare, May 2011 

 

 

A.1.2.3 Related Courses 

 

Bath Electrochemistry Winter School 2010, University of Bath, January 2010 
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A.2.1 Undergraduate Laboratory Practical 

 

Silver Colloids and Colour 

Introduction 

Nanoparticles (particles of the nanoscale 1-100nm or 0.000000001 – 

0.0000001 metres) can be prepared by either Physical or Chemical means.  

The physical method involves the breaking down of a material. This can be 

difficult and problems with the repeatability, uniformity, and consistency can 

often arise.  

The chemical method involves preparing the nanoparticles chemically. This 

method is much simpler and generally gives much better results. (There are 

numerous chemical techniques but we’ll be focusing on the reduction of the 

metal salt.) When preparing nanoparticles in this manner, it is often useful to 

do so by preparing the colloid, which can be manipulated later to produce the 

desired effect. 

A colloid is a type of mixture that appears to be a solution but is actually a 

mechanical mixture. A colloidal system consists of two separate phases: a 

dispersed phase (internal phase), and a continuous phase (dispersion 

medium). 

In a colloid, the dispersed phase is made of tiny particles or droplets that are 

distributed evenly throughout the continuous phase. The dispersed-phase 

particles are sized between 1 nm and 100 nm in at least one dimension. 

Many familiar substances including butter, milk, cream, aerosols (fog, smog, 

smoke), asphalt, inks, paints, glues, and sea foam, are colloids. 

A major advantage of colloids is their stability. In fact colloids made by 

Faraday over 100 years ago are still in existence today.   

 

Colloidal Stability 

What causes this stability? 

Steric stabilization and electrostatic stabilization are the two main 

mechanisms for colloid stabilization. 

In the case of silver colloids, electrostatic stabilisation occurs. This is based 

on the mutual repulsion of like electrical charges. Different phases generally 

have different charge affinities, so that a charge double-layer forms at any 
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interface. Small particle sizes lead to enormous surface areas, and results in 

this effect being greatly amplified in colloids. This can be better explained by 

the DLVO theory. 

The Deryagin-Landau-Verwey-Overbeek (DLVO) theory suggests that the 

stability of a particle in solution is dependent upon its total potential energy 

function VT. This theory recognizes that VT is the balance of several 

competing contributions: 

 

VT = VA + VR + VS 

 

VS (the potential energy due to the solvent) usually only makes a marginal 

contribution to the total potential energy over the last few nanometers of 

separation. More important is the balance between VA and VR; these are the 

attractive and repulsive contributions. 

DLVO theory suggests that the stability of a colloidal system is determined by 

the sum of these Van der Waals attractive (VA) and electrical double layer 

repulsive (VR) forces that exist between particles as they approach each 

other due to the Brownian motion they are undergoing. This theory proposes 

that an energy barrier resulting from the repulsive force prevents two particles 

approaching one another and adhering together. Therefore, if the particles 

have a sufficiently high repulsion, the dispersion will resist flocculation and the 

colloidal system will be stable. However, if a repulsion mechanism does not 

exist then flocculation or coagulation will eventually take place. To maintain 

the stability of the colloidal system, DLVO theory states that the repulsive 

forces between the particles must be dominant. 

The stability of many colloids of both natural and man-made origin can be 

improved by the presence of macromolecules or polymers, e.g. fatty acids in 

milk are stabilised by the presence of casein. Polymers increase viscosity in 

the colloids, altering the sedimentation behaviour. This coupled with their high 

molecular weights results in only a small concentration being necessary to 

achieve this. 

PVA is a well known and commonly used random block copolymer stabiliser. 

Only part of the macromolecule adsorbs to the particle allowing the rest to 

solvate and to expand away from the interface, preventing other particles from 
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approaching. PVA is widely used for polymer nanocomposites, and due to its 

water solubility the nanoparticles can be produced in an aqueous medium 

making the preparation process non-toxic. 

 

Colloids and Colour 

Nanoparticles of noble metals in colloidal form often display characteristic 

colours (Silver – spherical – yellow to red/gold, Gold – spherical – Ruby Red)  

These colours are a result of the unique physical properties of the 

nanoparticles themselves.   

 

Figure 1. A sample set of the different coloured colloids produced in the practical, and their λ max. 

