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Abstract

The are a number of systems used to select behaviour for non-

player characters in computer games. Action planners are a pow-

erful behaviour selection system that have been used in a number

of computer games. There are action planners that can make

plans to achieve multiple goals, apply actions that partially sat-

isfy action preconditions, complete actions in a contextually ap-

propriate manner, and be able to measure how good a particular

state is for the planning non-player character, but to the best of

our knowledge, there is no system that does all of these things.

The purpose of this thesis is to describe such an action plan-

ner and empirically demonstrate how this system can outperform

other behaviour selection systems used in computer games.

This thesis presents Utility-Directed Goal-Oriented Action Plan-

ning (UDGOAP), an action planner that combines utility, drives

and smart objects to be able to simultaneously plan for multiple

goals, select actions that partially satisfy preconditions, create a

measure of the usefulness of a particular state, and execute ac-

tions in a more contextually appropriate manner. This system

is evaluated in two very different environments and against two



behaviour selection systems that have been used successfully in

industry. The evaluations show that UDGOAP can outperform

these systems in both environments.

Another novel contribution of this thesis is smart ambiance. Smart

ambiance is an area of space in a virtual world that holds infor-

mation about the context of that space and uses this information

to have non-player characters inside the space select more contex-

tually appropriate actions. Information about the context comes

from events that took place inside the smart ambiance, objects

inside the smart ambiance, and the location of the smart am-

biance. Smart ambiance can be used with any cost based planner.

This thesis demonstrates different aspects of smart ambiance by

causing an industry standard action planner to select more con-

textually appropriate behaviours than it otherwise would have

without the smart ambiance.
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Chapter 1
Introduction

Computer games use Artificial Intelligence (AI) to serve a number of func-

tions.1 Systems used to select the behaviour of non-player characters (NPC)

in games are a topic of particular interest. An NPC is any character in a game

that is not controlled by a player. As the graphical fidelity of in-game NPCs

nears photo-realism, this has created an expectation in players that these

characters will behave in an appropriately realistic and intelligent manner.

There are a variety of systems that have been developed to select behaviour

of NPCs (see Rabin (2002) for a good overview). One way to distinguish

between these different systems is to divide them into rule-based systems

and planning systems.

1AI is used for path planning (Higgins, 2002), action planning (Orkin, 2003), move-
ment planning (Champandard, 2003), story management (Mateas & Stern, 2002), story
generation (Riedl & Young, 2006), camera control (Burelli & Jhala, 2009), map generation
(Togelius et al., 2010), animation management (Van Basten & Egges, 2009), dialogue man-
agement (Pinto, 2008), terrain reasoning (van der Sterren, 2001), NPC direction (Kline,
2011), music management (Rossoff, 2009), game commentary (Frank, 1999), and more
(Bauckhage & Thurau, 2004; Cole et al., 2004; Galli et al., 2009).
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Rule-based systems that specify exactly how an NPC should behave in

some predefined set of situations have been widely used in games. Planning

systems instead give an NPC a set of goals, a set actions that can be per-

formed to achieve those goals, and a procedure to specify which actions are

preferable. This separation of what actions can be performed from when

actions should be performed allows the NPC to plan out appropriate be-

haviours for situations that were unforeseen by the designer. This ability

to select appropriate behaviours for unforeseen situations is becoming more

valuable as worlds in computer games become larger and more complex.

Although planning systems are less common than rule-based systems in

commercial computer games, the focus of the research described in this thesis

is on a planning system developed for computer games because we believe

planning systems have greater potential.

Goal-Oriented Action Planning (GOAP) is a planning system designed

specifically for computer games (Orkin, 2003). GOAP is the basis for many

planning systems used in computer games today. GOAP associates actions

with static costs that denote action preference and uses a heuristicly guided

search to find the lowest cost sequence of actions to achieve a goal. GOAP

was used to create critically acclaimed AI for NPCs in the game F.E.A.R.

(Champandard, 2007b).

However, GOAP has a number of weaknesses that can reduce the quality

of the plans it produces:

� GOAP cannot create plans that consider multiple goals.

2



� GOAP cannot create plans with actions that only partially achieve a

precondition, where a precondition is a predicate that must be true to

achieve a goal or perform an action containing the precondition.

� GOAP does not know how close a goal or condition is to being satisfied.

This is a problem because the planner will not be able to know the best

way to satisfy the goal or condition. For example, the goal is to kill an

enemy by reducing its health to zero. Without knowing how close to

death the enemy is, a risky and high damage attack might be selected

when in fact the enemy may only have a little health and would die

even from a safer and weaker attack.

� Each GOAP goal can only be associated with one target at a time, e.g.

the kill enemy goal can only target one enemy at a time. This causes

the planner to overlook a plan that would kill multiple enemies if they

could be targeted.

� GOAP assumes the world will remain static during the execution of

a plan though this may not be true. This assumption can cause the

GOAP NPC to make plans that might not be sensible in a dynamic

environment, e.g. performing an attack and assuming that the enemy

the action is being performed on will not defend itself.

A number of concepts can be used to address these weaknesses. Utility

is a numeric representation of the desirability of a state and can be used

to consider the effects of a plan on multiple goals (Mark, 2010). Utility

can also be used to represent how close a goal is to being complete and

3



this information can be used to select actions that partially satisfy goals.

Hawes (2011) describes how drives have been used to dynamically generate

goals during play, which allow the planner to consider multiple goals that

contribute toward satisfying some higher level goal and can also be used to

find plans that satisfy multiple goals simultaneously. Smart objects, intro-

duced by Kallmann & Thalmann (1998), and smart ambiance introduced

by Sloan et al. (2011b), can place information in objects in the environment

that can be used to select more contextually appropriate actions. Action

simulation was used by Laird (2001) to simulate possible future states by

predicting what actions the other NPCs in the environment might take. This

thesis describes Utility-Driven Goal-Oriented Action Planning (UDGOAP),

an action planning system that combines utility, drives, smart objects, and a

simulation system to create a system suitable for a variety of computer game

environments. UDGOAP addresses all of the previously listed weaknesses of

GOAP.

In this thesis, it is shown that UDGOAP can be used to produce plans

that cause more favourable outcomes than GOAP in two very different en-

vironments. The first environment is a slow-paced, single-NPC, static, and

deterministic. The second environment is a fast-paced, multi-NPC, dynamic,

and non deterministic environment. These different environments were se-

lected to test how UDGOAP performs across a spectrum of environment

types.

The following is a summary of the main contributions of this thesis:

4



� A review of literature regarding behaviour selection systems in com-

puter games (Chapter 2).

� A novel action planner that combines utility, drives, and smart objects

to create a behaviour selection system capable of planning for mul-

tiple goals, using partially satisfying actions, dynamically generating

goals, and executing actions in a more contextually appropriate man-

ner (Chapter 3).

� A feasibility study testing if action planners require a prohibitively

large amount of resources for real-time computer games (Chapter 4).

� An empirical evaluation of UDGOAP running against GOAP in a

static, single-NPC, deterministic environment (Chapter 5).

