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ABSTRACT 

The two main groups of biotoxins which affect the Irish shellfish industry are azaspiracids 

(AZAs) and the okadaic acid (OA) group (OA, DTX2, DTX1 and their esters) toxins. Since 

AZAs were first identified in 1998, well over 30 analogues have been reported. Structural and 

toxicological data have been described for AZA1–5 (isolated from shellfish). LC-MS/MS is the 

EU reference method for detection of the AZAs (AZA1, -2 and -3) and the OA group toxins in 

raw shellfish with the regulatory limit set at 160 µg/kg for each toxin group. Limited supplies of 

purified toxins for certified reference materials (CRMs) were available for AZA1−3. Little 

knowledge was also available on the relevance of the additional AZA analogues that had been 

reported, in terms of human health protection.  

The analysis of marine biotoxins by LC-MS/MS can be severely affected by matrix 

interferences. Here, a study was performed on two instruments; a quadrapole time of flight 

(QToF) and a triple stage quadrupole (TSQ) to assess matrix interferences for AZA1 and OA 

using a number of tissue types. Enhancement was observed for OA on the QToF while matrix 

suppression was observed for AZA1 on TSQ. The enhancement on the QToF was overcome by 

use of  an on-line SPE method and matrix matched calibrants, while the suppression on the TSQ 

was found to be due to late eluting compounds from previous injections and was overcome by 

employing either a column flush method or an alkaline mobile phase. 

The isolation of 11 AZA analogues (AZA1−10 and 37-epi-AZA1) from shellfish using an 

improved procedure (7 steps) is described. Recoveries increased ~2-fold (~ 52%) from 

previously described isolation procedures.  

The preparative isolation procedure developed for shellfish was optimised for Azadinium 

spinosum bulk culture extracts such that only four steps were necessary to obtain purified AZA1 

and -2. A purification efficiency of ~70% was achieved, and isolation from 1,200 L of culture 

yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 (purities >95%). This work demonstrated the 
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feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures. In addition to 

AZA1 and -2, the novel analogues AZA33, -34 were isolated (also from A. spinosum).  

Sufficient quantities were purified to enable full structural elucidation, the preparation of 

reference standards and CRMs, and toxicity studies. Nine of these analogues were fully 

characterised for the first time (Table 7.1). Structural determination was achieved by NMR and 

chemical analysis, while toxicity was assessed using the Jurkat T lymphocyte cell assay, mouse 

intraperitoneal (AZA1−3 and -6) and mouse oral (AZA1−3) administration.  

The preparation of reference standards for the analogues AZA4−10, 37-epi-AZA1, AZA33 and -

34 enabled their relevance in terms of human health protection to be determined. The in vitro and 

in vivo toxicity studies performed confirmed AZA toxicity. Using the Jurkat T lymphocyte assay 

the order of potency is: AZA2 > AZA6 > AZA34  37-epi-AZA1 > AZA8  AZA3 > AZA1 > 

AZA4  AZA9 > AZA5  AZA10 > AZA33. 

The results from the oral and intraperitoneal mice studies correlated very well, contradicting 

previous reports and showing that AZA1 is more toxic than AZA2 and -3 and that AZA6 is 

slightly less toxic than AZA1 i.e., AZA1 > AZA6 > AZA2 > AZA3.  

Analysis of shellfish (Mytilus edulis) submitted to the Irish biotoxin monitoring programme 

using the reference standards confirmed previous reports showing that levels of AZA3, -4, -6 and 

-9 increase following cooking due to heat induced decarboxylation of AZA17, -21, -19  and -23. 

Very high levels of AZA3 (up to 3-fold that of AZA1) and -6 (up to 3- fold that of AZA2) were 

detected in some samples (with levels varying most likely due to different rates of metabolism 

and time of harvesting). As the concentrations of AZA3 and -6 are negligible in raw mussels, yet 

can increase significantly during the cooking of mussels, the overall concentrations are 

underestimated by methods used according to current legislation. 

In cooked shellfish the AZA analogues -4, -5, -7–10, as well as AZA33 and -34, comprise on 

average ~5% of the total AZA content, however in some samples levels of AZA4 were higher 
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than AZA6. Levels of the 37-epimers in the cooked shellfish extracts were ~ 15% that of the 

parent analogues. 
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CHAPTER 1 - INTRODUCTION 

1.1. The Irish shellfish industry 

Since the 1970s the Irish shellfish industry has expanded rapidly. The value was estimated to be 

worth over €60 million in 2012
1
 and there is significant potential for further growth. The main 

products are mussels, oysters, scallops and clams. Currently there are ~ 90 shellfish harvesting 

sites around the coasts of Ireland. 76% of all aquaculture production is conducted along the 

Western seaboard and is an important contributor to job creation and the economy for these 

coastal communities. 

Mussels account for the biggest production – 6,000 tonnes of bottom and 9,000 tonnes of rope 

mussels were produced in 2012. Total employment in the mussel industry was 444 in the same 

year with exports valued at over €20 million. Over 50% of the mussels produced in Ireland are 

certified organic. 

Oysters are the second largest shellfish product produced in Ireland with ~ 7,600 tonnes 

produced in 2012 and employing 933 people. Oyster exports in 2012 were valued at over €35 

million. France was the biggest export market accounting for 86% of oyster exports. 

Other varieties produced are scallops, clams, razor fish, cockles and limpets. 

One of the limiting factors for the industry is the occurrence of biotoxin producing algae on 

which the shellfish feed. These algae can accumulate in shellfish to toxic levels (for human 

health) over a very short time period.  

The adverse impacts of harmful algal blooms (HABs) on farmed shellfish in Europe was 

estimated to cost €53.78 million per annum from 2001 to 2009. In Ireland, the figure was 

estimated at €1.64 million over the same period.
2
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1.2. EU regulated marine biotoxins 

1.2.1. Hydrophilic toxins 

1.2.1.1. Domoic acid 

 

 

 

 

Figure 1.1. Structure of domoic acid. 

 

The first reported case of an amnesic shellfish poisoning (ASP) event was in 1987 in Canada 

following the consumption of mussels. The symptoms included nausea, vomiting, abdominal 

cramps and diarrhoea which appeared within the first 24 h following consumption. Neurological 

systems then kicked in within 48–72 h and included confusion, disorientation, loss of short term 

memory, seizures and coma. A number of people were hospitalised and four people died as a 

result of this poisoning event. Domoic acid (a tricarboxylic acid) was soon discovered as the 

toxin responsible
3
 and has since been found worldwide, although no other poisoning incident 

associated with this toxin group has since been reported. 

The toxin is produced by the genus Pseudo-nitzchia,
4
 a marine diatom and is typically associated 

with mussels and scallops in Ireland.
5
 Domoic acid induces toxicity by activating the kainite 

class of glutamate neurotransmitter receptors.
6
 The EU regulatory limit is set at 20 µg/g for 

domoic acid and epi-domoic acid. 
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1.2.1.2. Paralytic shellfish poisoning toxins 

 

 

 

 

Figure 1.2. Structure of saxitoxin. 

 

The paralytic shellfish poisoning (PSP) toxins are the most serious shellfish toxins in terms of 

effects on human health with very low levels capable of inducing human fatalities. These toxins 

are produced by the dinoflagellates Alexandrium spp
7
 and Gymnodinium spp

8
 and are distributed 

globally. More than 20 analogues have been reported to occur naturally, with saxitoxin (STX) 

being the parent analogue. 

The basic structure consists of a tetrahydropurine skeleton with two guanidinium groups (Figure 

1.2). They exert their toxic effects by blocking the sodium ion channel and symptoms include 

tingling sensations, numbness of the extremities, headache, dizziness, nausea, vomiting, 

diarrhoea and in severe cases, death by asphyxiation.
9
 The EU regulatory limit for PSP toxins is 

800 µg/kg STX equivalents. 
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1.2.2. Lipophilic toxins 

1.2.2.1. Azaspiracids 

 

 

 

 

Toxin R1 R2 R3 

AZA1 H H CH3 

AZA2 H CH3 CH3 

AZA3 H H H 

Figure 1.3. Structure of azaspiracid1−3. 

 

AZAs were first discovered in 1998 following a poisoning outbreak in 1995 in the Netherlands 

associated with Irish shellfish.
10

 Symptoms included nausea, vomiting, abdominal cramps and 

diarrhoea which appeared within the first 24 h following consumption.
11

 AZA1 was initially 

isolated and characterised
10

 followed by the analogues AZA2 and -3
12

 in 1999 and AZA4 and -5 

in 2001.
13

 The AZAs were found to have highly oxygenated polyether structures with a spiro 

ring, a cyclic amine and a carboxylic acid moiety. More than 20 additional analogues were 

subsequently observed in shellfish by LC-MS/MS.
14

 It was not until 2009 that the producer of 

these toxins was identified – a small (5 µm in width) thecate dinoflagellate, subsequently named 

Azadinium spinosum.
15

 A. spinosum was found to produce only AZA1 and -2 in culture
16

 and it 

is believed that many of the other analogues are produced in the shellfish via metabolism.
14,17

 

AZAs have been detected globally and there have been a number of poisoning events associated 

with this toxin group since the first report in 1995, all of which were sourced back to Irish 

shellfish.
18

 The EU regulatory limit is set at 160 µg/kg for AZA1, -2 and -3. 
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1.2.2.2. Okadaic acid group 

 

 

 

 

Toxin R1 R2 R3 

OA CH3 H H 

DTX1 CH3 CH3 H 

DTX2 H H CH3 

Figure 1.4. Structure of OA group. 

 

OA group toxins result in a syndrome known as diarrhetic shellfish poisoning (DSP), the 

symptoms of which mimic those of AZAs; nausea, vomiting, abdominal cramps and diarrhoea 

which appear within the first 24 h following consumption. The first poisoning incident 

associated with this toxin group occurred in Japan in 1976 following the consumption of 

mussels.
19

 The OA group consists of OA, dinophysis toxin 1 (DTX1), dinophysis toxin 2 

(DTX2) and their esters. Structurally they consist of long chain compounds containing trans-

fused or spiro-linked cyclic polyether rings (Figure 1.4). The induced toxicity is due to inhibition 

of protein phosphatases PP1 and PP2A. This toxin group has been detected globally
5,20–22 

and is 

produced by the marine dinoflagellate species of the genus Dinophysis
20,23

 and 

Prorocentrum.
24.25

 The EU regulatory limit is set at 160 µg/kg for OA, DTX1, DTX2 and their 

esters. 
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1.2.2.3. Pectenotoxins 

 

 

 

 

Toxin R1 

PTX1 CH2OH 

PTX2 CH3 

Figure 1.5. Structure of PTX1 and PTX2 group. 

 

Pectenotoxins (PTXs) are produced by some of the algae (Dinophysis
26–30

) that also produce the 

OA group toxins and these toxins regularly co-occur in shellfish. PTX1 and PTX2 were 

originally isolated from shellfish in 1984
31

 and are included with the OA group toxins for 

regulation i.e., the limit is 160 µg/kg for the OA group and PTX1 and PTX2. They have also 

been found in Protoperidinium.
32

 They are cyclic polyether lactone compounds. PTX2 is the 

most common analogue which is metabolised in shellfish to produce other derivatives, such as 

PTX1, PTX3 PTX6
23

 and
 
PTX2 seco acid.

32
 

These toxins have not been shown to be toxic when administered orally.
30,32

 In addition no 

human poisoning events have been associated with this toxin group hence these compounds are 

not considered of major concern to human health. 
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1.2.2.4. Yessotoxins 

 

 

 

 

 

 

 

Figure 1.6. Structure of yessotoxin. 

 

Yessotoxins (YTXs) were first discovered in 1986 in scallops from Japan.
33

 They are produced 

by Proroceratium reticulatum,
34

 Lingulodinium polyedrum
35

 and Gonyaulax spinifera.
36

 A wide 

range of compounds belonging to the YTX group have been identified. The basic structure 

consists of a disulphated polyether with an unsaturated side chain. YTX was initially classified 

as a DSP toxin
33

 however it has since been found not to induce toxic effects in oral mouse 

studies
37,38

 and is therefore not deemed to be of significance to human health. Furthermore, 

studies investigating the combined effects of AZAs and YTXs found that YTX does not have 

any synergistic effects when administered orally with AZA1.
39

 Recently EU legislation was 

amended increasing the limit to 3.75 mg/kg.
40 

 

1.3. Toxic episodes in Ireland 

AZAs have been detected in shellfish since the monitoring programme was established in 2001. 

Since that time there was only one year (2004) in which there were no closures due to AZAs 

being over the regulatory limit (160 µg/kg), Figure 1.7. Typically onset of toxicity occurs mid to 

late summer. Those sites that are affected can remain closed for long periods due to the slow 
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depuration rates of AZAs from shellfish. The highest recorded levels in shellfish were in 2005 

where concentrations reached 9 µg/g (60 times over the regulatory limit) at a site in Donegal. 

Mussels are the worst affected shellfish. 2012 was the most extensive and protracted toxicity 

period with sites all along the West coast being closed, some of which were closed for almost 

one year. This trend was repeated in 2013 and is causing severe economic hardship for shellfish 

farmers. Interestingly, the AZAs appear to be only problematic in Ireland and all of the 

poisoning incidents associated with these toxins can be sourced back to shellfish harvested in 

Ireland. Norway and the UK are the only other countries to date that have reported AZAs being 

just over the regulatory limit in shellfish.  

The second most important toxin group which affects the shellfish industry in Ireland is the OA 

group toxins. Since 2002 these toxins have been detected in shellfish every year resulting from 

blooms of Dinophysis acuta or Dinophysis acuminata (which produce OA and DTX2). The 

Southwest of the country is particularly prone to accumulation of both OA group and AZA 

toxins in shellfish, Figure 1.7. Typically OA group toxicity occurs early to mid-summer and 

regularly there is co-occurrence with the AZAs. Again mussels are the worst affected shellfish, 

however the OA group toxins are quicker to depurate than the AZAs. 

Closure of sites has also resulted due to levels of domoic acid being over the regulatory limit 

(20 µg/g). Typically only scallops are tested for this toxin group however at certain times of the 

year (usually spring time) large blooms of the producing species Pseudo-nitzchias result in high 

levels of domoic acid in mussels. Such onsets occur quickly but also the concentration levels in 

the shellfish reduce very quickly. 

Fortunately the PSP toxins are not problematic for the Irish shellfish industry, to date, with 

closures only ever occurring in Cork Harbour due to these toxins being over the regulatory limit 

(>800 µg/kg STX equivalents). The PSPs have been detected in shellfish from other parts of the 

country, however, levels have been extremely low. 
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PTXs were detected for the first time in Irish shellfish in 2014, while YTXs have not been 

detected to date.
5
 

 

 

 

 

 

Figure 1.7. Closure of Irish shellfish harvesting sites due to AZAs and OA group toxins from 

2002–2013. 

2002 2003 2004 2005

2006 2007 2008 2009

2010 2011 2012 2013

AZAs in shellfish over the regulatory limit (160 µg/kg)

OA group toxins in shellfish over the regulatory limit (160 µg/kg)
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1.4. Methods of analysis 

The marine biotoxin monitoring programme was set up in Ireland in 2001. At that time the EU 

regulatory method for the monitoring of the lipophilic toxins and PSPs in shellfish was by the 

Mouse BioAssay (MBA).
41

 Along with the MBA, phytoplankton monitoring and analysis of 

shellfish extracts (for the lipophilic toxins) by LC-MS/MS was performed in parallel. Domoic 

acid was monitored by a HPLC-UV method.  

The LC-MS/MS method was limited by the lack of CRMs for all the regulated toxins with 

standard calibrants only available for OA (certified) and AZA1 (non-certified). In 2003 the 

Marine Institute received National Development Plan (NDP) funding for a three year project on 

AZAs named ASTOX.
42

 One of the main aims of the project was to purify sufficient amounts of 

AZA1–3 to produce CRMs to aid in the monitoring of these toxins. Through collaborations with 

other international research teams the project aims were achieved; successful isolations of 

AZA1–3 from shellfish, enabling the production of CRMs.
43

 A number of tissue CRMs were 

also prepared for the first time over the course of the project.
44,45

 In addition to preparing CRMs 

for the AZAs the project was also successful in producing a CRM for DTX2.
42

 CRMs are 

essential to ensure accurate results are being produced by monitoring laboratories. The 

availability of these CRMs enabled more accurate analysis to be performed by LC-MS/MS and 

facilitated the introduction of new legislation replacing the MBA and implementing LC-MS/MS 

as the regulatory method.
46

 In parallel the PSP MBA was replaced by a HPLC-FLD method. 

Currently at the Marine Institute, Irish National Accreditation Board (INAB) accredited methods 

are employed for the analysis of all the EU regulated toxins. Proficiency testing schemes are also 

used to ensure the validity of results being produced – the Marine Institute subscribes to 

QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in 

Europe) twice yearly for all the toxin groups and a Community Reference Laboratory (CRL) 

intercomparison, which is run annually. 
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In parallel with the chemistry methods, the phytoplankton monitoring programme provides a 

complementary service in providing valuable information on the presence of toxin producing 

algae in the water.  

 

1.4.1. LC-MS/MS 

LC-MS/MS with electrospray ionisation (ESI) is the technique of choice for the analysis of many 

of the regulated marine biotoxins offering specificity, selectivity and high sensitivity, particularly 

with the newer instruments. The most common instruments used for quantitative, high 

throughput analysis are the tandem mass spectrometers (QqQ), also known as a TSQ, consisting 

of two quadrupole mass spectrometers in series, with a (non mass-resolving) radio frequency 

(RF)-only quadrupole between them to act as a cell for collision-induced dissociation. Precursor 

ions selected in the first quadrupole (Q1) are dissociated in the collision cell (Q2) in the presence 

of an inert gas such as Ar, He, or N2, with the generated fragment ions from the precursor ion 

being scanned in the second quadrupole (Q3). 

 

 

 

Figure 1.8. Schematic of a Micromass tandem mass spectrometer. Courtesy of Micromass-Waters 

 

Such instruments can be operated in selected reaction monitoring mode (SRM) whereby the 

precursor and fragment ions are selected or selected ion monitoring (SIM) mode where only the 

http://en.wikipedia.org/wiki/Quadrupole_mass_spectrometer
http://en.wikipedia.org/wiki/Radio-frequency_quadrupole
http://en.wikipedia.org/wiki/Radio-frequency_quadrupole
http://en.wikipedia.org/wiki/Collision-induced_dissociation
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precursor ion is selected (no fragmentation). Due to the targeted nature of SRM, tandem mass 

spectrometers have mostly contributed to confirmation of known analytes, and not to the 

discovery of novel compounds. Numerous multitoxin MS methods have been developed using 

such instruments.
47–49

 The emergence of fast scanning instruments in parallel with UPLC 

systems has enabled rapid sample turnaround time for monitoring laboratories. 

High resolution mass spectrometers (HRMS), such as QToF instruments are required for the 

detection and characterisation of novel compounds. These instruments have a quadrupole where 

the precursor ions are selected, a collision cell followed by a time of flight (TOF) sector. The 

TOF has an extended flight path (V or W) through which the ions travel and separate based on 

their mass-to-charge ratio, enabling mass spectral data and accurate mass measurements to be 

produced. A mass resolution of ~ 10,000 can be obtained with older QToF instruments (Figure 

1.9), whereas newer instruments offer resolutions of ≥ 50,000. The discovery of novel AZA 

analogues was reported using the QToF shown in Figure 1.9.
14

 

 

Figure 1.9. Schematic of a Micromass quadrupole time of flight mass spectrometer. Courtesy of 

Micromass-Waters 

 

Quadrapole MS TOF MS
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The increasing complexity of samples and increasing detection of novel compounds has led to 

more advanced MS instruments that are robust with high resolving power, mass accuracy, 

sensitivity and dynamic range. Non targeted HRMS screening using Orbitrap instruments has 

been reported recently for the detection of marine biotoxins.
50,51

 Such instruments allow for 

effective screening of complex samples for  known and unknown compounds, however,  

additional analysis by a QToF is required for structural characterisation.  

 

1.4.2. NMR 

Many of the marine biotoxins are cyclic polyethers consisting of long carbon chains substituted 

with hydrogen atoms. Such structures lend themselves well to 
1
H and 

13
C  NMR spectroscopy, 

and it is this method, supplemented by mass spectrometry, that has primarily been used for 

structure determination.
10,12,52,53

 Typically the minimum amount of highly purified (>95%) 

sample required is 100 µg for purity assessment and structural elucidation. Full stereochemical 

elucidation may not always be possible by NMR alone but requires chemical synthesis and/or X-

ray crystallography. The stereochemistry of OA and AZA were only confirmed following 

synthesis of the compounds by Forsyth et al.
54

 and Nicolaou et al.,
55–57

 respectively. 

 

1.5. Toxicology of AZAs 

1.5.1. In vivo 

Mice exposed to mussel extracts containing AZA via intraperitoneal injection exhibited 

“neurotoxin-like” symptoms characterized by sluggishness, respiratory difficulties, spasms, 

progressive paralysis, and death within 20–90 min.
11,58

 The intraperitoneal minimum lethal dose 

of partially purified AZA1 was originally determined to be 150 µg/kg,
11

 while from the first 

purified AZA1 a lethal dose was identified to be 200 µg/kg.
10

 The intraperitoneal minimum 

lethal doses of AZA2 and -3 were 110 and 140 µg/kg, respectively,
12

 suggesting higher potency 
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relative to AZA1. These results have since been used for toxic equivalent factor (TEF) 

determination and application for regulatory purposes.
59

 The more polar AZA4 and -5 

(hydroxylated versions of AZA3) were less potent with lethal dose values of 470 and <1,000 

µg/kg, respectively.
13

 

Due to the lack of purified AZAs, limited studies on their acute oral toxicity have been 

performed. Previous studies focused only on AZA1. These studies found that the gastrointestinal 

tract, liver, spleen and thymus were the main organs affected.
37,39,60−63 

Studies by Aasen et al.
61

 and Aune et al.
64

 using female NMRI mice demonstrated that doses of 

100–540 g/kg were insufficient to kill any of the tested animals but doses above 600 g/kg 

resulted in some mortality. The experimentally determined LD10 and LD50 levels (with 95% 

confidence intervals) were 570 (435–735) and 775 (596–1,055) g/kg, respectively.
64

 

In separate experiments, severe injuries were induced by two repeated doses of 250, 300, 350, or 

450 µg/kg, two days apart, and recovery was monitored for up to 90 days. Of the 16 mice 

receiving 450 µg/kg, 11 died prior to the second dose, suggesting a revised minimum oral lethal 

dose of <450 µg/kg.
 65 

The most common pathological effect of AZA1 following oral exposure is degradation of the 

lining surrounding the upper small intestine.
60−64 

Despite known uptake and systemic distribution 

of AZA1 following oral exposure, only limited and less severe histopathological changes were 

observed in other internal organs/tissues. Moderate doses of AZA1 (100–300 g/kg) resulted in 

the liver being abnormally pale in coloration,
64

 which may be the result of fatty acid droplet 

accumulation.
60

 Higher doses (500–700 µg/kg) increased liver weight by 38%. There were time- 

and dose-dependent effects on the number of necrotic lymphocytes in the thymus, spleen, and 

the Peyer’s patches of the small intestine, which was supported by quantitation of the number of 

non-granulocytes (lymphocytes, monocytes, macrophages) in the spleen. AZA1 treatments of 

600 and 700 µg/kg resulted in a 33% decrease in the number of non-granulocytes, which were 
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primarily T and B lymphocytes.
60

 There were no reported histological changes associated with 

the kidney, heart, lung, and brain.
60,61,64 

   

 

1.5.2. In vitro 

Preliminary experiments performed by Flanagan et al.
66–68

 using HepG2 hepatoblastoma cells 

and human bladder carcinoma cells (ECV-304) exposed to contaminated crude mussel extracts 

showed AZAs to have a cytotoxic effect. In the ASTOX project,
42

 cellular and molecular studies 

were designed to investigate the mode of action underlying the toxicity of AZAs. Studies 

conducted on seven different mammalian cell lines showed that AZAs strongly affect most cell 

types. A functional assay was developed in the project for the specific detection of AZAs using 

morphological changes of pseudopodia in lymphocyte T cells (Jurkat). It was subsequently found 

to be the most sensitive for AZAs of all the assays tested.
42

 In T lymphocytes, cells initially 

responded to AZA1 by a reduction in membrane integrity, organelle protrusion concurrent with 

flattening of cells, and a retraction of their pseudopodia or lamellipodia.
69

 This was followed by 

protracted cell lysis. Using this assay the relative toxicities of the regulated AZAs were: 

AZA2>AZA1>AZA3,
70

 which confirmed the original mouse intraperitoneal relative 

toxicities.
10,12

  

In leukaemia cells, AZA2 caused DNA synthesis phase arrest.
71

 In neuroblastoma cells, AZA1 

induced cell rounding and detachment from adjacent cells.
72

 At the subcellular level, disruption 

of the Golgi complex and an accumulation of vesicles have been reported.
73

 At the cellular level, 

AZA1, -2, and two other semi-synthetic analogues of AZA2 all induced gross morphological 

changes.
74

 AZA1 is a potent cytotoxin towards primary cerebellar granular cells (CGCs),
75

 

neocortical cells,
76

 and spinal cord neurons.
77

 In CGCs, AZA-induced cytotoxicity was related to 

the activation of the c-Jun-N-terminal kinase (JNK),
78,79

 whereby AZA1 exposure resulted in 

decreased neuronal volume that was protected by pre-incubation of the neurons with a JNK 

inhibitor (SP 600125), a chloride channel blocker (4,4-diisothiocyanatostilbene-2,2-disulfonic 
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acid; DIDS), and a Na
+
-K

+
-ATPase blocker (amiloride).

78,80
 The effects of AZA1 and -2 on 

cytotoxicity (and other cellular indices) appear to be irreversible.
72,74,77,81

 Experiments using 

human breast cancer cells and mouse fibroblasts exposed to AZA1 have also demonstrated that 

the reductions in cellular proliferation and density are not unlike the actions elicited by YTX, 

raising the possibility of similar mechanisms of action for these two phycotoxin classes.
82

  

 

1.6. Objectives 

One of the limiting issues in the analysis of compounds by LC-MS/MS is matrix effects. Matrix 

effects were observed for both the AZA and OA group toxins using instrumentation employed at 

the Marine Institute. Such interferences can affect the accuracy of results being produced hence 

there was a strong need to try and overcome these issues. The initial study (Chapter 2) was 

performed to assess the impact of such interferences on two LC-MS/MS instruments and 

implement methods to surmount them where present. 

 

Prior to this study only AZA1–5 were isolated, characterised and assessed for toxicity. However, 

more than 30 AZAs had been identified
14

 with little knowledge of what impact these additional 

analogues have on human health. Studies (Chapters 3−6) performed as part of this thesis set out 

to try and improve on previously reported methods used to isolate AZAs from shellfish in terms 

of efficiency and recoveries. With the discovery of the producing organism A. spinosum in 

2009,
15

 further isolation method development was envisaged from bulk culture extracts. Isolation 

of as many of the known and novel AZA analogues as possible was intended to enable full 

characterisation, the preparation of reference materials and further toxicological studies. Up to 

this point the mode of action of AZAs was unknown, hence the availability of sufficient amounts 

of purified toxin was essential to allow such studies to proceed. Furthermore with the change in 
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legislation from use of the MBA to LC-MS/MS for the detection of these toxins, the sustained 

supply of CRMs for the regulated toxins was imperative. 

Additional questions remained about the effects of cooking on AZAs in shellfish. This was of 

concern due to processed shellfish being rejected by importing countries despite being under the 

regulatory limit when tested prior to processing. Heat induced decarboxylation of AZA17, -19, 

21 and -23 to AZA3, -6, -4 and 9 respectively had already been reported,
17

 however, the 

significance of these transformations had yet to be fully explored and further work in this area is 

detailed in Chapter 6. 
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CHAPTER 2 – STRATEGIES FOR THE ELIMINATION OF MATRIX 

EFFECTS IN THE LC-MS/MS ANALYSIS OF OKADAIC ACID AND 

AZASPIRACID-1 IN MOLLUSCAN SHELLFISH 

Kilcoyne, J. and Fux, E., 2010. Strategies for the elimination of matrix effects in the liquid 

chromatography tandem mass spectrometry analysis of the lipophilic toxins okadaic acid and 

azaspiracid-1 in molluscan shellfish. Journal of Chromatography A, 1217, 7123–7130.  

2.1. Abstract 

Considerable efforts are being made worldwide to replace in vivo assays with instrumental 

methods of analysis for the monitoring of marine biotoxins in shellfish. Analysis of these 

compounds by the preferred technique of liquid chromatography tandem mass spectrometry 

(LC-MS/MS) is challenged by matrix effects associated with the shellfish tissues. In methods 

validation, assessment of matrix interferences is imperative to ensure the validity and 

accuracy of results being produced. 

Matrix interferences for the analysis of okadaic acid (OA) and azaspiracid 1 (AZA1) were 

assessed using acidic methods on electrospray triple stage quadrupole (TSQ) and hybrid 

quadrupole time of flight (QToF) instruments by the use of matrix matched standards for 

different tissue types. Using an acidic method no matrix interference and suppression was 

observed on the TSQ for OA and AZA1 respectively, whilst the opposite was observed on the 

QToF; matrix enhancement for OA and no matrix interference for AZA1. The suppression of 

AZAs on the TSQ was found to be due to interfering compounds being carried over from 

previous injections. The degree of suppression is very much dependent on the tissue type 

ranging from 15–70%. Several strategies were evaluated to eliminate these interferences, 

including the partitioning of the extract with hexane, optimisation of the chromatographic 

method and the use of on-line SPE. 
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Hexane clean up did not have any impact on matrix effects. The use of an alkaline method 

and a modified acidic method eliminated matrix suppression for AZA1 on the TSQ 

instrument while an on-line SPE method proved to be effective for the elimination of matrix 

enhancement of OA on the QToF. 

 

2.2. Introduction 

Diarrhetic shellfish poisoning (DSP) is a human illness caused by the consumption of 

shellfish contaminated with the lipophilic marine biotoxins okadaic acid (OA) and 

dinophysistoxins (DTX). DSP toxins are produced by marine dinoflagellate species of the 

genus Dinophysis and Prorocentrum, and are accumulated in filter-feeding molluscan 

shellfish. The DSP syndrome was first reported in Japan in 1978, and the occurrence of DSP 

toxins is now a worldwide issue with frequent Dinophysis outbreaks documented in Europe, 

Asia, South and North America over the past 20 years.
1–4

 DSP symptoms include nausea, 

vomiting, gastrointestinal disturbances, and stomach pain.
5
  

In 1995, the presence in shellfish of another lipophilic marine toxin, azaspiracid (AZA), was 

responsible for diarrhetic illnesses in several individuals who consumed shellfish harvested in 

Ireland.
6
 The AZA group now includes more than 24 analogues that are either produced by 

phytoplankton, products of biotransformation in shellfish or by-products of toxin storage.
7 

 

However, only AZA1, -2 and -3 are regulated by the European Union.
8 

AZAs have been 

found in shellfish from several European countries, Morocco, Eastern Canada, Japan and 

more recently in shellfish from Chile.
9–13

 The symptoms of azaspiracid shellfish poisoning 

(AZP) are similar to that of DSP, and include nausea, vomiting, diarrheoa, and stomach 

cramps. 
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The EU has set maximum levels of AZP and DSP toxins in shellfish destined for human 

consumption. These are 160 µg OA equivalents/kg  from the OA group (sum of OA, DTX) 

and including pectenotoxin (PTX) and 160 µg AZA equivalents/kg from the AZA group 

(sum of AZA1, -2 and -3).
14

 Until recently the mouse (or rat) bioassay (MBA) was the EU 

reference method for the detection of  OA group and AZA toxins in shellfish. A study has 

shown that the detection limit of the MBA is adequate for the current regulatory limit of 

AZAs,
15

 however, sensitivity is an issue at the lower levels.
16,17

 Furthermore, additional 

concerns relating to accuracy and ethics prompted substantial efforts to replace it with 

instrumental methods. 

The MBA was replaced by LC-MS/MS as the reference method for the detection of marine 

biotoxins in shellfish in 2014.
18

 LC-MS/MS is considered the technique of choice as it offers 

improved sensitivity, selectivity and accuracy as well as being faster and automated. 

However, quantitation using LC-MS/MS in biological matrices is often challenging because 

of matrix effects which alter the accuracy and the precision of the method. Matrix effects are 

believed to be caused by endogenous compounds co-eluting with the analyte and competing 

for ionisation in the electrospray (ESI) source.
19,20

  

A number of different approaches have been taken to eliminate or to correct for matrix effects 

in LC-MS/MS analyses including sample clean up, standard addition, matrix matched 

standards, internal standards or changes in chromatographic conditions such as the pH of the 

mobile phase or the nature of stationary phase.  

Sample clean-up can be performed using liquid-liquid extraction (LLE) or solid phase 

extraction (SPE) which is available with a variety of stationary phases (normal and reverse 

phase, ion exchange and immunoaffinity material with antibodies specific to the analyte).  

SPE also has the benefit of pre-concentrating samples which can be useful when dealing with 

low levels of toxins. Two recent reports have shown this technique to be effective in raising 



Chapter 2 - Matrix effects in LC-MS/MS 

34 

 

sensitivity as well as eliminating sample impurities,
21,22

 however, its effectiveness in 

overcoming matrix effects was not clearly demonstrated in these studies. Dilution of extracts 

has also been reported to reduce matrix interferences,
15,23

 yet such an approach compromises 

the sensitivity of the method. 

In addition to sample clean up, various approaches have been used to correct for matrix 

effects. Quantitation using matrix matched standards entails the production of a calibration 

curve in solutions with the exact same composition as the samples by extracting blank 

material or by reconstructing the matrix artificially and spiking the analyte at different 

concentrations. Although this approach is perfectly acceptable when the sample matrix is 

identical in all samples being analysed its application for the monitoring of marine toxins in 

shellfish is limited. Indeed, the production of matrix matched standards in all shellfish 

varieties (up to 10 different varieties) that are typically encountered in monitoring 

laboratories is impractical. Furthermore, the production of a calibration curve in extracts of a 

given variety, does not imply that the matrix composition of another extract of the same 

variety but from a different location and/or harvested at a different time of the year will be 

identical since environmental factors and food source will influence the composition of the 

shellfish tissues e.g., lipid content.  

The standard addition method eliminates the need for the availability of a blank matrix and 

only requires the analyte to be available as a calibration solution of sufficient concentration. 

This method has been used to deal with matrix suppression in the analysis of scallops for 

diarrhetic shellfish toxins.
24

 Although the method is very powerful and widely accepted, its 

use in monitoring laboratories remains limited for a number of reasons, primarily due to 

increased sample preparation and analysis time.  

The use of internal standards is a very efficient approach to ensure that satisfactory accuracy 

is obtained through the different steps of the analytical method. Unfortunately, the total or 
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partial synthesis of the isotopically labelled compound is required and currently no such 

compounds are available for the DSP and AZA toxins to our knowledge. 

Elimination or reduction of matrix effects to an acceptable level can also be achieved through 

modifications of the chromatographic conditions to change the selectivity towards the 

interfering compounds and/or the analyte.  

We examined matrix effects associated with shellfish tissues on two LC-MS/MS instruments; 

a QToF and a TSQ, using ESI sources and identical LC conditions. Matrix interferences were 

assessed using matrix matched standards for six different tissue types; M. edulis, C. gigas, O. 

edulis, E. siliqua, P. maximus meat, P. maximus gonad and where interferences are observed 

we describe efforts made to overcome them. The performances of the methods employed 

were also evaluated in terms of sensitivity, accuracy and precision. 

 

2.3. Experimental section 

CH3CN, MeOH and hexane were purchased as pestican grade solvents from Labscan 

(Dublin, Ireland). Formic acid, ammonium formate and ammonium hydroxide were obtained 

from Sigma Aldrich (Steinheim, Germany). H2O was obtained from a reverse-osmosis 

purification system (Barnstead, Dublin, Ireland). OA and AZA1 certified reference materials 

(CRM) were obtained from the NRC (Halifax, Canada). 

 

2.3.1. LC-MS/MS 

Two LC-MS/MS systems were used; a Micromass triple stage quadrupole (TSQ) Ultima 

coupled to a Waters 2695 HPLC and a Micromass time-of-flight (QToF) Ultima coupled to a 

Waters 2795 HPLC. Both systems were equipped with a z spray ESI source. The TSQ was 

operated in selected reaction monitoring (SRM) mode and the following transitions were 

monitored: OA, m/z 803.5>255.5 and 803.5>803.5 in negative ionisation mode; AZA1 m/z 
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842.5>654.4 and 842.5>672.4, AZA2 856.5>654.4 and 856.5>672.4, AZA3 828.5>640.4 and 

828.5>658.4 in positive ionisation mode. The cone voltages were set at 70 V and 60 V in 

negative and positive modes respectively and the collision voltage was set at 40 V in both 

modes. Cone and desolvation gas flows were set at 100 and 800 L/h respectively while the 

source and desolvation temperatures were set at 150 °C and 350 °C respectively. 

The QToF was operated in fragment ion scan (FIS) mode monitoring for the same precursor 

ions as those reported for the TSQ. The cone voltages were set at 80 V and 40 V in negative 

and positive modes, respectively. The collision energy was set at 30 V in negative mode and 

50 V in positive mode. Cone and desolvation gas flows were set at 100 and 750 L/h 

respectively while the source and desolvation temperatures were set at 140 °C and 350 °C 

respectively. Quantitation was performed by summing the ions of m/z 824.5, 672.5, 654.5 and 

362.5 for AZA1 (and the equivalent fragment ions for AZA2 and -3) and the ions of m/z 

803.5 and 255.1 for OA. 

 

2.3.2. Acidic gradient method  

A gradient elution method was set with an acidic binary mobile phase, with phase A (100% 

aqueous) and phase B (95% aqueous CH3CN), each containing 2 mM ammonium formate 

and 50 mM formic acid following the method of Quilliam et al., 2001.
25

 The gradient elution 

started with 30% B, increased to 90% B over 8 min, held for 2.5 min, decreased to 30% B in 

0.5 min and held for 4 min to equilibrate the system before the next injection. The 

chromatographic separation was achieved using a Hypersil BDS C8 column; 50 x 2.1 mm, 

3 µm with a guard column of the same stationary phase 10 x 2.1 mm, 3 µm (Thermo 

Scientific, Runcorn, UK). The flow rate was set at 0.25 mL/min and the injection volume at 

5 µL. The column and sample temperatures were set at 25 °C and 6 °C, respectively.  
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We assessed matrix effects for several shellfish tissues over a number of months. The spike 

samples and M. edulis matrix matched standards were run in triplicate against MeOH 

standards (seven  levels) using in-house validated and accredited methods of analysis for the 

monitoring of lipophilic toxins.  

A matrix-matched standard curve was prepared with M. edulis in order to compare response 

factors over the range of concentrations representative of naturally contaminated shellfish. 