How does it work? 

When an external electro-magnetic field such as light is applied to a metal, the 

conduction electrons of the metal move collectively so as to screen the 

perturbed charge distribution in what is known as ‘plasma oscillation’. The 

surface plasmon resonance (SPR) is therefore, a collective excitation mode of 

the plasma localised near the metal surface. This produces the shine 

associated with a metal.  

In the case of a metal nanoparticle, the surface plasmon mode is 'restricted' 

due to the small dimensions to which the electrons are confined, i.e. the 

surface plasmon mode must conform to the boundaries of the dimensions of 

the nanoparticle.         .           

Therefore, the resonance frequency of the surface plasmon oscillation of the 

metal nanoparticle is different from the plasma frequency of the bulk metal. 

Surface interactions can alter the optical properties and influence the spectral 

profile of the light scattered by the SPR of the metal nanoparticles. Among the 

metal nanoparticles known to exhibit SPR, silver nanoparticles have an 

especially strong SPR.  Using UV-Vis and Mie theory, which solves Maxwell’s 

λλλλmax 445 λλλλmax 473 λλλλmax 495 λλλλmax 555 λλλλmax 670 λλλλmax 405/648 
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equations and in turn describe the extinction spectra (extinction = scattering + 

absorption), the size of spherical particles may be determined. 

Factors affecting a colloids colour include the source metal (in this case 

Silver), the size range, and the shape of the nanoparticles within. 

 

The Tyndall effect 

The Tyndall effect, also known as Tyndall scattering, is the scattering of light 

by colloidal particles or particles in suspension, and may be demonstrated 

using a laser pointer. Shine the laser through a curvette of DI water and the 

point where it hits the surface and passes through is evident, but the path the 

laser travels through the media is absent. If you shine the laser through a 

curvette containing a colloid the path of the laser is clearly illuminated.  

 
Figure 2.The glass on right contains only DI water, while glass on left contains silver colloid. 

 

Characterisation of Nanoparticles 

Characterisation of nanoparticles in colloids can be conducted using UV-Vis 

spectroscopy, Dynamic Light Scattering (D.L.S) and Transmission Electron 

Microscopy (T.E.M).  

Size analysis by DLS utilises the Brownian motion that particles, emulsions, 

and molecules in suspension undergo as a result of bombardment by solvent 

molecules. If the particles are illuminated with a laser, the intensity of the 

scattered light fluctuates at a rate that is dependent upon the size of the 

particles, as smaller particles are ‘hit’ further by the solvent molecules and 

move more rapidly. Analysis of these intensity fluctuations yields the velocity 

of the Brownian motion and hence the particle size using the Stokes-Einstein 

relationship.  

 

D = kBT / 6πηr 
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Where D is the diffusion constant, kB is Boltzmann's constant, T is the 

absolute temperature, η is the viscosity of the solvent and r is the particle 

radius. 

DLS works on the principal that the nanoparticles in the dispersion are in 

constant Brownian motion; the larger a particle in the dispersion the slower it 

moves. A laser beam is applied to the colloid solution. Depending on the size 

of the particles, the light will be scattered differently and thus the intensity of 

the scattered light changes. This change is related to the size of the 

nanoparticles. Images of the nanoparticles can be obtained using TEM where 

an image is produced from the interaction of a beam of electrons transmitted 

through a thin layer of the colloid.  

 

Experimental 

Substance Hazardous properties 
including physical 
hazards 

Risk phrase Target 
organs 

Silver Nitrate Skin Contact: May cause 
skin irritation or burns. 
Skin Absorption: May be 
harmful if absorbed 
through the skin. Eye 
Contact: May cause eye 
irritation. Inhalation: May 
be harmful if inhaled. 
Material may be 
extremely destructive to 
mucous membranes and 
upper respiratory tract. 
Ingestion: May be 
corrosive if swallowed. 
Poison 

H272/314/410 
P220/273/280/305/351/338/310/501 
R8/34/50/53 
S26/36/37/39/45/60/61 

various 

Sodium Borohydride Skin Contact: Causes 
burns. Eye Contact: 
Causes burns. 
Inhalation: May be 
harmful if inhaled. 
Material is extremely 
destructive to the tissue of 
the mucous membranes 
and upper 
respiratory tract. 
Ingestion: Toxic if 
swallowed. 