� An empirical evaluation of UDGOAP running against industry stan-

dard behaviour selection systems in a highly dynamic, multi-NPC, non-

deterministic environment (Chapter 6).

� A novel system using smart ambiance to dynamically alter action costs

to produce more contextually appropriate behaviours (Chapter 7).

1.1 Structure

The remainder of this thesis has the following structure. Chapter 2 surveys

behaviour selection systems that have been used in computer games with

a particular focus on action planners. Chapter 3 provides a detailed de-

scription of UDGOAP, the final action planning system designed as part of

5



this research. Chapter 4 describes an experiment to test the feasibility of

a utility-based behaviour selection system for computer games. Chapter 5

describes an experiment that compares UDGOAP to GOAP in a slow-paced

environment. Chapter 6 describes an experiment that takes place in a fast-

paced environment and compares the final version of UDGOAP to GOAP

and to a the finite state machine system used in a commercially successful

computer game. Chapter 7 details an extension of smart objects that allows

more contextually appropriate actions to be selected by a planning system

and describes demonstrations of this extension in use. Chapter 8 summarizes

and draws conclusions on the main contributions of this thesis and highlights

potential avenues for future work.

Throughout this thesis, examples will use wizards and goblins to provide

concrete examples of how UDGOAP may act in a particular situation. How-

ever, these wizards and goblins are illustrative and UDGOAP may be applied

be domains beyond these fantastical creatures.

1.2 Publications

Publications supporting the contributions of this thesis are listed below.

Sloan, C., Kelleher, J. & Mac Namee, B. (2011a). Feasibility study

of utility-directed behaviour for computer game NPCs. In Proceedings

of the 8th International Conference on Advances in Computer Enter-

tainment Technology , 5, ACM.

6



Sloan, C., Kelleher, J. & Mac Namee, B. (2011b). Feeling the

ambiance: using smart ambiance to increase contextual awareness in

game NPCs. In Proceedings of the 6th International Conference on

Foundations of Digital Games , 298–300, ACM.

Sloan, C., Mac Namee, B. & Kelleher, J.D. (2011c). Utility-

directed goal-oriented action planning: A utility-based control system

for computer game NPCs. In Proceedings of the 22nd Irish Conference

on Artificial Intelligence and Cognitive Science.

Sloan, C., Mac Namee, B. & Kelleher, J.D. (2010). A comparison

of computer game behaviour control systems for background characters

in a simulated hospital environment. In STAIRS 2010: Proceedings of

the Fifth Starting Ai Researchers’ Symposium, IOS Press.

Kelleher, J.D., Ross, R.J., Sloan, C. & Mac Namee, B. (2011).

The effect of occlusion on the semantics of projective spatial terms: a

case study in grounding language in perception. Cognitive processing ,

12, 95–108.

Kelleher, J.D., Sloan, C. & Mac Namee, B. (2011). An investi-

gation into the semantics of English topological prepositions Cognitive

processing , 10, 233–236.

7
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Chapter 2
Behaviour Selection Systems in

Computer Games

Computer game worlds can contain characters not controlled by a human

player. These character are called Non-Player Characters (NPCs). These

NPCs must operate autonomously. A behaviour selection system chooses

which actions will be performed by an NPC. This chapter provides an overview

and critique of the sort of behaviour selection systems, particularly state-

space action planning behaviour selection systems, that have been used in

computer games. State-space planning is the focus of this chapter because it

is a popular method of planning in computer games. The chapter will also

introduce the concept of utility and its application in computer games. The

use of utility in games is explored because it has been largely ignored for use

in behaviour selection systems for computer games but has great potential

9



for improving these systems. Smart objects are another focus of this chapter

because of their potential to help NPCs select more contextually appropriate

actions and because of their potential to allow behaviours to be performed

in more contextually appropriate ways.

Behaviour selection systems are used to instruct an NPC in how the NPC

should act. Game designers want the most general and simple behaviour se-

lection that they can have for their game. Designers want the system to be

general such that the system can produce behaviours that are appropriate

for a wide variety of unforeseen situations. Designers want the system to be

simple because it is more easily setup, extended, and maintained. Behaviour

selection systems must make trade-offs between generality and simplicity be-

cause creating more robust, general systems often makes the system more

complex. There is a spectrum of generality across behaviour selection sys-

tems with simple, very domain specific systems at one end of the spectrum

and complex but general systems at the other end. This section describes

behaviour selection systems used in computer games, starting at the simple,

less general end of the spectrum and working toward the general end.

This chapter has the following structure. The remaining sections of this

chapter describe a number of behaviour selection systems that have been

used in computer games. In Section 2.5, we define action planning, which is

a family of behaviour selection systems, and describe action planning systems

that have been used effectively in a number of games. The section goes on

to describe STRIPS, a seminal planner upon which many other states-space

planners have been built. The section concludes with an in depth description
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of Goal-Oriented Action Planning (GOAP), a planner based upon STRIPS

and the planner that has been used as the foundation of a number of ac-

tion planners used in computer games. Several systems based on GOAP are

described with their strengths and weaknesses. Section 2.5.3 defines utility,

the concept around which UDGOAP was built, and describes a number of

systems that have used utility for behaviour selection in computer games.

Section 2.5.4 describes smart objects, used by UDGOAP for calculating util-

ity, explains the advantages of using smart objects in planning, and describes

how smart objects have been used in several computer games. The chapter

concludes with a summary in Section 2.6.

2.1 Game Trees

A game tree is a structure commonly used in turn-based computer games.

A game tree is a directed graph that represents states that can exist in a game

world (Russell & Norvig, 2009). Each node in the game tree represents a state

of a game and each edge represents an action that causes the transition of one

state to another. The root of the game tree is the current state of the game

world. In a complete game tree, leaf nodes are win or lose game states. A goal

state is a leaf node that results in winning the game. Games trees have been

used by systems such as Deep Blue (Campbell et al., 2002) to select actions

for a computer-controlled player in games of chess. A computer-controlled

player can search the game tree for a favourable game state and perform the

actions required to generate that state.
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An optimal strategy for a game can be produced from a game tree by

searching the game tree using a minimax algorithm (Willem, 1996). Min-

imax first rates nodes to know the utility (usefulness, described in more

detail in Section 2.5.3) of each node for winning the game. The rating of

a node is equal to the rating of the leaf node that would be reached if all

players performed actions that minimize the maximum utility of a position

to the opponents. For example, in a game of tic-tac-toe, a minimax player

would place its x’s such that it creates the worst position for the second

player, assuming the opponent will place its o’s such that it creates the worst

position for the first player.

It is often impossible to calculate an entire game tree. Although a simple

game, the complete game tree for tic-tac-toe has approximately 25,000 nodes

(Chu-Carroll, 2008). Game trees for more complex games, such as chess, are

even larger but can be used by employing methods that reduce the number

of nodes considered, such as alpha-beta pruning (Knuth & Moore, 1976).