The accuracy was calculated as a percentage of difference between the slopes obtained in 

MeOH and in the M. edulis extracts. The accuracies reported for all other shellfish varieties 

were calculated from spiked samples at a single concentration. Within each batch all samples 

were analysed by triplicate injection.  

 

2.3.3. Acidic gradient method with a 100% B flush 

A modified gradient method with acidic mobile phase was also evaluated. The gradient 

started with 30% B at 0.25 mL/min, increased to 90% B over 8 min, held for 5 min, increased 

to 100% B at 0.4 mL/min, held for 5 min and set back to 30% B at 0.25 mL/min which was 

held for 4 min to equilibrate the system.  

 

2.3.4. Alkaline method 

The alkaline method followed that of Gerssen et al., 2009;
26

 a binary mobile phase was used, 

with phase A (100% aqueous) and phase B (90% aqueous CH3CN), each containing 6.7 mM 

ammonium hydroxide. Separation was achieved using a Waters X bridge, C18 column (150 x 

3 mm, 5 µm). The flow rate was set at 0.25 mL/min and the injection volume was set at 5 µL. 

The column and sample temperatures were set at 25 °C and 6 °C respectively. A gradient 

elution was employed, starting with 10% B which was held for 1 min and increased linearly 
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to 90% over 9 min. The mobile phase was held at 90% B for 3 min and returned to 10% B in 

2 min. The system was then allowed to equilibrate for 4 min. 

 

2.3.5. On-line SPE method 

For the on-line SPE method a binary mobile phase was used, with phase A (100% aqueous) 

and phase B (95% aqueous CH3CN), each containing 2 mM ammonium formate and 50 mM 

formic acid. The loading column was an Oasis HLB, 5 µm, 2.1 x 20 mm column and HPLC 

separation was achieved using a Hypersil BDS C8 column; 50 x 2.1, 3 µm; guard column, 10 

x 2.1 mm, 3 µm (Thermo Scientific, Runcorn, UK). The flow rate was set at 0.2 mL/min and 

the injection volume was 10 µL. The column and sample temperatures were set at 25 °C and 

6 °C respectively. The sample was initially injected onto the loading column with 20% B for 

2 min after which time the switch valve directed the flow onto the analytical column and the 

flow was reduced to 0.02 mL/min. After 3 seconds the flow was increased to 0.075 mL/min 

and the % B was increased from 20% to 30% over 27 seconds. The % B was then increased 

further to 100% over 10 min, held for 18 min, then decreased to 30% B over 0.5 min and held 

for 9 min.  The system was then equilibrated for 3 min at 20% B and a flow rate of 

0.2 mL/min. The switching valve was set to direct the flow to waste after 23 min. 

 

2.3.6. Partitioning of shellfish extract with hexane 

A laboratory reference material (LRM) prepared with M. edulis tissue and contaminated with 

both OA group and AZA toxins was extracted using the extraction described below 

(preparation of matrix matched standards). A set volume (5 mL) of the filtered extract was 

partitioned with 15 mL of hexane. The sample was shaken vigorously for 1 min and the 

layers were allowed to settle. The LRM extract (bottom layer) was then collected in a 

centrifuge tube and an aliquot transferred into a HPLC vial for analysis.  
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A set volume (1 mL) of the hexane layer was then pipetted into HPLC vials and dried down 

under nitrogen. Dried residues were re-solubilised with 200 µL of MeOH with vortex mixing 

for 30 s. The sample was transferred into an insert vial for analysis. Three MeOH standards 

were run directly after three injections of the non-partitioned LRM extract in addition to the 

partitioned LRM extract, followed by a four point calibration curve (all performed in 

triplicate). 

 

2.3.7. Preparation of matrix matched standards 

For each tissue type, uncontaminated raw samples tested as part of the routine monitoring 

programme in Ireland were selected from different harvesting dates and sites (around the 

coasts of Ireland). The extraction procedure described in this study has been used for several 

years in the shellfish toxins monitoring program in Ireland.
27

 The shellfish were shucked, 

homogenised and aliquoted for extraction where 2 g of tissue was extracted by vortexing for 

1 min with 9 mL of MeOH, centrifuged at 5,000 rpm for 5 min and the supernatant decanted 

into a 20 mL volumetric flask. The remaining pellet was further extracted using an Ultra 

turrax for 1 min with an additional 9 mL of MeOH, centrifuged at 5,000 rpm for 5 min and 

the supernatant decanted into the same 20 mL volumetric flask which was then brought to 

volume with MeOH. The standards were prepared in 25 mL volumetric flasks containing 

20 mL of filtered (Whatmann, 0.2 µm, cellulose acetate filter) tissue extract. For the M. 

edulis matrix matched standards increasing volumes of standard stock solution were added to 

the flasks and the volume was brought to the mark with MeOH with toxin concentrations 

ranging from 2.5–280 ng/mL for OA and 0.8–92 ng/mL for AZA1.  

Spiked tissue samples were prepared for the following tissues: C. gigas, O. edulis, E. siliqua, 

P. maximus meat and P. maximus gonad. For the spiked tissue samples 1 mL of stock 

standard solution was added to the flasks and the volume brought to the mark with MeOH 
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such that the final concentration was 10 ng/mL and 6 ng/mL for OA and AZA1 (equivalent to 

125 µg/kg and 75 µg/kg in tissue) respectively.  

For all the matrix matched standards a sample to solvent ratio (SSR) of 12.5 was obtained 

which reflects the routine monitoring extraction method. 

 

2.3.8. Statistical analysis 

Statistical calculations were carried out using Sigmastat 3.0. The significance test used to 

compare varieties and methods was the two-way analysis of variance Holm-Sidak test. Alpha 

was set at 0.05 (95% confidence) for all experiments. 

 

2.4. Results and discussion 

2.4.1. Assessment of matrix effects using the acidic gradient method 

The average concentrations and standard deviations shown in Table 2.1 were calculated from 

five batches acquired over several months. The accuracy of AZA1 measurements on the TSQ 

in the different varieties of shellfish ranged from 64.2 to 83.1%. Signal suppression was 

consistently observed and was significantly different between the shellfish varieties (p = 

0.009). When the same method was performed on the QToF the accuracy ranged from 97.1 to 

104.6% without significant differences between varieties (p = 0.467).  

The accuracy observed for OA using the acidic method also greatly varied between the two 

instruments (Table 2.1). Acceptable accuracies were achieved on the TSQ which ranged from 

94.3 to 110.9%. The two-way ANOVA test revealed that the accuracy was statistically 

different between the shellfish varieties (p<0.001). The pairwise multiple comparison 

procedure results demonstrated that the accuracy obtained for OA in O. edulis (110.9%) and 

for M. edulis (108.0%) were not significantly different (p = 0.343) but were significantly 
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different when compared to the other shellfish varieties (p values ranging from <0.001 to 

0.041). The accuracy obtained for OA analysis on the QToF with the acidic method was 

affected by signal enhancement and ranged from 114.6 to 130.9% with a significant 

difference between the shellfish varieties (p = 0.008).  

 

Table 2.1. Accuracy and precision data (expressed as percentages) obtained on QToF and 

TSQ with the acidic method (average ± SD; n = no of injections, p = no of concentration 

points).  

A
n
al

y
te

 Shellfish variety Acidic 

 TSQ QToF 

A
Z

A
1

 

M. edulis (p=7) 82.6 (n=18) ± 7.8 102.7 (n=15) ± 11.3 

C. gigas (p=1) 83.1 (n=13) ± 4.5 104.6 (n=21) ± 7.8 

O. edulis (p=1) 69.8 (n=13) ± 6.8 101.2 (n=18) ± 3.6 

E. siliqua (p=1) 73.5 (n=12) ± 7.3 101.1 (n=21) ± 5.4 

P. max meat (p=1) 79.3 (n=13) ± 13.6 103.3 (n=21) ± 5.5 

P. max gonad (p=1) 64.2 (n=13) ± 3.6 97.1 (n=21) ± 3.1 

O
A

 

M. edulis (p=7) 108.0 (n=18) ± 8.4 130.9 (n=18) ± 7.7 

C. gigas (p=1) 102.4 (n=13) ± 3.2 114.6 (n=18) ± 16.4 

O. edulis (p=1) 110.9 (n=13) ± 8.3 130.5 (n=18) ± 18.1 

E. siliqua (p=1) 94.3 (n=12) ± 6.7 119.3 (n=18) ± 12.7 

P. max meat (p=1) 98.3 (n=13) ± 3.5 119.7 (n=15) ± 23.3 

P. max gonad (p=1) 101.3 (n=13) ± 5.1 125.9 (n=18) ± 11.0 

 

Comparison of the results between instruments show that the apparent recoveries observed on 

the QToF were always higher than on the TSQ regardless of the shellfish variety and the 

method used.  
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During analysis of AZA1 on the TSQ it was noted that the injection of a standard after the 

injection of a number of tissue extracts led to a lower response than when injected after a 

calibration curve. The degree of suppression was dependent on the type of tissue extract. This 

phenomenon is illustrated in Figure 2.1 which shows the response of three consecutive 

injections of an AZA1 standard (104 ng/mL) after three injections of three shellfish extracts 

prepared from five different varieties. A six point calibration curve was systematically run 

after the three injections of the AZA1 standard and used to calculate the concentrations 

reported in Figure 2.1. Depending on the tissue type the degree of suppression ranged from 

15 to 70%. In this instance P. maximus gonad tissue appeared to be the worst offender while 

the clams (T. philippinarium) had the least effect. Injections of the AZA1 standard after the 

oyster, mussel and scallop extracts have shown that the first injections are equally affected by 

signal suppression while the third injection led to a significantly higher response.  

 

Figure 2.1. Concentration obtained for three consecutive injections of a standard of AZA1 

(104 ng/mL shown as the bold line) on the TSQ using gradient elution following three 

injections of various shellfish tissue extracts. The error bars show the standard deviations 

obtained from the mean (n=3). 
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These results suggest that either later eluting compounds, or compounds lingering in the 

source are responsible for the signal suppression observed. This phenomenon is not observed 

for the analysis of OA on the QToF.  

It was also noted that the results for the suppression obtained for the shellfish extracts in 

Figure 2.1 were dissimilar to those obtained in Table 2.1. This may be due to the fact that 

although some of the extracts used in the two separate experiments were from the same 

variety, they were harvested at different locations and times. This would suggest that the use 

of matrix matched standards from extracts other than the sample, can lead to erroneous 

results. 

The within-day precision obtained with the acidic method for OA ranged from 1 to 10 % on 

both instruments while the between-day precision over at least five days was 8% on both the 

QToF and the TSQ (Table 2.2). The analysis of AZA1 using the acidic method on the QToF 

demonstrated excellent precision as the within-day precision ranged from 2 to 5% and a 

between-day precision of 11% (Table 2.2). The results obtained for AZA1 with the acidic 

method on the TSQ were not as good, with within-day precision ranging from 3 to 16%. The 

high variation on day five was due to a lower response of the first set of solutions that was 

injected compared to the second and the third replicate set (Table 2.2). A between-day 

precision of 8% was observed over five days. 

 

 

 

 

 

 

 



Chapter 2 - Matrix effects in LC-MS/MS 

44 

 

Table 2.2. Within and between days precision obtained with the acidic method calculated on 

the percentage of difference in response factor between a set of spiked solutions of M. edulis 

extracts and MeOH. A set of seven solutions equivalent to 0.063 to 3.5 mg/kg for OA and 

0.010 to 1.150 mg/kg for AZA1 was injected in triplicate on each day. 

Days n=3 OA QToF OA TSQ AZA QToF AZA1 TSQ 

1 
Average 135.6 100.8 105.7 81.5 

Stdev 5.3 8.9 3.2 5.5 

2 
Average 132.0 108.1 86.0 82.0 

Stdev 7.2 4.1 2.8 7.8 

3 
Average 137.8 113.1 96.8 85.8 

Stdev 4.5 4.4 4.1 3.3 

4 
Average 129.5 100.6 108.5 86.3 

Stdev 9.9 7.4 4.9 4.4 

5 
Average 120.2 117.3 116.6 77.6 

Stdev 3.2 0.8 3.9 15.1 

6 
Average 130.5 - - - 

Stdev 3.9 - - - 

Average 

Stdev 

130.9 108.0 102.7 82.6 

7.7 8.4 11.3 7.8 

 

 

2.4.2. Methods to address matrix effects 

2.4.2.1. Partitioning with hexane  

The LRM was extracted following the same procedure used for the other shellfish as 

described in the experimental section.  

As part of our experiment we investigated the recoveries of OA and AZA1 (analysis of OA 

on TSQ and AZA1 on QToF) in the methanolic (and hexane) fraction after the hexane 

partitioning (data not shown). The recoveries were satisfactory for both compounds (> 95%). 

Hexane did not appear to have any effect on matrix suppression for the AZAs on the TSQ 
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with no significant differences being observed between the partitioned (hexane) LRM and the 

crude LRM (Figure 2.2). The suppression is still observed for the subsequent LRM and 

standard injections for both partitioned and non partitioned samples and reflects what was 

observed for the different tissue types (Figure 2.1). 

Furthermore, the signal suppression effect observed in AZA1 standards after the injection of 

shellfish extracts presented in Figure 2.1 was also examined. The results from Figure 2.2 D 

show that the two injections of a methanolic standard of AZA1 (104 ng/mL) that followed 

three injections of the LRM were affected by signal suppression as the average 

concentrations were measured as 78.0 ± 5.6 and 79.4 ± 7.1 ng/mL for the first and second 

injections respectively. It is only on the third injection of the standard that the concentration 

measured (102.7 ± 4.1 ng/mL) returned within the expected theoretical concentration.  

The effect of hexane partitioning on the signal enhancement effect observed for OA on the 

QToF instrument was also evaluated. Similarly to the above results, the hexane partitioning 

did not eliminate the matrix effects observed (data not shown).  

These findings are in agreement with the results reported by Ito and Tsukada.
24

 In this study 

the partitioning of scallop extracts with hexane and chloroform was evaluated for the 

reduction of signal suppression observed by LC-MS when the analysis of OA, DTX1, 

yessotoxin and pectenotoxin-6 was attempted. This clean-up procedure had no effect on the 

matrix effects observed. The LC-MS method from McNabb et al. (2005) also included a 

hexane partitioning step prior to injection but there is no information regarding the potential 

benefits of this clean-up step on matrix effects.
28

 Although the partitioning step does not 

eliminate matrix effects, its application enables a higher degree of cleanliness in the source 

and in the system without detrimental effect on the accuracy. 
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Figure 2.2. Average concentrations of AZAs (n=3) obtained by injection of three successive 

LRM extracts and three successive LRM extracts after hexane partitioning on the TSQ. Each 

series of three injections were separated by the injection of three successive standard 

solutions. A) Concentration of AZA1 in partitioned and non-partitioned LRM. B) 

Concentration of AZA2 in partitioned and non-partitioned LRM. C) Concentration of AZA3 

in partitioned and non-partitioned LRM. D) Concentration of AZA1 standard (104 ng/mL) 

after the injection of three LRMs and three partitioned LRMs. 

 

2.4.2.2.  Alkaline method  

Changing the selectivity of the method may help to overcome matrix interferences. The use 

of an alkaline method for the separation of lipophilic toxins was reported to increase the 

sensitivity for the OA group of toxins and enable better separation of the DSP (including 

PTX2) and AZA group of toxins. This separation allows analysis of both groups of toxins in 

the one run without having to alternate the mass spectrometer polarity.
26

 An additional study 

A B 

C D 
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found that SPE on polymeric sorbents combined with an alkaline method can significantly 

reduce matrix interferences for both OA and AZA1.
22

  

The alkaline method was run on both the QToF and TSQ instruments without any sample 

pre-treatment to determine any impact on matrix interferences. To assess the matrix effects 

MeOH standards were run with matrix matched standards in triplicate and the slopes 

compared (Table 2.3). 

Excellent results were obtained when the analyses were performed on the TSQ using the 

alkaline method with accuracies of 90.9 to 108.1 % for AZA1 and 97.2 to 104.4 % for OA 

(Table 2.3). There was no statistically significant difference between the varieties (p = 0.083 

and 0.278 for AZA1 and OA, respectively). Signal enhancement was systematically observed 

for both OA and AZA1 when the QToF was used with the alkaline method. For AZA1 the 

accuracy ranged from 107.7 to 135.5% with a significant difference observed between 

varieties (p<0.01) while the accuracy for OA ranged from 122.8 to 127.4 % without 

significant difference between varieties (p = 0.928). 

By using the alkaline method the AZA1 suppression effect on the TSQ was overcome 

without any sample pre-treatment; analysis of three injections of a  P. maximus gonad extract 

followed by three standard injections yielded 98% ± 1.1 recovery for the AZA1 (and OA) in 

the standard compared with 38% ± 12 recovery for AZA1 using the acidic method.  

The precision of OA measurements using the alkaline method ranged from 0.4 to 11% on 

both instruments (Table 2.4). Between-day precision was 9.5 and 8.3% on the QToF and the 

TSQ, respectively. The precision obtained for AZA1 using the alkaline method was also 

acceptable with within-day precisions ranging from 2 to 14% on both instruments and 

between-day precisions of 9.2 and 16.6% on the QToF and TSQ, respectively.  

The accuracies for OA and AZA1 using the acidic and the alkaline methods were reported in 

extracts of mussels (M. edulis), scallops (P. maximus) and oysters (C. gigas).
22

 The crude 
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extracts spiked with OA (equivalent to 160 μg/kg) using a SSR of 10 showed that, with the 

acidic method and analysis of OA in the negative ESI mode, signal enhancement was 

observed in scallops and oysters (128.8 and 123.6%, respectively) while an acceptable 

accuracy was obtained in mussels (104.7%). The use of alkaline method led to excellent 

accuracies in crude extracts of mussels and in scallops (99.3 and 98.9%) while signal 

suppression was observed in oysters (79.6%). Therefore, a systematic decrease in the 

response (>20%) was observed when the alkaline method was used.  

 

Table 2.3. Accuracy and precision data (%) obtained on QToF and TSQ with alkaline 

method (average ± SD; n = no of injections, p = no of concentration points). 

A
n
al

y
te

 Shellfish variety Alkaline 

 TSQ QToF 

A
Z

A
1

 

M. edulis (p=7) 103.2 (n=12) ± 16.6 135.5 (n=12) ± 9.2 

C. gigas (p=1) 108.1 (n=9) ± 9.5 118.7 (n=12) ± 13.2 

O. edulis (p=1) 101.1 (n=9) ± 3.2 131.3 (n=12) ± 13.0 

E. siliqua (p=1) 90.9 (n=9) ± 4.5 107.7 (n=12) ± 11.2 

P. max meat (p=1) 102.1 (n=9) ± 4.3 107.9 (n=12) ± 7.3 

P. max gonad (p=1) 97.9 (n=9) ± 2.9 125.7 (n=12) ± 20.6 

O
A

 

M. edulis (p=7) 103.9 (n=12) ± 8.3 122.8 (n=15) ± 9.5 

C. gigas (p=1) 106.2 (n=9) ± 3.6 123.4 (n=12) ± 13.2 

O. edulis (p=1) 97.2 (n=9) ± 4.8 127.4 (n=12) ± 7.2 

E. siliqua (p=1) 99.5 (n=9) ± 3.2 126.0 (n=12) ± 15.9 

P. max meat (p=1) 101.6 (n=9) ± 8.0 124.3 (n=12) ± 17.8 

P. max gonad (p=1) 99.2 (n=9) ± 6.4 126.7 (n=12) ± 13.5 

 

 

 



Chapter 2 - Matrix effects in LC-MS/MS 

49 

 

This trend was not observed in our study. In the past, signal enhancement (50%) was 

observed when the analysis of OA in crude extracts of mussels was performed on the same 

instrument and using the same acidic method.
23

 Although the same variety of mussels were 

used (M. edulis), the flesh composition may have been different enough than in the present 

study to induce differences in the degree of matrix effects observed.  

In the study by Gerssen et al.,
22

 the crude extracts spiked with AZA1 (equivalent to 

100 μg/kg) using a SSR of 10 showed that, with the acidic method, signal suppression was 

observed in mussel, scallops and oysters (accuracies of 84.3, 59.1 and 73.6%, respectively). 

The use of alkaline method systematically led to better accuracies (88.1, 89.0 and 83.5% in 

the crude extracts of mussels, scallops and oysters, respectively). The results we obtained on 

the TSQ (same instrument as in Gerssen et al.) are in agreement with these observations and 

the suppression effect observed for AZA1 using the acidic method was eliminated when the 

alkaline method was used. The suppression effect in the analysis of AZA1 has been reported 

for numerous shellfish varieties on different instruments with various chromatographic 

methods.
23,26,29,30 

 The results we obtained for AZA1 on the QToF with the acidic method are 

consistent with a previous study performed on this instrument
31

 and within acceptable 

accuracies. However, signal enhancement was observed when the alkaline method was used.  
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Table 2.4. Within and between days precision obtained with the alkaline method calculated 

on the percentage of difference in response factor between a set of spiked solutions of M. 

edulis extracts and MeOH. A set of seven solutions equivalent to 0.063 to 3.5 mg/kg for OA 

and 0.010 to 1.150 mg/kg for AZA1 was injected in triplicate on each day. 

Days Replicates OA QToF OA TSQ AZA QToF AZA1 TSQ 

1 
Average 130.6 109.8 141.1 120.7 

Stdev 9.3 4.9 9.0 5.8 

2 
Average 114.5 111.8 134.9 114.2 

Stdev 4.9 3.2 13.7 9.1 

3 
Average 127.8 93.1 134.6 80.5 

Stdev 11.1 2.9 2.8 8.3 

4 
Average 115.2 107.6 131.6 95.5 

Stdev 7.5 0.4 10.7 9.8 

5 
Average 125.7 97.1 - 105.2 

Stdev 4.2 6.6 - 3.6 

Average 

Stdev 

122.8 103.9 135.5 103.2 

9.5 8.3 9.2 16.6 

 

2.4.2.3. Modified acidic gradient method with 100% organic solvent flush  

Standards and matrix matched standards were run in triplicate in each batch to assess the 

impact on matrix enhancement for OA on the QToF and matrix suppression for AZA on the 

TSQ. Four batches were run over a one-month period. The average and standard deviations 

(n=12) for the six shellfish varieties are shown in Table 2.5. 

The introduction of the 100% CH3CN flush for the analysis of AZA1 on the TSQ resulted in 

improved accuracies (Table 2.5) when compared to the results shown in Table 2.1. The 

suppression effect observed previously was eliminated and the accuracies ranged from 89.3 

to 103.7%. Interestingly the highest bias was observed for P. maximus gonad which was also 

the case with the short acidic gradient method. The two-way ANOVA indicated that the 

differences in the mean values between shellfish varieties were significant (p<0.001). The 
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analysis of OA in the different shellfish varieties on the TSQ led to excellent accuracies, 

ranging from 98.2 to 105.8%. Although the analysis of OA using the short acidic gradient on 

the TSQ demonstrated acceptable accuracies, the method with the 100% CH3CN flush 

provided more consistent results between varieties. After allowing for the effect of the days 

of analysis, the two-way ANOVA indicated that the difference between the mean values 

obtained for the different shellfish varieties was not significant (p = 0.496).  

The signal enhancement observed in the analysis of OA with the QToF remained critical with 

the ‘flushing’ method. The accuracies ranged between 117.3 to 171.4%. A significant 

statistical difference was observed between varieties (p<0.001). Investigations showed that 

the pronounced enhancement effect was not related to the flushing step as the same results 

were obtained when using the shorter acidic method and with a new analytical column (data 

not shown).   

Our results indicated that the suppression of AZA1 on the TSQ was caused either by late 

eluting compounds or due to compounds lingering in the source from previous injections. In 

order to determine which was the case, an experiment was performed using the acidic method 

which consisted of two injections of an O. edulis extract followed by the injection of an 

AZA1 standard in triplicate. The above procedure was then repeated with modifications. The 

flow going through the column was stopped after the injections of the O. edulis extract, the 

column was replaced with a union and the mobile phase B set at a flow rate of 0.4 mL/min 

for 5 min (as is the case with the acidic flush method). After 5 min the column was installed 

on the system and allowed to equilibrate for 3 min before the next injection of AZA1 

standard. The experiment was repeated in triplicate.  

As observed previously the AZA1 standard was suppressed by 17 ± 3% after two injections 

of the O. edulis extract using the acidic method. The suppression was still observed even after 
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the source was flushed (18 ± 5%) indicating that the interfering compounds were strongly 

retained on the column.  

 

Table 2.5. Accuracy and precision data (expressed as percentages) obtained on QToF and 

TSQ (n=12) with the modified acidic gradient method with 100% organic solvent flush 

(average ± SD; p = no of concentration points). 

Shellfish variety AZA1 OA 

 TSQ TSQ QToF 

M. edulis (p=7) 103.7  ± 7.7 100.7  ± 10.3 162.4  ± 11.6 

C. gigas (p=1) 103.4  ± 7.1 102.8  ± 13.6 150.6  ± 21.5 

O. edulis (p=1) 94.8  ± 8.8 105.8  ± 12.1 164.4  ± 13.1 

E. siliqua (p=1) 94.9  ± 6.8 100.4  ± 9.3 134.9  ± 11.8 

P. max meat (p=1) 97.4 ± 5.4 98.2 ± 8.0 117.3 ± 10.2 

P. max gonad (p=1) 89.3  ±10.8 100.3  ± 11.2 171.4  ± 15.2 

 

2.4.2.4. On-line SPE 

The use of two columns for the separation of compounds from complex mixtures such as 

shellfish provides another dimension to conventional liquid chromatography. This approach 

has been successfully used for both single laboratory and collaborative study validations for 

the determination of low level agricultural residues in soft drinks by LC-MS/MS.
32,33

   

The performance of a combination of two columns was evaluated for OA analyses on the 

QToF using the acidic method. An Oasis HLB column was used as the initial column to trap 

OA from the matrix. The column was then back flushed onto the analytical column, the BDS 

Hypersil C8 for further separation. The approach was adapted from a method used for the 

analysis of phycotoxins in plankton cells.
34

 The accuracy of the method was evaluated using 

the same approach as that for OA and AZA1 using the acidic and the alkaline methods. All 

solutions were injected in triplicate on five separate days over a five month period. 

Acceptable accuracies were obtained in all shellfish varieties which ranged from 86.5 to 
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102.6% (Table 2.6). Comparison of these results with those obtained using the acidic method 

on the QToF (Table 2.1) demonstrates that the use of a second column significantly reduced 

the matrix effects that were associated with OA analysis in shellfish varieties.  

The between-day precision obtained using the column switching method was acceptable for 

all shellfish varieties with relative standard deviations ranging from 5.7 to 11.4% (Table 2.6). 

The sensitivity of the column switching method was comparable to the acidic method on the 

same instrument with a limit of detection (LOD) equivalent to 16 µg/kg tissue (Table 2.7). 

Attempts to shorten the run time (from 43 min) by adjusting the gradient conditions and/or 

flow rates were unsuccessful.  

 

Table 2.6. Accuracy (expressed as a percentage) of the column switching method on the 

QToF (acidic mobile phase) for OA in different shellfish varieties (average ± SD; n = no of 

injections, p = no of concentration points). 

Shellfish variety Average OA recovery ± SD (n=15) 

M. edulis (p=7) 95.1 ± 11.4 

C. gigas (p=1) 101.4 ± 10.2 

O. edulis (p=1) 90.4 ± 5.7 

E. siliqua (p=1) 86.5 ± 8.6 

P. max meat (p=1) 93.5 ± 6.7 

P. max gonad (p=1) 102.6 ± 10.9 

 

 

2.4.3. Method performances 

A fit for the purpose analytical method should meet the minimum performances for specific 

parameters set by international organizations.
35–37

 The validation parameters include 

selectivity, accuracy, precision, range, sensitivity and ruggedness (the FDA and ICH 

guidelines also include the assessment of the stability of the analytes). When LC-MS/MS 

methods are used the selectivity of the method is generally excellent and the absence of 
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response in several blank samples is usually sufficient to demonstrate the specificity of a 

given method.  

 

2.4.3.1. Sensitivity 

The LOD observed for OA and AZA1 on both instruments and using the acidic and alkaline 

methods are shown in Table 2.7. The alkaline method allowed for a two-fold improvement in 

sensitivity compared to the acidic method. The LOD achieved for AZA1 was better with the 

acidic method than with the alkaline method by a factor of 1.7 on both instruments. The TSQ 

was 10 times more sensitive than the QToF for AZA1. 

 

Table 2.7. LODs (signal to noise ≥ 3≤10) for AZA1 and OA on the TSQ and the QToF with 

the acidic and alkaline method determined in mussel extracts.  

 Acidic (µg/kg) Alkaline (µg/kg) 

 TSQ QToF TSQ QToF 

AZA1 0.3 3 0.5 5 

OA 10 20 5 10 

 

2.4.3.2. Accuracy  

In the AOAC guidelines, acceptable accuracy is a function of the concentration and the 

purpose of the analysis. An accuracy of 75%–125% is considered acceptable for methods of 

quantitation at ppb levels, as in this study. The FDA guidelines
37

 define an acceptable 

accuracy as being within 15% of the actual value except at the lower limit of quantitation 

(LOQ) at which 20% is acceptable. Therefore, the accuracy that we obtained for OA on the 

TSQ and for AZA on the QToF with the acidic method, as well as for both OA and AZA1 on 

the TSQ with the alkaline method, meet the requirements of the AOAC and the FDA 

guidelines.  
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2.4.3.3. Precision 

According to the AOAC guidelines, repeatability is defined as the degree of agreement of 

results when conditions are maintained as constant as possible with the same analyst, 

reagents, equipment, and instruments performed within a short period of time. The 

repeatability varies with concentration and a theoretical calculated value can be obtained 

from the Horwitz equation (1) where c is the concentration of the analyte expressed as mass 

fraction.  

(1) RSDr= C
-0.15

 

The HORRAT formula (equation 2) allows for the calculation of a ratio that should fall 

between 0.5 and 2 in order to consider the repeatability as satisfactory. 

(2) 
)(

)(

calculatedRSDr

foundRSDr
HORRATr   

Therefore, acceptable precisions for the extracts spiked with OA should have relative 

standard deviations ranging from 2.8 and 11.2 while acceptable precisions for AZA1 should 

range from 3.0 to 12.1. Almost all the standard deviations of the analyses carried out with 

both instruments were within the acceptable range. The FDA guidelines define acceptable 

precision as a RSD obtained from five measurements being less than 15% and less than 20% 

at the lower LOQ. Therefore, according to the FDA guidelines, acceptable precisions were 

obtained for OA and AZA1 using both acidic and alkaline methods for all shellfish varieties 

on the TSQ, except for M. edulis, using the alkaline method for which 16.6% RSD was 

observed.  

We demonstrated that the within-day precision is greatly affected by a suppression effect for 

the AZAs. The injection of several shellfish extracts strongly suppressed the response in the 

samples analysed after the shellfish extracts. When the alkaline and modified acidic methods 

were evaluated this phenomenon was not observed. 



Chapter 2 - Matrix effects in LC-MS/MS 

56 

 

2.5. Conclusions 

We demonstrated the impact of matrix interference in the LC-MS/MS analysis of low-level 

toxins in molluscan shellfish, and strategies to overcome this. Contrasting results were 

obtained on two different LC-MS/MS instruments, using an acidic method, even with the 

same source type (ESI), using the same LC conditions (and samples) and the analyses 

performed by a single analyst. Significant differences were observed between shellfish 

varieties. Partitioning the sample with hexane proved unsuccessful in overcoming the 

interferences observed for OA on the QToF and AZAs on the TSQ. 

Matrix suppression for AZA1 was overcome using an acidic method with an organic solvent 

flush and alternatively by an alkaline method. Matrix enhancement observed for OA on the 

QToF was eliminated only by an on-line SPE method. 

In the author’s lab the alkaline method is the method of choice for the TSQ while the acidic 

method (using on-line SPE for OA analysis) is the preferred procedure for the QToF. 

Introduction of LC-MS/MS as the primary method for the regulatory monitoring of biotoxins 

in shellfish will be quite challenging, considering the variety of instrumentation and 

techniques available. 

This study clearly demonstrates that different LC-MS/MS instruments can produce very 

dissimilar results due to matrix interferences and that it is necessary to initially evaluate 

matrix effects and where present implement procedures to eliminate and/or correct for them.  

  



Chapter 2 - Matrix effects in LC-MS/MS 

57 

 

2.6. References 

(1)  Aune, T.; Yndestad, M. Algal toxins in seafood and drinking water. Academic Press, 

London, 1993; pp 87. 

(2)  Yasumoto, T.; Oshima, Y.; Sugawara, W.; Fukuyo, Y.; Oguri, H.; Igarashi, T.; Fujita, 

N. Identification of dinophysis fortii as the causative organism of diarrhetic shellfish 

poisoning. Bull. Jpn. Soc. Sc. Fish. 1980, 46, 1405 – 1411. 

(3)  Lembeye, G.; Yasumoto, T.; Zhao, J.; Fernandez, R. DSP outbreak in Chilean Fiords. 

In: Toxic Phytoplankton Blooms in the Sea; Smayda, T. J. and S., Eds.; Elsevier: 

Newport R.I., USA, 1993; pp. 525–529. 

(4)  Quilliam, M.; Gilgan, M.; Pleasance, S.; DeFreitas, A.; Douglas, D.; Frits, L.; Hu, T.; 

Marr, T.; Smyth, C.; Wright, J. Can. Tech. Rep. Fish Aquat. Sci., 1991; 1799, 18. 

(5)  Krogh, P.; Edler, L.; Graneli, E.; Nyman, U. Outbreak of diarrhetic shellfish poisoning 

on the West coast of Sweden. In: Toxic Dinoflagellates; Anderson, D. M.; White, D. 

W.; Baden, D. G., Eds.; Elsevier: New York, 1985. 

(6)  McMahon, T.; Silke, J. Winter toxicity of unknown aetiology in mussels. Harmful 

Algae News 1996, 14. 

(7)  Rehmann, N.; Hess, P.; Quilliam, M. A. Discovery of new analogs of the marine 

biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid 

chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 

22, 549–558. 

(8)  Anon. Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in 

Molluscan Bivalves. Food and Agriculture Organization 2004. 

(9)  James, K. J.; Furey, A.; Lehane, M.; Ramstad, H.; Aune, T.; Hovgaard, P.; Morris, S.; 

Higman, W.; Satake, M.; Yasumoto, T. First evidence of an extensive northern 



Chapter 2 - Matrix effects in LC-MS/MS 

58 

 

European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 

2002, 40, 909–915. 

(10)  Taleb, H.; Vale, P.; Amanhir, R.; Benhadouch, A.; Sagou, R.; Chafik, A. First 

detection of azaspiracids in North West Africa. J. Shell. Res. 2006, 25, 1067–1071. 

(11)  Twiner, M. J.; Rehmann, N.; Hess, P.; Doucette, G. J. Azaspiracid shellfish poisoning: 

a review on the chemistry, ecology, and toxicology with an emphasis on human health 

impacts. Mar. Drugs 2008, 6, 39–72. 

(12)  Ueoka, R.; Ito, A.; Izumikawa, M.; Maeda, S.; Takagi, M.; Shin-ya, K.; Yoshida, M.; 

Van Soest, R. W. M.; Matsunaga, S. Isolation of azaspiracid-2 from a marine sponge 

Echinoclathria sp. as a potent cytotoxin. Toxicon 2009, 53, 680–684. 

(13)  Álvarez, G.; Uribe, E.; Ávalos, P.; Mariño, C.; Blanco, J. First identification of 

azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern 

Chile. Toxicon 2009, 55, 638–641. 

(14)  Anonymous Commission Decision 225/2002/EEC, laying down detailed rules for the 

implementation of Council Directive 91/492/EEC as regards the maximum levels and 

the methods of analysis of certain marine biotoxins in bivalve molluscs, echinoderms, 

tunicates and marine gastropods (16.3.2002). Off. J. Europ. Commun. 2002, L75, 62–

64. 

(15)  Hess, P.; Butter, T.; Petersen, A.; Silke, J.; McMahon, T. Performance of the EU-

harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in 

naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates 

characterised by liquid chromatography coupled to tandem mass spectrometry. Toxicon 

2009, 53, 713–722. 



Chapter 2 - Matrix effects in LC-MS/MS 

59 

 

(16)  Hess, P. Requirements for screening and confirmatory methods for the detection and 

quantitation of marine biotoxins in end-product and official control. Analytical and 

Bioanalytical Chemistrymm 2010, 397, 1683–1694. 

(17)  EFSA. Influence of processing on the levels of lipophilic marine biotoxins in bivalve 

molluscs, statement of the panel on contaminants in the food chain (question No 

EFSA-Q-2009-00203), adopted on 25 March 2009. The EFSA Journal 2009, 1016, 1–

10. 

(18)  Anon Commission Regulation (EU) No 15/2011 of 10th January 2011 amending 

Regulation (EC) No 2074/2005 as regards recognised testing methods for detecting 

marine biotoxins in live bivalve molluscs. L6/3-6. 2011. 

 (19)  Srinivas, N. Dodging matrix effects in liquid chromatography tandem mass 

spectrometric assays - compilation of key learnings and perspectives. Biomed 

Chromatogr. 2009, 23, 451–454. 

(20)  Jessome, L.; Volmer, D. Ion suppression: a major concern for mass spectrometry. 

LCGC North America 2006, 24, 498–510. 

(21)  These, A.; Scholz, J.; Preiss-Weigert, A. Sensitive method for the determination of 

lipophilic marine biotoxins in extracts of mussels and processed shellfish by high-

performance liquid chromatography-tandem mass spectrometry based on enrichment 

by solid-phase extraction. J. Chromatogr. A 2009, 1216, 4529–4538. 

(22)  Gerssen, A.; McElhinney, M. A.; Mulder, P.; Bire, R.; Hess, P.; De Boer, J. Solid 

phase extraction for removal of matrix effects in lipophilic marine toxin analysis by 

liquid chromatography-tandem mass spectrometry. 2009, 1213–1226. 

(23)  Fux, E.; Bire, R.; Rode, D.; Hess, P. Approaches to the evaluation of matrix effects in 

the liquid chromatography-mass spectrometry (LC-MS) analysis of three regulated 



Chapter 2 - Matrix effects in LC-MS/MS 

60 

 

lipophilic toxin groups in mussel matrix (Mytilus edulis). Food Addit. Contam. 2008, 

25. 

(24)  Ito, S.; Tsukada, K. Matrix Effect and Correction by Standard Addition in Quantitative 

Liquid Chromatography-Mass Spectrometric Analysis of Diarrhetic Shellfish 

Poisoning Toxins. J. Chromatogr. 2001, 943, 39–46. 