R15/24/25/34 
S22/26/36/37/39/43/45 
 

various 

tri Sodium Citrate Skin Contact: may cause 
skin irritation. Eye 
Contact: may cause 
irritation. Inhalation: May 
be harmful if inhaled. 
Material may be irritating 
to the tissue of the 

Not Hazardous according to 
Directive 67/548/EEC 

various 
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mucous membranes and 
upper respiratory tract. 
May be harmful if inhaled. 
Ingestion: may be 
harmful if swallowed. 

Poly Vinyl Alcohol Skin Contact: may cause 
skin irritation. Eye 
Contact: may cause 
irritation. Inhalation: May 
be harmful if inhaled. 
Material may be irritating 
to the upper respiratory 
tract. May be harmful if 
inhaled. Ingestion: may 
be harmful if swallowed. 

Not Hazardous according to 
Directive 67/548/EEC 

N/A 

Hydrazine Skin contact: Toxic if 
absorbed through skin. 
Causes skin burns. Eye 
contact: Causes eye 
burns. Inhalation: Toxic if 
inhaled. Material 
extremely destructive to 
the tissue mucous 
membranes and upper 
respiratory tract. 
Ingestion: Toxic if 
swallowed. Causes burns. 
 

H226/301/314/317/331/350/410 
P20/273/280/305/310/338/351/501 
R10/23/24/25/34/43/45/50/53 
S53/45/60/61 
 

various 

Rhodamine 6G Skin contact: May be 
harmful if absorbed 
through skin. May cause 
skin irritation. Eye 
contact: May cause eye 
irritation. Inhalation: May 
be harmful if inhaled. May 
cause respiratory tract 
irritation. Ingestion: 
Harmful if swallowed. 
 

H302 
P none 
R22 
S none 
 

various 

Malachite Green Skin contact: May be 
harmful if absorbed 
through skin. May cause 
skin irritation. Eye 
contact: May cause eye 
irritation. Inhalation: May 
be harmful if inhaled. May 
cause respiratory tract 
irritation. Ingestion: 
Harmful if swallowed. 
 

R22/41/50/53/63 
S26/36/37/39/46/60/61 
 

Kidney 

Crystal Violet Skin contact: May be 
harmful if absorbed 
through skin. May cause 
skin irritation. Eye 
contact: Causes eye 
burns. Inhalation: May 
be harmful if inhaled. May 
cause respiratory tract 
irritation. Ingestion: 
Harmful if swallowed. 

H318/410 
P273/280/305/338/351/501 
R22/40/41/50/53 
S26/36/37/39/46/60/61 
 

various 
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Hydrochloric Acid Inhalation May be 
harmful if inhaled. 
Material is extremely 
destructive to the tissue of 
the mucous membranes 
and upper respiratory 
tract. Ingestion May be 
harmful if swallowed. 
Causes burns. Skin May 
be harmful if absorbed 
through skin. Causes skin 
burns. Eyes Causes eye 
burns. 

H314/335 
P261/280/305/310/351/338 
R34/37 
S26/45 

various 

Sodium Hydroxide Inhalation May be 
harmful if inhaled. 
Material is extremely 
destructive to the tissue of 
the mucous membranes 
and upper respiratory 
tract. Skin May be 
harmful if absorbed 
through skin. Causes 
severe skin burns. 
Eyes Causes severe eye 
burns. Ingestion May be 
harmful if swallowed. 
Causes severe burns. 

H314 
P280/305/351/310/338 
R35 
S26/37/39/45 

various 

 

Seed production method: 

Put 2 cm3 0.001 M Silver Nitrate and 2 cm3 1% PVA in a clean dry beaker and 

stir, to this add drop wise 2 cm3 0.001 M sodium borohydride, producing a 

yellow colloid or seed solution. 

 

Colour Solution preparation: 

1 cm3 1% PVA  

1 cm3 seed solution 

3 cm3 0.1M Tri Sodium Citrate 

5 cm3 0.1M (note conc. Hydrazine ~ 15.5M)  

+ X cm3 0.001M Silver Nitrate  
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X (cm3) Colour λλλλ max Observations 

~ 0.40 Yellow   

~ 1.00 Orange   

~ 1.30 Red   

~ 2.50 Purple   

~ 6.00 Blue   

~ 20.00 Green   

 

1. Make up the seed solution using the method stipulated by your 

laboratory instructor. 