However, games with many agents, capable of performing many actions in

a continuous environment may simply be too complex for game trees to be

used to select actions, necessitating more simple systems, such as rule-based

systems.

2.2 Rule-Based Systems

This section will first describe simple rule-based systems and will then move

on to finite state machines, decision trees and behaviour trees. It will then
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describe more general systems that learn rules. It follows with a description

of cognitive architectures used in games, where cognitive architectures are

considered the most general type of behaviour selection system that have

been used for computer games. The section concludes with a summary of

these systems and an argument that action planners have a level of generality

that is desirable to NPC behaviour selection.

Rule-based systems are very popular in computer games. The simplest

and least general behaviour selection systems are purely reactive, mapping

from the world the NPC is currently perceiving to actions. This mapping

occurs using a set of predefined rules. A schematic for an NPC with such a

rule-based behaviour selection system is shown in Figure 2.11. This figure and

others like it throughout the thesis are based on work in Russell & Norvig

(2009). Rounded rectangles represent classes and the underlined word at

the top represents the name of the class. Rectangles represent processes

and the phrase inside the rectangle describes the process. Arrows represent

data flow, where arrows pointing into a process are input to the process and

arrows pointing out of a process are output of the process. Each arrow is

accompanied by a phrase describing the data the arrow represents. The origin

of an arrow denotes the origin of the data, such that arrows originating from

inside a class mean that the data represented by the arrow resides within the

class.

In Figure 2.1, the set of percepts and a set of rules are passed to a func-

1Actuators, internal memory and the distinction between internal and external actions
have been omitted from the figure for simplicity, though they would still be a part of the
system.
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Figure 2.1: Schematic for an NPC with a rule-based behaviour selection
system for behaviour control.

tion that will check which rules should be activated. The output of the rule

matching process will be the behaviour that the NPC should execute. Exam-

ples of simple rule-based systems in games include Agre & Chapman (1987),

Shapiro (1999), and Khoo et al. (2002).

A more complex version of a rule-based system is a finite state machine.

A finite state machine considers both percepts and the internal NPC state

during rule matching. In a finite state machine, each state contains rules that

control which behaviour to select and rules that control when another state

should be entered. Consequently, during rule matching, a finite state machine

only considers a subset of rules defined in the current state. Examples of finite

state machines in games include those described in Houlette & Fu (2003) and

still more variations described in Buckland (2005), Straatman (2009), Hoang

et al. (2005), Laming (2008), Kolhoff (2008), Fu & Houlette (2002), Tozour

(2004), and Dybsand (2001).

A decision tree is a hierarchical rule-based system. A decision tree can
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be used in games as a behaviour selection system where each non-leaf node

of the tree is an if statement that decides which node to move to next, and

where each leaf node is a behaviour. The hierarchical structure of the tree

gives more control to designers over a flat rule set because the hierarchy

can be used to eliminate undesirable combinations of rules being triggered.

This elimination is made possible by allowing only a subset of rules to be

applicable once a particular condition is satisfied. Examples of decision trees

in games include Evans (2002), Lau (2008) and Fu & Houlette (2004).

A behaviour tree is more general than a decision tree and is designed to be

more robust and modular. Leaf nodes in behaviour trees are usually actions

that an NPC should perform. Nodes can have many forms, including the

simple if statements of the decision trees, marking branch priority, or altering

the value of a variable. An example of a behaviour tree for a dog getting

food is shown in Figure 2.2. Nodes can report their success or failure and

branches of the next highest priority can be tested. Examples of behaviour

trees in games include Isla (2005) and Isla (2008).

Rule-based systems can be quickly authored, are light-weight as they

require little memory and computation, and are usually easily tested because

they are deterministic. These characteristics are considered desirable to game

designers.

However, rule-based systems have a number of weaknesses (Wallace, 2004).

These systems are mostly reactive as they only consider the present state of

their world. Selected behaviours might be sensible for the immediate situa-

tion the NPC using the system is in, but may not be sensible for the situation
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Figure 2.2: A behaviour tree for a dog who should seek out and eat food.

the NPC will be in moments later. These simple systems also require the de-

signer to anticipate many or all situations in which an NPC using the system

may find itself. Consequently, a rule-based behaviour selection system for

an NPC can require a very large rule set. For example, the Soar Quakebot,

a bot in Quake1 controlled by a system using the Soar architecture (Laird

et al., 1987), uses over 800 rules (Laird & VanLent, 2001). Large rule sets

are problematic because rules in rule-based systems can interact with each

other in unintended and undesirable ways when the rule set becomes large

(Bourg & Seemann, 2004).

1Quake - id Software - http://www.idsoftware.com/en-gb
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2.3 Learning Systems

Rule-based systems are brittle because they can easily select undesirable

behaviours in unforeseen situations. They also have the weakness of using

an unchanging set of rules. Players can learn these rules, which can lead

to predictable gameplay. Learning systems don’t require hand-authoring of

behaviours and can alter their behaviour as players interact with the system,

which can lead to less repetitive behaviour. Approaches to building learning

systems that have been used in games include:

� case-based reasoning (Aha et al., 2005; Flórez-Puga et al., 2009; Jaidee

et al., 2011a; Ontañón et al., 2007)

� Markov models (Zubek, 2006)

� genetic algorithms (Lichocki et al., 2009; Lim et al., 2010)

� neural networks (Generation5, 2005; Hefny et al., 2008; MacNamee &

Cunningham, 2003; Sweetser, 2004; Thompson & Levine, 2009)

� neuroevolution (Cornelius et al., 2006; Jang et al., 2009; Parker &

Bryant, 2009; Schrum et al., 2011; Traish & Tulip, 2012)

However, learning systems may not be desirable for games because, among

other reasons, they often require a large dataset to train on to produce de-

sirable behaviours and such large datasets can be difficult to produce while

developing a game. This problem is exacerbated by the fact that values upon

which the system was trained, e.g. the strength of some unit, often change
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during development, which could invalidate previously learned behaviours

that only made sense given the old value.

2.4 Cognitive Architectures

Cognitive architectures are behaviour selection systems that are designed

with the goal of achieving general intelligence. The designers of cognitive

architectures try to imitate the behaviour selection process used by humans

and other animals (Newell, 1994). Cognitive architectures are opposite the

rule-based systems on spectrum of generality for behaviour selection systems.

Cognitive architectures can learn complex interactions and rules in an online

environment using approaches such as short-term memory describing things

recently known to the NPC, procedural memory describing sequences of ac-

tions useful in particular situations, episodic memory like the memory used

by case-based reasoners, and long-term memory where useful information

from short-term memory can be stored. Examples of cognitive architectures

used by NPCs in games include:

� Soar (Laird et al., 1987; Laird, 2001; Magerko et al., 2004; Wintermute

et al., 2007)

� ICARUS (Choi et al., 2007; Langley & Choi, 2006; Li et al., 2009)

� Global Workspace Theory (Arrabales et al., 2009; Baars, 1993; Fountas

et al., 2011)
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Although cognitive architectures are powerful (Laird & Nielsen, 1994),

they may not be suitable for a number of games because they can require a

lot of resources and can be very complex.