(25)  Quilliam, M. A.; Hess, P.; Dell’Aversano, C.; Koe, W.; Samson, R.; Van Egmond, H.; 

Gilbert, J.; Sabino, M. Proceedings of the Xth international IUPAC symposium on 

mycotoxins and phycotoxins, Sao Paulo, Brazil, May 22-25, 2000. In: Mycotoxins and 

Phycotoxins in Perspective at the Turn of the Century, W.J. deKoe, R.A. Samson, H.P. 

van Egmond, J. Gilbert and M.Sabino (Eds.), Netherlands, W.J. deKoe 2001, 383–391. 

(26)  Gerssen, A.; Mulder, P. J.; McElhinney, M. A.; De Boer, J. Liquid chromatography–

tandem mass spectrometry method for the detection of marine lipophilic toxins under 

alkaline conditions. J. Chromatogr. A 2009, 1216, 1421–1430. 

(27)  Hess, P.; Nguyen, L.; Aasen, J.; Keogh, M.; Kilcoyne, J.; McCarron, P.; Aune, T. 

Tissue distribution, effects of cooking and parameters affecting the extraction of 

azaspiracids from mussels, Mytilus edulis, prior to analysis by liquid chromatography 

coupled to mass spectrometry. Toxicon 2005, 46, 62–71. 

(28)  McNabb, P.; Selwood, A. I.; Holland, P. T. Multiresidue method for determination of 

algal toxins in shellfish: Single-laboratory validation and interlaboratory study. AOAC 

Int. 2005, 88, 761–772. 

(29)  Stobo, L. A.; Lacaze, J.; Scott, A. C.; Gallacher, S.; Smith, E. A.; Quilliam, M. A. 

Liquid chromatography with mass spectrometry - Detection of lipophilic shellfish 

toxins. J. AOAC Int. 2005, 88, 1371–1382. 



Chapter 2 - Matrix effects in LC-MS/MS 

61 

 

(30)  Fux, E.; McMillan, D.; Bire, R.; Hess, P. Development of an ultra-performance liquid 

chromatography-mass spectrometry method for the detection of lipophilic marine 

toxins. J. Chromatogr. A 2007, 1157, 273–280. 

(31)  McCarron, P.; Kilcoyne, J.; Miles, C. O.; Hess, P. Formation of azaspiracids-3, -4, -6, 

and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J. Agric. 

Food Chem. 2009, 57, 160–169. 

(32)  Paske, N.; Berry, B.; Schmitz, J.; Sullivan, D. Determination of low-level agricultural 

residues in soft drinks and sports drinks by gas chromatography with mass-selective 

detection: single-laboratory validation. J. AOAC Int. 2007, 90, 521–533. 

(33)  Miller, K. D.; Milne, P. Determination of low-level pesticide residues in soft drinks 

and sports drinks by liquid chromatography with tandem mass spectrometry: 

collaborative study. J. AOAC Int. 2008, 91, 202–236. 

(34)  Hardstaff, W. R.; Lewis, N.; Aasen, J. A. B.; Quilliam, M. A. Analysis of phycotoxins 

in planktonic cells. Poster presentation, HABs, Copenhagen, Denmark 2006. 

(35)  ICH Tripartite guideline validation of analytical procedures, test and methodology. 

Available: www.ich.org. 2005. 

(36)  IUPAC Harmonised guidelines for single laboratory validation. Available: 

www.iupac.org. 2002. 

(37)  FDA Guidance for industry, bioanalytical method validation. Available: 

www.fda.gov/cder/guidance/index.htm. Accessed 2 April 2010.  

 



Chapter 3 - Improved Isolation procedure for AZAs from shellfish 

 

62 

 

CHAPTER 3 - IMPROVED ISOLATION PROCEDURE FOR 

AZASPIRACIDS FROM SHELLFISH, STRUCTURAL ELUCIDATION 

OF AZASPIRACID-6 AND STABILITY STUDIES 

Kilcoyne, J., Keogh, A., Clancy, G., LeBlanc, P., Burton, I., Quilliam, M. A., Hess, P., and 

Miles, C. O. 2012. Improved isolation procedure for azaspiracids from shellfish, structural 

elucidation of azaspiracid-6, and stability studies, Journal of Agriculture and Food Chemistry 

60, 2447–2455. 

 

3.1. Abstract 

Azaspiracids (AZAs) are a group of lipophilic polyether toxins produced by the small 

dinoflagellate Azadinium spinosum. They may accumulate in shellfish and can result in 

illnesses when consumed by humans. Research into analytical methods, chemistry, 

metabolism and toxicology of AZAs has been severely constrained by the scarcity of high-

purity AZAs. Consequently, since their discovery in 1995, considerable efforts have been 

made to develop methods for isolation of AZAs in sufficient amounts and purities for 

toxicological studies, in addition to the preparation of standard reference materials. A 7-step 

procedure was improved for the isolation of AZA1–3, increasing recoveries two-fold 

compared to previous methods and leading to isolation of sufficiently purified AZA6 for 

structural determination by NMR spectroscopy. The procedure, which involved a series of 

partitioning and column chromatography steps, was performed on 500 g of Mytilus edulis 

hepatopancreas tissue containing ~ 14 mg of AZA1. Overall yields of AZA1 (52%), AZA2 

(43%), AZA3 (43%) and AZA6 (38%) were good, and purities were confirmed by NMR 

spectroscopy. The structure of AZA6 was determined by 1- and 2-dimensional NMR 

spectroscopy and mass spectrometry. The stability of AZA6 relative to AZA1 was also 
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assessed in three solvents in a short-term study that demonstrated greatest stability in aqueous 

CH3CN. 

 

3.2. Introduction 

Azaspiracids (AZAs) were discovered after 8 people in the Netherlands became ill in 1995 

after consuming mussels harvested off the west coast of Ireland.
1 

 Contaminated mussels 

from this incident were sent to Tohoku University in Japan, where the primary causative 

agents (AZA1–3) were isolated and characterized.
2,3

 The illness caused by the consumption 

of AZAs was named azaspiracid shellfish poisoning (AZP), and severe acute symptoms 

include nausea, vomiting, diarrhoea, and stomach cramps.
4
 The AZA group now includes 

more than 20 analogues that are either produced by phytoplankton, through biotransformation 

in shellfish, or as by-products formed as a result of storage of the toxin.
5,6 

However, only 

AZA1–3 are currently regulated by the European Union.
7
 The other analogues had initially 

been found at lower concentrations and were therefore not deemed to be significant, but little 

is known about these additional analogues and to date only AZA1–5 have been isolated and 

fully characterized. 

The Irish national biotoxin monitoring program was set up in 2001 and since that time the 

detection of AZAs in shellfish samples has resulted in significant shellfish farm closures.
8 

AZAs have since been found in other European countries, Morocco, Eastern North America, 

Japan and more recently Chile.
9–13

 The EU has set maximum levels of 160 μg/kg of toxins 

from the AZA group (defined as the sum of AZA1–3, corrected for their estimated toxic 

equivalence factors) for shellfish to be placed on the market.
7
 Until recently, the mouse 

bioassay (MBA) was the EU reference method for the detection of marine biotoxins in 

shellfish. However, there were problems with this method in terms of sensitivity, accuracy, 
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false positives and ethics.
14

 Although the current regulatory limit for AZAs may be detected 

by both MBA or LC-MS/MS methods, the MBA is not capable of detecting lower levels and 

the non-specific character of the assay has prevented its effective use in routine 

monitoring.
15,16

 The MBA has now been replaced with liquid chromatography coupled to 

mass spectrometry (LC-MS/MS) as the reference method for the detection of lipophilic 

marine biotoxins in shellfish.
7
  

Considerable efforts were made to try to identify the biological source of AZAs, and in 2002 

James et al. reported Protoperidinium crassipes as the causative organism.
17

 However, this 

species was not found to produce AZAs in culture (Tillmann and Krock, unpublished data). 

Furthermore, analysis of picked cells of P. crassipes in Norway showed no presence of 

AZAs.
18

 As P. crassipes is a heterotrophic dinoflagellate; it is possible that it might feed on 

AZA-producing phytoplankton. In 2007, during an oceanographic survey in the North Sea, a 

small (5 µm in width) photosynthetic thecate dinoflagellate was identified (subsequently 

named Azadinium spinosum) that was abundant in water samples that also contained AZAs 

by LC-MS/MS. A. spinosum was subsequently found to produce AZA1 and AZA2 in 

culture.
19,20

 It is believed that most of the other AZA analogues are produced as a result of 

metabolic processes in shellfish or as a result of storage.
6,21

 This belief was corroborated by a 

study in which an Irish strain of A. spinosum was fed directly to shellfish resulting in the 

formation of the analogues AZA3, AZA6, AZA17 and AZA19.
22 

A number of toxicological studies have been performed showing AZAs to be teratogenic to 

fish,
23

 damaging to the gastrointestinal tract in mice,
24,25

 and potential lung-tumor 

promoters.
26

 However, more detailed toxicological studies need to be performed on as many 

AZA analogues as is possible in order to establish more accurate regulatory limits and to 

identify all analogues that are relevant for public health protection. A recent study, 

investigating an increase in AZA3 concentration in shellfish tissue upon heating, showed that 
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AZA3 is produced as a result of decarboxylation of AZA17,
6
 which in turn is a metabolic 

product of AZA1.
27

 The same phenomenon was observed for AZA6 (i.e., decarboxylation of 

AZA19, which similarly appears to be a metabolic product of AZA2).
6
 AZA2 was found to 

be the predominant toxin detected in Portugal, Morocco, Japan, and in scallops in 

Chile,
10,12,28,29

 so it would not be surprising if the ratio of AZA6 to AZA3 was higher in 

samples from these countries than in profiles observed in European shellfish. 

Isolation of AZAs has been reported previously,
3,30–33

 however in three of these studies the 

purity was not assessed by NMR.
30–32

 In this paper we describe the isolation of AZA1–3 and 

AZA6 from shellfish using a modified procedure with improved recoveries and purities. This 

enabled the confirmation, by NMR spectroscopy, of the structure for AZA6 (Figure 3.1) that 

had previously been proposed based on MS fragmentation studies and analogy with AZA3. 

We also assess the relative stabilities of AZA1 and AZA6 in three solvents. 

 

3.3. Experimental section 

3.3.1. Chemicals 

All solvents (pestican grade) were purchased from Labscan (Dublin, Ireland). Sodium 

chloride (99+%), triethylamine (99%), ammonium acetate (97+%), ammonium formate 

(reagent grade), formic acid (>98%), and silica gel (10–40 µm, type H) were purchased from 

Sigma Aldrich (Steinheim, Germany). Sephadex LH-20 was from GE Healthcare (Uppsala, 

Sweden), LiChroprep RP C8 (25–40 µm) was from Merck (Darmstadt, Germany), Luna 

Phenyl-Hexyl (15 µm) was from Phenomenex (Cheshire, UK), and MeOH-d3 (CD3OH, 

99.5%) was from Cambridge Isotope Laboratories (MA, USA). AZA1–3 certified reference 

materials (CRMs) were obtained from the NRC, Certified Reference Material Program 

(Halifax, NS, Canada). 
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3.3.2. Extraction and clean up efficiency from freeze dried and wet tissue 

Three 10 g (W1) hepatopancreas  samples were freeze-dried and extracted three times (Ultra 

turrax, IKA-Werke T25 at 11,000 rpm) for 1 min with EtOH (15 mL) in parallel with three 

wet samples. Extracts were centrifuged (3,950 x g) for 5 min and the supernatant decanted 

into 20 mL volumetric flasks which were brought to volume with EtOH. Prior to analysis by 

LC-MS/MS (method A) the samples were filtered (Whatman, 0.2 µm, cellulose acetate 

filter). The clean-up efficiency ((W1-W2)/W1 x 100) was assessed by combining the relevant 

extracts, evaporating the solvent in vacuo and determining the weight of the remaining 

residue (W2). 

 

3.3.3. Isolation from shellfish 

Cooked whole-mussel tissue (2.5 kg) from M. edulis collected in 2005 from Bruckless, 

Donegal, Ireland, was dissected to yield 500 g of hepatopancreas, which was homogenized 

with a Waring blender and freeze-dried (final weight 130 g). The freeze-dried hepatopancreas 

was extracted with EtOH (5 × 500 mL) using a Waring blender. The extracts were combined, 

evaporated in vacuo, and partitioned between EtOAc (150 mL) and aqueous NaCl (1 M, 50 

mL). The EtOAc fraction was evaporated to dryness in vacuo and the oily residue was 

partitioned between hexane (200 mL) and MeOH–H2O (9:1, 200 mL). The MeOH fraction 

was evaporated to dryness in vacuo, dissolved in EtOAc (20 mL), and ~ 4 g of silica gel was 

added. The sample was then carefully evaporated to dryness in vacuo, mixed to a fine powder 

and loaded onto a silica gel (55 g) column (19.5 × 5 cm). Vacuum assisted elution was 

performed successively with hexane, EtOAc, EtOAc–MeOH (9:1), (7:3), (1:1), and MeOH 

(300 mL of each, all containing 0.1% acetic acid except for hexane). The 7:3 EtOAc–MeOH 

fraction which FIA-MS/MS (method C) was shown to contain the AZAs, was evaporated in 

vacuo, loaded in MeOH onto a Sephadex LH-20 column (150 × 1.5 cm, packed in MeOH) 
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and eluted by gravity (~ 1 mL/min) with MeOH. The first 20 min of eluate was collected 

separately, with 3-min fractions collected thereafter. Fractions containing AZAs (fractions 8–

15), as determined by FIA-MS/MS, were combined, evaporated to dryness in vacuo, and the 

sample loaded in CH3CN–H2O (6:4, plus 0.1% triethylamine) onto a column packed with 

Phenyl-Hexyl (19.9 × 2 cm). The sample was eluted with CH3CN–H2O (3:7, plus 0.1% 

triethylamine) at 4 mL/min, and 5 mL fractions were collected. Appropriate fractions were 

combined (AZA3, fractions 10–15; AZA6, fractions 16–23; AZA1, fractions 24–34 and 

AZA2, fractions 35–45) based on FIA-MS/MS analysis.  

Final purification of AZA1 was achieved by semi-preparative LC (Agilent 1200) with 

photodiode array (PDA) detection (210 nm) using a Luna C8 (5 µm, 250 × 10 mm, 

Phenomenex) column eluted with CH3CN–H2O (1:1, plus 2 mM ammonium acetate) at 

4 mL/min. The column temperature was 30 °C. AZA2, AZA3 and AZA6 were purified using 

the similar conditions as for AZA1, but with a narrower-bore column (Cosmosil C18, 5µm, 

250 × 4.6 mm, Nacalai tesque) eluted with CH3CN–H2O (1:1, plus 2 mM ammonium acetate) 

at 1 mL/min. Purified AZAs were recovered by diluting the fractions with H2O (to 20% 

CH3CN), loading on to solid-phase extraction (SPE) cartridges (Oasis HLB, 200 mg), 

washing with MeOH–H2O (1:9, 10 mL) to remove the buffer and eluting with MeOH–H2O 

(9:1, 20 mL).  

Purified samples were tested for phthalates (method E) which, if present, were removed by 

partitioning the sample in MeOH–H2O (4:1, 20 mL) with 20 mL of hexane. Removal of 

solvent by evaporation in vacuo afforded purified AZAs as white solids. 

 

3.3.4. Comparison of flash chromagraphy stationary phases 

Two stationary phases (LiChroprep RP-8 and Luna Phenyl-Hexyl) were assessed for 

separation, clean-up and recovery efficiencies. Each stationary phase (packed in a 19.9 × 
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2 cm column) was loaded with 200 µg of residue in CH3CN–H2O (6:4, plus 0.1% 

triethylamine), which had been brought through the first 5 steps of the isolation procedure, 

and eluted with CH3CN–H2O (3:7, plus 0.1% triethylamine) at 4 mL/min. Fractions 

containing AZAs, as determined by flow injection analysis with mass spectrometry detection 

(FIA–MS/MS, method C), were combined and analyzed by LC-MS/MS (method A). 

 

3.3.5. Mass spectrometry 

Two LC-MS/MS systems were used in positive ion mode, both of which were equipped with 

a z-spray ESI source. 

Method A. Recoveries were determined by quantitative analysis of fractions on a Waters 2695 

LC coupled to a Micromass triple-stage quadrupole (TSQ) Ultima operated in selected 

reaction monitoring (SRM) mode, with the following transitions: AZA1 m/z 842.5654.4 

and 842.5672.4, AZA2 856.5654.4 and 856.5672.4, AZA3 828.5640.4 and 

828.5658.4, AZA6 842.5640.5 and 842.5658.4. The cone voltage was 60 V and the 

collision voltage was 40 V, the cone and desolvation gas flows were set at 100 and 800 L/h, 

respectively, and the source temperature was 150 °C. 

Binary gradient elution was used, with phase A consisting of H2O and phase B of 95% 

CH3CN in H2O (both containing 2 mM ammonium formate and 50 mM formic acid) in a 

minor modification to the method of Quilliam et al.
34

 Chromatography was performed with a 

Hypersil BDS C8 column (50 × 2.1 mm, 3 µm, with a 10 × 2.1 mm guard column of the same 

stationary phase) (Thermo Scientific). The gradient was from 30% B, to 90% B over 8 min at 

0.25 mL/min, held for 5 min, then held at 100% B at 0.4 mL/min for 5 min, and returned to 

the initial conditions and held for 4 min to equilibrate the system. The injection volume was 

5 µL and the column and sample temperatures were 25 °C and 6 °C, respectively. 
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Method B. Purity was initially assessed on a Micromass time-of-flight (QToF) Ultima 

coupled to a Waters 2795 LC by running MS scans (m/z 100–1000) using the same 

chromatographic conditions as above. Identification of other contaminant AZA analogues 

was also determined by performing product ion scans, where the precursor ions were selected 

and then fragmented, for all the known AZA analogues.  

Method C. Qualitative analysis of fractions for AZAs was performed by FIA-MS/MS using a 

Micromass QToF Ultima coupled to a Waters 2795 LC. Samples (2 µL) were injected, using 

the 2795 autosampler, directly (no column) into the mass spectrometer monitoring for the 

precursor ions. 

 

3.3.6. LC-PDA purity analysis 

Method D. A concentrated sample (~500 µg/mL) was injected (1 µL) onto the analytical 

system (Shimadzu 10AVp) with photodiode array (PDA) detection (210 nm) using a 

Cosmosil C18 column, 5 µm, 250 × 4.6 mm eluted with CH3CN–H2O (1:1, plus 2 mM 

ammonium acetate) at 1 mL/min. The column temperature was 30 °C. 

Method E. An additional method employed to detect any strongly retained compounds (e.g., 

phthalates) used an analytical LC system (Shimadzu LC 10AVp) with PDA detection at 

210 nm. The sample collected after the SPE step was injected (5 µL) onto a Vydac C18, 

column (10 µm, 250 × 4.6 mm, Grace) and eluted with MeOH–H2O (9:1) at 1 mL/min, 

maintaining the column temperature at 30 °C. 

 

3.3.7. NMR spectroscopy 

NMR-purity was assessed by 
1
H NMR using a Bruker DRX-500 spectrometer. The structure 

of AZA6 was determined by analysis of 
1
H, COSY, TOCSY, NOESY, ROESY, HSQC and 

HMBC spectra using a Bruker Avance III 700 spectrometer fitted with a 1.7 mm proton-
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detect micro-cryoprobe. Approximately 50 μg of AZA6 were dissolved in 30 μL CD3OH, and 

proton-detected spectra were acquired with pre-saturation of the OH peak. The TOCSY 

spectrum was recorded using an MLEV sequence with a 120 ms mixing time. The ROESY 

spectrum was acquired with a spin-lock pulse of 200 ms and a spin-lock field of 

approximately 3 kHz. Two HMBC spectra were recorded, optimized for long-range 

couplings of 8.33 Hz and 5.56 Hz (60 ms and 90 ms evolution times, respectively). All 

samples were tuned and matched to 50 Ω resistive impedance. Chemical shifts were 

referenced to internal CHD2OH (3.31 ppm) or CD3OH (49.15 ppm).  

 

3.3.8. Stability studies 

A side-fraction from the final step in the isolation procedure, containing both AZA6 and 

AZA1, was used to assess stability. Aliquots of the fraction were evaporated under a stream 

of N2 and taken up in three solvents (MeOH, EtOH, and 4:1 CH3CN–H2O) and stored in 

flame-sealed ampoules (under nitrogen) at −18 °C, 4 °C and 40 °C for a 4-week period. 

Samples were ampouled in triplicate for each of the temperature and time points. The study 

was performed isochronously, and samples were analyzed simultaneously by LC-MS/MS 

(method A) with specimens stored at −80 °C used as the control. 

 

3.3.9. Methylation with diazomethane 

To identify whether the degradation products formed during the stability study were methyl 

esters or other methyl derivatives, AZA6 methyl-ester was synthesized. A purified sample (~ 

60 ng) of AZA6 was added to the outside tube of an Aldrich diazomethane generator with 

System 45 connection, and 1 mL MeOH and 1.5 mL Et2O were added. Diazomethane was 

generated in the inner tube of the apparatus and allowed to react in situ with the extract.  
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After reacting for 45 min at 0 °C with occasional swirling, the extract was transferred to a 

glass vial, evaporated to dryness under a stream of N2, and the residue dissolved in MeOH 

(1 mL) for LC-MS/MS analysis (method B). 

 

3.3.10.  Cleavage with sodium periodate 

Aliquots (50 µL) of 0.2 M solution of sodium periodate were added to 50 µL of purified 

AZA6 and AZA3 (~ 80 ng/mL in MeOH) in insert vials, vortex mixed for 20 s and analysed 

after ca. 2 h by LC-MS/MS (method B). 
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Figure 3.1 Structures of azaspiracids with substitution points for analogues. Note that only 

AZA1–6 have their structures unambiguously established by NMR spectroscopy, while the 

remaining structures are tentative, based on MS fragmentations, biosynthetic and metabolic 

considerations, and analogy with known analogues.  
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3.4. Results and discussion 

3.4.1. Extraction and partitioning  

 An exhaustive trial extraction was performed on 130 g of freeze-dried hepatopancreas 

sample resulting in a 95% clean up (Table 3.1). The use of EtOH as an extraction solvent for 

the purification of AZAs has previously been reported.
33

 Small scale tests with MeOH and 

EtOH as extraction solvents showed that both solvents were equivalent in terms of extraction 

efficiency. EtOH was chosen as the extraction solvent primarily to minimize the formation of 

side products, which can be significant when MeOH is used as extractant.
5
 

Freeze-drying of shellfish prior to extraction has been successfully employed previously in 

the isolation of pinnatoxins from Australian oysters.
35

 This has many advantages, including 

avoiding the necessity of using H2O miscible extraction solvents, complete control of 

extractant composition, and low H2O content in the extract (thus avoiding difficulties during 

evaporation and potentially toxin stability problems). The effect of freeze-drying the mussel 

hepatopancreas prior to extraction of AZAs was therefore explored. Higher extraction 

efficiencies were achieved for the freeze-dried samples after the first and second extractions 

with 12% and 2% more AZAs being extracted respectively. No difference was observed in 

clean up efficiency (94.2% for both freeze-dried and wet tissues), but the extracts from the 

freeze-dried samples evaporated more quickly with little or no foaming in the subsequent 

vacuum-evaporation step. The two subsequent liquid–liquid partitioning steps resulted in 

only minor losses of toxin (~ 95% recovery) with an overall clean up efficiency of 67% 

(Table 3.1). 

 

3.4.2. Silica gel  

The sample was eluted from the silica gel column with step gradients of hexane, EtOAc, 

EtOAc–MeOH and MeOH. AZAs eluted in 7:3 EtOAc–MeOH, with only small losses of 
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toxin. The EtOAc–MeOH mixtures contained 0.1% acetic acid. Previous studies have shown 

that AZAs are unstable in acidic environments, but that shellfish tissue appears to have a 

protective effect.
36

 As the sample at this stage of the isolation was still quite crude, and there 

appeared to be no degradation of the AZAs during small-scale trials, it was deemed to be safe 

to use acetic acid in the eluent at this point of the procedure. Attempts to replace the acetic 

acid with 0.1% triethylamine were unsuccessful, with the toxins eluting over three of the 

mobile-phase compositions, thereby reducing the clean-up efficiency significantly. Of all the 

steps in the procedure, silica gel chromatography (step 4) gave the greatest efficiency in 

terms of clean up (93%) and recovery (~ 95%) (Table 3.1). 

 

3.4.3. Sephadex LH-20 chromatography  

AZAs eluted together after ca. 64 min and were collected in 11 fractions. The clean-up 

efficiency of 66% was achieved with a recovery of 85%. 

 

3.4.4. Phenyl-hexyl flash chromatography  

Acidic mobile phases have previously been used for reverse-phase flash chromatographic 

purification,
33

 but bring with them an inherent risk of acid-promoted degradation of AZAs 

during storage or evaporation. We found the use of triethylamine to be a safer alternative, 

with the toxins being stable whilst stored in the freezer as a dry sample (after evaporation of 

the mobile phase containing 0.1% triethylamine) for at least one month (data not shown). 

Both the RP-8 and Phenyl-Hexyl stationary phases performed similarly in terms of clean-up 

efficiency and recovery however, with respect to resolution, the Phenyl-Hexyl proved to be 

much more efficient at separating the AZA analogues than the RP-8 stationary phase (Table 

3.1). Separation of the AZA analogues at this stage in the procedure improved recoveries and 

purities in the final semi-preparative LC step (step 7), so the Phenyl-Hexyl stationary phase 
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was chosen as the stationary phase for flash chromatography. This step resulted in a clean-up 

of 64% (assessed after the RP-8 vs Phenyl-Hexyl experiment, see experimental section) and a 

recovery of ~ 90% (Table 3.1). 

 

3.4.5. Preparative HPLC  

An acidic mobile phase was used for semi-preparative LC purification in preliminary studies, 

but AZAs were very unstable when evaporated to dryness from the acidic eluent 

(unpublished information) confirming the results of Alfonso et al.
36

 Therefore, a neutral 

mobile phase was chosen to prevent AZA degradation. Acceptable chromatography was 

obtained for AZA1 and AZA2 using the neutral mobile phase, but broad, fronting peaks were 

observed for AZA3 and AZA6. Similar chromatography for AZA3 was also observed using 

alkaline conditions on an analytical scale.
37

 This is presumably related to the fact that both 

AZA3 and AZA6 lack a methyl group at the R
3
 position (Figure 3.1, p 74) which somehow 

affects their chromatographic behavior. All fractions were collected based on UV detection at 

210 nm to minimize contamination with non-AZA analytes. 

Most (80%) of the AZA6 from the flash chromatography (step 6) was recovered in the AZA6 

fraction, and 20% came from the AZA3 fraction. The recovery of AZA6 from the semi-

preparative LC (61%) was slightly less than for the other AZA analogues (all ~ 85%), 

probably because co-eluting compounds necessitated significant heart cutting. 

 

3.4.6. SPE recovery of AZAs from eluent  

Fractions from the semi-preparative LC purification were diluted with H2O and recovered on 

SPE cartridges in order to remove any buffer remaining in the sample, but also to reduce the 

H2O content in, and volume of, the AZA fractions prior to evaporation, and as an additional 

final clean-up step to remove trace contaminants introduced via the LC eluents. This SPE 
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recovery resulted in very little loss of toxin, with recoveries of >95% being achieved, and 

greatly facilitated evaporation of the purified AZA-fractions to dryness.  

 

3.4.7. Overall recoveries  

7.3 mg of AZA1 was purified along with 1.6 mg of AZA2, 2.0 mg of AZA3 and 300 µg of 

AZA6. Overall recoveries (steps 1–7) were 52% for AZA1, 43% for AZA2 and -3, and 38% 

for AZA6, and represent a two-fold increase in recovery compared to previous isolations 

carried out as part of the ASTOX project.
33,38

 Furthermore, the improved procedure is 

significantly easier to perform and less labor intensive. 

 

Table 3.1. Batch summary table for purification of AZA1–3 and AZA6. 

Step 

No 

Step AZA1 

(mg) 

AZA2 

(mg) 

AZA3 

(mg) 

AZA6 

(mg) 

Weight 

(g) 

 Subsampling  14.1 4.0 4.8 0.78 505.0 

1 1
st
 crude extract 14.0 3.9 4.7 0.77 26.9 

2 1
st
 partitioning 13.3 3.7 4.4 0.73 23.9 

3 2
nd

 partitioning 12.6 3.5 4.2 0.69 8.9 

4 Silica gel 11.9 3.3 4.0 0.65 0.6 

5 LH20  10.1 2.8 3.4 0.55 0.2 

6 Flash (phenyl-

hexyl)* 

9.2 2.5 2.4 0.49 - 

7 Prep HPLC (C8/C18) 7.3 1.7 2.0 0.30 - 

 % Recovery 52 43 43 38  

 % Purity >95 >95 >95 >95  

 

 

3.4.8. Purity testing by MS, UV and NMR  

The purity of the samples was first determined by mass spectrometry. An LC-MS scan was 

performed in the range m/z 100–1000, followed by LC-MS/MS analysis for all the known 
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AZA analogues as well as for any additional masses picked up in the MS scan (method B). 

The sample was also analyzed using the LC-PDA semi-preparative method (method D) to 

ensure that no additional peaks were observed in the UV trace. To determine whether 

strongly retained compounds, such as phthalates, were present in the sample, isocratic LC-

PDA was performed (method E). Previous NMR analysis had shown the presence of a 

phthalate in some fractions which was detectable by LC-PDA (max 205, 225 and 275 nm). 

This contaminant was conveniently removed by partitioning with hexane. Once samples were 

deemed to be sufficiently pure (LC-MS/MS and LC-PDA), they were prepared for NMR 

spectroscopy. The 
1
H NMR spectra of AZA1–3 were compared to published NMR data and 

found to be essentially identical, and examination of the spectra indicated purities of >95%.  

 

3.4.9. AZA6 structural elucidation by NMR  

 

NMR data for AZA6 have not been published, and its proposed structure was based only on 

MS/MS fragmentation and on analogy with the structure of AZA3. AZA6 was therefore 

subjected to a more thorough series of 1- and 2D NMR experiments to verify its presumed 

structure. NMR analysis confirmed the previously postulated structure of AZA6, a methyl 

group at the R
2
 position (C-8) and a methylene at C-22 (R

3
 = H), see Figure 3.1 and Table 

3.2. Structural elucidation of AZA6 was done using 1- and 2-dimensional homonuclear 
1
H 

and heteronuclear 
1
H{

13
C} NMR spectroscopy to assign the 

1
H and 

13
C resonances, the 

chemical shifts of which were then compared with published data for AZA1–3.
2,3

 One-
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dimensional 
1
H NMR and edited HSQC spectra showed that AZA6 had 6 methyl, 16 

methylene, and 17 methine groups. Chemical shifts for eight quaternary carbons were 

ascertained from HMBC correlations (2.20,2.31/181.6, C-1; 5.71,5.32/72.29, C-6; 

1.67,1.96/130.8, C-8; 1.93,0.91/106.9, C-10; 1.93,0.91/110.9, C-13; 2.13/98.1, C-21; 

3.93/146.6, C-26; 2.14/97.6, C-28; and 0.83/95.6, C-36). Chemical shifts reported in Table 

3.2 are from the HSQC (for 
1
H and protonated 

13
C atoms) and HMBC (for quaternary carbon 

atoms) spectra. Analysis of the COSY  and TOCSY spectra led to the identification of 9 spin-

systems based on protons and methyl groups attached to C-2–C-7; 8-CH3; C-9; C-11–C-12; 

C-14–C-20; C-22–C-25; 26=CH2; C-27; C-29–C-35; and C-37–C-40 (Figure 3.1). The 

following HMBC correlations defined the connections of the spin systems: C-6 to H-7; C-7 to 

8- CH3; C-8 to 8- CH3 and H-9a,b; C-9 to 8- CH3; C-10 to H-9; C-10 to H-11b; C-13 to H-

12b; C-13 to H-14; C-13 to 14- CH3; C-21 to H-22a,b; C-25 to 26=CH2; 26=CH2 to H-27b; 

C-26 to H-27a,b; C-28 to H-27a,b; C-38 to 37-CH3; and C-36 to H-40b. Periodate treatment 

of AZA6 yielded the same C-20–C-21-cleavage product as was obtained by treatment of 

AZA3, thereby establishing the presence of a 20,21-diol in AZA6 and a link between the C-

14–C-20 and C-22–C-25 spin-systems. 

The presence of a resonance at 1.67 ppm (8-Me) was consistent with the vinylic methyl group 

such as present in AZA2. The olefinic resonance at 5.32 ppm (H-7) showed more complex 

coupling than could be accounted for by its original assignment as H-9. When the 
1
H 

spectrum was observed with resolution enhancement (Gaussian window function, LB = 

−2.0 Hz, GB = 0.25) the resonance at 5.32 ppm (8-Me) showed splitting into a multiplet (J ≈ 

1.4 Hz) implying coupling to more than 3 protons. In addition there was a weak COSY 

correlation from 5.32 ppm (H-7) to 4.70 ppm (H-6) and an HMBC correlation from C-6 

(72.3 ppm) to 5.32 ppm (H-7). This leads to the assignment of this vinylic proton resonance 

(5.32 ppm) to H-7 and it defines the double bond as between C-7 and C-8 in AZA6, 
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consistent with the structural revision of AZA1 by Nicolaou et al.
39

 A detailed analysis of 

NMR data for AZA1 and AZA2 (C. O. Miles, A. L. Wilkins, F. Rise and J. Kilcoyne, 

unpublished) gave essentially identical results, so the original assignments
2,3 

 for AZA1–3 for 

C-7–C-9 and their attached protons and methyl groups are revised accordingly in Table 3.2. 

Analysis of the TOCSY spectrum of AZA6 corresponding to the C-22 to C-25 spin system 

indicated that there was only one methyl group, and an additional methylene group, in ring-E 

compared to AZA1 and AZA2. This, along with COSY correlations, led to the conclusion 

that there is no methyl at C-22 of AZA6, analogous to AZA3. 

ROESY NMR data confirmed that the relative stereochemistry of AZA6 was the same as that 

published for AZA1.
39

 ROESY correlations were observed between H-30 and H-34, H-32 

and H-33, and H-3 and H-34, consistent with the stereochemistry around rings F, G and H 

having H-32, H-33 and H-34 as equatorial, equatorial, and axial, respectively, with the 30-Me 

equatorial. In addition, ROESY correlations between the 37-Me and both H-33 and H-35a 

place the NH in ring-I on the β-face of ring-H. ROESY correlations between the 14-Me and 

both H-6 and H-11b support C-12 being axial to ring-C and the absence of a correlation 

between H-14 and H-16, were consistent with 14-Me being equatorial, and confirms the 

stereochemistry in this section of AZA6 as being that assigned to AZA1–3 by Nicolaou et 

al.
39–41

 The ROESY correlation between H-16 and H-17, and H-16 and H18b, supports the 

cis-fusion of the 5-membered ring-D to ring-C. All the NMR data is thus consistent with the 

structure shown for AZA6 in Figure 3.1, as is the MS/MS fragmentation reported previously 

and used to propose the original tentative structure for this compound.
42

 The periodate 

cleavage established that AZA6 had the same structure and relative stereochemistry as for 

AZA3 in the C-21–C-40 moiety. Furthermore, AZA6 is a metabolite produced by oxidative 

decarboxylation of the 22-Me group of AZA2 in shellfish,
6
 so it must have the same absolute 

stereochemistry as AZA. 
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Table 3.2. NMR assignments for AZA6 (in CD3OH) and AZA1–3 (in CD3OD)
a,b

. 

 AZA-6  AZA-1  AZA-2  AZA-3  

 
13

C 
1
H  

13
C 

1
H  

13
C 

1
H  

13
C 

1
H  

1 181.6   180.3   177.8   177.8   

2 38.2 2.2 2.2 37.4 2.31 2.31 35.6 2.34 2.34 35.4 2.37 2.37 

3 34.5 2.31 2.31 30.3 2.33 2.33 29.5 2.31 2.31 29.4 2.33 2.33 

4 130.7 5.71  133.8 5.74  132.8 5.68  133 5.73  

5 133.2 5.39  131.8 5.46  132.1 5.42  132.4 5.47  

6 72.3 4.7  73.2 4.81  73.3 4.72  73.1 4.81  

7
c
 122.7 5.32  130.1 5.65  123.6 5.32  130 5.63  

8 130.8   124.1 5.76  132.8   124.2 5.75  

8-Me 22.64 1.67     23.8 1.67     

9
c
 40.05 1.94 2.39 36.5 2.15 2.49 41.1 1.97 2.42 36.5 2.13 2.48 

10 106.9   107.9   108.3   108   

11 32.9 1.62 2.29 33.9 1.68 2.33 34 1.65 2.33 34 1.66 2.34 

12 37.1 1.93 2.14 38.3 1.97 2.16 38.3 1.96 2.16 38.3 1.96 2.15 

13 110.9   112.1   112.1   112.1   

14 30.5 1.98  31.7 2.02  31.7 2  31.7 2.02  

14-Me (41) 16.3 0.91  17.4 0.94  17.4 0.93  17.3 0.95  

15 32.3 1.71 1.79 33.4 1.77 1.85 33.4 1.73 1.83 33.4 1.75 1.84 

16 77.5 3.89  79.1 3.89  79 3.87  79 3.91  

17 72.7 4.13  74.2 4.25  74.2 4.2  74 4.23  

18 38.1 1.98 2.04 37.8 2 2.01 37.7 1.98 1.98 38.2 1.98 1.98 

19 79.3 4.39  79.9 4.44  79.9 4.42  80.3 4.43  

20 80.0 3.26  77.6 3.94  77.6 3.93  80.6 3.63  

21 98.1   101.1   101   98.7   

22 39.0 2.13 2.13 37.6 2.09  37.6 2.07  33.4 1.55 2.07 

22-Me (42)    17.2 0.91  17.2 0.89     

23 29.0 1.56 1.56 38.9 1.44 1.44 39 1.43 1.43 30.1 1.61 1.61 

24 39.0 1.3  43.1 1.35  43.1 1.33  42.3 1.28  

24-Me (43) 17.8 0.79  18.8 0.84  18.9 0.83  18.9 0.86  

25 80.1 3.93  80.4 4  80.4 3.97  80.7 4.08  

26 146.6   149.1   149.1   149.2   

26-CH2 

(44) 

115.5 5.1 5.19 117.2 5.18 5.36 118.1 5.17 5.35 118 5.18 5.35 

27 48.1 2.14 2.33 50.4 2.26 2.43 50.1 2.24 2.42 50.2 2.26 2.43 

28 97.6   99.5   99.5   99.5   

29 43.9 1.3 1.96 44.9 1.37 2.05 44.9 1.36 2.03 44.9 1.37 2.05 

30 26.3 2.23  27.2 2.23  27.2 2.22  27.2 2.24  

30-Me (45) 23.5 0.9  24.3 0.96  24.1 0.93  24.3 0.96  

31 35.4 1.45 1.75 36.1 1.54 1.84 36.1 1.51 1.82 36.1 1.53 1.83 

32 72.3 4.21  73.6 4.38  73.6 4.35  73.6 4.37  

33 78.9 3.68  82.3 4.08  82.4 4.06  82.4 4.07  

34 75.3 4.76  75.6 5.02  75.6 5  75.6 5.03  

35 42.8 1.86 2.36 42.5 2.5 2.64 42.4 2.49 2.62 42.3 2.54 2.64 

36 95.6   97.4   97.4   97.4   

37 31.5 1.63  36.4 1.99  36.5 1.97  36.5 1.99  

37-Me (46) 15.8 0.83  16.2 0.98  16.2 0.97  16.2 0.98  

38 39.8 1.1 1.51 38.4 1.31 1.7 38.4 1.29 1.68 38.3 1.31 1.68 

39 37.6 1.71  30.2 1.89  30.2 1.86  30.1 1.9  

39-Me (47) 19.2 0.82  19.3 0.95  19.3 0.94  19.3 0.95  

40 47.46 2.46 2.52 46.9 2.84 2.91 46.9 2.83 2.91 46.9 2.84 2.92 
aData from Satake et al.3 bData from Ofuji et al.2 c Published assignments for positions 7 and 9 of AZA1–32,3 are 

interchanged as a consequence of the revised position of the olefin in ring A.39 
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3.4.10. AZA6 stability  

The stability of AZA6 was compared with that of AZA1. Figure 3.2 shows that AZA6 is 

significantly less stable (p<0.05, Student’s t-test) than AZA1 when stored in MeOH at 40 °C. 