2. Using this seed solution make up a series of colloids following the 

recipe above. (Note: Add reagents as ordered above, and manner of 

addition of 0.001M silver nitrate is important) 

3. Using the laser pointer supplied, check for the presence of nano 

particles, indicated by the Tyndall effect, described in the pre lab talk. 

4. Analysis resulting colloids using UV-Vis. 

5. Tabulate results as above. 

6. TEM images and DLS results of a series of previously prepared 

colloids will be provided, incorporate the information they provide in to 

your assessment of the colloids prepared in this practical.  

 

Further Reading 

A rapid, straight-forward method for controlling the morphology of stable silver 

nanoparticles 

Deirdre M. Ledwith, Aine M. Whelan and John M. Kelly  

Journal of Material Chemistry, 2007, 17, 2459–2464 

Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly 

Reproducible and Rapid Synthesis at Room Temperature 

Damian Aherne, Deirdre M. Ledwith, Matthew Gara, and John M. Kelly 

Advanced Functional Materials, 2008,18, 2005–2016 

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and 

Dielectric Environment. 

K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz 

Journal of Physical Chemistry B., 2003, 107, 668-677 
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Synthesis of silver nanoprisms with variable size and investigation of their optical 

properties 

Andrew J. Frank, Nicole Cathcart, Kenneth E. Maly and Vladimir Kitaev 

Journal of Chemical Education, 2010, 87, 1098-1101 

Synthesis and study of silver nanoparticles 

Sally D. Solomon, Mozghan Bahadory, Aravindan V. Jeyarajasingam, Susan 

A. Rutkowsky and Charles Boritz 

Journal of Chemical Education, 2007, 84, 322-325 

Silver Voyage from Macro- to Nanoworld 

Jana Soukupova, Libor Kvitek, Martina Kratochvilova, Ales Panacek, Robert 

Prucek 

Journal of Chemical Education, 2010, 87, 1094-1097 

Non aggregated colloidal silver nanoparticles for Surface Enhanced Raman 

Spectroscopy  

A.C. Power, A.J. Betts, J.F.  

The Analyst, 2011, 136, 2794-2802 
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A.2.2 DLS for Individual ‘Coloured’ Colloids - Malvern nano series Zetasizer 

 

 
Figure A.2.2.1: DLS ‘Yellow’ Colloid 

 

 

 

 
Figure A.2.2.2: DLS ‘Orange’ Colloid 

 

 

 

 

 
 

Figure A.2.2.3: DLS ‘Red’ Colloid 
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Figure A.2.2.4: DLS ‘Purple’ Colloid 

 

 

A.2.3 TEM Images of ‘Coloured’ Colloids - JEOL, 100CX Transmission Electron 

Microscope  

 

 

 
Figure A.2.3.1: Yellow colloid ~ 22nm average diameter – 67K Magnification 
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Figure A.2.3.2: Orange colloid ~ 35 nm average diameter – 40K Magnification 

 

 
Figure A.2.3.3: Red colloid ~ 40 nm diameter – 450K Magnification 
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Figure A.2.3.4: Purple colloid ~ 55 nm diameter – 100K Magnification 
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A.2.4 STEM Images of ‘Coloured’ Colloids - Hitachi SU 6600 FESEM – Images 

taken by Anne Shanahan BSc. - Instrumental Support – Focas Institute 

 
Figure A.2.4.1: Orange colloid ~ 36 nm average diameter – 100K Magnification 

 

 
Figure A.2.4.2: Red colloid ~ 43 nm average diameter – 100K Magnification 
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Figure A.2.4.3: Purple colloid ~ 53 nm average diameter – 100K Magnification 

 

 
Figure A.2.4.3: Green colloid – 100K Magnification – two separate size ranges. 
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A.3.1 Characterisation of MetPro Samples - FTIR Analysis  

 

Figure A.3.1.1: FTIR spectrum of benzotriazole 

 

Figure  A.3.1.2: FTIR spectrum of morpholine 
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Figure A.3.1.3: FTIR spectrum of octanoic acid 