This section described rule-based systems, learning systems and cogni-

tive architectures. Rule-based systems are very domain specific and must

be have designers hand make each rule for a wide variety of situations for

the NPC to behave sensibly. Learning systems are more general as they can

learn rules based on previous experience, freeing designers from the burden of

worrying about many unforeseen situations but allowing the system to learn

unusual behaviours or behaviours that may become invalid when game val-

ues change. Cognitive architectures try to alleviate this problem by trying to

design very general systems that are biologically inspired, but are very com-

plex and resource intensive. However, the increased generality of cognitive

architectures over rule-based systems has numerous benefits. By allowing for

more generality, a behaviour selection system could have abilities including:

� storing memories (Choi et al., 2007; Li et al., 2009; Orkin, 2003)

� building up a solution in steps (Fikes & Nilsson, 1971; Orkin, 2003)

� comparing goals to know which is preferable (Molineaux et al., 2010;

Young & Hawes, 2012)

� comparing actions to know which is preferable (Benton et al., 2007;

Orkin, 2003)

� comparing solutions to know which is preferable (Hawes, 2003; Nareyek,
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1999; Orkin, 2003)

� explaining why a plan has failed (Molineaux et al., 2010)

� inferring which beliefs are more likely to be true (Baars, 1993)

� generating goals and reasoning on which goals should be generated

(Molineaux et al., 2010)

� managing goals e.g. aborting and suspending goals (DePristo & Zubek,

2001; Molineaux et al., 2010; Muñoz-Avila et al., 2010a)

� recognizing and handling conflicting goals (Do et al., 2007)

� justifying decisions on more than just a numeric basis (Nareyek, 2001a)

� understanding which information is obsolete and can be removed (Orkin,

2003)

� reasoning on the current intention of another NPC (Laird, 2001; Weber,

2012)

� predicting future states (Muñoz-Avila et al., 2010b)

� learning goal priorities (Young & Hawes, 2012)

� learning how goals can become invalid (Jaidee et al., 2011b)

� learning and deploying generalisations e.g. when in state s with goal

g, action a is a good choice (Laird et al., 1987)

� learning the effects of actions (Jaidee et al., 2011b; Laird et al., 1986)
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Each new ability can give greater justification for behaviours and result in

a more robust behaviour selection system. However, every additional ability

comes with an added complexity cost, which will make system more difficult

to test, debug, integrate with tools, and maintain. The designer should find

the system that gives the best trade-off between simplicity and generality.

A number of computer game studios1 have settled on a middle ground by

using action planners. Action planners use powerful but intuitive processes

(Ghallab et al., 2004) that make them an ideal choice for many types of

computer games.

2.5 Action Planning

Action planning is a form of behaviour selection where a planning system

searches for a plan that satisfies a goal or goals, where a plan is a sequence

of actions. For brevity, a system that implements action planning will be re-

ferred to as a planner and action planning will be referred to as planning

throughout the remainder of this thesis.

This section will briefly describe a number of planners used in games,

where planners are divided into two categories: planners based upon the sem-

inal STanford Research Institute Problem Solver (STRIPS) (Fikes & Nilsson,

1972) planner, and planners not based upon STRIPS. Goal-Oriented Action

Planning (GOAP), a popular STRIPS-based planner for computer games, re-

ceives particular focus on this section because the system developed as part

1Bethesda Softworks, Monolith Productions, Creative Assembly, Eidos Interactive,
High Moon Studios
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of this research is strongly based upon GOAP and the two systems are later

compared in experiments.

2.5.1 Non STRIPS-Based Planners

There are a number of action planning systems not based on STRIPS, in-

cluding hierarchical task networks, case-based planners, and constraint-based

satisfaction planners.

A hierarchical task network is a behaviour selection system where a speci-

fied task is recursively decomposed down to actions that an NPC can execute

as a plan (Ghallab et al., 2004). Hierarchical task networks are expressive

and fast enough to be used in a complex real-time environment, as shown by

Champandard (2012) and Hawes (2004). However, developers of the hierar-

chical task networks used in multiplayer Killzone 21, where the hierarchical

task networks featured over 1000 branches, claimed hierarchical task net-

works became difficult to work with (Straatman, 2009). Furthermore, hier-

archical task networks specify exactly how to decompose tasks. This task de-

composition adds to behaviour authorship time and makes behaviours more

brittle because the designer might have authored a behaviour with certain as-

sumptions that can become invalid later in the development process because

of changes in game values. A number of variations of hierarchical task net-

works that have been developed for NPCs, including Gorniak & Davis (2007);

Hawes (2003); Hoang et al. (2005); Meneguzzi & Luck (2007); Muñoz-Avila

et al. (2010a); Straatman (2009).

1Killzone 2 - Guerrilla Games - http://www.killzone.com
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Case-based planning (Spalzzi, 2001) is the use of case-based reasoning

(Aamodt & Plaza, 1994) to formulate plans for an NPC. A database of plans

is created either by an expert (Ontañón et al., 2007), through the collection of

data from many non-experts (Weber, 2012), or some other means (Ontanón

et al., 2009). Planners then lookup what advantageous plans were performed

in situations similar to the current situation of the planning NPC.

A problem with the case-based planners approach is that they can require

laborious labelling by experts, but such labelling can yield excellent accuracy

for associating player plans with player intentions. Automated labelling can

be used to reduce the need for human experts by taking a large number of

games and labelling them based on some set of rules or gameplay strategies

(Weber, 2012). However, this automated labelling method can incorrectly

associate plans with an intention when the plan might have coincidentally,

rather than causally, achieved goals relevant to the intention. This can lead

to the case-based planner selecting ineffectual plans to achieve goals.

A constraint satisfaction problem (Kumar, 1992) is a problem where a

fixed number of variables must be assigned values that don’t violate the

rules associated with those variables. A structural constraint satisfaction

problem is a type of constraint satisfaction problem where the variables or

constraints involved don’t need to be known by the planner when plan for-

mulation begins. Instead, only the types of constraints and the structural

constraints of the problem need to be known. In a structural constraint sat-

isfaction problem, search for the correct structure of the problem is part of

the constraint satisfaction process. The Excalibur project (Nareyek, 2001b)
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has been used in games to model the problem of selecting behaviour as a

structural constraint satisfaction problem (Nareyek, 2000).

A structural constraint satisfaction problem solver always has a plan avail-

able because it immediately populates all variables and very quickly improves

the plan generated. However, a weakness of this planner (Nareyek, 1998) is

that it may return a plan with inconsistent values that may not result in

intelligent NPC behaviour when executed. Also, plan quality is measured by

its inconsistency with the constraints rather than how beneficial a plan is to

an NPC.

This section described non STRIPS-based action planning systems that

have been used in computer games. These systems have problems with au-

thorship burden (hierarchical task network and case-based planner) and/or

returning inappropriate behaviours (constraint satisfaction planner and case-

based planner). STRIPS-based planners take approaches that may alleviate

these problems.