These results parallel the observations of Perez et al.,
33

 who showed that AZA3 was less 

stable than AZA1 under these conditions and confirms the results of McCarron et al.
43

  

showing that AZA6 exhibited similar instability to AZA3 in tissue CRM extracts. AZA6, like 

AZA3, but unlike AZA1 and AZA2, has no methyl group on the C-22 position. The 

mechanism responsible for this reduced stability is as yet unclear. 

In this study the stability of AZA6 was determined in three solvents. Figure 3.2 shows that 

AZA6 is significantly more stable (p<0.05, Student’s t-test) in 4:1 CH3CN–H2O than in 

MeOH or EtOH. The appearance of additional LC-MS/MS peaks at m/z 856.5 and 870.5 after 

storage in MeOH and EtOH, respectively, indicated that these solvents were reacting with 

AZA6 to produce methyl and ethyl derivatives. The formation of AZA methyl esters after 

storage in MeOH has previously been reported, however, little evidence was provided to 

suggest these compounds were in fact methyl esters.
5
 Methylation may occur at C-1 to 

produce the methyl ester or, alternatively, at C-21 to produce the methyl ketal. A purified 

sample of AZA6 was reacted with diazomethane to produce AZA6 methyl ester. The semi-

synthetic methyl ester differed from the derivative observed during the stability study in both 

LC-MS/MS retention time and fragmentation pattern. The mass spectrum of the methyl ester 

showed a loss of 18 amu (m/z 838.5) from the parent ion, while the derivative showed a loss 

of 32 amu (m/z 824.5) from the parent ion, suggesting that the AZA6 is being methylated at 

the C-21 position to form a methyl ketal during storage in MeOH (Figure 3.3). The methyl 

ester of AZA6 also shows a different retention time to that of the methyl ketal, with the 

methyl ester being retained longer on the column. Furthermore, when the sample containing 

the methyl derivative was treated with sodium periodate, the compound remained intact 
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consistent with the proposition that the AZA6-derivative is methylated at the 21-position (i.e., 

AZA6 21-methyl ketal). These results support observations reported by Jauffrais et al.
44

 

which showed the formation of AZA1 and AZA2 methyl ketals in A. spinosum methanolic 

extracts.  

 

Figure 3.2. A) Stability of AZA1 and -6 stored in MeOH at −18 °C, 4 °C, and 40 °C and B) 

stability of AZA6 stored at 40 °C in MeOH, EtOH and 20% aqueous CH3CN. 

A

B
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Figure 3.3. Mass spectra of a) AZA6, b) AZA6 methyl ester and c) AZA6 methyl ketal. 

 
 

3.5. Conclusions 

A method was optimized for the isolation of AZAs from highly contaminated M. edulis 

hepatopancreas. A seven-step procedure involving extraction, two partitioning, and four 

chromatography steps was employed. The method was adapted to limit degradation of sample 

by replacing acidic mobile phases with slightly basic and neutral mobile phases in two of the 
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chromatography steps. Improved separation of the AZAs during the penultimate step (flash 

chromatography; step 6) was achieved by using a Phenyl-Hexyl stationary phase, leading to a 

more efficient final clean up step by semi-preparative LC. Overall recoveries of ~40–50% 

were achieved for AZA1–3 and AZA6. Sufficient AZA6 was isolated for structural 

elucidation by NMR which confirmed the previously postulated
5
 structure (Figure 3.1). A 

short-term stability study showed that AZA6 is significantly more stable in aqueous CH3CN 

than in MeOH (the usual storage solvent) at 40 °C. The isolated AZAs are of sufficient purity 

for toxicological research and for the preparation of analytical standards. 
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CHAPTER 4 - EPIMERS OF AZASPIRACIDS: ISOLATION, 

STRUCTURAL ELUCIDATION, RELATIVE LC-MS RESPONSE, AND 

IN VITRO TOXICITY OF 37-EPI-AZASPIRACID-1 

Kilcoyne, J.; McCarron, P.; Twiner, M. J.; Nulty, C.; Wilkins, A. L.; Rise, F.; Quilliam, M. 

A.; Miles, C. O. 2014. Epimers of azaspiracids: isolation, structural elucidation, relative LC-

MS response, and in vitro toxicity of 37-epi-azaspiracid-1. Chemical Research in Toxicology, 

27, 587–600. 

 

4.1. Abstract 

Since azaspiracid-1 (AZA1) was identified in 1998, the number of AZA analogues has 

increased to over 30. The development of an LC-MS method using a neutral mobile phase led 

to the discovery of isomers of AZA1, AZA2 and AZA3, present at ~ 2–16% of the parent 

analogues in phytoplankton and shellfish samples. Under acidic mobile phase conditions, 

isomers and their parents are not separated. Stability studies showed that these isomers were 

spontaneous epimerization products whose formation is accelerated with the application of 

heat.  

An AZA1 isomer was isolated from contaminated shellfish and identified as 37-epi-AZA1 by 

nuclear magnetic resonance (NMR) spectroscopy and chemical analyses. Similar analysis 

indicated that the isomers of AZA2 and AZA3 corresponded to 37-epi-AZA2 and 37-epi-

AZA3, respectively. The 37-epimers were found to exist in equilibrium with the parent 

compounds in solution. 37-epi-AZA1 was quantitated by NMR and relative molar response 

studies were performed to determine potential differences in LC-MS response of AZA1 and 

37-epi-AZA1. 

Toxicological effects were determined using Jurkat T lymphocyte cells as an in vitro cell 

model. Cytotoxicity experiments employing a metabolically-based dye (i.e., MTS) indicated 
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that 37-epi-AZA1 elicited a lethal response that was both concentration- and time-dependent, 

with EC50 values in the sub-nanomolar range. Based on EC50 comparisons, 37-epi-AZA1 was 

5.1-fold more potent than AZA1. This data suggests the presence of these epimers in seafood 

products should be considered in the analysis of AZAs for regulatory purposes. 

 

4.2. Introduction 

Azaspiracids (AZAs) are marine biotoxins (Figure 4.1) that originate from the phytoplankton 

Azadinium
1
 and Amphidoma

2
 spp. and that can accumulate in shellfish. The consumption of 

AZA-contaminated shellfish can lead to a human poisoning called azaspiracid shellfish 

poisoining.
3
 A. spinosum has been shown to produce AZA1 and AZA2,

4
 while many of the 

other analogues are produced as a result of metabolism within the shellfish.
5,6

 The number of 

known AZA analogues in this group has increased considerably
7
 since they were first 

discovered in 1998.
3
 However, only AZA1, AZA2 and AZA3 are regulated by the EU.

8
 To 

date, only AZA1–6 have been isolated and fully characterized.
3,9–11 

AZAs have been responsible for seven confirmed shellfish poisoning events.
12

 Symptoms 

generally include gastrointestinal illness, such as nausea, vomiting, severe diarrhoea, and 

stomach cramps.
13

 In animals, they can elicit similar diarrhetic effects
14

 with severe intestinal 

pathology
15

 but extracts given via intraperitoneal injection exhibited “neurotoxin-like” 

symptoms characterized by sluggishness, respiratory difficulties, spasms, progressive 

paralysis, and death within 20–90 minutes.
16,17

 In feeding studies, the AZAs have been shown 

to be absorbed and systemically distributed with some microscopic pathology associated with 

the small intestine.
18–20

 In vitro, the AZAs are also highly cytotoxic to various cell types, with 

cell death via apoptosis
21

 occurring in low nanomolar concentrations.
22–25

 Structure–activity 

relationship studies have shown that there are distinct differences in the potencies of the AZA 

analogues. AZA2 is the most potent, followed by AZA3, AZA1, and then the hydroxylated 
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AZA4 and AZA5.
9,16,26

 The only target conclusively demonstrated for the AZAs has been the 

hERG potassium channel.
27

 

 

 

Figure 4.1. Structures of AZA1−3, -6 and their 37-epimers, and AZA4 and -5. 

 

Liquid chromatography–mass spectrometry (LC-MS) is the reference method for the analysis 

of lipophilic marine biotoxins in shellfish.
8
 Considerable efforts were made to produce 

certified reference materials (CRMs) for AZAs,
28–31

 which are now available.
32,33

 The 

availability of CRMs is necessary to ensure accuracy of analytical results. A number of LC-

MS methods for the analysis of AZAs have been published employing acidic
34–36 

and basic
37

 

mobile phases. More recently, an LC-MS method for lipophilic toxin analysis was reported 

that used a neutral mobile phase.
38

 This method revealed the presence of unidentified isomers 

of AZA1, AZA2 and AZA3 in tissue and calibrant CRMs. These isomers were resolved using 

a neutral eluent but co-eluted with the parent toxin in an acidic eluent.
33

 The proportion of 



Chapter 4 - Isolation of 37-epi-AZA1 from shellfish 

 

95 

 

these isomers for AZA1–3 in the tissue CRM ranged from 2–16% of their parent analogues. 

This finding is significant due to the potential of these isomers to interfere with the accuracy 

of analytical results. Although these isomers are not typically resolved using acidic and 

basic
37

 methods, they may lead to discrepancies in analytical results depending on the amount 

present and their relative response factors. Isomers of AZAs have been reported previously 

but these were produced as a result of acid-catalyzed degradation of the main analogues, and 

the isomers were resolved from the parent compounds by LC using acidic eluents.
7,39

 

In this paper we identify a group of epimerized AZA analogues found naturally in shellfish 

and phytoplankton, and report on their origin, stability, toxicity and relative response factors 

in LC-MS analysis. The potential consequences of AZA-epimerization for shellfish 

consumers are also briefly discussed. 

 

4.3. Experimental section 

4.3.1. Chemicals 

All solvents (pestican grade) were purchased from Labscan (Dublin, Ireland) and Caledon 

(Georgetown, ON, Canada). Distilled H2O was further purified using a Barnstead nanopure 

diamond UV purification system (Thermo Scientific, Iowa, USA). Sodium chloride (99+%), 

triethylamine (99%), ammonium acetate (97+%), ammonium formate (reagent grade), formic 

acid (>98%), and silica gel (10–40 µm, type H), were purchased from Sigma–Aldrich 

(Steinheim, Germany). Sodium chloride (99+%) and sodium periodate were purchased from 

Sigma Aldrich (St Louis, USA). Sephadex LH-20 was from GE Healthcare (Uppsala, 

Sweden), LiChroprep RP C8 (25–40 µm) was from Merck (Darmstadt, Germany), Luna 

phenyl-hexyl (15 µm) was from Phenomenex (Cheshire, UK), CD3OH (99.5 atom-% D) was 

from Cambridge Isotope Laboratories (MA, USA), and CD3OD and CD3OH (100.0 and 99.8 
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atom-% D, respectively) were from Sigma–Aldrich (Steinheim, Germany). AZA CRMs were 

obtained from the National Research Council of Canada (Halifax, NS, Canada). 

 

4.3.2. Culture toxin extraction 

A sample (10 mL) of a culture of the Irish strain of A. spinosum
5
 was transferred into a 15 mL 

centrifuge tube and centrifuged at 4,500 g for 5 min. The supernatant was decanted and the 

pellet was extracted with 1 mL of MeOH by vortex mixing for 1 min followed by 

centrifugation for 5 min at 10,500 g. The extract was filtered through a glass Pasteur pipette 

plugged with cotton wool into an HPLC vial, for LC-MS analysis (method A). 

 

4.3.3. Analysis of raw shellfish tissues 

AZA-contaminated raw shellfish samples, tested as part of the routine monitoring programme 

in Ireland, were selected for analysis of epimers. The shellfish were shucked and 

homogenised using a Warring blender before extraction. Tissue samples (2 g) were extracted 

by vortex mixing for 1 min with 9 mL of MeOH, centrifuged at (3,950 g) for 5 min, and the 

supernatant decanted into a 25 mL volumetric flask. The remaining pellet was further 

extracted using an Ultra turrax homogenizer (IKA-Werke T25 at 11,000 rpm) for 1 min with 

an additional 9 mL of MeOH, centrifuged at (3,950 g) for 5 min, and the supernatant 

decanted into the same 25 mL volumetric flask which was brought to volume with MeOH. 

The extracts were analysed by LC-MS (method A). 

 

4.3.4. Heat treatment of raw AZA-contaminated shellfish and extracts 

The extracts from above were transferred into centrifuge tubes and placed in a H2O bath 

(Grant Ltd, Cambridge, UK) at 90 °C for 10 min, removed, allowed to cool and transferred 

into HPLC vials for LC-MS analysis (method A). Aliquots (6 × 2 g) of whole tissue 
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homogenate were weighed into centrifuge tubes, three of which were capped and placed in a 

H2O bath at 90 °C for 10 min, removed, allowed to cool and extracted (using the above 

extraction method) in parallel with the three unheated samples. The extracts were analyzed by 

LC-MS (method B). 

 

4.3.5. Stability studies 

Dilutions of fractions collected from the final step in the isolation of AZAs,
11

 containing 

AZA1–3 and their epimers, were dissolved in CH3CN–H2O (8:2) or in CH3CN–H2O (8:2) to 

which 0.1% v/v formic acid or triethylamine had been added. Aliquots of the solutions were 

transferred to amber ampoules, flame-sealed under nitrogen, and stored at −18 °C, 20 °C and 

40 °C for up to 7 days. The study was performed using a reverse isochronous strategy
40

 and 

samples were analyzed under reproducibility conditions by LC-MS (method A) with samples 

stored at −80 °C used as the control. An analogous study was performed in parallel using 

MeOH (instead of CH3CN–H2O) as solvent. 

 

4.3.6. Isolation of 37-epi-AZA1 from shellfish 

The isolation method employed is described in detail elsewhere.
11

 Final separation of AZA1 

from its epimer was achieved by semi-preparative HPLC (Shimadzu 10AVp) with 

photodiode array (PDA) detection at 210 nm using a Luna C8 column (5 µm, 250 × 10 mm) 

eluted with CH3CN–H2O (11:9, plus 2 mM ammonium acetate) at 4 mL/min with a column 

temperature of 30 °C. AZA2, AZA3 and their 37-epimers were purified using the same 

system as for AZA1, but with a narrower-bore column (Cosmosil C18, 5 µm, 250 × 4.6 mm) 

eluted with CH3CN–H2O (1:1, plus 2 mM ammonium acetate) at 1 mL/min. Purified AZAs 

were recovered by diluting the fractions with H2O (to 20% CH3CN), loading on to solid-

phase extraction (SPE) cartridges (Oasis HLB, 200 mg), washing with MeOH–H2O (1:9, 
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10 mL) to remove the buffer, and eluting with MeOH–H2O (9:1, 20 mL). However, the 

epimers were not sufficiently pure at this stage and there was some conversion (~ 8%) of the 

epimers back to the parent compound during the SPE step. Samples were therefore passed 

through semi preparative HPLC a second time, the CH3CN was removed on a rotary 

evaporator at 20 °C, the AZAs extracted from the buffer with an equal volume of EtOAc, and 

the solvent was removed on a rotary evaporator at 20 °C to give the epimers as colorless 

solids. 

 

4.3.7. Periodate cleavage 

Dilutions of fractions collected from the final step in the isolation procedure, containing both 

parent analogue and its epimer, were dissolved in MeOH. To 100 µL of sample was added 

50 µL of 0.2 M sodium periodate solution, and the reaction analyzed immediately by LC-MS 

(method A) and again at intervals over a 2 h period, but including traces at m/z 448.4 (for the 

AZA1 and AZA2 oxidation product) and at m/z 434.4 (for the AZA3 oxidation product). As a 

control, the sodium periodate solution was replaced by H2O. 

 

4.3.8. Incorporation of deuterium from CH3OD 

An aliquot (0.5 mL) from the final step in the isolation procedure, containing both AZA1 and 

37-epi-AZA1, was evaporated under nitrogen, taken up in 0.5 mL CH3OD, stored at 40 °C, 

and aliquots analyzed periodically over 10 days by LC-MS (method A) for m/z 842.5, m/z 

843.5 and m/z 844.5 to monitor deuterium incorporation. An aliquot (0.2 mL) of the partially 

deuterated sample was evaporated under nitrogen, dissolved in MeOH (40 µL) and added to 

1 M phosphate buffered saline (PBS) (160 µL). The sample was stored at 40 °C and analyzed 

periodically over 4 days by LC-MS (method A) for m/z 842.5, m/z 843.5 and m/z 844.5 to 

monitor loss of deuterium. 
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4.3.9. LC-MS analysis 

Method A. A Micromass Ultima time-of-flight (QToF) mass spectrometer equipped with a z-

spray ESI source and coupled to a Waters 2795 LC was used for this method. Separation was 

performed on a 5 μm, 150 × 2 mm Luna C18 (2) column (Phenomenex, UK) operated at 

30 °C, injecting 5 µL samples. A binary mobile phase of H2O (A) and CH3CN–H2O (95:5) 

(B), each containing 5 mM ammonium acetate (pH 6.8), was used isocratically (A:B, 35:65) 

at a flow rate of 0.35 mL/min. The QToF was operated in product ion scan mode, where the 

precursor ions selected were: m/z 842.5 (AZA1 and AZA6); 856.5 (AZA2); and 828.5 

(AZA3), in positive ionization mode. The cone voltage was 40 V and the collision voltage 

was 50 V, the cone and desolvation gas flows were set at 100 and 750 L/h, respectively, and 

the source temperature was 150 °C. 

Method B. An Agilent 1200 LC system (Agilent Inc., Palo Alta, CA, USA) connected to an 

API4000 QTRAP mass spectrometer (AB Sciex, Concord, ON, Canada) equipped with a 

Turbospray ionization source was used for this method. Separation was performed on a 

2.5 µm, 2.1 × 50 mm, Luna C18 (2) HST column (Phenomenex, Torrance, CA, USA) 

operated at 15 °C, injecting 1–5 µL samples. A binary mobile phase of H2O (A) and CH3CN–

H2O (95:5) (B), each containing 5 mM ammonium acetate (pH 6.8), was used, with a 

gradient from 25 to 100% B over 5 min at 0.35 mL/min and held at 100% B for 2 min before 

re-equilibration for the next run. The MS was operated in positive ion selected reaction 

monitoring (SRM) mode for the following transitions: m/z 842.5→672.5 (AZA1); m/z 

856.5→672.5 (AZA2); m/z 828.5→658.5 (AZA3) and m/z 842.5→658.5 (AZA6) with 

collision energy 70 V. Typical parameters were electrospray voltage 5500 V, source 

temperature 400 °C, and declustering potential 70 V.  

Method C. For the relative molar response study on AZA1 and 37-epi-AZA1, samples were 

analysed using a number of LC-MS/MS methods. Analyses were performed on an Agilent 
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1200 LC system (Agilent Inc., Palo Alta, CA, USA) connected to an API4000 QTRAP mass 

spectrometer (AB Sciex, Concord, ON, Canada) equipped with a Turbospray ionization 

source. The MS was operated in positive ion mode and SRM for the following transitions: 

m/z 842.5→824.5/806.5/672.4/654.4/462.3/362.3 (AZA1 and 37-epi-AZA1), with collision 

energies of 45 to 70 V. For selected ion monitoring (SIM) experiments, m/z 842.5 ([M+H]
+
) 

was analyzed. 

Method C(i) Gradient elution with a neutral mobile phase was run as described for method B. 

Method C(ii) Isocratic elution with a neutral mobile phase was run on the same Luna column 

using 60% B at 0.3 mL/min. 

Method C(iii) Gradient elution with acidic mobile phase was run on the same Luna column 

but eluting with H2O (A) and CH3CN–H2O (95:5) (B), each containing 50 mM formic acid 

and 2 mM ammonium formate. Linear gradient elution was run from 25 to 100% B over 

5 min at 0.3 mL/min and held at 100% B for 2 min, before re-equilibration for the next run. 

Method C(iv) Isocratic elution with the acidic mobile phase was run on the same Luna 

column using 55% B at 0.3 mL/min. 

High resolution MS/MS spectra. Aliquots (~ 5 μL) of AZA1 and -2 after NMR analysis in 

CD3OH and CD3OD, respectively, were diluted with 500 µL MeOH to remove rapidly 

exchangeable OD- and ND-groups, evaporated to dryness under N2, and dissolved in 1 mL 

CH3CN for analysis. High resolution MS/MS spectra of the [MH+1]
+
 ions (m/z 843.5 and 

857.5, respectively) of AZA1 and -2 during infusion of the solutions into a Q Exactive mass 

spectrometer (Thermo Scientific) using ESI in positive ion mode with mass-selection width 

set to m/z 0.4 and scan range m/z 150–900. The normalized collision energy was 30 V, 

resolution was set to 140 K, with capillary temperature 320 °C, S-lens RF level 50, spray 

voltage 3.8 kV, and sheath gas and auxiliary gas at 45 and 10 units respectively. 
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4.3.10.  NMR spectroscopy 

Structural Elucidation. Structural determinations were performed by analysis of 
1
H, COSY, 

TOCSY, SELTOCSY, NOESY, ROESY, SELROESY, 
13

C, DEPT135, HSQC and HMBC 

spectra using Bruker Avance I or Avance II 600 MHz spectrometers equipped with a TCI 

cryoprobe and Z-gradient coils. Samples of AZA1 (1 mg), 37-epi-AZA1 (0.1 mg) and AZA2 

(1 mg) were dissolved in ~ 0.5 mL CD3OD or CD3OH at 30 °C, and chemical shifts were 

referenced to internal CHD2OD or CHD2OH (both 3.31 ppm), or CD3OD or CD3OH 

(49.0 ppm). Single- or double-frequency pre-saturation of solvent resonances was performed 

using continuous wave and/or excitation sculpting as required. 

Quantitative NMR (qNMR). Quantitation of AZA1 and 37-epi-AZA1 by NMR was 

performed on a Bruker Avance II 600 spectrometer using a BBI probe (5 mm) and operating 

at room temperature. Purified samples dissolved in CD3OH were measured against external 

standards of caffeine dissolved in H2O (4.10 mM) as described previously for AZA CRMs
32

 

using techniques described previously by Burton et al.
41 

 

4.3.11. Toxicology 

Cell Culturing. Non-adherent human Jurkat E6-1 T lymphocyte cells (American Type 

Culture Collection TIB-152; Manassas, VA, USA) were grown as described by Twiner et 

al.
22,26

 Briefly, cells were grown in RPMI medium (cat. #11875-093, Invitrogen, CA, USA) 

supplemented with 10% (v/v) fetal bovine serum (FBS; cat. #26140, Invitrogen, CA, USA) 

and maintained in a humidified incubator (Sanyo 18AIC-UV) with 5% CO2 in air at 37 °C. 

Cells were subcultured with fresh medium at an inoculum ratio of 1:4 every 3 to 4 days by 

transferring 2.5 mL of cells to 7.5 mL of fresh supplemented medium in 75 cm
3 

screw cap 

culture flasks. 

Cytotoxicity assay. The effect of AZA1 and 37-epi-AZA1 on viability of Jurkat T lymphocyte 
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cells was determined. Jurkat T lymphocytes were selected based on initial in vivo 

observations,
15

 cell sensitivity following extensive in vitro cytotoxicity screening 

experiments,
22

 and for comparative purposes to other AZA analogues for which potencies 

have been determined using this assay.
26,29

 The Jurkat T lymphocyte cell line was grown as 

described above and cells were seeded in 100 L of the supplemented medium at 35,000 cells 

per well in black, sterile, 96-well culture plates for 24 h to allow for recovery and settling. 

The AZA analogues were added at various concentrations for 24, 48, and 72 h of continuous 

exposure prior to assessment of cytotoxicity. The final concentrations of AZA1 ranged from 

9.5 × 10
−8

 to 5 × 10
−12

 M, and the final concentrations of 37-epi-AZA1 ranged from 7.6 × 

10
−7

 to 5 × 10
−12

 M. Parallel controls of equivalent amounts of MeOH/PBS were used to 

normalize the viability data for each treatment. Following exposure of the cells to the AZA 

analogues for the specified period of time, cellular viability/cytotoxicity was assessed using 

the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) assay (Promega Biosciences, San Luis Obispo, CA, USA; cat. no. G5421). Each 

well received 10 μL of the MTS solution, the cells were incubated for 4 h at 37 °C, and 

absorbance at 485 nm was measured (FluoStar microplate reader, BMG Lab Technologies). 

Data are presented as means ± standard error of three separate experiments (n=3). In addition, 

each cytotoxicity experiment was performed using duplicate wells. Cytotoxicity data were 

blank-corrected and normalized to the control (% viability) and plotted using GraphPad Prism 

(ver. 5.0c, San Diego, USA). 

Collection of Samples for Metabolites. Samples were taken throughout the course of the 

toxicology experiments to determine AZA analogue stability and/or metabolite composition. 

In parallel with the cytotoxicity experiments outlined above, these experiments were 

conducted using AZA1 and 37-epi-AZA1 with initial concentrations in each well of 94.8 and 

767 nM, respectively. Samples were taken directly from the 96-well plates containing T 
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lymphocyte cells at 0, 24, 48, and 72 h following the addition of the AZAs. The experiments 

were conducted in triplicate and also repeated in the absence of cells. At the given time, the 

entire volume (100 L) of the well contents were transferred to a glass vial and then 

immediately frozen at −70 °C. Direct analysis of the samples was performed by LC-MS 

(method B). 

 

4.4. Results and discussion 

4.4.1. Observation and formation 

The AZA isomers were first observed during the development of analytical methods for the 

measurement of a mussel tissue matrix CRM for AZAs. When LC conditions were switched 

from using an acidic mobile phase to a neutral one, additional isomeric peaks were resolved 

(Figure 4.2). Analysis of a fresh A. spinosum culture showed no detectable AZA1 and AZA2 

isomers, while extracts of raw shellfish (M. edulis and C. gigas) contaminated with AZAs 

(0.08–4.8 µg/g) showed the presence of only minor amounts (< 2%). However, when the 

extracts were heated to 90 °C for 10 min, the concentration of isomers increased to 6–15% of 

the parent compounds (Figure 4.3).  
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Figure 4.2. LC-MS analysis of CRM-AZA-Mus
33 

with (A) acidic pH and (B) neutral pH 

mobile phases, showing co-elution and resolution of the 37-epi-AZAs, respectively. 

 

 

Figure 4.3. LC-MS/MS analysis of raw (A) and cooked (B) mussel samples using method B. 

37-epimers are marked with *. The increase in AZA3 after cooking is due to heat induced 

decarboxylation of AZA17.
6
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These results strongly suggested that the isomers are heat-promoted conversion products and 

further highlights the fact that the chemical profile of these toxins in shellfish can change 

significantly during cooking. Previous studies have shown that levels of certain AZAs (e.g., 

AZA3) increased dramatically upon cooking as a result of other AZA analogues undergoing 

decarboxylation.
6
 

 

4.4.2. Stability 

Short-term stability studies were performed for the isomers of AZA1–3 using dilutions of 

fractions collected from the isolation step for AZAs,
11

 at −18 °C, ~ 20 °C and 40 °C in two 

solvents and under weakly acidic and basic conditions over a 7 day period. The results 

showed that the isomers were stable at freezer and room temperatures, while at higher 

temperatures (40 °C) they converted back to the parent analogues (Figure 4.4). Greatest 

stability is observed under weakly basic conditions while the weakly acidic conditions 

increased instability. The isomers were significantly more stable in aqueous CH3CN than in 

MeOH, with the rate of conversion being twice as fast in MeOH (Figure 4.4). Isomerization 

of AZA2 was observed during NMR analysis in CD3OD, but appeared to cease upon addition 

of 0.1% v/v d5-pyridine. 
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Figure 4.4. Stability of 37-epi-AZA1 in aqueous CH3CN, in aqueous CH3CN containing 

0.1% TEA, in aqueous CH3CN containing 0.1% FA at -18 °C, ~ +20 °C and at +40 °C and in 

MeOH at 40 °C, with −80 °C being used as a control. Lines show data fitted to exponential 

decay to 16% epimer at equilibrium. 

 

The stability data indicated that equilibrium is reached at ~ 16% isomer (Table 4.1). 

Conversion of the isomer to the parent analogue was faster for AZA3 relative to AZA1 and 

AZA2 (Table 4.1). In the presence of MeOH, methyl ketals
11

 were also formed at the higher 

temperatures, particularly so for AZA3 and under the acidic conditions. 

 

Table 4.1. Half-life (days)
a
 for 37-epi-AZA1, AZA2 and AZA3 in aqueous CH3CN at 40 °C. 

Treatment 37-epi-AZA1 37-epi-AZA2 37-epi-AZA3 

0.1% Formic acid 7.5 7.0 2.1 

Neutral 11 11 4.5 

0.1 % TEA 38 32 28 

a
From LC-MS data fitted to exponential decay curve with 16% epimer at equilibrium, using SigmaPlot 12.0. 
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The stability studies provided valuable information with respect to handling of the samples. 

The fact that the isomers were relatively stable at room temperature over a number of days 

meant that there was no conversion whilst performing the semi preparative HPLC step. 

Procedures that are normally performed at higher temperatures (evaporation of solvents and 

NMR spectroscopy) could be performed at lower temperatures to deal with this instability. 

Thus, evaporation steps were carried out at ≤ 20 °C and qNMR was performed at 20 °C. 

Previous studies on AZAs showed that the stability of AZA1 and AZA6 was significantly 

improved when stored in CH3CN–H2O (8:2) when compared to MeOH.
11

 Experiments 

performed in this study confirm these findings. Not only was there faster conversion of 

isomers to the parent analogues in MeOH, but the formation of methyl ketals
11

 was observed 

in MeOH and was promoted under the acidic conditions. 

 

4.4.3. Purification 

AZAs were isolated from mussels to obtain sufficient quantities for the preparation of 

reference materials and for toxicological studies.
11

 During the semi-preparative HPLC 

purification (7
th

 step) of the isolation procedure, peaks eluting close to the main AZA1–3 

peaks were collected separately, and through LC-MS analysis shown to be mixtures of the 

parent analogue and its isomer. A purified sample of the AZA1 isomer was obtained by 

performing an additional HPLC separation step. Analysis of the isomer fraction collected 

immediately after the semi preparative step showed that < 1% of the parent analogue was 

present. However, after the sample was passed through the SPE cartridge to remove the 

buffer, significant conversion to the parent compound had occurred (~ 8%). The use of other 

SPE stationary phases (C18 and C8) also had the same effect. Evaporation of the organic 

solvent from the sample at ≤ 20 °C and subsequent extraction of the sample with EtOAc 

proved to be effective at maintaining the stability of the isomer with no conversion being 
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observed. Sufficient AZA1 isomer (~ 150 µg) with adequate purity (containing ≤ 1.5% 

AZA1) was isolated for analysis by NMR (both structural and quantitative). Small amounts 

of the AZA2 and AZA3 isomers were also isolated but not in sufficient quantities for NMR 

analyses. Nevertheless, sufficient levels of isomers were present in stored NMR samples of 

AZAs 1–3 to permit partial NMR signal assignments.  

Previous AZA purification procedures employed an acidic mobile phase in the final 

purification step.
29,32

 Therefore, any isomer present would have been collected as part of the 

parent analogue peak. The procedure used in the present study employed a neutral mobile 

phase, which enabled the isomers to be resolved from the parent analogue peaks and 

permitted their purification. In addition to the AZA1–3 isomers, a fraction containing the 

equivalent isomer of AZA6 was also collected which suggests these isomers exist for all the 

known AZA analogues.  

 

4.4.4. Structure determination 

LC-MS. The only clear differences in the LC-MS spectra between the parent analogue and its 

isomer were changes to the ratio of the H2O loss, retro Diels–Alder (RDA) (m/z 672/654) and 

the relative intensity of the m/z 462 fragment ions (Figure 4.5). 

 

Periodate cleavage. Periodate cleaves the diol moiety of AZAs at C-20/21 to produce a 

lactone.
6,7,11

 In MeOH, AZA1 and its isomer were both cleaved by periodate at essentially the 

same rate, giving products with the same mass but having different retention times. This 

shows that the isomer cannot simply be the 21-epi-AZA1, because C-21 is oxidized to a 

carbonyl group during cleavage and could not therefore give rise to isomeric oxidation 

products. Rather, the isomer of AZA1 must result from structural modification in C-22–C-40.  
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Figure 4.5. Mass spectra of A) AZA1 and B) 37-epi-AZA1 (method A), showing different 

ratios for the m/z 654/672 ions. 

 

NMR spectroscopy. The structure determination of AZAs and their isomers is complicated by 

the known, but hitherto poorly defined, pH dependency of the majority of the proton and 

carbon atoms of the penultimate six membered nitrogen-containing ring and the five 

membered furanosyl ring attached to it.
11

 For example, Ofuji et al.
9
 have reported shifts of 

2.83 ppm and 2.91 ppm for the H-40 methylene resonances of AZA2 in CD3OD, whereas we 

observed chemical shifts ranging between 2.54 and 2.80 ppm for these protons in the NMR 

spectra of two samples of AZA2 (Table 4.2) and in the spectra of other AZAs examined in 

our laboratory. The NMR spectral data originally reported for AZA1–5
3,9,10

 were obtained 

from CD3OD containing 0.5% v/v CD3CO2D in order to sharpen some of the resonances in 

the region around the amino group (M. Satake, University of Tokyo, Japan, personal 

communication). However, given that we found the isomerization of AZAs in MeOH to be 

catalyzed by dilute acetic acid, structural NMR analysis of the AZA-isomers in this CD3OD 
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containing CD3CO2D was not considered appropriate. We therefore used CD3OD without 

added acid, although as a consequence of this some of the chemical shifts varied significantly 

from sample-to-sample, presumably because the degree of protonation of the amino group 

varied slightly from isolation-to-isolation. 

A further complication in the structural analysis of AZAs is that the chemical shift of H-20 is 

also sensitive to the extent to which the terminal ring nitrogen atom is protonated. We have 

observed shifts for this proton in the range 3.55 to 3.86 ppm in specimens of AZA1 and 

AZA2, and some other AZAs examined in our laboratory whereas Ofuji et al.
9,10 

have 

reported shifts in the vicinity of 3.94 ppm for the mildly acidified solutions of AZAs that they 

examined. Notwithstanding the varying H-20 chemical shifts, an identical series of ROESY 

correlations, indicative of a common C-20 stereochemistry, was observed between H-20 and 

the nearby H-18a, H-19, H-22 and 22-CH3 protons. 

The sensitivity of H-20 chemical shifts to the varying extent of N-protonation can be 

interpreted as indicating the preferred solution conformation of AZAs as one in which the 

proton (or protons) attached to the terminal ring N-atom are positioned towards the central C-

20 atom. Detailed analyses of 1D-SELROESY and 2D-ROESY data verified this proposal. In 

particular, irrespective of the chemical shift of the H-20 signal and of protons attached to 

carbon atoms in the C-31−C-40 portion of AZAs (which vary from specimen to specimen), 

moderate to strong inter-ring ROESY correlations were observed from H-40eq to H-19, and to 

the pro-Z 26=CH2 proton, together with ROESY correlations arising from suitably oriented 

terminal-ring protons. These correlations are consistent with a preferred solution of AZAs 

amino group and H-40 protons orientated towards H-19. The known pH sensitivity of some 

of the protons in close proximity to the terminal ring N-atom, and remote from it (H-20), can 

now be rationalized, since variations in the degree of protonation of the nitrogen atom will 

also influence the chemical shift of the H-20 proton. The resulting steric hindrance of the 
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amino group in this conformation may also explain its observed lack of reactivity towards 

alkylation and acylation.
42

  

Because LC-MS studies had shown that AZAs underwent slow isomerization in MeOH, 

preliminary NMR investigations of the isomers were able to be performed on samples in 

deutero-MeOH containing both the parent analogue and its isomer (Table 4.3). This has the 

advantage that chemical shifts for both the parent AZA and its isomer can be directly 

compared, despite the sensitivity of some of the chemical shifts towards pH. However, 

signals from the parent compound were often greater than 20-fold more intense than those of 

the isomer, and many of these signals overlapped signals from the isomer, making structural 

analysis challenging and only partial assignment of isomer resonances was possible via 

analysis of 1D and 2D NMR spectra. The stability data obtained during this work eventually 

allowed isolation of the isomer of AZA1 in sufficient amounts (~ 150 μg) and purity (> 95%) 

for structure elucidation by NMR spectroscopy. 

The chemical shifts established for the ring-A–D carbons and protons for the AZA1 and 

AZA2 isomers were essentially identical to those which we determined for AZA1 or AZA2, 

respectively, in CD3OD, CD3OH or d6-DMSO, and in accordance with those reported by 

Ofuji et al.
9
 However, the assignments for resonances from the 7- and 9- positions were 

reversed
11

 due to the revision of the position of the ring-A double bond from the 8(9)-position 

to the 7(8)-position as established by synthesis.
43–45

 In addition, the original assignments for 

the 11- and 12-positions
9
 were reversed based on HMBC correlations observed for the 

methylene protons of AZA2 that resonate at 2.33 and 2.16 ppm. HSQC data showed that 

those protons were attached to the methylene carbons resonating at 33.2 and 37.4 ppm, 

respectively. In the HMBC spectrum of AZA2, the proton signal at 2.33 ppm exhibited an 

HMBC correlation to the C-14 methine carbon signal, which resonated at 31.0 ppm, while the 

proton signal at 2.16 ppm exhibited an HMBC correlation to the C-9 methylene carbon at 
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40.4 ppm (mistakenly assigned as the C-7 resonance by Ofuji et al.
9
 due to the incorrect 

position of the ring-A double bond). These correlations are consistent with methylene proton 

signals at 2.33 ppm and 2.16 ppm showing 
3
J correlations to C-14 (31.0 ppm) and C-9 

(40.3 ppm), respectively, rather than 
4
J correlations (rarely seen in HMBC spectra). Thus, 

these HMBC correlations indicated that the proton signal at 2.33 ppm is from H-12, and that 

the signal at 2.16 ppm is from H-11, and consequently that their carbon signals at 33.2 and 

37.4 ppm arise from C-12 and C-11, respectively. The equivalent HMBC correlations were 

also observed for AZA1 and its isomer, indicating that this re-assignment applies to other 

AZAs. Other than for the reversal of the Ofuji et al.’s assignments for the 11- and 12-

methylene groups, proton and carbon chemical shifts, 
1
H coupling constants observed in 

1
H 

NMR or SELTOCSY experiments, together with TOCSY and ROESY correlations observed 

for the isomers of AZA1 and AZA2 (where resolved from those of AZA2), were consistent 

with ring-A–D portions the structures of the isomers being the same as that reported for 

AZA1 and AZA2, respectively. 