 

Figure A.3.1.4: FTIR spectrum of monoethanolamine 90% 



Appendix 

  182 

Figure A.3.1.5: FTIR spectrum of diethanolamine 88% 

 

Figure A.3.1.6: FTIR spectrum of triethanolamine 90% 
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Compound Structure Bands of 

Interest  

(cm
-1

) 

Assignment 

 

 

Benzotriazole 

 

~ 3340 N – H 

~ 1206 N – Aromatic 

~ 1003 C = CH 

~ 874 Aromatic – H 

~ 737 Aromatic – H 

 

 

 

Morpholine 

 

 

~ 3303 N – H 

~ 2944 C – H 

~ 2823 C – H 

~ 1451 C – O 

~ 1317 C – O 

~ 1137 C – O 

~ 1093 C – O 

 

 

 

 

Octanoic Acid 

 

 

 

 

 

~ 2923 COOH 

~ 2854 COOH 

~ 2670 COOH 

~ 1704 C = O 

~ 1412 C – H 

~ 1272 C – H 

~ 1230 O = C – O 

~ 932 C – O 

 

 

 

 

 

Monoethanolamine 

90% 

   

 

 

 

 

 

~ 3350 O – H 

~ 3287 O – H 

~ 2928 C – H 

~ 2854 C – H 

~ 1596 N – H 

~ 1456 

~ 1356 

H3C – CH3 

Scissoring 

bending 

~ 1074 C – O 
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~ 1029 C – O 

 

 

 

Diethanolamine 88% 

 

 

 

 

 

 

 

 

~ 3292 O – H 

~ 2839 N – H 

~ 1659 C – O 

~ 1451 C – O 

~ 1359 C – O 

~ 1119 C – O 

~ 1048 C – O 

 

 

 

Triethanolamine 

90% 

 

 

 

 

 

~ 3303 O – H 

~ 2944 C – H 

~ 2881 C – H 

~ 2823 C – H 

~ 1654 C – O 

~ 1151 C – O 

~ 1029 C – O 

Table A.3.1.1: MetPro VCI components structures and FTIR band assignment. 
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A.3.2 Characterisation of MetPro Samples – H
1
NMR Analysis 

 

Figure A.3.2.1: H
1
NMR spectrum of benzotriazole 
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Figure A.3.2.2: H
1
NMR spectrum of morpholine 

 

Figure A.3.2.3: H
1
NMR spectrum of octanoic acid 
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Figure A.3.2.3: H
1
NMR spectrum of monoethanolamine 90% 

 

Figure A.3.3.4: H
1
NMR spectrum of diethanolamine 88% 
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Figure A.3.2.5: H
1
NMR spectrum of triethanolamine 90% 

 

Compound Structure Peaks Assignment 

 

Benzotriazole 

 

 

 

12.88 ppm (1H, broad s, A)  

7.95 -7.92 ppm (2H, m, B) 

7.44 – 7.40 ppm (2H, m, C) 

 

Morpholine 

 

 

1.756 ppm (1H, broad s, C)  

2.78 – 2.76 ppm (4H, t, B) 

3.59 - 3.57 ppm (4H, t, A)  

 

 

Octanoic Acid 

 

 

11.86 ppm (1H, broad s, A) 

2.34 – 2.30 ppm (2H, t, B) 

1.62 – 1.59 ppm (2H, t, C) 

1.33 – 1.24 ppm (8H, m, D) 

0.87 – 0.85 ppm (3H, t, E) 
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Monoethanolamine 90% 

 

 

 

 

2.65 - 2.63 ppm (2H, t, A)  

3.45 – 3.42 ppm (2H, t, B)  

 

 

Diethanolamine 88% 

 

 

 

3.31 ppm (2H, broad s, A) 

2.77 – 2.75 ppm (2H, t, C) 

3.70 – 3.67 ppm (2H, t, B) 

 

 

Triethanolamine 90% 

 

 

 

 5.13 ppm (3H, broad s, A) 

2.48 – 2.45 ppm (6H, t, C) 

3.51 – 3.48 ppm (6H, t, B) 

Table A.3.2.1: MetPro VCI components structures and H
1
NMR peak assignment. 
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