2.5.2 STRIPS-Based Planners

This section describes STRIPS and Goal-Oriented Action Planning (GOAP),

a STRIPS successor modified for use in modern computer games. GOAP is

described in detail because the planner developed as part of this research

is based upon GOAP. The section goes on to describe other GOAP-based

systems that have been used in computer games. The design, strengths, and

weaknesses of these systems are explained, as well as which parts of these

systems inspired the system created as part of this research.
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2.5.2.1 Stanford Research Institute Problem Solver

Fikes & Nilsson (1972) created the STanford Research Institute Problem

Solver (STRIPS). STRIPS is a state-space planner, where a state-space

planner is described by Ghallab et al. as the following.

“A search algorithm in which the search space is a subset of state

space: Each node corresponds to the state of the world, each

arc corresponds to a state transition, and the current plan corre-

sponds to the current path in the search space.” (Ghallab et al.,

(2004), page 69).

STRIPS was used on a mobile robot named Shakey to reason about how

to achieve a goal condition by chaining together a sequence of actions1, where

the execution of an action causes a state transition in the search space. The

world state is a logical abstraction of information about the state of the

physical world in which Shakey resides.

In STRIPS, the world state is represented as a set of variables. Each state

variable in the world state is represented using first order predicate calculus

clauses e.g. at(Box1, x), where x could be any location in the environment.2

Each STRIPS action has a name, a set of parameters, a set of preconditions,

and a set of effects. The preconditions are a set of clauses that must be

satisfied in the world state for the action to be applicable. The effects of

1The term operator will be replaced by the word action throughout this document
even though an operator causes changes to the planners model of the world and actions
change the world itself. This replacement is done in the interest of readability.

2The term predicate is used throughout this thesis to refer to any function that
returns a boolean value.
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actions alter the world state according to their predicates.

The following is an example of an action being executed by Shakey using

STRIPS, where the example is taken from (Fikes & Nilsson, 1972). The

action that symbolises pushing an object from one place to another could

have the form push(u, x, y), where push is the name of the action, u is the

object being pushed, x is the starting position of the object u, and y is the

position of the object u upon the completion of the push action. Together,

u, x, and y make up the parameters of the push action. The preconditions

could be (∃ x, u)[at(u, x) ∧ (at(Shakey, x))], which means that for the push

action to be executed, the object u must be at position x and Shakey must

be at the same position x.

The remainder of this section will describe the recursive STRIPS planning

algorithm as implemented in (Ghallab et al., 2004) and shown in Algorithm 1.

This action planning algorithm, here called STRIPS plan, was the behaviour

selection system used by Shakey, and is the core of the STRIPS approach.

STRIPS planning requires a current state to be set as the initial world

state, a goal state consisting of clauses that form the conditions of the goal,

and a set of actions available to the planning NPC. Planning begins with

no existing plan. This is the root of the planning graph, where the graph

models the plan search space, nodes in the graph are states and edges are

actions that cause the transition between states. STRIPS uses a regressive

planning search to find solutions to goals.
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Input: current state, goal , actions
Output: existing plan
existing plan ← ∅1

loop2

if current state satisfies goal then3

return existing plan4

end5

applicable actions ← {a | a ∈ actions , a is relevant to goal }6

if applicable actions = ∅ then7

return failure8

end9

action ← non-deterministically select action from10

applicable actions
first unsat precond ← p | p ∈ preconds(action),11

p is the first precondition not satisfied in12

current state
plan to satisfy pre ←13

STRIPS plan(current state, first unsat precond ,
actions)

if plan to satisfy pre = failure then14

return failure15

end16

existing plan ← existing plan + plan to satisfy pre + action17

current state ← transition(current state, existing plan)18

end19

Algorithm 1: The STRIPS plan algorithm (Ghallab et al., 2004).
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Regressive planning is a search for a solution that starts from the goal

state and works backwards by finding actions that when inversely applied1

would lead to the initial state, where the inverse application of an action is

the goal minus the effects of the action plus the preconditions of the action.

Regressive planning first takes goal conditions not satisfied in the initial state

and searches for relevant actions to satisfy those conditions, where a condition

is satisfied if its predicate is true in the given state. An action is relevant in

STRIPS if the effects of the action satisfy at least one unsatisfied condition.

An action is then selected from this set of relevant actions. Fikes & Nilsson

does not specify the mechanism used to select an action in STRIPS but one

strategy may be to select the action with the fewest unsatisfied conditions.

The application of the selected action transforms the initial state by adding

the effects of the action and creates a new branch in the planning graph.

An applied action may itself have unsatisfied conditions which require the

application of more actions. This continuous chaining of actions backward

from the goal state may eventually result in a branch that would create a

state where all conditions are satisfied. The actions that created that branch

are extracted as the plan to be performed. Any branch that cannot apply an

action to satisfy a condition results in failure and another branch is developed

instead. If no branches are left to develop, there is no solution.

STRIPS and STRIPS-based planners were used for a number of years

in academia. In 2005, a STRIPS-based planner was adapted for use in a

commercial computer game. The adaptations included the association of

1The “application” term will be used throughout this thesis instead of “inverse appli-
cation” because this thesis focuses only on regressive planners.
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costs with actions to allow for more contextually appropriate behaviours,

and a heuristic to guide action selection. This STRIPS successor is called

Goal-Oriented Action Planning (Orkin, 2003).

2.5.2.2 Goal-Oriented Action Planning

Goal-Oriented Action Planning (GOAP) (Orkin, 2005) is a planning frame-

work that uses a heuristicly guided planner based on STRIPS. GOAP has

been used in several AAA commercial games, such as F.E.A.R.1, S.T.A.L.K.E.R.:

Shadow of Chernobyl2, Fallout 33, Empire: Total War4 and Deus Ex: Human

Revolution5.

A GOAP NPC has a set of facts, a set of sensors, a set of predefined

actions, a set of predefined goals, and a set of subsystems used to find targets

for goals.

Each GOAP NPC has a set of facts that describe itself and its world.

Each fact is associated with an entity, a fact type, a timestamp, and a value.

For example, a fact could have the form: (entity: goblin1, type: position,

timestamp: 19:30, value: (82, 0, 109)). The fact type could be a Position,

Disturbance or any other category of fact that will be used to help the designer

represent things that the GOAP NPC is able to know about. An entity is

anything in the game; either an NPC or a non-NPC world object. The

entity of the fact is the world object to which the fact pertains, e.g. goblin1.

1F.E.A.R. - Monolith Productions - http://www.fear3.co.uk/the-game.html
2S.T.A.L.K.E.R.: Shadow of Chernobyl - GSC Gameworld - http://www.stalker-

game.com/
3Fallout 3 - Bethesda Game Studios - http://fallout.bethsoft.com/eng/home/home.php
4Empire: Total War - The Creative Assembly - http://www.totalwar.com/en us/
5Eidos Montreal - Deus Ex: Human Revolution - http://www.deusex.com/
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The timestamp denotes when the fact was last verified. Facts are generated

through reasoning on sensor input and are stored in memory.