Knowledge of both the pH dependency of some of the chemical shifts and the preferred 

solution confirmation of AZAs, as revealed by inter ring ROESY correlations, facilitated the 

structure determination of the AZA1 isomer. In particular, the AZA1 isomer exhibited a 

series of ROESY correlations (e.g. H-20 (3.50 ppm) to H-19 (4.45 ppm), H-16 (3.91 ppm), 

H-22 (2.30 ppm), H-18a (2.07 ppm), and 22-Me (0.82 ppm); and H-40eq (2.62 ppm) to the 

pro-Z 26=CH2 proton (5.28 ppm), H-19 (4.43 ppm) and 39-Me (0.88 ppm)) similar to those 

observed for AZA1 and AZA2. However there were ROESY correlations shown by other 

terminal ring protons, most notably between the 37-Me (1.06 ppm) and H-39 (1.84 ppm), H-

38a (1.44 ppm) and H-35a/b (2.11 ppm)) which were consistent with axial orientation of the 

37-Me group in the AZA1 isomer rather than the equatorial orientation in AZA1 and all other 

known AZAs (Figure 4.1). 
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Table 4.2. NMR assignments for AZA2 and 37-epi-AZA2 from a partially epimerized 

sample in CD3OD. 

 AZA2 37-epi-AZA2 

Atom 
13

C 
1
H 

13
C 

1
H 

1 181.3  n.r.  

2 38.3 2.24, 2.24 n.r. n.r. 

3 30.3 2.32, 2.32 n.r. n.r. 

4 133.5 5.73 n.r. n.r. 

5 131.2 5.41 n.r. n.r. 

6 72.7 4.72 n.r. n.r. 

7 123.1 5.34 n.r. n.r. 

8 131.0  n.r.  

9 40.4 1.98, 2.43 n.r. n.r. 

10 107.5  n.r.  

11 37.4 1.97, 2.16 n.r. n.r. 

12 33.2 1.66, 2.33 n.r. n.r. 

13 111.3  n.r.  

14 31.0 2.01 n.r. 2.01 

15 32.6 1.74, 1.84 n.r. 1.75, 1.82 

16 78.2 3.89 78.1 3.91 

17 73.3 4.20 73.0 4.17 

18 37.4 2.01, 2.01 n.r. 2.00, 2.06 

19 79.2 4.43 n.r. 4.43 

20 77.0 3.82 77.0 3.50 

21 100.1  99.8  

22 36.6 2.13 35.9 2.30 

23 38.5 1.43, 1.43 n.r. 1.41, 1.41 

24 42.2 1.36 n.r. 1.35  

25 79.7 3.97 79.8 3.88 

26 148.2  148.1  

27 49.5 2.23, 2.41 49.2 2.14, 2.37 

28 98.5  n.r.  

29 44.3 1.35, 2.03 44.1 1.32, 2.00 

30 26.5 2.24 n.r. 2.26 

31 35.5 1.51, 1.82 n.r. 1.50, 1.78 

32 72.8 4.33 72.7 4.24 

33 81.0 3.97 79.0 3.81 

34 75.0 4.95 75.4 4.82 

35 42.1 2.34
a
, 2.56  n.r., 2.13 

36 96.5  96.6  

37 36.2 1.93 37.3 n.r. 

38 38.3 1.26, 1.65 38.9 1.45, 1.73 

39 30.1 1.82 n.r. 1.84 

40 46.5 2.75, 2.80 47.9 2.62, 2.67 

8-Me 23.0 1.69 n.r. n.r. 

14-Me 16.7 0.94 n.r. 0.94 

22-Me 16.4 0.91 16.5 0.90 

24-Me 18.1 0.83 18.1 0.82 

26=CH2 116.6 5.16, 5.33 115.7 5.13, 5.28 

30-Me 23.6 0.95 23.9 0.94 

37-Me 15.6 0.95 15.9 1.06 

39-Me 18.8 0.93 19.3 0.88 
a
Exchanges deuterium. n.r., not resolved from AZA2 signals. 
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Table 4.3. NMR assignments for AZA1 and 37-epi-AZA1. 

 AZA1 in CD3OD AZA1 in CD3OH AZA1 in CD3OD + 

0.5% CD3CO2D
a
 

AZA1 in d6-DMSO 37-epi-AZA1 in 

CD3OD 

Atom 
13

C 
1
H 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

1 181.2  180.6  180.3  n.r. n.r. 181.3  

2 38.1 2.25, 2.25 37.6 2.25, 2.25 37.4 2.31, 2.31 n.r. n.r. 38.4 2.25, 2.25 

3 30.2 2.33, 2.33 29.9 2.33, 2.33 30.3 2.33, 2.33 27.3 2.21 30.3 2.33, 2.33 

4 133.7 5.75 133.4 5.74  133.8 5.74 128.1 5.63 133.7 5.75 

5 130.7 5.44 130.6 5.43  131.8 5.46 129.5 5.39  130.7 5.44 

6 72.5 4.79 72.3 4.78 73.2 4.81 70.2 4.71  72.5 4.80 

7 129.4 5.63 129.3 5.63 130.1 5.65 122.4 5.61 129.4 5.64 

8 123.2 5.73 123.1 5.72 124.1 5.76 122.4 5.71 123.3 5.73 

9 35.7 2.12, 2.46 35.6 2.12, 2.47 36.5 2.15, 2.49 34.4 2.03, 2.43 35.8 2.12, 2.48 

10 107.2  107.1  107.9  105.0  107.3  

11 37.5 1.97, 2.14 37.4 1.95, 2.13 38.3 1.97, 2.16 36.2 1.89, 2.02 37.6 1.95, 2.14 

12 33.2 1.66, 2.33 33.1 1.65, 2.32 33.9 1.68, 2.33 31.9 1.54, 2.19 33.3 1.65, 2.33 

13 111.3  111.2  112.1  109.2  111.4  

14 31.0 2.02 80.8 2.01 31.7 2.02 29.3 1.89 31.1 2.03 

15 32.6 1.76, 1.85 32.5 1.75, 1.84 33.4 1.77, 1.85 31.3 1.60, 1.71 32.7 1.76, 1.83 

16 78.2 3.88 78.1 3.88 79.1 3.89 75.6 3.84 78.1 3.91 

17 73.3 4.23 73.2 4.22 74.2 4.25 71.1 4.05 73.0 4.20 

18 37.3 1.99, 2.01 37.1 1.95, 1.99 37.8 2.00, 2.01 37.7 1.86, 1.98 39.0 2.00, 2.07 

19 79.2 4.43 79.1 4.42 79.9 4.44 77.7 4.26 79.2 4.43 

20 76.9 3.86 76.8 3.88 77.6 3.94 74.8 3.25 77.0 3.50 

21 100.2  100.2  101.1  97.8  99.9  

22 36.6 2.12 36.6 2.09 37.6 2.09 34.3 2.17 35.9 2.30 

23 38.3 1.43, 1.43 38.1 1.42, 1.42 38.9 1.44, 1.44 37.3 1.31, 1.31 38.6 1.42, 1.42 

24 42.3 1.35 42.1 1.34  43.1 1.35  40.4 1.22 42.2 1.36  

25 79.6 3.98 79.5 3.97 80.4 4.00 77.5 3.81 79.9 3.87 

26 148.3  148.2  149.1  146.7  148.1  

27 49.5 2.24, 2.42 49.6 2.23, 2.41 50.4 2.26, 2.43 47.5 2.04, 2.25 49.0 2.14, 2.37 

28 98.6   98.5   99.5   95.9   98.3   

29 44.3 1.36, 2.03 44.1 1.35, 2.03 44.9 1.37, 2.05 43.4 1.20, 1.9 44.6 1.32, 2.00 

30 26.4 2.23 26.3 2.22 27.2 2.23 24.8 2.17 26.7 2.26 

31 35.4 1.52, 1.83 35.2 1.51, 1.82 36.1 1.54, 1.84 34.3 1.33, 1.71 35.5 1.50, 1.78 

32 72.8 4.35 72.7 4.34 73.6 4.38 70.8 4.13 72.2 4.24 

33 81.2 4.01 81.2 4.02 82.3 4.08 76.9 3.61 78.8 3.81 

34 74.9 4.98 74.8 4.98 75.6 5.02 73.7 4.68 75.4 4.83 
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35 41.9 2.41, 2.59 47.7 2.43, 2.59 42.5 2.50
c
 41.7 1.76, 2.21 45.1 2.11

b
 

36 96.6   96.5   97.4   93.9   96.8   

37 36.0 1.95 35.8   36.4 1.99 36.4 1.58 39.1 1.78 

38 38.0 1.28, 1.67 37.8 1.28, 1.66 38.4 1.31, 1.70 38.8 1.00, 1.45 36.8 1.45, 1.73 

39 29.8 1.85 29.6 1.85 30.2 1.89 30.4 1.53 25.0 1.84 

40 46.4 2.79, 2.84 46.3 2.79, 2.86 46.9 2.84, 2.91 46.3 2.33, 2.38 47.8 2.62, 2.67 

14-Me 16.6 0.95 16.5 0.94 17.4 0.95 15.9 0.86 16.7 0.95 

22-Me 16.4 0.91 16.3 0.90 17.2 0.91 16.3 0.789 16.6 0.90 

24-Me 18.1 0.84 17.9 0.83 18.8 0.84 17.5 0.738 18.1 0.82 

26=CH2 116.8 5.16, 5.34 116.8 5.16, 5.33 117.2 5.18, 5.36 113.4 4.96, 5.11 115.5 5.13, 5.28 

30-Me 23.5 0.95 23.4 0.95 24.3 0.96 23.3 0.84 23.9 0.94  

37-Me 15.5 0.96 15.4 0.96 16.2 0.98 15.7 0.75 15.8 1.06 

39-Me 18.6 0.94 18.4 0.94 19.3 0.95 19.0 0.76 19.3 0.88 
a
NMR data from Satake et al.

3
; solvent composition, personal communication from M. Satake. 

b
One of the H-35 signals not identified due to exchange. 

n.r., not resolved from AZA1 signals.
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This deduction was supported by the occurrence of the C-39 methine carbon signal of the 

AZA1 isomer at 25.0 ppm compared to 29.8 ppm in AZA1 (Table 4.3). The upfield shift 

observed for C39 is reminiscent of that exhibited by C-37 of DTX2 (21.0 ppm), which 

possesses an axial 35-methyl group relative to that of C-37 in DTX1 (27.5 ppm) which 

possesses an equatorial 35-methyl group.
46

 

Confirmation of 37-epimerization (Figure 4.6), and the identification of the axial and 

equatorial H-38 and H-40 methylene protons of the epimer of AZA1 (and AZA2), was 

obtained via analyses of the coupling constants exhibited by the H-38 and H-40 methylene 

protons, revealed in contour plots and slices extracted from 2D-HSQC and TOSCY spectra, 

the resolution of which for protons in 6-membered rings was sufficient to resolve large 
2
Jgem 

and 
3
Jax–ax couplings (~ 10–12 Hz) but not the smaller 

3
Jax–eq or 

3
Jeq–eq couplings (typically 3–

4 Hz or less). In a 1D-SELTOCSY spectrum of epimerized AZA1 obtained at the resonance 

frequency of the 37-Me of 37-epi-AZA1 (1.06 ppm) (Figure 4.1), H-38ax appeared as a well-

defined triplet of doublets due to 
2
JH-38ax–H-38eq and 

3
JH-38ax–H-39ax couplings of 10–12 Hz. In 

contrast, H-38ax appeared as a quartet-like signal in the 2D-HSQC, TOCSY and 1D-

SELTOCSY spectra of AZA1 and AZA2 due to 
2
JH-38ax–H-38eq, 

3
JH-38ax–H-39ax and 

3
JH-38ax–H-37ax 

couplings of ~ 10–12 Hz. The H-38eq signal of each the compounds appeared as a doublet 

since only the large 
2
JH-38ax–H-38eq coupling of ~ 10–12 Hz and not smaller 

3
Jax–eq or 

3
Jeq–eq 

couplings were resolved in HSQC or TOCSY slices (Figure 4.1). Similar observations were 

made for epimerized samples of AZA2 (Table 4.2) as well as for all other AZAs studied 

(unpublished observations). 
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Figure 4.6. Top, 1D SELTOCSY NMR spectrum of 37-epi-AZA1 determined at the 

resonance frequency of its axial 37-methyl group (1.06 ppm); Bottom, 1D-SELTOCSY NMR 

spectrum of AZA1 at the frequency of its equatorial 37-methyl group (0.96 ppm). Both 

spectra were acquired from the same specimen of partially epimerized AZA1 in CD3OH.  
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The axially and equatorially oriented H-40 protons of AZAs were identified similarly, since 

in the 2D-HSQC and TOCSY spectra H-40ax appeared as a triplet-like signal due to well 

resolved 
2
JH-40ax–H-40eq and 

3
JH-40ax–H-39ax couplings while the H-40eq appeared as a doublet 

signal due to resolution in HSQC spectra of only the larger 
2
JH-40ax–H-40eq coupling and not the 

smaller 
3
JH-40eq–H-39ax coupling (Figure 4.1). These observations were supported by NoE 

correlations observed in the ROESY and SELROESY spectra of AZA1, 37-epi-AZA1 

(Figure 4.7), and in a mixed sample of AZA2 and its epimer (data not shown). 

Figure 4.7. NoE correlations observed for the F–I rings of AZA1 (top) and 37-epi-AZA1 

(bottom) in ROESY and SELROESY spectra from CD3OH and/or CD3OD. 
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It was apparent from the inter-ring ROESY correlations that the H-40eq protons in AZA1 and 

37-epi-AZA1 exhibited to H-19 to the pro-Z 26=CH2, that the C-36 configuration of 37-epi-

AZA1 was as in AZA1 since the foregoing pair of ROESY correlations would not have been 

observed for 37-epi-AZA1 had it also been epimerized at C-36. 

The analyses of stereochemically definitive H-38 and H-40 coupling constants was enhanced 

by the acquisition of NMR spectral data for AZA1 and 37-epi-AZA1 in CD3OH, including 

1
H, 2D-COSY, TOCSY, ROESY and HSQC data, with pre-saturation of the protonated 

CD3OH/HOD signals. This appreciably sharpened the H-40 methylene protons of the 

respective compounds by preventing the NH proton (or the protonated variant of it) from 

exchanging deuterium with the solvent and the consequent line broadening effect due to 
3
JD–

C–C–H coupling(s) between the N–D (or N–D2
+
) and H-40 methylene protons. Essentially 

identical 
1
H (to within 0.01 ppm) and 

13
C shifts (to within 0.1 ppm) were obtained in CD3OD 

and CD3OH. On the other hand, a significant difference (and in some cases beneficial 

resolution of overlapped methylene proton signals) was observed when d6-DMSO was 

substituted for CD3OD or CD3OH (Table 4.3). 
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Scheme 1. Possible mechanism for 37-epimerisation of AZAs. 
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Epimerization at C-37 presumably proceeds as shown in Scheme 1. Consistent with this was 

the observation that deuterium was rapidly incorporated at C-37 of the epimer formed during 

isomerisation of AZA1 and AZA2 in CD3OD, together with a slower incorporation of 

deuterium at the pro-S position at C-35 (2.34 ppm in AZA2). Examination of AZA2 after 

NMR in CD3OD using high resolution MS/MS of the m/z 857.5 ion confirmed the presence 

of deuterium (as well as 
13

C) in the C-33–C-40 fragment. 

To verify this finding, a sample containing 37-epi-AZA1 and AZA1 was stored in CH3OD at 

40 °C and analyzed periodically by LC-MS. The incorporation of deuterium was observed 

via the appearance of fragment peaks with extra mass. Intensity changes observed in HSQC 

spectra indicated rapid uptake of a first deuterium and a somewhat slower incorporation of a 

second at H-37 and H-35S, respectively, with a very slow (possibly due to steric effects) 

incorporation of a third deuterium at H-35R. 

After 10 days of storage in CH3OD, the deuterated sample was evaporated, taken up in PBS 

(with 20% MeOH), and stored at 40 °C to assess the rate of deuterium loss from the structure 

in this medium. Deuterium was washed out fairly rapidly, with ~ 60% of the original 

deuterium remaining after 4 days. In addition, it was observed that the AZA epimer converted 

back to AZA1 at a much faster rate in the PBS solution after 24 h (80% conversion) than in 

MeOH (14% conversion). These findings are significant as they could enable the production 

of stable isotope-labelled internal standards that could be used to compensate for matrix 

effects and increase the accuracy of LC-MS quantitation. Furthermore, it might be possible to 

produce tritium-labelled AZAs for biochemical investigations. 
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4.4.5. Relative molar response study 

37-epi-AZA1 that had been isolated and purified for structural elucidation was 

quantitated by qNMR. The molar response of the epimer was assessed against purified 

AZA1
11

 that had also been quantitated by qNMR. Accurate working standards were 

then prepared by diluting the qNMR stock solutions in high purity degassed MeOH. 

The concentrations of the working solutions were 1.3 µM for AZA1, and 1.2 µM for 

37-epi-AZA1. The anthryldiazomethane (ADAM) derivatization method for LC-FLD of 

AZAs
42

 was applied to the AZA1 and 37-epi-AZA1 standards to provide supporting 

information for the qNMR data. However, due to instability of 37-epi-AZA1, a 

significant proportion of it converted back to AZA1 under the derivatization conditions 

and the ADAM results for the epimer would therefore not be reliable quantitatively. 

A number of mass spectrometric experiments were carried out (LC-MS method C) in 

order to determine the molar response of 37-epi-AZA1 relative to AZA1. The results are 

summarized in Table 4.4. Although the proportion of epimer present in samples is 

approximately 2–16%, and may be considered relatively low, it is still important to 

understand any potential differences in response in the MS detection of the epimers 

when compared to the parent AZA analogues. When establishing the relative molar 

responses of different compounds in LC-MS the mobile phase composition can 

influence the ionization efficiency, therefore it is important to test under isocratic 

conditions if possible. Differences can also arise due to the MS detection mode. While 

SIM detection depends only on the ionization efficiency of the compounds in the ESI 

source, and the transport of the ions through to the quadrupole, detection in SRM can 

also be affected by differences in the fragmentation of compounds. Therefore, to 

establish baseline response factors initial analyses were done using isocratic elution 

with detection in SIM mode. SRM is more commonly used in routine/regulatory LC-
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MS/MS analysis of lipophilic toxins, therefore the standards were also analysed in SRM 

mode.  

 

Table 4.4. Relative molar response factors (with standard deviation of the last 

significant figure in parenthesis) of 37-epi-AZA1 in relation to AZA1 

(AZA1(area/concentration)/37-epi-AZA1(area/concentration))
a
. 

 Neutral Acidic 

MS mode 

(ion/transition) 

Gradient
b
 Isocratic

c
 Gradient

d
 Isocratic

e
 

SIM (842.5)  0.94 (3)  0.93 (3) 

SRM (842→824) 0.912 (4) 0.883 (3) 0.860 (4) 0.882 (4) 

SRM (842→806) 1.016 (7) 0.995 (5) 0.977 (5) 0.971 (3) 

SRM (842→672) 0.968 (3) 0.920 (3) 0.913 (5) 0.912 (5) 

SRM (842→654) 0.588 (4) 0.580 (2) 0.554 (3) 0.554 (1) 

SRM (842→462) 0.801 (4) 0.763 (3) 0.745 (4) 0.746 (2) 

SRM (842→362) 1.106 (6) 1.105 (4) 1.091 (7) 1.097 (2) 

a
Determined by SIM and SRM LC-MS experiments using gradient and isocratic LC elution with neutral 

and acidic mobile phases. Propagated standard deviations (of the last significant figure) from LC-MS/MS 

analyses are shown in parentheses. 
b
Method C(i). 

c
Method C(ii).

 d
Method C(iii).

 e
Method C(iv). 

 

In most cases the response factor of the 37-epi-AZA1 was not considerably different 

from that of AZA1. The isocratic elution SIM data obtained for AZA1 and 

37-epi-AZA1 was consistent between acidic and neutral pH mobile phases and the 

results suggest that 37-epi-AZA1 has a slightly lower response than AZA1 when 

analysed under these conditions (0.94 relative to AZA1). In all SRM transitions m/z 

842.5 was selected in Q1, and following fragmentation a variety of ions were selected in 

Q3. The data shows that the SRM transition selected for analysis of 37-epi-AZA1 could 

have a significant impact on quantitation when using an AZA1 standard (Table 4.4). 

Although the initial collision induced H2O losses (m/z 824 and 806) are not ideal 

transitions for confirmatory purposes, due to the higher probability of interferences 
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from isobaric compounds, they both show response factors for 37-epi-AZA1 within 

10% of those observed when using the same transitions for AZA1. The m/z 672 

fragment that results from RDA cleavage of the A-ring also gave a similar response 

factor. However, the subsequent H2O loss from this RDA fragment (m/z 654) gave a 

much lower response for 37-epi-AZA1 relative to AZA1 (~ 0.57). This difference 

correlates to one of the major differences observed in the product ion spectrum of both 

compounds (Figure 4.5). The intensity of the m/z 654 ion is much reduced in the 

product ion spectrum of 37-epi-AZA1, which is probably due to this H2O loss occurring 

near C-21, Figure 4.5. Therefore, the 842→654 transition is not ideal for quantitation of 

AZA1 and 37-epi-AZA1 under conditions where they are not resolved. A lower 

response factor was also observed when using m/z 462 as the Q3 ion in SRM (0.76 

relative to AZA1), which correlates with the reduced intensity of this ion in the product 

ion spectrum of 37-epi-AZA1 (Figure 4.5). The m/z 362 ion is frequently used as a 

confirmatory transition in SRM analysis of regulated AZAs and a slightly higher 

response factor was observed when using this as the Q3 ion in SRM analysis of 

37-epi-AZA1. With an acidic mobile phase (pH 2.3) the use of gradient or isocratic 

elution had no impact on the relative response of 37-epi-AZA1. This is because AZA1 

and 37-epi-AZA1 co-elute at this pH, and are being ionized in the ESI source at the 

same mobile phase strength. However, it can be seen that on average the relative molar 

response of 37-epi-AZA1 relative to AZA1 was slightly higher when using neutral 

mobile phase compared to acidic. This is because 37-epi-AZA1 is resolved from AZA1 

at the neutral pH, eluting later. The increased organic content of the mobile phase when 

37-epi-AZA1 elutes conceivably causes the slightly higher response observed. 

 

 



 Chapter 4 - Isolation of 37-epi-AZA1 from shellfish 

 

125 

 

4.4.6. Toxicology 

Of all the functional assays developed for AZAs, the Jurkat T lymphocyte cell assay 

was found to be the most sensitive,
29

 and was therefore chosen to assess the toxicity of 

37-epi-AZA1. In this assay, cells initially respond to AZAs by a reduction in membrane 

integrity, organelle protrusion concurrent with flattening of cells, the retraction of their 

pseudopodia or lamellipodia, followed by protracted cell lysis.
22

 

In a manner not unlike many other AZA analogues 37-epi-AZA1 was cytotoxic to 

Jurkat T lymphocyte cells in a time- and concentration-dependent manner (Figure 4.8). 

The 37-epi-AZA1 was shown to be 5.1-fold more potent than the parent AZA1 (Table 

4.5) making it comparable in potency (in vitro) to AZA2 and AZA3 (8.3- and 4.5-fold 

more potent than AZA1, respectively).
26

 However, this work has shown the epimer to 

be highly unstable, rapidly converting back to its parent analogue at temperatures > 

20 °C, and since all of the cytotoxicity experiments were run for a protracted period of 

time (up to 72 h) at 37 °C, it was anticipated that there could be significant conversion 

of the epimer back to AZA1. As such, samples were taken frequently throughout the 

course of the study and subsequently analysed by LC-MS to assess for these (or other) 

structural changes. 

 

Table 4.5. Calculated EC50 values (nM) with 95% confidence intervals (CI) and relative 

potencies (Rel. Pot.) for AZA analogues based on T lymphocyte cytotoxicity. 

AZA 

analogue 

24 h 48 h 72 h Mean 

EC50 

 

Rel. 

Pot. EC50 95% CI EC50 95% CI EC50 95% CI 

AZA1 1.0 0.2–4.9 1.1 0.5–2.5 1.3 0.6–3.0 1.1 1.0 

37-epi-AZA1 0.2 0.05–0.4 0.3 0.1–0.5 0.2 0.1–0.5 0.2 5.1 
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Figure 4.8. Effect of AZA1 and 37-epi-AZA1 on T lymphocyte cell viability. Jurkat T cells 

were exposed to various concentrations of A) AZA1 and B) 37-epi-AZA1 for 24, 48, or 

72 h and viability was assessed using the MTS assay. All data (mean ± SE; n = 3) were 

normalized to the control (10% MeOH vehicle). Non-linear, three-parameter dose–response 

(variable slope) analysis was performed and EC50 values were calculated (Table 4.5). 
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The analysis showed that the samples taken immediately after injection (i.e., t = 0 h) 

consisted of 94% 37-epi-AZA1 and 6% AZA1. After 24 h, considerable conversion of 

the epimer to AZA1 had taken place (73% AZA1), with nearly full equilibration 

between 48 and 72 h (~ 12% isomer). Similar conversion rates were observed in the 

stability study in which the deuterated AZA epimer mix was stored in a MeOH:PBS 

solution at 40 °C. In parallel, analysis of the AZA1 sample at t = 0 showed that 3% of 

the isomer was present while after 24 h the amount increased to 11% with apparent 

equilibration being achieved after 48 h at 12% (Table 4.5). Assuming the total AZAs 

remain constant over the course of the experiment, we have shown that there was little 

to no metabolism or irreversible binding (e.g., to protein or plastic) of the AZAs (Table 

4.6). 

 

Table 4.6. Proportions of 37-epi-AZA1 and AZA1 following exposure to the Jurkat T 

lymphocyte cell assay (37 °C) and in the absence of cells in aqueous CH3CN at 40 °C 

(n=3). 

 Jurkat T lymphocyte 

cells (37-epi-AZA1) 

Jurkat T lymphocyte 

cells (AZA1) 

Aqueous CH3CN 

Time % 37-epi-

AZA1 

% AZA1 % 37-epi-

AZA1 

% AZA1 % 37-epi-

AZA1 

% AZA1 

0 94 ± 1 6 ± 1 4 ± 1 96 ± 1 96 ± 1 4 ± 1 

24 27 ± 5 73 ± 1 11 ± 1 89 ± 1 89 ± 1 11 ± 1 

48 14 ± 2 86 ± 1 12 ± 1 88 ± 1 86 ± 1 14 ± 1 

72 12 ± 1 88 ± 1 12 ± 1 88 ± 1 76 ± 1 24 ± 1 

 

The conversion of 37-epi-AZA1 to the parent compound at 24 h (~ 75% AZA1) was 

surprising given the significantly higher potency determined for the epimer. However, 

previous experiments using this assay
13

 and other in vitro methods by various 

investigators
25,47,48

 indicate that the toxic effects of AZAs are immediately elicited and 
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irreversible, which could explain the increased potency of the 37-epi-AZA1 despite its 

instability under the conditions tested. Although these laboratory findings suggest that 

the epimeric forms of AZA may present more of a toxicological hazard than the parent 

molecules and may be important from a monitoring perspective, we do not yet know the 

stability and/or contribution of these analogues in situ, nor whether a similar structure–

activity relationship applies in vivo. 

 

4.5. Conclusions 

37-Epimers of AZA1–3 and AZA6 were detected in tissue CRMs using a neutral mobile 

phase with LC-MS detection. The proportion of the epimers ranged from 2–16%, with 

proportions increasing following the application of heat. Stability studies showed that 

the epimers convert at higher temperatures back to the parent analogue and that 

equilibrium in solution is reached at ~ 16%. Sufficient amounts of 37-epi-AZA1 were 

isolated to enable full structural elucidation by NMR showing it to differ from AZA1 in 

the orientation of the methyl group at the C-37 position. Although only 37-epi-AZA1 

was fully characterized it is highly likely that the epimers of AZA2, AZA3 and AZA6 

have the same stereochemistry. Work currently being undertaken suggests that these 

epimers exist for all AZAs. Relative molar response factor studies by LC-MS revealed 

no major difference in response factors between the two compounds when analysed by 

SIM or SRM when the typical transitions are used (842→824, 842→672 and 

842→362), but a significant difference was observed for the 842→654 transition and 

this is therefore not recommended for quantitative analysis of AZAs. 37-epi-AZA1 was 

5.1 times more cytotoxic to Jurkat T lymphocyte cells than AZA1. Consequently, full 

equilibration (to 16% 37-epi-AZA1) of a sample containing AZA1 could be expected to 

increase the sample’s toxicity in this assay by ~ 1.7-fold, assuming that the epimer has 
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the same toxicological mechanism of action as AZA1. Furthermore, the observation that 

the rate of epimerization is increased in weakly acidic solutions may be of relevance to 

toxicity via oral exposure. This and previous
6
 studies thus highlight the importance of 

assessing toxin profiles in cooked shellfish (typically shellfish are cooked before 

consumption) due to toxin conversions, as well as the need for further toxicological 

studies (in vitro and in vivo) to be performed on the conversion products such as these 

AZA-epimers. 
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CHAPTER 5 – ISOLATION, STRUCTURE ELUCIDATION, 

RELATIVE LC-MS RESPONSE, AND IN VITRO TOXICITY OF 

AZASPIRACIDS FROM THE DINOFLAGELLATE AZADINIUM 

SPINOSUM. 

Kilcoyne, J., Nulty, C., Jauffrais, T., McCarron, P., Herve, F., Foley, B., Rise, F., Crain, 

S., Wilkins, A. L., Twiner, M., Hess, P., Miles, C. O. 2014. Isolation, structure 

elucidation, relative LC-MS response, and in vitro toxicity of azaspiracids from the 

dinoflagellate Azadinium spinosum. Journal of  Natural Products, 2014, 77, 2465–2474. 

 

5.1. Abstract 

We identified three new azaspiracids (AZAs) with molecular weights of 715, 815 and 

829 Da (AZA33 (3), AZA34 (4) and AZA35, respectively) in mussels, seawater and 

Azadinium spinosum culture. Approximately 700 µg of 3 and 250 µg of 4 were isolated 

from a bulk culture of A. spinosum and their structures determined by MS and NMR 

spectroscopy. These compounds differ significantly at the carboxyl end of the molecule 

from known AZA analogues, and therefore provide valuable information on structure–

activity relationships. Initial toxicological assessment was performed using an in vitro 

model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 

were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes 

in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 

was detected at low levels, whereas 4 and AZA35 were detected only at extremely low 

levels or not at all. The structures of 3 and 4 are consistent with AZAs being 

biosynthetically assembled from the amino end. 
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5.2. Introduction 

Numerous azaspiracid (AZA) analogues have been identified in shellfish,
1,2

 however, 

only AZA1 (1), AZA2 (2) and AZA3 are currently regulated by the European Union.
3
 

Compounds 1 and 2 are produced by the dinoflagellate Azadinium spinosum,
4
 while the 

majority of the other reported analogues are due to shellfish metabolism.
5−7

 

A number of toxicological studies have shown AZAs to be teratogenic in fish,
8
 

damaging to the gastrointestinal tract in mice,
9,10

 and potential lung tumour promoters.
11

 

A recent in vitro study on 1, 2 and AZA3 confirmed the high potency of AZAs and 

suggested multiple molecular targets for these compounds which are differentially 

affected by the various AZA analogues.
12,13

 However, further toxicological studies need 

to be performed on as many AZA analogues as possible to establish more accurate 

regulatory limits and to identify all analogues that are relevant for public health 

protection. 

The isolation and structure elucidation of 1, 2, AZA3–6
14−17

 and 37-epi-AZA1
18

 from 

shellfish have been reported. Purification of these compounds is necessary: 1) to enable 

the preparation of certified reference materials (CRMs), which are essential for the 

successful implementation of monitoring programs; 2) for use in toxicology studies, so 

that regulators can implement appropriate closure limits, and; 3) for structure 

elucidation by NMR, enabling a better understanding of the chemistry involved. 

Isolation of AZAs from shellfish is a labour intensive procedure requiring up to eight 

steps involving extraction, partitioning and column chromatography.
17,19

 Such 

compounds are ideally isolated from cultures of the producing organisms due to the 

initial extract being significantly cleaner than from shellfish, and therefore requiring 

fewer purification steps.
20−22

 Isolation of AZAs from a marine sponge
23

 and cultures of 

A. spinosum
24

 have been reported. 
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More recently, the presence of unidentified AZAs in the dinoflagellates Amphidoma 

languida (with molecular weights of 815 and 829 Da) and Azadinium poporum (with 

molecular weights of 845 and 857 Da) were reported.
25

 All of the AZAs identified 

previously give a characteristic LC-MS/MS fragment at m/z 362, whereas these 

compounds gave an m/z 348 fragment, suggesting the lack of a methyl or methylene 

group in rings E–I (Figure 5.1). AZAs were also detected in isolates of A. poporum 

from Chinese coastal waters.
26

 Although one strain did not produce detectable AZAs, 

three other strains produced exclusively 2.
26

 Furthermore, AZAs (with molecular 

weights of 827, 857 and 829 Da) were present in a newly discovered strain Azadinium 

dexteroporum, all of which produced the characteristic m/z 362 LC-MS/MS 

fragments.
27 

Here we report the identification of three new AZAs – AZA33 (3), AZA34 (4) and 

AZA35 from a bulk culture of A. spinosum, two of which were isolated in sufficient 

quantities for structure elucidation by NMR spectroscopy. We additionally report on 

their stability, toxicity and relative response factors in LC-MS/MS analysis, and assess 

their relevance in terms of human health protection. 
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Figure 5.1. Structures of AZA1 (1), AZA2 (2), AZA33 (3) and AZA34 (4) including 

atom numbering. Note that atom numbering for 3 and 4 starts at C-6 and C-3, 

respectively, so that structurally related atoms in 3 (C-16–C-40) and 4 (C-6–C-40) 

retain the same atom numbering as their corresponding atoms in 1 in Table 5.2. Also 

shown are the major MS/MS fragmentation pathways for 1 and 2. Compounds 3, 4 and 

AZA35 showed fragmentations (b) and (c), whereas 4 and AZA35 also exhibited the 

RDA fragmentation pathway (a) but 3 did not (Figure 5.2). 
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5.3. Experimental section 

5.3.1. General experimental procedures 

 NMR experiments for structure elucidation were run using Bruker Avance I and 

Avance II 600 MHz spectrometers equipped with TCI cryoprobes and Z-gradient coils, 

at 30 °C and a Bruker DRX-500 spectrometer was used for qNMR. 

Mass spectrometric studies were performed using a Waters 2695 LC coupled to a 

Micromass triple-stage quadrupole (TSQ) Ultima, a Waters 2795 LC coupled to a 

Micromass quadrupole time of flight (QToF) Ultima and an Agilent 1200 LC system 

connected to an API4000 QTRAP mass spectrometer equipped with a Turbospray 

ionization source. 

 

5.3.2. Biological material 

A. spinosum strains were collected from the West coast of Ireland (SM2
6
) and the North 

Sea (3D9
36

). Mytilus edulis samples contaminated with AZAs were obtained from 

shellfish harvesting sites along the West coast of Ireland. SPATT extracts generated in 

studies carried out by Fux et al.
28,37

 were used for analysis. The SPATTs were deployed 

along the Northwest (Bruckless, Donegal) and Southwest coasts of Ireland (Bantry Bay) 

at different depths (0, 5 and 10 m) during an AZA toxic event. 

 

5.3.3. Culture extraction 

Samples (10 mL) of cultures of an Irish strain (SM2
6
) and a North Sea strain (3D9

36
) of 

A. spinosum were loaded onto solid-phase extraction (SPE) cartridges (Oasis HLB, 

100 mg), washed with MeOH/H2O (1:9, 5 mL), and eluted with MeOH (3 mL). The 

eluate was evaporated under a stream of nitrogen, taken up in 250 µL MeOH, and 

analysed by LC-MS/MS (method A). 
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5.3.4. Shellfish extraction 

Samples were prepared as described in Kilcoyne et al.
18

 The extracts were analysed by 

LC-MS/MS (method A). 

 

5.3.5. Isolation and purification  

Initial isolation steps were performed from bulk cultures of the 3D9 strain of A. 

spinosum as described by Jauffrais et al.
24

 HP-20 resin extracts were combined, 

evaporated in vacuo, and partitioned between EtOAc (150 mL) and aqueous NaCl (1 M, 

50 mL). The EtOAc fraction was evaporated to dryness in vacuo, the residue dissolved 

in EtOAc (20 mL), and 4 g of silica gel added. The sample was then carefully 

evaporated to dryness in vacuo, mixed to a fine powder, and loaded onto a silica gel 

(6 g) column (with dimensions of 3 × 5 cm). Vacuum-assisted elution was performed 

successively with hexane, EtOAc, EtOAc/MeOH (9:1, 7:3, and 1:1), and MeOH (30 mL 

of each, all containing 0.1% acetic acid except for hexane). The 7:3 EtOAc/MeOH 

fraction, which flow-injection analysis (FIA)-MS/MS (method B) showed to contain the 

AZAs, was evaporated in vacuo, and the sample loaded in CH3CN/H2O (6:4, plus 0.1% 

triethylamine) onto a column packed with Phenyl-Hexyl (19.9 × 2 cm). The sample was 

eluted with CH3CN/H2O (7:13, plus 0.1% triethylamine) at 4 mL/min, and 5 mL 

fractions were collected. Appropriate fractions were combined (4 and 1, fractions 15–

18; and 2 and 3, fractions 19–25) based on FIA-MS/MS analysis (method B). 

Final purification of 3 and 4 was achieved by semi-preparative LC (Agilent 1200) with 

photodiode array (PDA) detection (210 nm) using a Cosmosil C18, 5µm, 250 × 4.6 mm, 

Nacalai tesque column at 30 °C eluted with CH3CN/H2O (13:7, plus 2 mM ammonium 

acetate) at 1 mL/min. Purified 3 and 4 were recovered by evaporation to ~ 20% CH3CN, 

loading onto SPE cartridges (Oasis HLB, 200 mg), washing with MeOH/H2O (1:9, 



 Chapter 5 - Isolation of AZA33 and -34 from phytoplankton 

 

144 

 

10 mL) to remove the buffer, and eluting step-wise with MeOH/H2O (4:6, 6:4, 8:2, 

10:0, 20 mL each) with > 95% of 3 and 4 recovered in the 8:2 MeOH/H2O. Removal of 

solvent by evaporation in vacuo afforded purified 3 and 4 as white solids (700 µg and 

250 µg respectively). 

AZA33 (3). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 

5.1; HRESIMS m/z 716.4759 [M+H]
+
 (calcd for C41H66NO9, 716.4738). 

AZA34 (4). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 

5.1; HRESIMS m/z 816.4900 [M+H]
+
 (calcd for C45H70NO12, 816.4898). 

 

5.3.6. LC-MS experiments 

Method A. Recoveries were determined by quantitative analysis of fractions on a Waters 

2695 LC coupled to a Micromass TSQ Ultima operated in SRM mode for the following 

transitions: m/z 842.5→824.5/362.3 (1); m/z 856.5→838.5/362.3 (2); m/z 

716.5→698.5/362.3 (3); m/z 816.5→798.5/362.3 (4); and m/z 830.5→812.5/362.5 

(AZA35). The cone voltage was 60 V, collision energy was 50 V, the cone and 

desolvation gas flows were set at 100 and 800 L/h, respectively, and the source 

temperature was 150 °C. 

Binary gradient elution was used, with mobile phase A consisting of H2O and mobile 

phase B of 95% CH3CN in H2O (both containing 2 mM ammonium formate and 50 mM 

formic acid). Chromatography was performed with a Hypersil BDS C8 column (50 × 

2.1 mm, 3 µm, with a 10 × 2.1 mm guard column of the same stationary phase) 

(Thermo Scientific). The gradient was from 30–90% B over 8 min at 0.25 mL/min, held 

for 5 min, then held at 100% B at 0.4 mL/min for 5 min, returned to the initial 

conditions and held for 4 min to equilibrate the system. The injection volume was 5 µL 

and the column and sample temperatures were 25 °C and 6 °C, respectively. 
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Method B. Qualitative analysis of fractions for AZAs was performed by FIA-MS/MS 

using a Micromass QToF Ultima coupled to a Waters 2795 LC. Samples (2 µL) were 

injected directly (no column) into the mass spectrometer, monitoring for the precursor 

ions. 

 Method C. Purity was assessed on a Micromass QToF Ultima coupled to a Waters 2795 

LC by running MS scans (m/z 100–1000) using the same chromatographic conditions as 

method B. Structure analysis of AZA analogues was performed via product ion scans, 

where the precursor ions were selected and then fragmented, for all the known AZA 

analogues. 

Method D. Accurate mass measurements were performed on a Waters Acquity UPLC 

coupled to a Xevo G2-S QToF operated in MS
e
 mode, scanning from 100−1200 m/z and 

using leucine enkephalin as the reference compound. The cone voltage was 40 V, 

collision energy was 50 V, the cone and desolvation gas flows were set at 100 and 

1000 L/h, respectively, and the source temperature was 120 °C. 

Chromatography was performed with an Acquity UPLC BEH C18 (50 × 2.1 mm, 

1.7 µm) column (Waters), using the same mobile phase described in method A. The 

gradient was from 30–90% B over 2 min at 0.4 mL/min, held for 2 min, and returned to 

the initial conditions and held for 1 min to equilibrate the system. The injection volume 

was 5 µL and the column and sample temperatures were 25 °C and 6 °C, respectively. 

Method E. The samples were analysed using a neutral eluent to enable the separation of 

37-epimers
18

 of 3 and 4. Separation was performed using a 2.5 µm, 2.1 × 50 mm, Luna 

C18(2) HST column (Phenomenex) and the mobile phase was H2O (A) and 

CH3CN/H2O (95:5) (B), each containing 5 mM ammonium acetate (pH 6.8). 

Method F. For the relative molar response study, accurate AZA working standards 

(1.3 µM for 1, 1.6 µM for 3, and 1.3 µM for 4) were prepared by diluting purified AZAs 
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in high purity degassed MeOH and quantitating by qNMR. Samples were analysed 

using gradient and isocratic LC-MS/MS methods with acidic eluents (method A). 

Analysis was performed on an Agilent 1200 LC system with the same Luna column 

described in method E, eluted at 0.3 mL/min, connected to an API4000 QTRAP mass 

spectrometer (AB Sciex) equipped with a Turbospray ionization source. The MS was 

operated in positive ion mode and SRM transitions were as follows: m/z 

842.5→824.5/672.5/462.3/362.3 (1); m/z 716.5→698.5/462.3/362.3 (3) and m/z 

816.5→798.5/672.5/362.3 (4). For SIM experiments, m/z 842.5, 716.5 and 816.5 

([M+H]
+
) were analysed. Typical parameters were 5500 V electrospray voltage, 400 °C 

source temperature, 70 V declustering potential and collision energies of 45 to 70 V 

(where applicable). The injection volume was 1–5 µL and the column and sample 

temperatures were 25 °C and 6 °C, respectively. Method F(i). Gradient elution used a 

linear gradient from 25–100% B over 5 min and held at 100% B for 2 min before re-

equilibration for the next run. Method F(ii). Used isocratic elution with 60% B. 

 

5.3.7. Stability studies 

Purified samples of 1, 3 and 4 were combined and aliquots (in MeOH) were stored in 

flame-sealed ampoules (under nitrogen) at −18 °C, +20 °C and +40 °C for up to 7 days. 

The study was performed isochronously,
38

 and samples were analyzed simultaneously 

by LC-MS/MS (method A) with specimens stored at −80 °C used as controls. 

 

5.3.8. Periodate cleavage 

Aliquots (100 µL) of purified and diluted samples (~ 100 ng/mL) of 1, 3 and 4 were 

oxidised by adding 50 µL of 0.2 M NaIO4. The samples were analysed immediately by 



 Chapter 5 - Isolation of AZA33 and -34 from phytoplankton 

 

147 

 

LC-MS/MS (method C) but with an additional trace for the oxidised AZA product (m/z 

448.3). 

 

5.3.9. Methylation with diazomethane 

To determine whether a carboxylic acid group was present, purified 3 and 4 (~ 60 ng) 

samples were reacted with diazomethane. The samples were added to the outside tube of 

an Aldrich diazomethane generator with System 45 connection, and 1 mL MeOH and 

1.5 mL Et2O were added. Diazomethane was generated in the inner tube of the 

apparatus and allowed to react in situ with the extract. After reacting for 45 min at 0 °C 

with occasional swirling, the extracts were transferred to a glass vial, evaporated to 

dryness under a stream of N2, and residues dissolved in MeOH (1 mL) for LC-MS/MS 

(method C). 

 

5.3.10. NMR experiments 

Structural determinations were performed by analysis of 
1
H, COSY, TOCSY, 

SELTOCSY, NOESY, ROESY, SELROESY, 
13

C, DEPT135, HSQC and HMBC 

spectra. Samples of 1 (1 mg), 3 (0.1 mg) and 4 (0.1 mg) were dissolved in ~ 0.5 mL 

CD3OD and chemical shifts were referenced to internal CHD2OD (3.31 ppm), or 

CD3OD (49.0 ppm). Single- or double-frequency pre-saturation of solvent resonances 

was performed using continuous wave and/or excitation sculpting as required. 

Quantitation of pure 3 and 4 was performed on aliquots in CD3OH. The sample was run 

against external standards of caffeine in H2O (4.01 mM) as described previously.
39 

 



 Chapter 5 - Isolation of AZA33 and -34 from phytoplankton 

 

148 

 

5.3.11. Toxins and other materials 

All solvents (pesticide analysis grade) were from Labscan and Caledon. Distilled H2O 

was further purified using a Barnstead nanopure diamond UV purification system 

(Thermo Scientific). Sodium chloride (99+%), triethylamine (99%), ammonium acetate 

(97+%), ammonium formate (reagent grade), formic acid (>98%), silica gel (10–40 µm, 

type H), sodium periodate and CD3OD (100.0 atom-% D) were from Sigma–Aldrich. 

Sephadex LH-20 was from GE Healthcare, LiChroprep RP C8 (25–40 µm) was from 

Merck, Luna Phenyl-Hexyl (15 µm) was from Phenomenex, CD3OH (99.5 atom-% D) 

for qNMR was from Cambridge Isotope Laboratories. AZA CRMs were obtained from 

the National Research Council of Canada. 

 

5.3.12. Toxicology 

Cell Culturing. Human Jurkat E6-1 T lymphocyte cells (American Type Culture 

Collection TIB-152) were grown as described by Twiner et al.
40

 Briefly, cells were 

grown in RPMI-1640 medium (cat. #11875-093, Invitrogen) supplemented with 10% 

(v/v) fetal bovine serum (FBS; cat. #26140, Invitrogen) and maintained in a humidified 

incubator (Sanyo 18AIC-UV) with 5% CO2 in air at 37 °C. Cells were subcultured with 

fresh medium at an inoculum ratio of 1:4 every 3 to 4 days by transferring 2.5 mL of 

cells to 7.5 mL of fresh supplemented medium in 75 cm
3 

screw cap culture flasks. 

Cytotoxicity Assay. The effect of the AZA analogues on the viability of Jurkat T 

lymphocyte cells was determined. Exponentially growing cells were seeded in 100 L 

of the supplemented medium at a density of 30,000 cells per well in black, sterile, 96-

well culture plates for 12–18 h to allow for recovery and settling. AZA analogues were 

added at various concentrations and assessed for cytotoxicity after 24, 48, or 72 h of 

exposure. Parallel controls of equivalent amounts of PBS/MeOH were used to 
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normalize the viability data for each treatment. Cellular viability/cytotoxicity was 

assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium) assay (Promega Biosciences, cat. no. G5421). Like 

other tetrazolium-based assays, MTS in the presence of an electron coupling reagent 

(phenazine methosulfate; PMS) measures cellular viability by determining the activity 

of mitochondrial dehydrogenases.
41

 As a substrate for dehydrogenases, MTS becomes 

reduced into a soluble, purple dye that can be quantitated colorimetrically to determine 

the relative level of cellular viability/cytotoxicity per well. Following exposure of the 

cells to the AZA analogues for the specified time, each well received 10 μL of a 

PMS/MTS (1:20) solution (final concentrations of 7.9 and 158.5 g/mL, respectively). 

Cells were incubated for 4 h, after which absorbance readings at 485 nm were obtained 

using a FluoStar microplate reader (BMG Lab Technologies). Data are presented as 

means ± SE of three separate experiments (n=3). In addition, each cytotoxicity 

experiment was performed using duplicate wells. Cytotoxicity data were blank-

corrected and normalized to the control (% viability). EC50 and 95% confidence 

intervals were calculated using three-parameter, variable slope, non-linear regression 

analysis (GraphPad Prism, ver. 5.0c). 
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5.4. Results and discussion 

5.4.1. Analysis 

In 2009, preliminary analysis (data not shown) of SPATT (Solid Phase Adsorption 

Toxin Tracking) disks deployed at Bruckless, Ireland, in 2005
28

 during a major AZA 

event (where levels in mussels reached ~ 9 µg/g AZA equivalents
29

), showed the 

presence of numerous candidate AZAs, including new analogues with m/z 716.4745, 

816.4909, and 830.5069. Subsequent analysis of extracts from a culture of A. spinosum 

by LC-MS/MS showed the presence of three new AZAs showing accurate masses of 

m/z 716.4759 (3), 816.4900 (4) and 830.5046 (AZA35). Compound 3 was also 

subsequently detected in an A. spinosum (SHETF6) extract collected from the Shetland 

Islands by Tillmann et al.
30

 The three compounds all had fragmentations characteristic 

of AZAs (Figure 5.2). The ratios of 2 and 3, relative to 1 were both 0.3 in cells of A. 

spinosum cultures (SM2 and 3D9 strains). Compounds 4 and AZA35 were much less 

abundant with ratios of 0.15, and 0.02 relative to 1, respectively, found in the culture 

medium of the 3D9 strain (Figure 5.3).  

Analysis of shellfish samples contaminated with 1, 2 and AZA3 (0.08–8.0 µg/g AZA 

equivalents), tested as part of the routine biotoxin monitoring programme at the Marine 

Institute, were also analysed for 3, 4 and AZA35. Compound 3 was detected in all 

samples tested, 4 was only detected (<0.04 µg/g) in samples with > 4.0 µg/g AZA 

equivalents, while AZA35 was not detected in any of the samples. The levels of 3, 

relative to 1 and 2, in the SPATTs and shellfish were significantly lower than in the 

cultures (SM2 and 3D9 strains) (Figure 5.3), suggesting that 3 might be chemically 

transformed in seawater and shellfish. 

After tangential flow filtration of a bulk culture of A. spinosum into retentate and 

permeate,
24

 4 and AZA35 were detected only in the permeate (Figures 5.3 and 5.4). 
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Similarly, higher levels of 4 were detected in the SPATT extracts relative to the A. 

spinosum culture extracts suggesting that these compounds may be extracellular, 

perhaps being produced within the cell and excreted. Alternatively, they may simply be 

released after cellular lysis or mechanical stress on the cellular membranes during 

pumping and filtration. In any case, shellfish have been shown to be capable of 

absorbing AZAs from  both the algal cells and the dissolved phase.
31

 

Epimers of 1, 2, AZA3 and AZA6 at C-37 have previously been reported using LC-MS 

with a neutral eluent.
18,32

 LC-MS analysis of A. spinosum extracts and purified samples 

of 3 and 4 using a neutral eluent showed the presence of additional peaks (ranging from 

~ 5−12% relative to the parent peak) which were not observed using an acidic eluent. 

The spectra of these peaks differed from those of the parent compounds only in their 

fragment ion ratios, as was observed for 37-epi-AZA1.
18

 It is likely that these peaks 

correspond to the 37-epimers of 3 and 4.  

Compounds 3 (700 µg) and 4 (150 µg) were isolated from the culture extract of A. 

spinosum (3D9) used for the isolation of 1 and 2 that has been described previously.
24

                                                                                                                                                                                                                                                                          

The stabilities of 3 and 4 were compared with that of 1 over a period of 7 days at −18 

°C, +20 °C and +40 °C in MeOH. Both compounds exhibited similar stability to 1; each 

being stable at the freezer and room temperatures over 7 days with minor degradation (< 

5%) after 7 days of storage at 40 °C.  
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Figure 5.2. Mass spectra of A) AZA1 (1), B) AZA33 (3), C) AZA34 (4) and D) AZA35 

at a collision energy of 50 V. 
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Figure 5.3. Ratios of AZA2 (2), -33 (3) and -34 (4) relative to AZA1 (1) detected by 

LC-MS/MS in A. spinosum SM2 (n=10), A. spinosum 3D9 (n=36), A. spinosum 

permeate (n=3), SPATTs (n=7) and shellfish (Mytilus edulis, n=20). 

 

 
 

Figure 5.4. LC-MS chromatogram (method D) of a HP-20 resin permeate extract from 

a bulk culture of A. spinosum showing peaks for AZA34 (4), AZA1 (1), AZA35, AZA2 

(2) and AZA33 (3). Peak marked with * corresponds to AZA1 methyl ester.
42
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5.4.2. Structure determination 

 LC-MS. High Resolution MS data were consistent with 3, 4 and AZA35 possessing the 

molecular formulae shown in Table 5.1, indicating that 3, 4 and AZA35 possess six, 

two, and one fewer carbon atoms than 1, respectively. 

The mass spectrum of 3 (Figure 5.2) showed typical AZA-type H2O loss fragments (m/z 

698 and 680). Additionally, fragments at m/z 362 and 462 suggested that the amino end 

(i.e., C-21–C-40 and substituents) of 1 was also present in 3. No retro Diels–Alder 

(RDA) fragment was present, however, suggesting that the A/B/C ring-system of 3 

differed from that of 1. Thus, the carboxyl end of 3 (i.e., C-1−C-19) differed from that 

of 1 by the absence of C6H6O3 and by the presence of four instead of seven rings/double 

bonds. 

Compound 4 also displayed H2O loss fragments (m/z 798 and 780), but also showed an 

RDA fragment at m/z 672, in addition to fragments at m/z 362 and 462 that are 

characteristic of the C-21–C-40 moiety of 1 (Figure 5.2). The MS data therefore 

suggested that the structure of 4 was very similar to that of 1, including an intact A-ring, 

and that 4 differed from 1 by loss of C2H4 from the side chain attached to the A-ring. 

The mass spectrometric data for AZA35 (Figure 5.2 and Table 5.1) are consistent with 

an additional CH2 group in the structure of 4 between C-3 and C-9, possibly in the form 

of a methyl group at C-8 (as in 2). NMR data will be required to confirm this proposal. 

LC-MS analysis showed that treatment of 3 and 4 with periodate yielded the same C-

20–C-21-cleavage product (m/z 448) as was obtained by treatment of 1. This establishes 

not only the presence of a 20,21-diol in both 3 and 4, but confirms that the same C-21–

C-40 moiety that is present in 1 is also present in 3 and 4. 
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Purified 3 and 4 were treated with diazomethane. LC-MS/MS analysis confirmed 

conversion to the corresponding methyl esters, thus establishing the presence of a 

carboxyl group in the side-chain attached at C-16 or C-6, respectively, of 3 and 4. 

 

Table 5.1. Exact masses of [M+H]
+
 ions and calculated molecular formulae for AZA1 

(1), -2 (2), -33 (3), -34 (4) and -35 in an A. spinosum  (3D9) HP-20 permeate extract. 

AZA Molecular Formula 

([M+H]
+
) 

Measured m/z 

[M+H]
+
 

Rings + 

double bonds 

Δ 

(ppm) 

AZA1 (1) C47H72NO12 842.5052 13 0.4 

AZA2 (2) C48H74NO12 856.5195 13 −1.2 

AZA33 (3) C41H66NO9 716.4759 10 3.8 

AZA34 (4) C45H70NO12 816.4900 12 0.9 

AZA35  C46H72NO12 830.5046 12 -0.4 

 

NMR spectroscopy—AZA33 (3).  

 

Detailed analysis of 
1
H, 

13
C, DEPT135, COSY, TOCSY, SELTOCSY, HSQC and 

HMBC spectra of 3 showed the presence of the pentacyclic C-20−C-40 ring system, 

present in all other known AZAs, consistent with results of the periodate cleavage 

experiment. During NMR analysis of both 3 and 4, a series of minor peaks (~ 3–10%) 

were also observed which were attributable to the corresponding 37-epimers, due to 

susceptibility of AZAs to epimerization in MeOH under neutral and weakly acidic 
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conditions.
18

 The presence of these epimers is noted, but is not discussed further as 

these minor peaks did not interfere with NMR analysis of the parent compounds. 

AZAs are characterized by a distinctive doublet-of-triplet-like signal, akin to a quartet, 

at 4.41−4.43 ppm (H-19). The corresponding signal of 3 appeared at 4.08 ppm (dt, J = 

8.2, 6.7 Hz). This indicated modification in 3 of the normal AZA structure in the 

vicinity of C-19, with the retention of three adjacent coupled protons (H-18 and H-20). 

Correlations in the COSY spectrum confirmed that the H-19 signal (4.08 ppm) was 

coupled to H-20 (3.34 ppm) and a pair of methylene proton signals (H-18a/b) at 1.95 

and 2.00 ppm. In the TOCSY spectrum, H-19 showed additional correlations to a pair of 

methylene protons centered at 1.92 and 1.55 ppm (H-17), and an oxygenated methine 

signal at 3.907 ppm (H-16), the chemical shift of which differed marginally from that of 

the H-25 (3.911 ppm). In the HSQC spectrum, the foregoing protons showed 

correlations to carbons at 30.5 (C-18), 30.9 (C-17) and 81.5 ppm (C-16). These 

observations are consistent with the attachment to C-20 (77.4 ppm), via C-19 

(80.3 ppm), of a tetrahydrofuran ring (two methylene carbons at 30.5 (C-18) and 30.9 

ppm (C-17) and an oxygenated methine carbon at 81.5 ppm (C-16)), as in all other 

known AZAs.
33

 The structure of this tetrahydrofuran ring differs, however, from known 

AZAs in that it possesses two methylene carbons, indicating that it is not cis-fused to a 

six-membered pyran ring as is the case for all other AZAs. It follows that the remaining 

C10H15O2 portion of 3 (not accounted for by the proposed C-16 to C-40 substructure 

(C31H50NO7)) must be attached to the oxygenated C-16 atom at 81.5 ppm. Moreover, it 

follows from the C10H15O2 formulation, that the residue attached to C-16 must possess a 

total of three rings and/or double bonds. The presence in this residue of a carboxyl 

group (also consistent with the diazomethane reactivity), two olefinic double bonds, and 

five methylene carbons was indicated by the occurrence of signals at 181.9 ppm 
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(COOH), 127.8, 130.8, 131.5 and 133.4 ppm (2 × CH=CH groups), and at 30.9, 33.9, 

34.1, 39.7 and 40.5 ppm (5 × CH2 groups), precluding the presence of rings in C-6–C-

15. 

Notwithstanding the appreciable overlap of the four olefinic proton signals (5.40–

5.53 ppm, Figure 5.5C), the resolution of the COSY spectrum was such that the 

connectivities depicted in Figure 5.1 could be established, and were supported by 

TOCSY and SELTOCSY spectra run with a range of mixing times. The resonances of 

the 
13

C atoms to which these protons were attached were established by correlations 

observed in the HSQC spectrum. 

H-16 (3.907 ppm) showed COSY correlations to the H-17 methylene protons (1.55 and 

1.92 ppm) and to the pair of diastereotopic side chain protons at 2.17 and 2.24 ppm (H-

15). These protons show a COSY correlation to the least shifted of the four olefinic 

protons at 5.43 ppm (H-14). In the HSQC spectrum, this proton exhibited a correlation 

to the olefinic carbon signal at 127.8 ppm (C-14). In the HMBC spectrum, H-16 

(3.907 ppm) showed a correlation to the olefinic C-14 carbon (127.8 ppm), and the 

protons at 5.43 (H-14) and 2.17 (H-15) also showed correlations to 133.4 ppm (C-13). 

C-13 in turn showed an HSQC correlation to a methine signal at 5.50 ppm (H-13). 

These observations defined the location of the first of the two double bonds in the 10-

carbon side chain attached to C-16. 

The two pairs of methylene protons at 2.03 ppm (4H, br s, H-11 and H-12) were not 

overlapped in the 
1
H NMR spectrum by other signals, and showed COSY correlations 

only to the olefinic proton signals centered at 5.45 (H-10) and 5.50 ppm (H-13). In the 

HMBC spectrum, the protons at 2.04 ppm showed correlations to the four olefinic 

carbons (127.8, 130.8, 131.5 and 133.4 ppm) and adjacent partner methylene carbons 

(33.9 and 34.1 ppm, C-11 and C-12). The resolution of the processed HMBC spectrum 
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was such that while the four olefinic carbon correlations were resolved, the methylene 

carbon resonances, which differed by 0.2 ppm, were not. The foregoing COSY and 

HMBC observations demonstrated that the methylene carbons (C-11and C-12) with 

superimposed proton signals at 2.03 ppm must be located between the C-9(10) and C-

13(14) double bonds. 

The remaining pair of methylene carbons at 30.9 and 39.7 ppm, which showed HSQC 

correlations to pairs of protons at 2.26 (2H) and 2.18 (2H) ppm, respectively, and a 

terminal carboxyl group (181.9 ppm), must be attached to C-9. Consistent with this, the 

olefinic proton signal at 5.48 (H-9) ppm showed a COSY correlation to 2.26 ppm (H-

8a/b), while HMBC correlations were observed between the proton signal at 2.18 ppm 

(H-7a/b) and the carboxyl carbon (C-6, 181.9 ppm) and a methylene carbon (C-8, 

30.9 ppm). 

Homonuclear decoupling experiments were also consistent with the attachment to C-16 

of a 10 carbon side-chain (Figure 5.1). In particular, homonuclear decoupling at 

2.04 ppm under standard conditions collapsed the lines attributable to the H-10 and H-

13 olefinic protons (5.45 ppm and 5.50 ppm, respectively) to 15.3 Hz doublets (Figure 

5.5B). These couplings demonstrate that the 9(10)- and 13(14)-double bonds are both 

trans-substituted. Similarly, homonuclear decoupling at 2.21 ppm (between the 

frequencies of the H-7 and H-8 methylene protons) using a higher power level that was 

also effective at decoupling the nearby H-15 methylene protons (at 2.17 and 2.24 ppm), 

resulted in the H-9 (5.48 ppm) and H-14 (5.43 ppm) olefinic protons appearing as well-

defined 15.3 Hz doublets (Figure 5.5A). Under these conditions, the H-10 (5.45 ppm) 

and H-13 (5.50 ppm) olefinic protons appeared as doublets (J = 15.3 Hz) of poorly 

resolved, residually coupled, triplets (Jresidual ~ 1–2 Hz) due to incomplete decoupling of 

the adjacent H-11 and H-12 methylene protons at 2.04 ppm. 
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The H-19 (4.08 ppm) proton of 3 exhibited ROESY correlations that paralleled those 

which we have previously observed for 1,
18

 including moderate intensity inter-ring 

correlations to the equatorial H-40 proton (2.46 ppm) and the more shifted of the two 

olefinic 26-methylene protons (H-26Z, 5.27 ppm). H-19 (4.08 pm) also showed ROESY 

correlations to H-22 (2.37 ppm) and the 22-methyl group (0.89 ppm), as did H-20 

(3.34 ppm). H-16 (3.907 ppm) showed ROESY correlations to the adjacent H-15 

methylene protons (2.17 and 2.24 ppm) of the 10-carbon side-chain, and to one of the 

H-17 protons (1.92 ppm), together with a low intensity (0.15%) ROESY correlation to 

the more distant H-19 proton (4.08 ppm) as also seen in ROESY spectra of 1 and 2. 

These observations showed that the C-16, C-19 and C-20 configurations of 1 and 3 are 

essentially identical, that the dispositions of their C-16−C-20 tetrahydrofuran ring and 

20-CHOH groups are similar, and that the inter-ring spatial relationships between the C-

19, C-26 and C-40 regions of 3 are comparable to those of 1. These observations are 

consistent with the relative configuration proposed for the C-16–C-19 region of 3 

(Figure 5.1). 
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Figure 5.5. 
1
H NMR spectra of AZA33 (3) from 5.38–5.54 ppm, showing the side-

chain olefinic protons (H-4, H-5, H-8 and H-9), with: (A) high-power decoupling at 

2.21 ppm (decoupling ~ 2.16–2.26 ppm (H-2, H-3, and H-10)); (B) low power 

decoupling at 2.04 ppm (decoupling H-6 and H-7), and; (C) no decoupling. 
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NMR spectroscopy—AZA34 (4). 

 

 In full accord with the mass spectrometric and periodate cleavage results discussed 

above, detailed analysis of 
1
H, 

13
C, DEPT135, COSY, TOCSY, SELTOCSY, HSQC 

and HMBC spectra showed that 4 possessed an intact C-6−C-40 ring system and that 

the 5-carbon ring-A-side-chain present at C-6 in all other reported AZAs had been 

replaced by a 3-carbon –CH2-CH2-COOH side chain. The 
1
H chemical shifts of the 

modified side chain methylene groups were elucidated via correlations in COSY and 

TOCSY spectra. H-6 (4.41 ppm), which was coincident with the H-19 signal, exhibited 

COSY correlations to the H-5a/b methylene protons (1.76 and 1.85 ppm). These 

correlations were readily differentiated from those which H-19 exhibited to H-18a/b 

(2.02 ppm), H-20 (3.55 ppm), and H-17 (4.19 ppm). The TOCSY spectrum at the 

frequency of H-6 (4.41 ppm) and at the frequencies of other protons associated with the 

mutually coupled H-4a/b–H-5a/b–H-6–H-7–H-8–H-9a/b spin systems included 

correlations to 2.21 and 2.31 ppm, attributable to the H-4a/b protons. The H-4 and H-5 

methylene protons showed HSQC correlations to resonances at 34.7 and 33.2 ppm (C-4 

and C-5, respectively), while the protons at 2.21 and 2.31 (H-4a/b) showed HMBC 

correlations to 181.9 (C-3), 70.5 (C-6) and 33.2 ppm (C-5). 

The chemical shifts of carbons and protons associated with the C-6–C-40 portion of 4 

were similar, but not in all cases identical, to those of 1 (Table 5.2) and several other 

AZAs.
14−17

 It is apparent from an analysis of published NMR data that the chemical 
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shifts of atoms in the vicinity of the 40-NH group and the C-20 portions of AZA are 

dependent on the pH of the examined NMR solutions.
17,18

 The presence of acetic acid 

(or deuteroacetic acid) in NMR solutions significantly increases the chemical shifts of 

the 40-methylene protons (reported chemical shifts for these protons are in the range 

2.5–2.9 ppm), presumably due to protonation of the NH group, and that this in turn 

influences the chemical shifts of some of the other more remote protons (most notably 

H-20; reported chemical shifts are in the range 3.5−3.9 ppm) that are in close proximity 

to H-19.
18

 However, because addition of weak acid promotes epimerization at C-37, 

addition of d5-pyridine may be a better option for pH control during NMR analysis of 

AZAs.
18

 

The NMR spectra of all AZAs examined in our laboratory,
18

 including 3 and 4, have 

exhibited moderate intensity inter-ring ROESY correlations between the equatorial H-

40 methylene proton and both H-19 and the more shifted of the two protons of the 

exomethylene group located at C-26. Compound 4, in both 2D-ROESY and a series of 

1D-SELROESY NMR experiments, exhibited an equivalent series of ROESY 

correlations to that observed for 1, including a moderate intensity ROESY correlation 

between H-6 (4.41 ppm) and the 14-methyl group (0.95 ppm) which showed its C-6 

configuration to be identical to that of 1. H-6 (4.41 ppm) also showed ROESY 

correlations to the H-5a/b protons (1.76 and 1.85 ppm). The foregoing ROESY 

correlations were readily distinguishable from those which the superimposed H-19 

signal showed to H-20 (3.55 ppm), H-18a/b (2.02 ppm), H-22 (2.24 ppm), the 22-

methyl group (0.89 ppm) and one of the olefinic methylene protons attached to C-26 

(5.26 ppm), because none of the correlations exhibited by the H-6 and H-19 signals 

overlapped and no nearby atoms possessed similar chemical shifts. 
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The NMR data provided definitive proof of the structures, showing that 3 consists of a 

trans,trans-4,8-decadienoic acid unit attached via its C-10 (i.e., C-15 of 3) to the C-16 

of an AZA tetrahydrofuran D-ring. Compound 4 differed from 1 only by having a 

shorter three carbon side chain without the double bond. 

Many polyether toxins from dinoflagellates, such as okadaic acid and yessotoxin, are 

generated by cyclisation of a long carbon chain assembled primarily from acetate units 

via polyketide synthase enzyme clusters.
34

 Examination of their structures suggest that 

this is also likely for AZAs, with the polyether structure of 1 being assembled from a 

40-carbon chain. If this is indeed the case, it would appear that 4 is assembled from a 

38-carbon chain and 3 from a 35-carbon chain. The production of 4 is consistent with a 

failure to incorporate one acetate unit, into the growing carbon chain during polyether 

biosynthesis. The fact that 3 has an odd numbered chain length may be due to oxidative 

cleavage of a C-5/C-6 double bond in a 40 carbon chain precursor. Furthermore, the 

structures of 3 and 4 suggest that AZAs may be assembled and cyclized from the 

amino-end, because in both of these compounds the C-19–C-40 substructure, including 

the relative configuration and all substituents, has been successfully assembled in an 

identical manner to 1 and 2 in A. spinosum’s AZA-synthase. 
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Table 5.2. NMR assignments (
1
H 600 MHz, 

13
C 150 MHz) for AZA1 (1), -33 (3) and -

34 (4) in CD3OD. 

Position 
1

a
 3 4 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

1 181.2      

2 38.1 2.25, 2.25     

3 30.2 2.33, 2.33   181.9  

4 133.7 5.75   34.7 2.21, 2.31 

5 130.7 5.44   33.2 1.76, 1.85 

6 72.5 4.79 181.9  70.5 4.41 

7 129.4 5.63 39.7 2.18, 2.18 130.1 5.70 

8 123.2 5.73 30.9 2.26, 2.26 123.3 5.72 

9 35.7 2.12, 2.46 131.5 5.48
b
 37.6 2.11, 2.46 

10 107.2  130.8 5.45
c
 107.1  

11 37.5 1.97, 2.14 34.1
d
 2.03, 2.03 37.6 1.94, 2.12 

12 33.2 1.66, 2.33 33.9
d
 2.03, 2.03 33.0 1.64, 2.32 

13 111.3  133.4 5.50
c
 111.0  

14 31.0 2.02 127.8 5.43
b
 30.9 2.01 

15 32.6 1.76, 1.85 40.5 2.17, 2.24 32.6 1.75, 1.81 

16 78.2 3.88 81.5 3.907 78.1 3.89 

17 73.3 4.23 30.9 1.55, 1.92 73.1 4.19 

18 37.3 1.99, 2.01 30.5 1.95, 2.00 38.3 2.02, 2.02 

19 79.2 4.43 80.3 4.08 79.2 4.41 

20 76.9 3.86 77.4 3.34 77.2 3.55 

21 100.2  100.0  99.5  

22 36.6 2.12 35.7 2.37 36.3 2.24 

23 38.3 1.43, 1.43 39.0 1.39, 1.39 38.3 1.41, 1.41 

24 42.3 1.35 42.2 1.36 42.0 1.35 

25 79.6 3.98 79.5 3.911 79.8 3.93 

26 148.3  148.0  148.2  

27 49.5 2.24, 2.42 49.6 2.15, 2.34 49.4 2.16, 2.35 

28 98.6  98.0  97.9  

29 44.3 1.36, 2.03 44.7 1.30, 1.98 44.7 1.31, 1.98 

30 26.4 2.23 26.7 2.25 26.4 2.24 

31 35.4 1.52, 1.83 35.6 1.47, 1.77 35.6 1.48, 1.78 

32 72.8 4.35 72.7 4.24 72.8 4.26 

33 81.2 4.01 79.4 3.74 79.6 3.77 

34 74.9 4.98 75.4 4.81 75.5 4.82 

35 41.9 2.41, 2.59 43.0 1.88, 2.39 43.1 2.00, 2.43 

36 96.6  95.8  95.8  

37 36.0 1.95 37.7 1.76 37.3 1.76 

38 38.0 1.28, 1.67 39.9 1.14, 1.54 39.8 1.17, 1.55 

39 29.8 1.85 31.0 1.69 31.2 1.68 

40 46.4 2.79, 2.84
e
 47.4 2.53, 2.46

e
 47.7 2.55, 2.55 

14-Me 16.6 0.95   16.6 0.95 

22-Me 16.4 0.91 16.9 0.89 16.3 0.89 

24-Me 18.1 0.84 18.1 0.81 18.0 0.82 

26=CH2 116.8 5.16, 5.34
f
 115.4 5.07, 5.27

f
 115.6 5.10, 5.26

f
 

30-Me 23.5 0.95 23.7 0.93 23.6 0.93 

37-Me 15.5 0.96 16.1 0.86 16.0 0.88 

39-Me 18.6 0.94 19.5 0.85 19.2 0.86 
a
From Kilcoyne et al.

18
 

b
Decoupled by homonuclear decoupling at 2.21 ppm (Figure 5.5A). 

c
Decoupled by homonuclear decoupling at 2.04 ppm (Figure 5.5B). 

d
Assignments interchangeable. 

e
Haxial, Hequatorial 

f
HE, HZ 
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5.4.3. Relative molar response 

Compounds 3 and 4 were quantitated by quantitative NMR (qNMR), and their molar 

responses in various LC-MS methods were assessed against purified 1, that had also 

been quantitated by qNMR. A number of LC-MS analyses were performed employing 

an acidic (isocratic and gradient) mobile phase in both SIM (selected ion monitoring) 

and SRM (selected reaction monitoring) modes.  

LC-MS data obtained in SIM mode suggested that 3 and 4 had very similar responses to 

1 when analysed under the various conditions (Table 5.3). In SRM mode, differences in 

response factors were observed. The response using the H2O loss fragment for 3 was 

similar to that for 1, while a higher response factor was obtained for 4. The RDA 

fragment for 4 gave a lower response factor than for 1, as did the m/z 462 fragment for 

3. The m/z 362 transitions for both 3 and 4 were slightly lower than that for 1 (Table 

5.3). These results suggest that, in the absence of standards, 3 and 4 would be more 

accurately quantitated against 1 in SIM mode. 

 

Table 5.3. Relative molar response factors (propagated standard deviation of the last 

significant figure in parentheses) of AZA33 (3) and AZA34 (4) in relation to AZA1 (1) 

(1(area/concentration)/(3 or 4(area/concentration)))
a
. 

MS mode 

(ion/transition) 

3 4 

Gradient
b
 Isocratic

c
 Gradient

b
 Isocratic

c
 

SIM [M+H]
+
 1.03 (2) 0.97 (3) 1.01 (3) 1.05 (3) 

SRM ([M+H]
+ 

−
 
H2O) 1.03 (11) 1.05 (3) 1.22 (9) 1.17 (7) 

SRM ([M+H]
+
→672) - - 0.41 (2) 0.39 (2) 

SRM ([M+H]
+
→462) 0.77 (5) 0.80 (5) - - 

SRM ([M+H]
+
→362) 0.91 (6) 0.90 (4) 0.90 (7) 0.87 (4) 

a
Determined by SIM and SRM LC-MS experiments using gradient and isocratic LC elution with an 

acidic mobile phase. 
b
Method F(i). 

c
Method F(ii).
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5.4.4. Toxicity 

 Compounds 3 and 4 were cytotoxic to Jurkat T lymphocyte cells in a time- and 

concentration-dependent manner (Figure 5.6), and were 0.22- and 5.5-fold as potent as 

1, respectively (Table 5.4).  