A state in GOAP is a set of key-value pairs, where a key is a symbol

representing a predicate and the corresponding value represents the result

of that predicate. The values of key-value pairs are derived from the set of

facts available to the NPC. For example, if the predicate associated with

the enemy dead symbol was evaluated using the (entity: goblin1, type: health,

timestamp: 09:20, value: 0) fact, the value would return true because the

health of the goblin is 0, resulting in the (enemy dead, true) key-value pair.

Each GOAP NPC has a set of goals made at design-time that do not

change during the life of the NPC. A goal is a desired substate of the world

state and consists of a set of key-value pairs. For example, the get in cover

goal has a single condition in the form of the (in cover, true) key-value pair.

Each goal has a subsystem that searches for the best way to achieve that goal.

For example, the get in cover goal subsystem considers all places that provide

cover and stores the one that is currently best so that if the get in cover goal

is ever selected for achievement, the plan made will use that place of cover.

The chosen place of cover becomes the target of the goal. A goal is selected

by first prioritizing all goals and then selecting the goal with the highest

priority.

An action in GOAP has a name, a set of symbolic preconditions, a set of

symbolic effects, a set of context preconditions, a set of context effects, and

a cost. The set of symbolic preconditions of an action is a set of key-value

pairs that must be present in the world state for the action to be applicable.
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The set of symbolic effects is also a set of key-value pairs. These symbolic

effects will be applied to the world state upon the application of the action.

A context precondition is an arbitrary predicate that determines if an action

can be applied. For example, the predicate might test if the majority of the

last 10 allied combat units sighted had less than half health. This would be

a context precondition because it is cumbersome to model with symbols. A

context precondition is used as an escape hatch if a symbolic precondition

isn’t enough to determine if an action should be applied, perhaps because the

symbols available aren’t expressive enough to accurately model the precon-

dition. A context effect is the effect analogue of a context precondition. A

context effect can be used by a designer when it is cumbersome or unnecessary

to specify effects using the symbolic key-value format. The cost of a GOAP

action is specified at design-time and is used to give preference to actions,

such that lower cost actions are preferable. For example, the fire from cover

action might have a lower cost than the fire without cover action, but the

fire from cover action would have the additional precondition that the NPC

be in cover, making it preferable to the fire without cover action but only

when there is cover available.

The purpose of a planner is to create a plan of actions that achieve a

particular goal. GOAP plan formulation works as follows. The planner

is queried to select a plan when the current plan is finished executing, the

current plan has become invalid, or if a predefined amount of time has elapsed

since the last time a plan was selected. A goal in GOAP is any set of

conditions that an NPC wants to satisfy, be it to get an item or to kill an
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opponent. GOAP subsystems find the best object in the world for achieving

each of the goals of the planning NPC. For example, subsystems responsible

for finding a target for the kill enemy goal might search for the highest threat

enemy, which is set as the target of that goal. A predefined goal selection

mechanism selects the highest priority goal. The GOAP planner attempts to

generate a solution to satisfy the selected goal, where the solution is a plan

and where a plan is a sequence of actions.

To find this sequence of actions, GOAP uses a regressive A* (Hart et al.,

1968) search from the goal state to the initial state, where the initial state is

a set of key-value pairs derived from the facts known by the planning NPC at

the time that planning begins. In its more common use in path planning, A*

is used to search for the lowest cost sequence of edges traversed while moving

from an initial node to a goal node, where each node represents a position

in the world, and each edge represents the transition from one position to

another and is associated with a distance cost (Hart et al., 1968). In GOAP,

A* is used to search for the lowest cost sequence of edges traversed while

moving from an initial node to a goal node, where each node represents a

world state, and each edge represents the transition from one world state to

another and is associated with an action cost (Orkin, 2006). NPCs using

GOAP periodically re-evaluate their situation and choose the lowest cost

plan to achieve their selected goal.

The GOAP planner works the same way as the STRIPS planner. The

plan begins with an initial world state as it is known to the planning NPC, a

goal state, and a set of actions available to the planning NPC. The planner
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Figure 2.3: A schematic of a Goal-Oriented Action Planning NPC and how
it interacts with its environment and a Goal-Oriented Action Planner.

checks if the goal is satisfied by the current world state, and if not, selects an

unsatisfied condition of the goal for which to find a solution. Plan formulation

terminates when the GOAP planner has found the lowest cost plan to satisfy

the goal based on the cost of actions and guided by the A* heuristic.

Figure 2.3 shows a schematic of a GOAP NPC, how the NPC interacts

with its environment and how the NPC plans. The GOAP NPC senses its

environment and internal state and creates percepts from that data. These

percepts, along with the existing facts known to the NPC, are used to gen-

erate an up-to-date set of facts that describes the world as the NPC knows

it. These up-to-date facts are stored and used to generate a set of key-value

pairs that form the initial plan state. The up-to-date facts are used by the

goal selection subsystems to select a target for each of the goals of the NPC.

The plan state of the highest priority goal is selected and sent to the planner,

along with the initial state and the set of actions available to the NPC. The
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planner produces a plan using the actions to transition from the initial state

to a state in which the goal is satisfied. That plan is executed by the NPC

as a behaviour.

An example of GOAP plan formulation is shown in Figure 2.4, which is

based on work from Orkin (2003). The planner requires an initial state, a

goal, and a set of actions that the planning NPC can perform. In this case,

the enemy is alive in the initial state, dead in the goal state, and the actions

available to the planning NPC are the attack, reload weapon and draw weapon

actions.

Plan formulation begins by checking if the goal is satisfied given the cur-

rent state. It is not because the current value of targetIsDead is false and the

goal state value of targetIsDead is true so planning continues. The planner

then searches through the set of actions for the lowest cost action with the

effect of making the enemy target dead. This returns the attack action. The

attack action has a precondition that the gun being used for the attack is

loaded, causing a lookup in the set of actions for an action with the effect of

the planning NPC loading its weapon. This returns the reload weapon action.

Planning continues from the state created through the regressive application

of the attack and reload weapon actions, as this is the lowest cost (and only)

plan so far. The reload weapon action has a precondition that the gun being

reloaded is armed, causing a lookup in the set of actions and returning the

draw weapon action. The final state was generated through the application

of a sequence of the lowest cost actions to satisfy the goal of the enemy target

being dead. Plan formulation is complete because there are no unsatisfied
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Figure 2.4: A representation of the Goal-Oriented Action Planning plan
formulation.
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conditions. The sequence of actions is then reversed so that the plan is in

the order in which it should be executed.