 
Figure 5.6. Effect of AZA analogues on T lymphocyte cell viability. Jurkat T cells were 

exposed to various concentrations of (A) AZA1 (1), (B) AZA33 (3), and (C) AZA34 (4) for 

24, 48, or 72 h and viability was assessed using the MTS assay. All data (mean ± SE; n=3) 

were normalized to the control (10% MeOH vehicle). Non-linear, three parameter dose–

response (variable slope) analysis was performed and EC50 values calculated (Table 5.4). 
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Although these compounds were present in minor amounts relative to 1 and 2 in French 

and Irish shellfish, their major significance lies in their structural differences and their 

usefulness in establishing structure–activity relationships. Analogue 3 is similar to 1 but 

without the A/B/C ring structure, while 4 differs from 1 only by the shorter side chain 

and absence of the 4,5- alkene. In the absence of the A/B/C ring structure, relative 

cytotoxic potency was reduced ~ 5-fold (relative to 1) (Table 5.4), suggesting that 

although this fragment of the AZA molecule influences toxicity, it is not the primary 

toxicophore or epitope necessary for AZAs to bind to and affect their target(s). On the 

other hand, the shorter side chain and absence of the 4,5-alkene in 4 enhanced cytotoxic 

potency by > 5 fold (Table 5.4). This increase in potency may be due to greater 

interaction of the molecular target(s) with the negatively charged carboxylic acid due to 

the altered configuration. Although 1, 2 and AZA3 have been shown to induce 

apoptosis
13

 and selectively inhibit hERG potassium channels,
35

 the effects of 3 and 4 on 

these pathways have not yet been characterized. The results presented here suggest that 

it may be possible to link a reporter molecule in the vicinity of the carboxyl moiety of 

AZAs and still retain sufficient binding affinity to probe the AZAs’ molecular target. 

 

Table 5.4. Calculated EC50 values (nM) with 95% confidence intervals (CI) and relative 

potencies (Rel. Pot.) for AZA analogues based on T lymphocyte cytotoxicity. 

 

AZA  

 

24 h 48 h 72 h Mean 

EC50 

Rel. 

Pot.  EC50 95% CI EC50 95% CI EC50 95% CI 

1 0.96 0.19–4.9 1.10 0.46–2.5 1.3 0.59–3.0 1.1 1.0 

3 3.3 0.79–13 5.9 2.4–15 6.4 2.8–15 5.2 0.22 

4 0.23 0.042–1.2 0.18 0.098–0.34 0.20 0.11–0.38 0.20 5.5 
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5.5. Conclusions 

Three new AZAs were identified in seawater (SPATT) samples and in cultured A. 

spinosum, two of which (3 and 4) were present in sufficient amounts for purification. 

Structures were determined by LC-MS/MS and NMR spectroscopy. Compound 3 was 

found to have major structural differences compared to 1, while 4 only differed by a 

shorter side chain and the lack of an alkene group at the C-4–C-5 position. The fact that 

4 was more abundant in natural seawater samples and in culture medium raises 

questions regards its biological and ecological roles. Analysis of these AZAs using a 

neutral mobile phase indicates that 37-epimers also exist for these compounds. 

 Cytotoxicity was assessed employing Jurkat T lymphocyte cells, and potencies relative 

to 1 for 3 and 4 were found to be 0.22 and 5.5, respectively. Both 3 and 4 were present 

in Irish mussels at very low levels and are not considered of relevance to human health. 

However, with the notable differences in structure and potency, these analogues further 

our knowledge of AZA structure–activity relationships.  
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CHAPTER 6 – STRUCTURE ELUCIDATION, RELATIVE LC-MS 

RESPONSE, IN VITRO TOXICITY OF AZASPIRACIDS 7−10 

ISOLATED FROM MUSSELS (MYTILUS EDULIS) AND 

PROPORTIONS IN SHELLFISH.  

Kilcoyne, J., Twiner, M., McCarron, P., Crain, S., Giddings, S. D., Foley, B., Rise, F., 

Hess, P., Wilkins, A. L., Miles, C. O. Structure elucidation, relative LC-MS response 

and in vitro toxicity of azaspiracids isolated from mussels (Mytilus edulis). Journal of 

Agriculture and Food Chemistry, 2015, DOI: 10.1021/acs.jafc.5b01320.                                       

Kilcoyne, J., McCarron, Hess, P., Miles, C. O. Effects of heating on proportions of 

azaspiracids 1–10 in mussels (Mytilus edulis) and identification of novel carboxylated 

analogues. Manuscript in preparation.                                       

 

6.1. Abstract 

Azaspiracids (AZAs) 7–10 (7−10) were isolated from shellfish and their structures, 

previously proposed based only on LC-MS/MS data, were confirmed by NMR 

spectroscopy. Samples of AZA4–6 (4−6) and 7−10 accurately quantitated by qNMR, 

were used for a relative molar response study, assaying cytotoxicity with Jurkat T 

lymphocyte cells and assessing proportions in naturally contaminated mussels. 

LC-MS/MS molar response studies performed using isocratic and gradient elution, in 

both SIM and SRM modes, showed that responses for the analogues ranged from 0.3 to 

1.2 relative to AZA1 (1). All AZA analogues tested were cytotoxic to Jurkat T 

lymphocyte cells in a time- and concentration-dependent manner. However, there were 

distinct differences in their EC50 values, with cytotoxicity potencies being AZA6 > 

AZA8 > AZA1 > AZA4  AZA5  AZA9 > AZA10. This provides valuable 
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information on structure–activity relationships. Analysis of heat-treated shellfish 

naturally contaminated with AZAs revealed high levels of 3 and 6 in some samples that 

were otherwise below the limit of quantitation before cooking. Relative to 1, the 

average (n=40) levels of 4 (range 0–27%), 5 (range 1–21%) and 8 (range 1–27%) were 

each ~ 5%, while 7, 9 and 10 (range 0–8%) were each under 1.5%. 

 

6.2. Introduction 

The consumption of shellfish contaminated with azaspiracids (AZAs) leads to the 

syndrome azaspiracid poisoning (AZP).
1
 Poisoning incidents associated with this toxin 

group have been reported.
2,3

 In all cases, the source of the implicated shellfish was 

Ireland where the levels and number of AZA occurrences have been most problematic.
4
 

AZAs have been reported to produce “neurotoxin-like” symptoms via intraperitoneal 

injection in mice, with death in 20–90 min.
5
 Oral administration was found to produce 

clinical disease that was dose- and time-dependent, in addition to damaging the 

intestinal organs.
6−9

 AZA1 (1) is a K
+
 channel blocker,

10
 and is highly cytotoxic to 

multiple cell types which undergo atypical apoptosis after exposure.
11

 

AZAs were first identified in the late 1990s and since then more than 30 analogues have 

been identified in shellfish,
12

 phytoplankton,
13−15

 crabs
16

 and a marine sponge.
17

 Only 1, 

AZA2 (2) and AZA3 (3) are currently regulated in raw shellfish.
18

 Compounds 1,
19

 2, 

3,
20

 AZA4 (4), AZA5 (5)
21

 and AZA6 (6)
22

 have been isolated and their structures 

elucidated through a combination of NMR spectroscopy and chemical reactions. More 

recently, 37-epi-1 that was isolated from shellfish extracts, was found to differ 

structurally from 1 in respect of the orientation of the methyl group at C-37, and to be 5-

fold more toxic than 1 using the Jurkat T lymphocyte cell assay.
23
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LC-MS analysis revealed the presence of hitherto unknown AZAs in the dinoflagellates 

Amphidoma languida,
14

 Azadinium poporum
24

 and Azadinium spinosum.
15

 The AZAs 

identified in A. spinosum, subsequently named AZA33 and -34, were found to be the 

same structurally at the amine end of the molecule (C-21–40) compared to 1, producing 

the characteristic m/z 362 fragment during LC-MS/MS analysis.
15

 AZAs from A. 

poporum (AZA36 and -37), on the other hand, appear to differ by the lack of a methyl 

or methylene group in the I-ring, resulting in an equivalent fragment with m/z 348.
9
 The 

AZAs (with molecular masses of 815 and 829 Da) detected in the A. languida also 

displayed fragment ions with m/z 348, suggesting that these compounds also may lack a 

methyl group in the I-ring.
14

 

Here we describe the isolation of 4, 5, AZA7 (7), AZA8 (8), AZA9 (9) and AZA10 (10) 

(Figure 6.1) from shellfish, with confirmation by NMR of the structures previously 

postulated based on LC-MS/MS. Relative molar response studies using mass 

spectrometry were performed following the preparation of reference standards which 

were quantitated using quantitative NMR (qNMR). The toxicity of 4–10 was assessed 

using the Jurkat T Lymphocyte cell assay and the results used to discern structure–

activity relationships (SARs). The relevance of these toxins for human health protection 

in terms of toxicity and proportions detected in mussels was also evaluated. 
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Figure 6.1. Structures of 1–10, their protonated masses and origin. The m/z values of 

the fragments are for 1; corresponding fragments were observed for 2–10. 

 

 

 

6.3. Experimental section 

6.3.1. General experimental procedures 

NMR experiments for structure elucidation were run using Bruker Avance I and Avance 

II 600 MHz spectrometers equipped with TCI cryoprobes and Z-gradient coils, at 30 °C 

and a Bruker DRX-500 spectrometer using a TXI probe and Z-gradient coils at 20 
o
C 

was used for qNMR. 

Mass spectrometric studies were performed using a Waters 2695 LC coupled to a 

Micromass triple-stage quadrupole (TSQ) Ultima, a Waters 2795 LC coupled to a 

 

  

R1 R2 R3 R4 [M+H]+

(C-3) (C-8) (C-22) (C-23) m/z Origin Status

AZA1 (1) H H CH3 H 842.5 A. spinosum phycotoxin

AZA2 (2) H CH3 CH3 H 856.5 A. spinosum phycotoxin

AZA3 (3) H H H H 828.5 shellfish metabolite

AZA4 (4) OH H H H 844.5 shellfish metabolite

AZA5 (5) H H H OH 844.5 shellfish metabolite

AZA6 (6) H CH3 H H 842.5 shellfish metabolite

AZA7 (7) OH H CH3 H 858.5 shellfish metabolite

AZA8 (8) H H CH3 OH 858.5 shellfish metabolite

AZA9 (9) OH CH3 H H 858.5 shellfish metabolite

AZA10 (10) H CH3 H OH 858.5 shellfish metabolite
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Micromass quadrupole time of flight (QToF) Ultima and an Agilent 1200 LC system 

connected to a SCIEX API4000 QTRAP mass spectrometer equipped with a 

Turbospray ionization source. 

 

6.3.2. Biological material 

Mytilus edulis samples contaminated with AZAs were obtained from shellfish 

harvesting sites along the West coast of Ireland. The samples selected for analysis 

(n=40) were from different locations and harvested in different years. 

 

6.3.3. Isolation and purification  

The isolation procedure has been previously  described by Kilcoyne et al.
22

 Final 

purification of AZAs was achieved by semi-preparative LC (Agilent 1200) with 

photodiode array (PDA) detection (210 nm) using a Cosmosil C18 column, 5 µm, 250 × 

4.6 mm, Nacalai tesque) eluted with CH3CN/H2O (1:1, plus 2 mM ammonium acetate) 

at 1 mL/min. The column temperature was 30 °C. Due to the presence of co-eluting 

compounds two additional semi-preparative steps using CH3CN/H2O (0.8:1, plus 2 mM 

ammonium acetate) were required to attain sufficient purity for NMR. Purified AZAs 

were recovered by diluting the fractions with H2O (to 20% CH3CN), loading on to 

solid-phase extraction (SPE) cartridges (Oasis HLB, 200 mg), washing with 

MeOH/H2O (1:9, 10 mL) to remove the buffer, and eluting with MeOH/H2O (9:1, 

20 mL). Removal of solvent by evaporation in vacuo afforded purified AZAs as white 

solids. 

AZA7 (7). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 6.1; 

HRESIMS m/z 858.4990 [M+H]
+
 (calcd for C47H71NO13, 858.5009). 
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AZA8 (8). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 6.1; 

HRESIMS m/z 858.5002 [M+H]
+
 (calcd for C47H71NO13, 858.5009). 

AZA9 (9). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 6.1; 

HRESIMS m/z 858.5007 [M+H]
+
 (calcd for C47H71NO13, 858.5009). 

AZA10 (10). white, amorphous solid; 
1
H and 

13
C data (CD3OD, 600 MHz), see Table 

6.1; HRESIMS m/z 858.5012 [M+H]
+
 (calcd for C47H71NO13, 858.5009). 

 

6.3.4. Analysis of raw and cooked shellfish tissues 

AZA-contaminated raw samples, tested as part of the routine monitoring programme in 

Ireland, were selected for analysis. The shellfish were shucked and homogenised before 

extraction. Tissue samples were weighed (2 g) in duplicate into 50 mL centrifuge tubes 

with one set placed in a H2O bath (Grant Ltd) and heated to 90 °C for 10 min, then 

allowed to cool. The samples were extracted by vortex mixing for 1 min with 9 mL of 

MeOH, centrifuged at 3,950 g (5 min), and the supernatants decanted into 25 mL 

volumetric flasks. The remaining pellet was further extracted using an Ultra turrax 

(IKA) for 1 min with an additional 9 mL of MeOH, centrifuged at 3,950 × g, 5 min, and 

the supernatants decanted into the same 25 mL volumetric flasks, which was then 

brought to volume with MeOH. The extracts were analysed by LC-MS/MS (method A). 

Certified standards of 1–3 and the reference standards prepared for 4–10 were used for 

quantitation. 

 

6.3.5. Periodate cleavage 

Dilutions (~ 100 ng/mL) of purified 7−10 in MeOH were used. To 100 µL of each 

sample was added 50 µL of 0.2 M sodium periodate solution, and the reactions analyzed 

immediately by LC-MS (method A) including traces at m/z 448.4 (for the 7 oxidation 
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product), m/z 464.4 (for the 8 oxidation product), m/z 434.4 (for the 9 oxidation 

product) and at m/z 450.4 (for the 10 oxidation product).  

6.3.6. LC-MS experiments 

Method A. Recoveries were determined by quantitative analysis of fractions on a Waters 

2695 LC coupled to a Micromass triple-stage quadrupole (TSQ) Ultima operated in 

SRM mode for the following transitions: m/z 842.5→824.5/362.3 (1 and 6); m/z 

856.5→838.5/362.3 (2); m/z 828.5→810.5/362.3 (3); m/z 844.5→826.5/362.3 (4 and 5) 

and m/z 858.5→ 840.5/362.3 (7–10). The cone voltage was 60 V, collision energy was 

50 V, the cone and desolvation gas flows were set at 100 and 800 L/h, respectively, and 

the source temperature was 150 °C. 

Binary gradient elution was used, with phase A consisting of H2O and phase B of 

CH3CN (95%) in H2O (both containing 2 mM ammonium formate and 50 mM formic 

acid). Chromatography was performed with a Hypersil BDS C8 column (50 × 2.1 mm, 

3 µm, with a 10 × 2.1 mm guard column of the same stationary phase) (Thermo 

Scientific). The gradient was from 30% B, to 90% B over 8 min at 0.25 mL/min, held 

for 5 min, then held at 100% B at 0.4 mL/min for 5 min, and returned to the initial 

conditions and held for 4 min to equilibrate the system. The injection volume was 5 µL 

and the column and sample temperatures were 25 °C and 6 °C, respectively. 

Method B. Structure determination and purity was assessed on a Micromass time-of-

flight (QToF) Ultima coupled to a Waters 2795 LC by running MS scans (m/z 100–

1000) using the same chromatographic conditions as above. Identification of other 

contaminant AZA analogues was also determined by performing product ion scans, 

where the precursor ions were selected and then fragmented, for all the known AZA 

analogues. 
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Method C. Qualitative analysis of fractions for AZAs was performed by flow injection 

analysis (FIA)-MS/MS using a Micromass quadrupole time of flight (QToF) Ultima 

coupled to a Waters 2795 LC. Samples (2 µL) were injected directly (no column) into 

the mass spectrometer, monitoring for the precursor ions. 

Method D. For a relative molar response study accurate working standards were 

prepared by diluting the qNMR stock solutions in high purity degassed MeOH. The 

concentrations of the working solutions were ~ 1 µM for all analogues. Analysis was 

performed on an Agilent 1200 LC system connected to an API4000 QTRAP mass 

spectrometer (AB Sciex) equipped with a Turbospray ionization source. The MS was 

operated in positive ion mode and SRM transitions were as follows: m/z 

842.5→824.5/672.5/462.3/362.3 (1); m/z 844.5→826.5/658.5/362.3 (4); m/z 

844.5→826.5/674.5/362.3 (5); m/z 842.5→824.5/658.5/362.3 (6); m/z 

858.5→840.5/672.5/362.3 (7); m/z 858.5→840.5/688.5/362.3 (8); m/z 

858.5→840.5/658.5/362.3 (9) and m/z 858.5→840.5/674.5/362.3 (10). For selected ion 

monitoring (SIM) experiments m/z 842.5 (1 and 6), 844.5 (4 and 5) and 858.5 (7–10) 

were analysed. Typical parameters were 5500 V electrospray voltage, 400 °C source 

temperature, 70 V declustering potential and collision energies of 45 to 70 V (where 

applicable). Method D (i) used gradient elution with the same acidic mobile phase as 

method A, separation being performed on a 2.5 µm, 2.1 × 50 mm, Luna C18(2) HST 

column (Phenomenex). The gradient was from 25 to 100% B over 5 min at 300 µL/min 

and held at 100% B for 2 min, before re-equilibration for the next run. The injection 

volume was 1–5 µL and the column and sample temperatures were 25 °C and 6 °C, 

respectively. Method D (ii) used isocratic elution with the acidic mobile phase on the 

same Luna column, with 60% B at 300 µL/min. 
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Method E. For separation of the 37-epimers
33

 a neutral gradient elution was used. 

Separation was performed on the same Luna column used in method D, operated at 

15 °C, injecting 1–5 µL samples. A binary mobile phase of H2O (A) and CH3CN (95%) 

in H2O (B), each containing 5 mM ammonium acetate (pH 6.8), was used with a linear 

gradient from 25 to 100% B over 5 min at 350 µL/min and held at 100% B for 2 min, 

before re-equilibration for the next run. 

Method F. Accurate mass measurements and quantitation were performed on a Waters 

Acquity UPLC coupled to a Xevo G2-S QToF operated in MS
e
 mode, scanning from 

100−1200 m/z and using leucine enkephalin as the reference compound. The cone 

voltage was 40 V, collision energy was 50 V, the cone and desolvation gas flows were 

set at 100 and 1000 L/h, respectively, and the source temperature was 120 °C. 

Chromatography was performed with an Acquity UPLC BEH C18 (50 × 2.1 mm, 

1.7 µm) column (Waters), using the same mobile phase described in method A. The 

gradient was from 30–90% B over 2 min at 0.4 mL/min, held for 2 min, and returned to 

the initial conditions and held for 1 min to equilibrate the system. The injection volume 

was 2 µL and the column and sample temperatures were 25 °C and 6 °C, respectively. 

 

6.3.7. NMR experiments 

Structures were determined by analysis of 
1
H, COSY, TOCSY, NOESY, ROESY, 

HSQC and HMBC, 
13

C and DEPT135 NMR spectra. Samples of 4–10 (~ 0.1 mg) were 

dissolved in ~ 0.5 mL CD3OD  at 30 °C, and chemicals shifts were referenced to 

internal CHD2OD (3.31 ppm) or CD3OD (49.0 ppm). Single- or double-frequency pre-

saturation of solvent resonances was performed using continuous wave and/or 

excitation sculpting, as required. 
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Quantitation of 1 and 4–10 was performed on aliquots of the purified compounds by 

dissolving in CD3OH.
34

 The samples were run against external standards of caffeine 

dissolved in H2O (4.10 mM) as described previously for AZA certified reference 

materials.
35

  

 

6.3.8. Toxins and other materials 

All solvents (pesticide analysis grade) were from Labscan and Caledon. Distilled H2O 

was further purified using a Barnstead nanopure diamond UV purification system 

(Thermo Scientific). Sodium chloride (99+%), triethylamine (99%), ammonium acetate 

(97+%), ammonium formate (reagent grade), formic acid (>98%), silica gel (10–40 µm, 

type H), sodium chloride (99+%), sodium periodate, Trace CERT caffeine and CD3OD 

(100.0 atom-% D) were from Sigma–Aldrich. Sephadex LH-20 was from GE 

Healthcare, LiChroprep RP C8 (25–40 µm) was from Merck, Luna Phenyl-Hexyl 

(15 µm) was from Phenomenex, CD3OH (99.5 atom-% D) for qNMR was from 

Cambridge Isotope Laboratories. AZA CRMs were obtained from the National 

Research Council of Canada. 

 

6.3.9. Toxicology 

Cell Culturing. Human Jurkat E6-1 T lymphocyte cells (American Type Culture 

Collection TIB-152) were grown as described by Twiner et al.
36

 Briefly, cells were 

grown in RPMI medium (cat. #11875-093, Invitrogen) supplemented with 10% (v/v) 

fetal bovine serum (FBS; cat. #26140, Invitrogen) and maintained in a humidified 

incubator (Sanyo 18AIC-UV) with 5% CO2 in air at 37 °C. Cells were subcultured with 

fresh medium at an inoculum ratio of 1:4 every 3 to 4 days by transferring 2.5 mL of 

cells to 7.5 mL of fresh supplemented medium in 75 cm
3 

screw cap culture flasks. 
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Cytotoxicity Assay. To determine the effect of 1, 4−6 and 8–10 on cellular toxicity, 

Jurkat T lymphocyte cells were continuously exposed to toxins and viability 

determined. The non-adherent human cell line Jurkat T lymphocyte (ATCC cat. # TIB-

152) was grown in RPMI medium supplemented with 10% (v/v) fetal bovine serum 

(FBS). Cells were maintained in humidified 5% CO2 in air at 37 °C and subcultured 

with fresh medium at an inoculum ratio of 1:10 every 5 to 7 days by transferring 1 mL 

of cells to 9 mL of fresh supplemented medium in 75 cm
2
 screw cap culture flasks. 

Cells were seeded in a volume of 100 L of the supplemented medium at a density of 

35,000 cells per well in black, sterile, 96-well culture plates for 24 h to allow for 

recovery and settling. Each AZA was added at a single concentration (10 nM) for 24, 

48, or 72 h of continuous exposure prior to assessment of cytotoxicity. Parallel controls 

of equivalent amounts of MeOH/phosphate buffered saline were used to normalize the 

viability data for each treatment. Cellular viability/cytotoxicity was assessed using the 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) assay (Promega Biosciences). Like other tetrazolium-based assays, 

MTS in the presence of an electron coupling reagent (phenazine methosulfate; PMS) 

measures cellular viability by determining the activity of mitochondrial 

dehydrogenase.
37

 As a substrate for dehydrogenases, MTS becomes reduced into a 

soluble, purple dye that can be quantitated colourimetrically to determine the relative 

level of cellular viability/cytotoxicity per well. Following exposure of the cells to the 

AZA analogues for the specified period of time, each well received 10 μL of a 

PMS/MTS (1:20) solution. Cells were incubated for 4 h, after which absorbance 

readings at 485 nm were obtained using a FluoStar microplate reader (BMG Lab 

Technologies). Data are presented as means ± SE of three to five separate experiments 

(n=3–5). In addition, each cytotoxicity experiment was performed using duplicate wells. 
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Cytotoxicity data were blank-corrected and normalized to the control (% viability) and 

plotted using GraphPad Prism (ver. 5.0c).   
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6.4. Results and discussion 

The isolation of 6 has previously been described.
22

 Hydroxylated analogues 4, 5 and 7–

10 are less lipophilic than 1–3 and 6, and therefore eluted earlier  (Figure 6.5) and were 

more difficult to separate from the other contaminants in the sample. In the initial semi 

preparative step 4 and 5 and 7–10 were collected as two separate fractions. Individual 

analogues were separated in a second chromatographic step, while a third was required 

to achieve sufficient purity for NMR spectroscopy. The amounts purified ranged from ~ 

100–200 µg. Each analogue also contained its corresponding 37-epimer (~ 2–15%) as 

recently reported.
23

 Sufficient purity for the cytotoxicity assay was achieved for all 

AZAs except for 7 (purity ~ 63%), which was contaminated with 5 and another hitherto 

unreported AZA (~ 20%) with a molecular mass of 825 Da, which was also detected in 

the initial hepatopancreas extract. Compounds 4, 5, 6, 8 and 10 all had purities 

(including the 37-epimers) of > 95%, while 9 had a purity of 89%. 

  

6.4.1. Structure determination 

The AZAs isolated in this study showed typical AZA fragmentation patterns – a 

molecular ion, retro Diels Alder (RDA) and m/z 362 fragments, all of which appeared in 

clusters, indicative of several H2O losses. Structure assignments for 4 and 5 have been 

published based on 
1
H NMR, fast atom bombardment (FAB) MS

21
 and high resolution 

MS/MS.
12

 The data showed C-3 and C-23 hydroxylation for 4 and 5, respectively. 

These analogues were suggested to be bioconversion products of 3.
25

  

Postulated structures for 7–10 have been published based solely on high resolution 

MS/MS. Compounds 7 and 9 were proposed to be hydroxylated at C-3.
12

 C-3 hydroxy 

analogues show fragments within the molecular ion cluster indicative of a loss of CO2 

followed by several H2O losses. The presence of a fragment peak at m/z 408 strongly 



 Chapter 6 - Isolation of AZA7−10 and proportions in shellfish 

 

186 

 

suggested hydroxylation at C-23 for 8 and 10.
12

 Analogues 7 and 8 are proposed to be 

bioconversion products of 1, while 9 and 10 are believed to be bioconversion products 

of 2.
25

 The MS/MS data in this study supported the previously proposed structures. 

LC-MS analysis showed that treatment of 7−10 with periodate yielded C-20–C-21-

cleavage products at m/z 448.4 for 7 (same for 1 and 2), m/z 464.4 for 8, m/z 434.4 for 9 

(same for 3 and 6) and m/z 450.4 for 10 (same for 5).  

The analogues were subjected to a thorough series of 1- and 2D NMR experiments to 

verify their postulated structures. We also determined 
13

C assignments for 4 and 5, 

whose structures have previously been based only on 
1
H NMR data together with 

oxidative cleavage of 4 and chiral synthesis of the resulting C-1 to C-4 cleavage 

product. This facilitated comparison of a full set of 
13

C and 
1
H NMR assignments for 7 

and 8–10 (Table 6.1). 

Structure elucidation was done using 1- and 2-dimensional homonuclear 
1
H, 

13
C and 

heteronuclear 
1
H{

13
C} NMR spectroscopy to assign the 

1
H and 

13
C resonances, the 

chemical shifts of which were then compared with the published 
1
H and (for 1–3 and 6) 

13
C NMR data for 1–6.

19–22
 The majority of chemical shifts in Table 6.1 are taken from 

1-dimensional NMR spectra but some chemical shifts were taken from 2-dimensional 

spectra where necessary due to weak or overlapping signals. All samples inevitably 

contained low percentages of the corresponding 37-epimer,
23

 but this did not interfere 

with NMR analyses and is not discussed further. Other minor AZAs were sometimes 

present as contaminants in the samples but not at levels sufficient to prevent 

spectrometric analysis. 
1
H NMR assignments for 4 and 5 closely paralleled those of 

Ofuji et al.,
21

 apart from variations
23

 attributable to the degree of protonation on the 

amino group. The 
13

C and 
1
H chemical shifts for the 22-positions of 4, 5 and 9 were 

markedly different to those reported for 6 (39.0, and 2.13 (2H) ppm),
22

 however 
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examination of the original data indicates that these signals resonate at 31.5 ppm and at 

1.50 and 2.10 ppm. This is in accord with the published NMR data for 3,
20

 as well as 

that presented here for 4, 5, and 9. 

 

In accord with structures previously proposed on the basis of mass spectrometric data,
12

 

NMR spectrometric analysis demonstrated that 4, 7 and 9 were 3-hydroxylated 

congeners of 3, 1 and 6, respectively (Figure 6.1). Although it is not possible to 

determine the configuration at C-3 from ROESY correlations and coupling constants, 4 

has been shown to be 3R-hydroxyazaspiracid-3 by degradation reactions and synthesis 

of the degradation products.
21

 Compounds 7 and 9 showed the same pattern of chemical 

shifts (Table 6.1), coupling constants and ROESY correlations as for 4, strongly 

suggesting that all three congeners possess the same configuration at C-3. This is 

consistent with their biogenesis in mussels via enzymatic oxidations and 

decarboxylations of 1 and 2 produced by dinoflagellates. 

NMR spectrometric analysis of 5, 8 and 10 showed that these were 23β-hydroxylated 

congeners of 3, 1 and 6, respectively (Figure 6.1). The relative configuration of the E-

rings of 5, 8 and 10 were established from coupling constants (from 
1
H and SELTOCSY 

spectra) and ROESY correlations (Figure 6.2). As 5, 8 and 10 are produced in mussels 

by enzymatic oxidations and decarboxylations of 1 and 2 biosynthesized by 

dinoflagellates, it follows that their absolute configurations are as shown in Figure 6.1. 

Examination of the assignments within Table 6.1, and comparison with NMR 

assignments for 1–3
19,20

 and 6
22

 obtained under the same conditions and calibrated 

identically, reveals diagnostic effects on chemical shifts arising from the hydroxylations 

and methylations of the azaspiracid skeleton. Hydroxylation at C-3 leads to not only to 

marked changes in the C-3 and H-3 resonances, but also to significant changes (≥ 
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~1 ppm for 
13

C, ≥ ~0.05 ppm for 
1
H) to the nearby C-2, C-4, H-2, H-5 and H-six 

resonances. Similarly, hydroxylation at C-23 leads to consistent alterations in the 

chemical shifts of C-22–C-25 and H-22–H-25 as well as the appended 22- (if present) 

and 24-methyl groups in the E-ring. Addition of a methyl group at C-8 also results in 

characteristic changes to the C-7–C-9 and H-6–H-9 resonances. Similarly, the presence 

or absence of a 22-methyl has characteristic pronounced effects on the chemical shifts 

of C-22–C-24 and H-22 and H-23. The previously reported effect attributed to the state 

of ionization of the amino group
23

 is evident in Table 6.1, leading to systematic changes 

to most of the resonances of rings F–I (C-35, C-37–C-40, H-29, H-31–H-40, and the 37- 

and 39-methyl groups). This effect is also observable on a number of remote resonances 

(H-18, H-19 and the olefinic methylene at C-26), consistent with molecular modelling 

and ROESY correlations indicating the F–I-ring-system to be folded over in such a way 

that the amino group is near H-19, so that 1, 2,
23

 4, 5 and 7–10 all showed ROESY 

correlations between H-19 and H-40eq. Knowledge of these consistent substituent 

effects on the AZA skeleton will be helpful during NMR structure analysis of other 

AZA congeners and metabolites. 
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Figure 6.2. Structures for the E-rings of 5 (top) and 8 (bottom), showing dispositions of 

substituents. Observed 
1
H-

1
H coupling constants, and correlations (arrows) observed in 

the ROESY NMR spectra, are also shown.  
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Table 6.1. NMR Assignments for 4, 5 and 7−10 in CD3OH.  

Position 
4 5 7 8 9 10 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

13
C 

1
H 

1 179.9   181.7 
 

179.7 
 

181.6 
 

179.9 
 

181.5 
 

2 45.3 2.32, 2.36 38.5 2.23, 2.23 45.3 2.32, 2.36 38.5 2.23, 2.23 45.2 2.32, 2.36 38.6 2.22, 2.22 

3 70.4 4.42 30.4 2.32, 2.32 70.5 4.43 30.4 2.33, 2.33 70.5 4.42 30.4 2.32, 2.32 

4 135.0 5.77 133.9 5.75 135.0 5.77 133.9 5.75 134.7 5.75 133.6 5.72 

5 130.5 5.67 130.6 5.43 130.5 5.68 130.6 5.43 131.0 5.65 131.0 5.40 

6 71.8 4.86 72.5 4.79 71.8 4.86 72.5 4.79 72.0 4.79 72.7 4.72 

7 129.0 5.67 129.4 5.64 129.0 5.66 129.5 5.64 122.6 5.37 123.1 5.34 

8 123.4 5.74 123.2 5.73 123.4 5.74 123.2 5.72 131.2   131.0   

9 35.8 2.12, 2.48 35.7 2.11, 2.47 35.8 2.13, 2.48 35.7 2.12, 2.48 40.4 1.98, 2.42 40.4 1.96, 2.42 

10 107.1   107.2   107.1   107.2   107.4   107.4   

11 33.2 1.65, 2.31 33.2 1.63, 2.32 33.2 1.65, 2.31 33.2 1.64, 2.33 33.3 1.64, 2.32 33.3 1.63, 2.32 

12 37.6 1.96, 2.15 37.5 1.95, 2.13 37.6 1.96, 2.15 37.5 1.96, 2.13 37.5 1.97, 2.16 37.4 1.96, 2.15 

13 111.3   111.3   111.3   111.3   111.2   111.2   

14 30.9 2.01 31.0 2.00 30.9 2.03 31.0 2.01 31.0 2.00 31.0 1.99 

15 32.7 1.74, 1.83 32.6 1.75, 1.83 32.7 1.75, 1.83 32.6 1.76, 1.83 32.7 1.73, 1.82 32.6 1.73, 1.82 

16 77.9 3.92 78.0 3.90 78.0 3.90 78.2 3.89 77.9 3.91 78.0 3.90 

17 73.3 4.18 73.1 4.20 73.1 4.19 73.2 4.22 73.1 4.16 73.1 4.17 

18 38.4 1.99, 2.06 38.2 2.00, 2.00 38.7 2.00, 2.04 37.9 2.00, 2.00 38.4 2.00, 2.06 38.2 2.01, 2.01 

19 79.8 4.41 79.4 4.38 79.3 4.41 78.9 4.38 79.6 4.41 79.3 4.38 

20 80.2 3.29 79.3 3.49 77.3 3.48 76.7 3.77 80.2 3.30 79.4 3.50 

21 97.9   99.5   99.8   102.2   97.8   99.5   

22 31.9 1.51, 2.11 38.5 1.80, 2.29 36.1 2.28 40.0 2.18 31.9 1.51, 2.11 38.5 1.80, 2.28 

23 29.4 1.58, 1.62 71.1 3.93 38.7 1.41, 1.41 76.5 3.60 29.4 1.58, 1.62 71.1 3.93 

24 39.5 1.33 45.5* 1.48 42.0 1.36 46.7 1.49 39.5 1.33 44.5 1.48 

25 80.6 3.96 74.1 4.35 79.7 3.92 73.6 4.33 80.5 3.96 74.1 4.36 
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26 147.2   147.6   148.0   148.0   147.1   147.5   

27 48.5 2.17, 2.36 48.9 2.23, 2.42 49.3 2.15, 2.35 49.3 2.24, 2.43 48.5 2.17, 2.36 48.9 2.23, 2.42 

28 98.0   98.5   98.0   98.6   98.1   98.5   

29 44.3 1.33, 1.98 44.2 1.37, 2.05 44.8 1.30, 1.97 44.3 1.36, 2.06 44.4 1.33, 1.98 44.2 1.37, 2.05 

30 26.7 2.24 26.5 2.25 26.7 2.24 26.4 2.24 26.7 2.25 26.5 2.25 

31 35.8 1.48, 1.77 35.5 1.52, 1.82 35.9 1.47, 1.77 35.4 1.52, 1.83 35.8 1.48, 1.78 35.5 1.51, 1.81 

32 72.7 4.24 72.8 4.33 72.9 4.23 72.9 4.35 72.7 4.24 72.8 4.33 

33 79.3 3.72 79.3* 3.93 79.4 3.72 81.2 4.01 79.4 3.72 79.7 3.93 

34 75.6 4.80 75.2 4.94 75.5 4.79 75.0 4.99 75.6 4.80 75.2 4.94 

35 43.1 1.90, 2.38 42.2* 2.29, 2.52 43.0 1.90, 2.38 41.8 2.42, 2.56 43.1 1.90, 2.39 42.1 2.11, 2.52 

36 95.9   96.4   96.0   96.5   95.9   96.4   

37 37.9 1.74 36.5* 1.88 37.7 1.74 36.0 1.93 37.9 1.75 36.5 1.88 

38 40.0 1.14, 1.54 38.2* 1.24, 1.63 39.9 1.14, 1.53 38.0 1.27, 1.65 40.0 1.14, 1.54 38.6 1.24, 1.63 

39 31.7 1.66 30.8* 1.83 31.8 1.65 29.6 1.88 31.7 1.66 30.3 1.83 

40 47.8 2.51, 2.57 46.2* 2.74, 2.74 47.5 2.48, 2.52 46.3 2.77, 2.82 47.8 2.51, 2.57 46.3 2.74, 2.74 

14-Me 16.7 0.938 16.6 0.941 16.7 0.942 16.6 0.944 16.7 0.927 16.6 0.930 

22-Me         16.5 0.890 13.7 1.097         

24-Me 18.2 0.819 14.7 0.918 18.1 0.813 14.9 0.924 18.2 0.818 14.7 0.917 

26=CH2 116.1 5.14, 5.22 117.1 5.21, 5.35 115.3 5.09, 5.25 117.1 5.20, 5.39 116.1 5.14, 5.23 117.0 5.21, 5.35 

30-Me 23.9 0.928 23.6 0.952 23.8 0.929 23.5 0.958 23.9 0.929 23.7 0.951 

37-Me 16.1 0.860 15.7 0.929 16.1 0.855 15.5 0.952 16.1 0.860 15.7 0.927 

39-Me 19.5 0.855 18.9 0.921 19.4 0.850 18.7 0.940 19.5 0.862 18.9 0.922 

8-Me                 23.0 1.70 23.0 1.69 
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6.4.2. Relative molar response 

For the AZAs studied, differences in response factors were less significant in selected 

ion monitoring (SIM) mode under isocratic conditions (Table 6.2). In LC-MS/MS the 

mobile phase composition can influence the ionization efficiency; therefore analysis 

under isocratic conditions produces more accurate results. The response factor for 6 was 

very similar to that of 1. Given that 6 differs from 1 only by the position of a methyl 

group, this is not surprising. All the hydroxylated AZAs gave lower response factors, 

with 7, 9 and 10 being the lowest at ~ 0.5.  

The data shows that the SRM transition selected for analysis of all the AZAs, including 

6, can significantly impact quantitation when using 1 as a calibration standard (Table 

6.2). The H2O loss transition for 6 was similar to that of 1; however the RDA cleavage 

of the A-ring resulted in significantly higher response factors under both isocratic and 

gradient conditions. For all the other AZAs, the differences in SRM mode were even 

greater. The results suggest that, in the absence of standards for the hydroxylated 

analogues, quantitation will be most accurate in SIM mode under isocratic conditions. 

Even so, the concentration of hydroxylated AZAs may be significantly underestimated 

when AZA1 alone is used as the only analytical standard (Table 6.2). 
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Table 6.2. Relative (to 1) molar responses of 4–10 by LC-MS/MS under acidic 

conditions. 