Input: actions , current state, goal , heuristic
Output: existing plan
existing plan ← ∅1

loop2

if current state satisfies goal then3

return existing plan4

end5

applicable actions ← {a | a ∈ actions , a is relevant to goal}6

if applicable actions = ∅ then7

return failure8

end9

applicable actions ← calc f values(heuristic, current state, goal ,10

applicable actions)11

lowest cost action ← argmin(f value(applicable actions))12

first unsat precond ← p | p ∈ preconds(lowest cost action),13

p is not satisfied in current state
plan satisfying preconds = GOAP plan(actions , current state,14

15

first unsat precond , heuristic)
if plan satisfying preconds = failure then16

return failure17

end18

current state ← regress state(current state,19

plan satisfying preconds .lowest cost action)20

existing plan ← existing plan.plan satisfying preconds .21

lowest cost action22

end23

Algorithm 2: The GOAP plan formulation algorithm.

Algorithm 2, based on the STRIPS algorithm from (Ghallab et al., 2004),

shows an implementation of a GOAP plan formation algorithm. This GOAP

algorithm differs from the STRIPS algorithm shown in Algorithm 1 in that

the GOAP algorithm takes a heuristic as input, which is used to guide search

by selecting the lowest cost plan that achieves the goal, where the cost of a

plan is the sum of the cost of the actions in the plan. The heuristic is used

when calculating the A* F values for each plan state (line 10).
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GOAP has several strengths:

� GOAP is modular and reusable because actions are small logical blocks

that could be used over many different types of NPC or different games.

� GOAP decouples actions and goals which allows the planner to find

the most contextually appropriate solution and solutions that designers

may not have considered.

� GOAP has been used in a number of AAA games showing it is capable

of satisfying the high expectations of such games.

� GOAP uses A* technology that has been highly optimized through ex-

tensive research. This reduces the resource burden of the algorithm and

capitalizes upon familiarity that A* already has because it is already

used extensively in path finding for NPCs.

� GOAP is easily debugged because the reason for making a decision does

not use any black box technology, unlike some learning systems such as

a neural net. This makes it easier to reproduce and correctly identify

bugs, decreasing development time.

� GOAP can use a standardized planning language like PDDL (Gerevini

& Long, 2005). PDDL has been standardized and used for a great deal

of development, making it easier for programmers to reuse existing

action definitions.

GOAP, however, also had a number of weaknesses:
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� GOAP only plans with binary goals and conditions that are either

satisfied or not satisfied. This means that GOAP does not have the

ability to know how far a goal is from being complete and so may select

plans that may not be optimal if the goal is already partially complete.

� GOAP can only plan for one goal at a time. This may cause better

plans that consider more than one goal to be overlooked.

� GOAP can be hard to apply to anything but very short term goals

because GOAP can only plan to a achieve a single goal without regard

to state that will exist after that short-term plan is executed as GOAP

assumes the world will remain static during plan execution.

� GOAP is limited in how contextually appropriate the selected plan is

because actions are associated with a predefined, static cost.

� GOAP NPCs have a fixed set of goals. This limits the NPC to a maxi-

mum of one target per goal because of how the goal target subsystems

are designed. For example, the kill enemy goal might only be able to

target the highest priority to kill at a given time, even though the

planning NPC could perform an action to kill both the highest priority

enemy and some other enemy too.

� If there is a set of actions where more than one action in the set have

the same preconditions, the lowest cost action is always selected. For

example, if the kick and punch actions for an NPC both have only the

(enemy within melee distance, true) precondition, and the kick action is
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associated with a lower cost than the punch action, the punch action

will never be performed. This limits the actions an NPC can perform

in any situation.

A number of variations of GOAP have been created that augment GOAP

and attempt to make up for its shortcomings.

2.5.2.3 GOAP Extensions and Variations

Pittman (2008) created an implementation of GOAP using Reynolds’s (2002)

command hierarchy for goal selection with the intention of selecting more

contextually appropriate behaviour. The command hierarchy consists of

three levels: squad level, fireteam level, and soldier level. Goals are rated

based on the desires of the highest level of abstraction first and are later mod-

ified by less abstract levels. For example, the squad rates the goals based

on the needs of the squad, then the fireteam modifies these ratings based on

the needs of the fireteam, then the individual soldier modifies these ratings

based on the needs of the soldier. This allows the soldier take an action that

might not be best for the squad, but the action best for himself. Whether or

not this selfishness is desirable depends on the game being played. Pittman’s

algorithm was implemented for NPCs in a modification for Unreal 20041.

Pittman’s command hierarchy was used to address the GOAP weakness of

not allowing for very contextually specific plans.

Layered Goal-Oriented Action Planning (LGOAP) (Maggiore et al., 2013)

is a hierarchical progressive-search planner where each layer of the planning

1Unreal Tournament 2004 - Epic Games - http://www.unrealtournament.com
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process is associated with less abstract actions. A progressive-search planner

is a planner that starts at the initial state and chains actions to move toward

the goal state, rather than a regressive-search planner that starts at the goal

state and chains actions until the initial state is reached. The planner first

generates a high-level plan by forward chaining actions belonging to the most

abstract level to achieve some high-level goal. Planning in LGOAP continues

by successively forward chaining actions that are one level less abstract than

those used in the previous layer, where the goals for a layer are the actions

of the layer that is one level more abstract. The use of an action hierarchy, a

heuristic, lazy evaluation of plans, and an aggressive pruning strategy mean

that the planner can scale well, but may overlook optimal plans. LGOAP is

able to make longer term plans than GOAP because LGOAP can plan for

what to do after the most short-term goal is achieved.

GOAP was originally designed for the commercial computer game called

F.E.A.R.1 but was adapted further for a number of other commercial games.

Cerpa (2008) extended GOAP for use in War Leaders: Clash of Nations2.

This system uses a blend of GOAP and a hierarchical task network (where

a hierarchical task network is described in Section 2.5.1) in a system where

motivations3 create complex goals which can be broken into simple goals

and concrete tasks. This allows the creation of multiple separate, partially

satisfying plans that, when combined, can completely achieve a goal. Each

planning NPC has a set of motivations that generate goals based on rules.

1F.E.A.R. - Monolith Productions - http://www.fear3.co.uk/the-game.html
2War Leaders: Clash of Nations - Enigma Software
3Motivations are described in more detail in Hawes (2011).
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Goals can be either compound or primitive. Compound goals are decomposed

into less abstract goals. All goals are associated with satisfaction values.

Cerpa (2008) used this system to address the GOAP weakness of each

goal or condition being either a binary satisfied or not satisfied, rather than

actions being able to partially satisfy conditions. Cerpa also addresses the

GOAP weaknesses of having a fixed set of goals because Cerpa’s system

dynamically generated goals from motivations. This allows the system to

work in more dynamic environments where an NPC might not have a fixed

set of goals. The use of motivations may generate unexpected combinations of

goals, which Cerpa claims may promote emergent behaviour (Cerpa, (2008),

page 376).

S.T.A.L.K.E.R.: Shadow of Chernobyl1 is a first person shooter that uses

a GOAP implementation that is optimized so that new plans are only built

if any differences were detected between the current state of the world and

the world as it was when the plan was made. The game contained 70 actions

and used hierarchies of planners in an attempt to reduce complexity.