AZA SIM SRM isocratic SRM gradient 

isocratic gradient H2O loss RDA 362 H2O loss RDA 362 

4 0.88  0.75 0.80 0.81 0.86 0.96 0.96 1.03 

5 0.77 0.70 0.55 0.47 0.47 0.61 0.54 0.53 

6 0.95 0.93 1.06 1.21 1.17 1.05 1.21 1.13 

7 0.45 0.40 0.37 0.33 0.37 0.40 0.37 0.40 

8 0.84 0.81 0.58 0.41 0.47 0.59 0.47 0.51 

9 0.53 0.49 0.45 0.48 0.61 0.50 0.53 0.68 

10 0.49 0.48 0.34 0.33 0.35 0.34 0.35 0.36 

 

 

6.4.3. Toxicology 

All available AZA analogues tested were cytotoxic to Jurkat T lymphocyte cells in a 

time- and concentration-dependent manner (Figure 6.3). However, there were distinct 

differences in the relative potencies of each analogue as revealed by their EC50 values 

(Table 6.3). The range of EC50 values for the eight analogues tested in this study were 

0.1 to 3.07 nM, a 31-fold range. Based on the EC50 values, the relative potencies were: 

2
27

 > 6 > 8  3
27

 > 1 > 4  5  9 >10. Impurities in 7 prevented it from being subjected 

to the Jurkat cell assay. 
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Figure 6.3. Effect of various AZA analogues on T lymphocyte cell viability. Jurkat T cells 

were exposed to various concentrations of (A) AZA4 (4), (B) AZA5 (5), (C) AZA6 (6), (D) 

AZA8 (8), (E) AZA9 (9), and (F) AZA10 (10) for 24, 48, or 72 h and viability was assessed 

using the MTS assay. All data (mean ± SE; n=3–5) were normalized to the control (10% 

MeOH vehicle). Non-linear, three parameter dose-response (variable slope) analysis was 

performed and EC50 values were calculated (Table 6.3).  
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In the present study, the AZAs tested represented differing sites of methylation, and 

hydroxylation. Collectively, SAR analysis using these data and published data for 2 and 

3
26

 suggest that AZA potency was somewhat increased by methylation at C-8 and/or C-

22 (i.e., 2, 6) whereas potency was reduced somewhat by hydroxylation at C-3 and/or 

C-23 (i.e., 4, 5) (Table 6.3, Figure 6.3). These findings allow us to speculate on the 

relative potencies of other analogues such as AZA12 (predicted to have relatively higher 

potency) and AZA13 (predicted to have relatively lower potency) based on their 

structures. Interestingly, reduced potencies of 4 and 5 relative to 1 in the Jurkat cell 

assay are the same as those determined by intraperitoneal injection in mice.
21

 The utility 

of this in vitro cytotoxicity assay for relative analogue potencies (i.e., TEFs) are further 

corroborated by previous in vitro and in vivo studies whereby both techniques also 

clearly demonstrated increased potencies of 2 and 3 relative to 1.
19,20,26

 However, recent 

in vivo studies (mouse intraperitoneal and mouse oral) showed that 1 is more toxic than 

2 (mouse intraperitoneal  oral; TEF = 0.6−0.7) and 3 (mouse intraperitoneal = oral; 

TEF = 0.5).
9
 Furthermore the toxicity of 6 was determined by mouse intraperitoneal for 

the first time and was found to be less toxic (TEF = 0.7) than 1.
9
 Although the reason 

for this discrepancy is unknown at this time, the highest credence should be 

acknowledged to oral in vivo studies. However, these experiments are logistically 

difficult to perform due to the high mass of toxins needed. Hence, further studies should 

be conducted to isolate more of the minor analogues to conclusively clarify their 

toxicological importance. 
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Table 6.3. Calculated EC50 values (nM) with 95% Confidence Intervals (CI) and 

relative potencies (Rel. Pot.) for AZA analogues based on T lymphocyte cytotoxicity.  

AZA  
24 h 48 h 72 h Mean 

EC50 

Rel. 

Pot.  EC50 95% CI EC50 95% CI EC50 95% CI 

1 0.96 0.19–4.9 1.10 0.46–2.5 1.3 0.59–3.0 1.1 1.0 

4 2.1 0.31–15 2.1 0.97–4.4 1.9 1.0–3.5 2.0 0.55 

5 2.7 0.48–15 3.4 1.7–6.9 2.8 1.6–4.7 3.0 0.38 

6 0.1 0.026–0.41 0.18 0.083–0.37 0.2 0.079–0.49 0.16 7.0 

8 0.27 0.060–1.2 0.25 0.12–0.51 0.22 0.12–0.40 0.25 4.5 

9 2.2 0.66–7.4 1.7 0.95–3.0 1.7 1.1–2.6 1.87 0.4 

10 2.9 1.20–6.8 3.2 2.1–4.8 3.1 1.8–5.5 3.07 0.2 

 

6.4.4. Analysis of cooked shellfish 

Compounds 3, 4, 6 and 9 are produced by heat-induced decarboxylation of AZA17, -21, 

-19 and -23 respectively, and are not normally present in significant amounts in 

uncooked mussels.
27

 As 5 and 10 are proposed to be direct bioconversion products of 3 

and 6 respectively,
25

 these compounds also would not be present in significant amounts 

in uncooked shellfish. The analysis of cooked shellfish most accurately reflects what is 

ingested by the consumer, and additional differences have been reported between the 

analysis of raw and cooked shellfish (M. edulis) in terms of concentration levels.
28

 To 

determine the relative importance of 1–10, raw shellfish contaminated with AZAs were 

heated to simulate cooking (with no water loss). LC-MS analysis with quantitative 

standards showed that 1–3 (regulated) and 6 (not regulated) were the predominant 

toxins in cooked mussels (Figure 6.4), however in some samples levels of 4 were higher 

than 6 (Table 6.5 and Figure 6.5). Levels of the metabolites were very variable, possibly 

due to differing rates of shellfish metabolism
25,29

 and time of harvesting i.e., mussels 

harvested directly following an intense bloom will likely have higher levels of 1 and 2 

than if they were harvested some time after the bloom (due to metabolism). The average 
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levels of the remaining analogues relative to 1 were low; 4, 5 and 8 were each ~ 5%, 

while 7, 9 and 10 were each under 1.5%, however there was huge variation and in some 

samples these analogues were present in significant amounts, particularly for 4, 5 and 8. 

(Figure 6.4 and Table 6.5).  

 

 

Figure 6.4. Proportions of 2–10 relative to 1 in cooked M. edulis (mean ± standard 

deviation; n=40), see Table 6.5. 

 

The feeding study (of M. edulis with A. spinosum) performed by Jauffrais et al
25

 showed 

that metabolism of 1 and 2 to AZA17 and -19, respectively is observed after 3 h with 

levels of these analogues increasing up to 2 days and then remaining constant up to the 

end of the experiment (4 days). Relative to 1 the proportions of AZA17 and -19 reached 

a maximum of 145% and 55% respectively while the analogues 4, 5 and 7–10 

accounted for ~ 58%. However, these studies were performed under laboratory 

conditions and the high levels of AZA accumulation observed in real life samples could 

not be replicated. 
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In this study levels of  5 and 10 increased significantly (Figures 6.5 and 6.6) after heat 

treatment suggesting that they are predominantly bioconversion products of AZA17 and 

-19 i.e., decarboxylation (at C-22) of hydroxylated (at C-23) AZA17 and -19. In the 

heating process enzymes responsible for hydroxylation would have been destroyed, 

hence it is unlikely that the observed increase in 5 and 10 levels were due to 

hydroxylation of 3 and 6 respectively. 

Biotoxin monitoring programs operated under the EU regulatory framework must 

analyse raw shellfish, and typically very low levels of 3 and 6 (if monitored) are 

detected in such samples.
4
 However, in the heat treated mussels, levels (relative to 1) of 

3 ranged widely from 11–501%, (Figure 6.4 and Table 6.4). Similarly levels (relative to 

1) of 6 ranged from 3–170% (Figures 6.4 and 6.5). In this study 6 was found to be 7-

fold more potent than 1 while a mouse oral study found it to be only slightly less toxic 

than 1.
9
 These results highlight the degree to which AZA-toxicity can be underestimated 

in routine monitoring programs where raw mussels are tested, and suggest that 6 should 

be included in the regulation of these compounds. Previously, levels of AZA analogues 

other than 1–3 were reported to comprise less than 5%,
12

 however this study indicates 

that the analogues 4–10 comprise on average 13% (ranging from 5% to 24%) of the 

total AZAs (1–10) in cooked shellfish. Different toxin profiles have been reported from 

other countries, where 2 is more predominant than 1
17,30−32

 and the shellfish from these 

locations are thereby more likely to contain higher levels of 6, 10 and possibly 9, and in 

such circumstances these analogues may have greater significance.  

Many samples analysed as part of the Irish monitoring program which were below the 

regulatory limit (and subsequently marketed with no reports of human intoxications), 

would have been above the limit had the tissues been cooked prior to analysis (Table 
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6.4). This suggests that the current regulatory limit may be sufficiently low for the 

prevention of the acute illness associated with this toxin group. 

 

Figure 6.5. Analysis (method F) of a cooked M. edulis sample extract (from the Marine 

Institute biotoxin monitoring programme) showing peaks for AZA1–10. 

 

 

Figure 6.6. Proportions of 2–10 relative to 1 in uncooked and cooked M. edulis (n=40). 
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Table 6.4. Measured concentrations of 1−3 and 6 in Irish M. edulis samples before and after cooking.  

Harvesting location  

(Irish Atlantic 

coast) 

Harvesting 

date 

Raw Cooked 

1 

(µg/g) 

2 

(µg/g) 

3 

(µg/g) 

6 

(µg/g) 

*AZA 

equiv. 

(1−3) 

(µg/g) 

1 

(µg/g) 

2 

(µg/g) 

3 

(µg/g) 

6 

(µg/g) 

*AZA 

equiv. 

(1−3) 

(µg/g) 

AZA equiv. 

including 

AZA6 (no 

TEF) 

(µg/g) 

West 26/09/2012 0.06 0.02 0.00 0.00 0.10 0.06 0.02 0.07 0.02 0.18 0.20 

Southwest 27/09/2012 0.16 0.04 0.01 0.00 0.24 0.16 0.04 0.06 0.01 0.30 0.31 

Southwest 27/09/2012 0.10 0.02 0.00 0.00 0.15 0.10 0.02 0.04 0.01 0.20 0.21 

Northwest 27/09/2012 0.04 0.01 0.00 0.00 0.07 0.04 0.02 0.07 0.02 0.17 0.19 

West 24/09/2012 0.22 0.05 0.01 0.00 0.33 0.20 0.05 0.12 0.03 0.48 0.51 

West 24/09/2012 0.12 0.03 0.00 0.00 0.18 0.10 0.03 0.07 0.02 0.24 0.26 

Southwest 24/09/2012 0.11 0.03 0.00 0.00 0.16 0.09 0.02 0.04 0.01 0.18 0.19 

West 24/09/2012
 

0.03 0.01 0.01 0.00 0.07 0.03 0.02 0.14 0.04 0.25 0.29 

Southwest 26/09/2012 0.08 0.02 0.00 0.00 0.12 0.08 0.02 0.03 0.00 0.16 0.17 

West 24/09/2012 0.02 0.02 0.01 0.00 0.06 0.03 0.02 0.08 0.02 0.18 0.20 

*AZA equivalents calculated following application of the toxic equivalent factor for 2 (1.8) and 3 (1.4) relative to 1. 

Red indicating areas where there is significant change.
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Table 6.5. Proportions (%) of 2–10 relative to 1 (method F) in cooked M. edulis (n=40) harvested off the Atlantic 

coast of Ireland.  

Harvesting 

location 

Harvesting 

date 
2 3 4 5 6 7 8 9 10 *AZA equiv. 

(µg/g) 

West 10/12/2013 23.2 15.2 2.8 4.0 4.9 0.0 1.3 0.8 0.5 0.63 

Southwest 09/12/2013 24.6 17.4 5.6 2.9 3.3 1.5 2.4 1.2 0.5 1.72 

Southwest 09/12/2013 19.6 35.5 5.2 4.9 8.4 0.3 2.1 1.1 1.6 0.38 

Southwest 09/12/2013 21.4 33.2 5.5 4.9 8.6 1.0 2.1 0.1 1.0 0.39 

Northwest 09/12/2013 18.0 45.0 6.7 5.1 12.4 2.2 1.6 0.3 2.3 0.21 

Northwest 24/10/2013 30.8 34.5 7.5 2.8 6.3 0.4 2.2 1.4 0.7 1.04 

Southwest 23/10/2013 27.2 29.6 12.9 3.1 6.9 0.6 3.8 3.4 0.6 1.44 

Southwest 23/10/2013 23.9 32.8 2.5 2.5 5.5 0.0 1.9 0.0 0.6 0.41 

West 22/10/2013 27.2 22.1 2.4 2.8 6.1 0.0 2.1 0.2 0.0 0.19 

Southwest 22/10/2013 21.9 26.5 6.6 2.6 5.9 0.5 3.6 1.5 0.8 0.32 

Southwest 21/10/2013 29.2 34.9 12.2 2.9 6.7 0.8 5.3 3.1 1.1 1.10 

Northwest 21/10/2013 27.8 29.7 6.0 1.9 5.8 0.8 2.3 1.3 0.5 0.91 

Southwest 21/10/2013 23.8 27.1 6.1 2.1 6.0 0.5 2.6 1.9 0.7 0.94 

West 21/10/2013 21.2 26.4 3.2 4.8 7.5 0.2 1.4 1.3 1.7 0.31 

West 21/10/2013 22.9 14.1 2.0 2.2 4.0 0.3 1.3 0.1 1.0 0.52 

Southwest 21/10/2013 25.2 16.6 1.0 1.3 2.9 0.0 1.2 0.0 0.8 0.54 

Southwest 21/10/2013 26.3 41.2 5.4 3.5 9.5 1.0 4.2 0.6 1.4 0.37 

Northwest 17/10/2013 29.2 34.1 7.6 2.5 6.0 0.4 2.6 2.1 0.6 0.85 

Southwest 15/10/2013 28.6 46.4 13.5 3.7 8.7 0.4 5.3 3.3 1.1 0.89 
#
Southwest 15/10/2013 35.6 96.7 26.5 5.4 23.2 1.4 8.3 7.6 2.0 0.70 

Northwest 14/10/2013 30.2 43.4 10.2 3.1 8.9 0.7 4.1 1.6 0.8 0.98 

Southwest 14/10/2013 27.1 21.2 8.3 2.1 5.2 0.5 2.8 3.0 0.7 1.75 

Southwest 13/10/2013 32.1 60.2 17.1 3.9 14.4 0.9 7.1 4.7 1.1 1.05 

Southwest 01/11/2012 25.0 10.5 0.9 1.7 2.8 0.8 1.1 0.0 0.6 0.99 

Southwest 27/09/2012 26.8 30.6 1.7 2.6 6.9 0.6 2.3 0.9 1.1 0.44 

Southwest 27/09/2012 31.0 41.6 0.0 3.9 10.0 0.0 1.5 0.0 1.2 0.15 

Northwest 27/09/2012 44.7 204.1 0.0 11.1 67.3 0.0 12.6 0.0 0.0 0.07 

West 26/09/2012 33.9 114.4 2.2 6.7 30.3 1.6 0.9 0.0 6.9 0.10 

Southwest 26/09/2012 23.3 37.3 0.4 3.7 10.9 0.4 1.9 0.7 2.5 0.12 

Southwest 24/09/2012 22.2 36.8 0.6 3.2 11.9 3.0 1.6 0.0 2.4 0.20 

West 24/09/2012 21.7 57.0 0.0 5.4 17.5 1.2 1.9 0.1 3.7 0.33 

Southwest 24/09/2012 23.6 42.2 0.6 5.1 10.7 0.7 1.9 0.1 2.6 0.16 

West 24/09/2012 32.4 78.4 2.4 8.1 19.1 0.0 3.3 0.0 0.0 0.18 

West 24/09/2012 78.8 501.5 0.2 21.2 170.2 0.0 27.0 0.0 0.0 0.07 

West 24/09/2012 70.3 330.7 0.0 9.8 103.1 0.0 19.5 1.7 0.0 0.06 

Northwest 24/09/2012 49.7 127.1 0.5 12.4 55.6 0.0 13.0 0.9 0.0 0.06 

West 27/08/2012 26.9 19.2 0.7 1.3 4.8 0.3 1.0 0.0 0.9 2.50 

Southwest 22/09/2011 32.1 28.2 1.5 2.1 6.4 0.3 3.1 0.0 0.4 0.27 

Southwest 17/11/2009 10.9 30.8 4.5 4.7 9.3 0.0 0.0 0.0 0.0 0.30 

Southwest 22/07/2008 28.0 16.6 7.9 1.7 3.6 0.3 1.8 1.8 0.7 4.80 

Avg % 29.4 62.3 4.9 4.5 18.0 0.6 4.1 1.1 1.2  

stdev 12.3 90.7 5.5 3.7 31.0 0.6 5.3 1.6 1.3  
* Values for raw shellfish, AZA equivalents calculated following application of the toxic equivalent factor for 2 (1.8) and 3 

(1.4) relative to 1. 
#
See Figure 6.5 for chromatogram.
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6.5. Conclusions 

Compounds 4–10 were purified from shellfish, with the structures of 7–10 being 

elucidated for the first time by NMR, which confirmed the previously postulated 

structures based on LC-MS/MS studies. qNMR was performed on all purified samples 

and subsequent LC-MS relative molar response factors and cytotoxicity were 

determined. Differences in the LC-MS molar responses relative to 1 were observed, 

particularly for the hydroxylated analogues (up to 3-fold). Greatest accuracy was 

achieved by analysis in SIM mode under isocratic conditions. Combining all the 

cytotoxicity data published to date for AZAs using the Jurkat T lymphocyte cell assay, 

the order of potencies are: 2 > 6  AZA34
15

  37-epi-1
23

 > 8  3 > 1 > 4  9 > 5   10 > 

AZA33.
15

 Analysis of heat-treated mussels from Ireland that were naturally 

contaminated with AZAs revealed high levels of 3 and 6. These compounds were not 

present at significant levels in the raw shellfish, highlighting the fact that AZA 

equivalent values for raw mussels grossly underestimate the toxicity of the AZAs 

present. Not only do these results suggest that tissues should be heat-treated prior to 

analysis, but also that 6 should be included in the regulations to more accurately reflect 

the toxin profile of to which shellfish consumers are exposed. Levels of analogues 4, 5 

and 7–10 were low in Irish mussels, and did not contribute significantly to overall 

toxicity, although the situation may be different for other shellfish varieties. However, 

in areas where 2 is the predominant AZA analogue, 6, 9 and 10 will most likely have 

more relevance than in Irish mussels. This study further suggests that the current 

regulatory limit may be sufficiently low for protection of human health from acute AZA 

intoxication from Irish mussels.  



 Chapter 6 - Isolation of AZA7−10 and proportions in shellfish 

 

203 

 

6.6. References 

(1)  Twiner, M. J., Rehmann, N., Hess, P., and Doucette, G. J. Mar. Drugs 2008, 6, 

39–72. 

(2)  Furey, A., O’Doherty, S., O’Callaghan, K., Lehane, M., and James, K. Toxicon 

2010, 56, 173–190. 

(3)  Klontz, K. C., Abraham, A., Plakas, S. M., and Dickey, R. W. Ann. Intern. Med. 

2009, 150, 361. 

(4)  HABs, database. 

http://www.marine.ie/home/publicationsdata/data/Habs+Search+Database/HabsS

earch.htm. Accessed 14 May 2014. 

(5)  McMahon, T., and Silke, J. Harmful Algae News 1996, 14. 

(6)  Aune, A., Espenes, A., Aasen, J. A. B., Quilliam, M. A., Hess, P., and Larsen, S. 

Toxicon 2012, 60, 895–906. 

(7)  Ito, E., Satake, M., Ofuji, K., Higashi, M., Harigaya, K., McMahon, T., and 

Yasumoto, T. Toxicon 2002, 40, 193–203. 

(8)  Aasen, J. A. B., Espenes, A., Hess, P., and Aune, T. Toxicon 2010, 56, 1419–

1425. 

(9)  Kilcoyne, J., Jauffrais, T., Twiner, M., Doucette, G., Aasen Bunæs, J. A., Sosa, 

S., Krock, B., Séchet, V., Nulty, C., Salas, R., Clarke, D., Geraghty, J., Duffy, C., 

Foley, B., John, U., Quilliam, M. A., McCarron, P., Miles, C. O., Silke, J., 

Cembella, A., Tillmann, U., and Hess, P. Marine Institute - Marine Research Sub-

Programme (NDP 2007-2013) series, 2014 

(http://oar.marine.ie/handle/10793/970). 

(10)  Twiner, M. J., Doucette, G. J., Rasky, A., Huang, P. X., Roth, B. L., and 

Sanguinetti, M. C. Chem. Res. Toxicol. 2012, 25, 1975–1984. 



 Chapter 6 - Isolation of AZA7−10 and proportions in shellfish 

 

204 

 

(11)  Twiner, M. J., Hanagriff, J. C., Butler, S., Madhkoor, A. K., and Doucette, G. J. 

Chem. Res. Toxicol. 2012, 25, 1493–1501. 

(12)  Rehmann, N., Hess, P., and Quilliam, M. A. Rapid Commun. Mass Spectrom. 

2008, 22, 549–558. 

(13)  Krock, B., Tillmann, U., John, U., and Cembella, A. D. Harmful Algae 2009, 8, 

254–263. 

(14)  Krock, B., Tillmann, U., Voß, D., Koch, B. P., Salas, R., Witt, M., Potvin, É., and 

Jeong, H. J. Toxicon 2012, 60, 830–839. 

(15)  Kilcoyne, J., Nulty, C., Jauffrais, T., McCarron, P., Herve, F., Wilkins, A. L., 

Foley, B., Rise, F., Crain, S., Twiner, M. J., Hess, P., and Miles, C. O. J. Nat. 

Prod. 2014, dx.doi.org/10.1021/np500555k. 

(16)  Torgersen, T., Bremnes, N. B., Rundberget, T., and Aune, T. Toxicon 2008, 51, 

93–101. 

(17)  Ueoka, R., Ito, A., Izumikawa, M., Maeda, S., Takagi, M., Shin-ya, K., Yoshida, 

M., Van Soest, R. W. M., and Matsunaga, S. Toxicon 2009, 53, 680–684. 

(18)  Anon. (2011) Commission Regulation (EU) No 15/2011 of 10th January 2011 

amending Regulation (EC) No 2074/2005 as regards recognised testing methods 

for detecting marine biotoxins in live bivalve molluscs. L6/3-6. 

(19)  Satake, M., Ofuji, K., Naoki, H., James, K. J., Furey, A., McMahon, T., Silke, J., 

and Yasumoto, T. J. Am. Chem. Soc. 1998, 120, 9967–9968. 

(20)  Ofuji, K., Satake, M., McMahon, T., Silke, J., James, K. J., Naoki, H., Oshima, 

Y., and Yasumoto, T. Nat. Toxins 1999, 7, 99–102. 

(21)  Ofuji, K., Satake, M., McMahon, T., James, K. J., Naoki, H., Oshima, Y., and 

Yasumoto, T. Biosci. Biotechnol. Biochem. 2001, 65, 740–742. 



 Chapter 6 - Isolation of AZA7−10 and proportions in shellfish 

 

205 

 

(22)  Kilcoyne, J., Keogh, A., Clancy, G., LeBlanc, P., Burton, I., Quilliam, M. A., 

Hess, P., and Miles, C. O. J. Agric. Food Chem. 2012, 60, 2447–2455. 

(23)  Kilcoyne, J., McCarron, P., Twiner, M. J., Nulty, C., Wilkins, A. L., Rise, F., 

Quilliam, M. A., and Miles, C. O. Chem. Res. Toxicol. 2014, 27, 587–600. 

(24)  Krock, B., Tillmann, U., Witt, M., and Gu, H. Harmful Algae 2014, 36, 22–28. 

(25)  Jauffrais, T., Marcaillou, C., Herrenknecht, C., Truquet, P., Séchet, V., Nicolau, 

E., Tillmann, U., and Hess, P. Toxicon 2012 60, 582–595. 

(26)  Twiner, M. J., El-Ladki, R., Kilcoyne, J., and Doucette, G. J. Chem. Res. Toxicol. 

2012, 25, 747–754. 

(27)  McCarron, P., Kilcoyne, J., Miles, C. O., and Hess, P. J. Agric. Food Chem. 

2009, 57, 160–169. 

(28)  Hess, P., Nguyen, L., Aasen, J., Keogh, M., Kilcoyne, J., McCarron, P., and 

Aune, T. Toxicon 2005, 46, 62–71. 

(29)  Salas, R., Tillmann, U., John, U., Kilcoyne, J., Burson, A., Cantwell, C., Hess, P., 

Jauffrais, T., and Silke, J. Harmful Algae 2011, 10, 774–783. 

(30)  Taleb, H., Vale, P., Amanhir, R., Benhadouch, A., Sagou, R., and Chafik, A. J. 

Shell. Res. 2006, 25, 1067–1071. 

(31)  Vale, P., Bire, R., and Hess, P. Toxicon 2008, 51, 1449–1456. 

(32)  López-Rivera, A., O’Callaghan, K., Moriarty, M., O’Driscoll, D., Hamilton, B., 

Lehane, M., James, K. J., and Furey, A. Toxicon 2010, 55, 692–701. 

(33)  McCarron, P., Giddings, S. D., and Quilliam, M. A. Anal. Bioanal. Chem. 2011, 

400, 835–846. 

(34)  Burton, I., Quilliam, M. A., and Walter, J. A. Anal. Chem. 2005, 77, 3123–3131. 



 Chapter 6 - Isolation of AZA7−10 and proportions in shellfish 

 

206 

 

(35)  Perez, R., Rehmann, N., Crain, S., LeBlanc, P., Craft, C., MacKinnon, S., 

Reeves, K., Burton, I., Walter, J. A., Hess, P., Quilliam, M. A., and Melanson, J. 

Anal. Bioanal. Chem. 2010, 398, 2243–2252. 

(36)  Twiner, M. J., Hess, P., Bottein Dechraoui, M.-Y., McMahon, T., Samons, M. S., 

Satake, M., Yasumoto, T., Ramsdell, J. S., and Doucette, G. J. Toxicon 2005, 45, 

891–900. 

(37)  Mosmann, T. J. Immuno. Methods 1983, 65, 55–63. 

 

 

 



7. Conclusions and future work 
 

207 

 

CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

Matrix effects were assessed on two LC-MS/MS instruments – a TSQ and a QToF. 

Matrix interferences were observed on both instruments but interestingly the type of 

interferences were quite different despite the fact that there were no differences in the 

type of source (ESI) nor in the methods of analysis (one theory is that matrix 

interferences occur in the source). Matrix suppression was observed for the AZAs on 

the TSQ (with the degree of suppression changing between shellfish varieties), while 

matrix enhancement was observed for OA on the QToF. The matrix suppression on the 

TSQ was overcome by changing the pH of the mobile phase from acidic (pH = 2.5) to 

alkaline (pH = 11) but also by extending the run time such that the column could be 

flushed with organic solvent to flush out any late eluting compounds. The matrix 

enhancement on the QToF was eliminated by the use of an on-line SPE method and by 

the use of matrix matched standards (since there was no significant difference in matrix 

effect between shellfish varieties). These methods were implemented in the routine 

monitoring programme at the MI to ensure accuracy of results being reported. 

An isolation procedure from shellfish was adapted and improved such that recoveries 

increased ~ 2-fold. Using this procedure AZA6, 37-epi-AZA1 and AZA7−10 were 

isolated, subsequently characterised and assessed for toxicity for the first time. The 

previously proposed structure for AZA6−10, based on LC-MS/MS analysis, was 

confirmed by NMR.  

A method was further developed for the isolation of AZAs from bulk cultures of A. 

spinosum. Using this method the novel AZAs, AZA33 and -34 were purified, 

characterised and assessed for toxicity. 
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Using the purified AZAs isolated as part of this PhD both in vitro and in vivo toxicity 

studies were performed (as part of the ASTOX 2 project) confirming AZA toxicity. The 

results from the oral and intraperitoneal mice studies correlated very well, contradicting 

previous reports and showing that AZA1 is more toxic than AZA2 (TEF = 0.6) and -3 

(TEF = 0.5). An in vivo (mouse intraperitoneal) study was additionally performed for 

AZA6 and it was found to be slightly less toxic than AZA1 (TEF = 0.7). Additional 

studies looking at the combined effects of AZA1 with OA and YTX showed that there 

is no increased toxicity when these groups co-occur.  

In vitro toxicity analysis was performed using the Jurkat T lymphocyte cell assay (Table 

7.1) and demonstrated the following potencies: AZA2 > AZA6 > AZA34  37-epi-

AZA1 > AZA8  AZA3 > AZA1 > AZA4  AZA9 > AZA5  AZA10 > AZA33. The 

results indicate AZA potency is gained by methylation of C-8 and/or C-22 (AZA2, -6, -

8) while AZA potency is reduced by C-3 and/or C-23 hydroxylation (AZA4, -5, -9, 10). 

AZA33 (AZA1 missing A/B/C rings) was less potent than AZA1 (~5-fold), whereas 

AZA34 (AZA1 missing C-4/C-5 alkene) was 5.5-fold more potent. Similarly, 37-epi-

AZA1 was 5.1-fold more potent than AZA1.  

In addition to the above mentioned analogues, AZA1–3 were also purified in sufficient 

quantities for the preparation of CRMs (to ensure a sustained supply). Bulk culturing of 

the producing organisms and improvements in isolation procedures have enabled more 

effective purification of a range of AZA analogues. In this study reference standards 

were prepared for 16 AZA analogues (Table 7.1) enabling the relevance of these 

analogues to be established, in terms of proportions and toxicity. Proportions were 

determined in AZA contaminated shellfish that were submitted to the biotoxin national 

monitoring programme. Previous studies showed that  levels of AZA3, -4, -6 and -9 can 

increase when shellfish are cooked due to decarboxylation of AZA17, -21, -19 and -24 
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respectively. These results were confirmed in this study. Levels of AZA3 and -6 ranged 

widely probably due to the different rates of AZA1 and -2 metabolism (oxidation of 

methyl at C-22 to produce the carboxy analogues AZA17 and -19 respectively) in the 

mussels tested. However, in some samples the proportions of AZA3 and -6 were 3-fold 

those of AZA1 and -2 respectively. These results highlight the degree to which AZA 

equivalents are underestimated in routine monitoring programs where uncooked 

shellfish are tested, and suggest that AZA6 should be included in the AZA regulation. 

Levels of the 37-epimers were also found to be significant in terms of human health 

protection.  

 

7.2. State of the art 

Over the course of the ASTOX 2 project ten additional Azadinium and related species 

have been identified from samples taken from European (Ireland, Britain, Scandinavia, 

Iceland, Greenland, Italy), Asian (China, Korea) and South American (Argentina) 

waters. Some of these species are producers of novel AZAs, whilst others do not appear 

to produce any AZAs. Interestingly, different strains of the same species (A. poporum) 

were found to have very different toxin profiles, some producing novel AZAs, whilst 

others were found to produce either known AZAs or none at all. During the project a 

molecular probe was developed capable of detecting and distinguishing between A. 

spinsoum, A. obesum and A. poporum. These probes currently contribute to the 

monitoring programme at the Marine Institute, enabling effective detection and 

forecasting of blooms which otherwise are difficult to detect.  

Feeding studies performed as part of the ASTOX 2 project with A. spinosum showed 

that mussels will feed directly on these organisms with no requirement for a vector 
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species. Mussels reached the regulatory limit after 5 days; however, the high 

concentrations observed in the wild could not be replicated under laboratory conditions. 

This may indicate: (i) that vectors are required to facilitate shellfish toxin accumulation 

(e.g., Favella ehrenbergii which has been shown to actively feed on A. spinosum); (ii) 

longer term feeding trials are required or (iii) other variables, as yet unknown, 

contribute to high uptake of toxins. The laboratory studies also showed that A. spinosum 

has a negative effect on shellfish in terms of mortality rates, feeding behaviour and 

physiology. Additionally, these studies showed that mussels take up AZAs from the 

dissolved phase and therefore the release of AZAs from decaying blooms may also have 

consequences for other species, not normally associated with these toxins. 

Both calibrant and tissue CRMs are available for AZA1–3, which were produced as part 

of the ASTOX project. Replacement stocks have recently been prepared to keep with 

demand using the purified toxins produced as part of this thesis.  

The heat-induced transformation of AZA17 and -19 into AZA3 and -6, respectively, 

was confirmed in the project. Using the RMs produced, the relevance of some of the 

minor and novel AZAs were determined, highlighting AZA6 as a potential significant 

contributor to overall toxicity. The other purified analogues for which RMs were 

prepared were found to be of less significance. The importance of other novel AZA 

analogues identified in the project, such as those which lack a methyl group in the 

amino ring, have yet to be established. 

The in vitro and in vivo toxicity studies performed to date confirm AZA toxicity. 

Studies on mini pigs showed that these animals are less susceptible to AZAs than 

humans, and that AZAs cross the intestinal barrier and distribute throughout the body 

causing internal organ damage at cellular and tissue levels. The results from the oral and 

intraperitoneal mice studies carried out as part of the ASTOX 2 project correlated very 
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well, contradicting previous reports and showing that AZA1 is more toxic than AZA2 

and -3. These results were reflected in the analysis of the mini pig blood samples that 

showed AZA1 is most rapidly taken up into the blood, followed by AZA2 and then -3. 

Studies looking at the combined effects of AZA1 with OA and YTX showed that there 

is no increased toxicity when these groups co-occur. The in vitro studies were 

effectively used to assess the toxicity of the minor analogues and demonstrated the 

following potencies: AZA2 > AZA6 > AZA34  37-epi-AZA1 > AZA8  AZA3 > 

AZA1 > AZA4  AZA9 > AZA5  AZA10 > AZA33  AZA36 > AZA37 > AZA26. 

The mode of action of AZAs has remained elusive for some time. Recent studies by 

Twiner et al have shown that AZAs are potassium channel blockers, however the 

concentrations required to induce such effects are 2-fold those required to cause 

cytotoxicity and therefore this is not considered to be the primary mode of action. 

Hence other modes of action need to be explored and it is likely that the various 

analogues may exhibit unique modes of action and/or receptors.  

 

7.3. Future work 

Although much has been learned about this toxin group in recent years thanks to 

projects such as ASTOX and ASTOX 2, there still remains many unanswered questions 

and ongoing research. Future work should focus on the following areas to protect the 

shellfish industry and allow relevant authorities to more accurately assess the impacts of 

these toxins on human health and the marine environment.  

 

 There is a strong need for high quality CRMs as monitoring and research 

laboratories move away from animal based assays towards chemical methods of 
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analysis. Replacement stocks of the regulated AZAs are now available due to the 

work performed as part of this thesis; however, these stocks are limited and 

depending on demand may only last a few years. Stocks of RMs are additionally 

required for some of the unregulated AZA toxins (e.g., AZA6). This issue is fast 

becoming problematic not only due to the increasing intensity and distribution of 

these toxic blooms but also due to increasing detection of novel phytoplankton 

species producing novel toxins. Future work will include the isolation of these 

novel AZAs. The availability of RMs for as many of these analogues as is 

possible will enable effective monitoring, the development of rapid assay test 

kits, more in depth toxicological studies and determination of the mode of 

action.  

 The development of early warning system for the aquaculture industry and 

monitoring laboratories is required to limit losses for the industry. Mapping of 

these species using gene probes at sea and development of in situ biosensors will 

assist in this process. 

 An assessment of the relevance of the additional species/toxins to the shellfish 

industry and human health is required in terms of shellfish (and other species) 

populations and development, prevalence and accumulation in shellfish and 

toxic effects on humans.  

 It is still not fully understood how mussels may become so highly contaminated 

in the field. ASTOX 2 studies have shown only limited accumulation occurs 

when mussels are fed A. spinosum. Additionally, the shellfish are adversely 

affected by this species. Knowledge of feed and environmental factors and what 

additional vectors could be involved would aid in developing mitigation 

strategies. 
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 More toxicological and epidemiological data is required. AZAs are suspected 

carcinogens; therefore more long term exposure studies need to be performed. 

The primary mode of action needs to be determined to enable the development 

of an effective antidote.  

 There is the potential for some of the Azadinium and related species to be 

producers of novel compounds with therapeutic effects, potentially with effects 

antagonistic to those by AZAs. Full knowledge of their molecular targets may 

lead to these compounds having a positive impact.  

 It is important to know how AZAs behave when consumed i.e., only accounting 

for less than 30% of what had been administered following mouse and pig 

studies. Studies performed to date have not identified any AZA metabolites in 

these animals. Such knowledge will reveal how organisms process and eliminate 

AZAs following exposure, with the potential for interspecies extrapolation 

(including humans) and may lead to an understanding of the molecular 

mechanisms involved. 
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Table 7.1. List of AZA analogues purified and characterized, their protonated masses, origin and toxicity. 

 

  Type§ R1 7,8 R2 R3 R4 R5 R6 [M+H]+  Origin  Status Toxicity (Jurkat) EC50 

AZA1 a1 H Δ H H CH3 H CH3 842.5 A. spinosum phycotoxin 1.1 

37-epi-AZA1 a1 H Δ H H CH3 H CH3 842.5 A. spinosum artefact 0.2 

AZA2 a1 H Δ CH3 H CH3 H CH3 856.5 A. spinosum phycotoxin 0.3 

AZA3 a1 H Δ H H H H CH3 828.5 shellfish metabolite 0.6 

AZA4 a1 OH Δ H H H H CH3 844.5 shellfish metabolite 2.0 

AZA5 a1 H Δ H H H OH CH3 844.5 shellfish metabolite 3.0 

AZA6 a1 H Δ CH3 H H H CH3 842.5 shellfish metabolite 0.2 

AZA7 a1 OH Δ H H CH3 H CH3 858.5 shellfish metabolite - 

AZA8 a1 H Δ H H CH3 OH CH3 858.5 shellfish metabolite 0.3 

AZA9 a1 OH Δ CH3 H H H CH3 858.5 shellfish metabolite 1.9 

AZA10 a1 H Δ CH3 H H OH CH3 858.5 shellfish metabolite 3.1 

AZA26 a2 H Δ H - - - - 824.5 shellfish metabolite 36.6 

AZA33 b1 - Δ - H CH3 H CH3 716.5 A. spinosum phycotoxin 5.2 

AZA34 c1 - Δ - H CH3 H CH3 816.5 A. spinosum phycotoxin 0.2 
§
 The type refers to variations of the LHS and RHS parts of the molecule.  

Left hand side (LHS) Right hand side (RHS)

a

b

c

1

2
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1
H NMR spectrum of AZA1 in CD3OD 
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1
H NMR spectrum of 37-epi-AZA1 in CD3OD 
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1
H NMR spectrum of AZA2 

 



 

218 

 

 

 

1
H NMR spectrum of AZA3 
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1
H NMR spectrum of AZA4 
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1
H NMR spectrum of AZA5 
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1
H NMR spectrum of AZA6 
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1
H NMR spectrum of AZA7 
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1
H NMR spectrum of AZA8 
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1
H NMR spectrum of AZA9 
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1
H NMR spectrum of AZA10 
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1
H NMR spectrum of AZA33 in CD3OD 
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1
H NMR spectrum of AZA34 in CD3OD 
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