Fallout 32 is a first person shooter that used GOAP with a modification

where small state machines could be added to plans. This allowed designers

to give more predictable behaviours to the Fallout NPCs while still having

some of the dynamism of a planner. Details on these industry implemen-

tations are lacking because no academic papers were published describing

them.

1S.T.A.L.K.E.R.: Shadow of Chernobyl - GSC Gameworld - http://www.stalker-
game.com/

2Fallout 3 - Bethesda Game Studios - http://fallout.bethsoft.com/eng/home/home.php
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A number of variations of GOAP have been created for a wide variety of

genres. Each variation addresses some weakness in GOAP, such as Pittman’s

variation giving more autonomy to individuals in a group or Cerpa’s variation

that allowed actions to partially satisfy conditions. In the next section, we

will discuss more weaknesses that can be addressed by incorporating features

taken from systems developed outside of gaming, specifically those that use

the concept of utility.

2.5.3 Utility-Driven Action Planning

GOAP has several weaknesses that can be addressed using the concept of

utility. This section describes utility and existing uses of utility in behaviour

selection systems in computer games.

Utility is a numeric representation of the desirability or usefulness of a

state that is used to give preference to states1 (Ghallab et al., 2004). Utility

allows states to be rated based on the expected benefit of a state. It can be

helpful for an NPC2 to evaluate the usefulness of a state so that the NPC

can pursue the generation of advantageous states and avoid disadvantageous

states.

Weaknesses in GOAP that can be addressed by utility include the inabil-

ity of GOAP to:

1. create a measure of the degree to which a goal or condition is satisfied

1Other research also uses utility to give preferences to actions but the research in this
thesis focuses only on giving preferences for states.

2An agent here refers to any virtual entity that can sense and act upon its sensed
information.
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instead of only knowing if it is satisfied or not satisfied.

2. measure the full effect of an action by considering how preferable the

state generated by the action execution is instead of only considering

the number of unsatisfied preconditions in the generated state.

3. find the most contextually appropriate behaviour without the need of

action costs.

4. gracefully handle unanticipated situations and environments because

utility does not rely on action costs set by designers who may have

only had certain situations in mind when assigning these costs.

There are multiple ways utility can be used in an action planner. Utility

can be used to assign a level of benefit to each goal. A cost can be given

to each action, and the planner can search for the plan with the highest net

benefit, calculate as the benefit of the goal minus the cost of the actions

required to achieve the goal (Benton et al., 2007). Utility may be used

to rate a set of states created by actions and then select a single action

associated with the highest rated state for execution (Champandard, 2010).

Utility could also be used to represent the preference of a sequence of action

executions (Ghallab et al., 2004).

The novel planning system developed as part of our research is based on

the way that Mark (2009) uses utility. Mark (2009) describes systems that

can use utility for selecting behaviours of NPCs where the behaviour consists

of a single action. Mark uses a preference to measure the preferability of
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a substate of the world state. Instead of a goal being a set of boolean con-

ditions, Mark’s system expresses goals as functions that return how close a

set conditions is to being complete. Each NPC is associated with a set of

preferences tailored by a designer and given at the beginning of the existence

of an NPC. Each preference is also associated with a weight that denotes its

importance. The utility of a world state is calculated for each NPC prefer-

ence. Together, this set of preferences are used to calculate the utility of a

state generated through the execution of an action. A weighted sum func-

tion takes each of the calculated utilities, multiplies them by their respective

weights, and adds them together to give a new final utility. The world that

results from each action the planning NPC can perform is rated using the

method described to calculate final utility, and the action associated with the

highest utility state is selected for execution. Mark’s system helps to over-

come the GOAP weakness of only considering one goal at a time because the

preference utility functions can consider any number of goals at a time.

The following are examples of using utility for sub-processes within overall

agent behaviour selection. Harmon (2002) describes how utility could be used

to determine which type of unit another unit is most suited to fight against.

Straatman et al. (2006) uses utility in the evaluation of tactical positions.

Garces (2006) demonstrated how utility could be used with response curves1,

weighted-sum, and a rule-based system to decide if a virtual village should be

invaded. Bradley & Hayes (2005) used utility functions with reinforcement

learning to teach NPCs cooperative behaviours. Utility was used to evaluate

1More details on response curves can be found in Alexander (2002)
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potential board states in the turn-based strategy game, Greed Corp1 . The

system used in Greed Corp worked by iterating through all possible actions,

calculating the utility for all board states that would result from the execution

of the action, and selecting the action with the highest utility. Difficulty in

Greed Corp NPCs was easily varied because actions were rated and ordered

by utility rating. High difficulty NPCs selected actions with high ratings and

low difficulty NPCs selected actions with low ratings.

Planning with utility is useful when there are many actions available

because utility functions give an easily understood numeric representation of

the usefulness of expected states. Systems using utility have been developed

that can handle planning with multiple criteria (Garces, 2006), goals that

depend on each other (interacting goals) (Do et al., 2007) and temporal goals

(Haddawy & Hanks, 1998). However, to the best of our knowledge, there

is no NPC behaviour selection system that uses utility for the formulation

of a plan composed of more than one action. The action planning system

developed as part of this research uses utility to create plans containing any

number of actions.

2.5.4 Smart Objects

This section describes smart objects and how they can be used to produce

more contextually appropriate behaviours than would be possible using only

GOAP. Kallmann & Thalmann (1998) developed the idea of a smart ob-

1Greed Corp - W! Games - http://www.wgames.biz, with the utility implementation
described in Champandard (2011b)
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ject — an object within an intelligent virtual environment that contains

more information than its inherent properties (e.g. position), usually con-

taining information about how an NPC can interact with it. For example,

a smart object could tell an NPC how to grasp it (Kallmann & Thalmann,

1998), gaze at it (Peters et al., 2003), or which animation to play when us-

ing the object (Funge, 1999). Champandard (2007a) describes how smart

objects were used in The Sims1 use smart objects to play animations when

interacting with the object. Smart objects have also been used for planning.

Kallmann (2001) created implementations of smart objects used for plan-

ning by embedding in the object entire plans to achieve a goal involving that

object. Later representations used a more flexible and scalable method of

STRIPS-like preconditions and effects associated with performing an action

with the object (Abaci et al., 2005). Brom (2007) developed upon role pass-

ing created by MacNamee et al. (2002) by adding a hierarchical task network

to create plans for virtual humans using smart objects. A hierarchical classi-

fier system and motivations are used by de Sevin & Thalmann (2005) with a

reactive system that can take advantage of newly provided information given

by smart objects throughout the process of plan execution.

There are several advantages to using smart planning objects for planning:

� The smart object the action is being performed on can inform the

NPC performing the action how the action should be performed. This

allows actions to be performed on smart objects in a more specific and

contextually appropriate manner. For example, an NPC performing

1The Sims - Maxis - http://thesims.com/en US/home
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the goto action on a door smart object is told by the door that the

NPC should perform the action by standing very close to the door so

the NPC is able to reach the door handle. However, an NPC performing

the goto on a person who is a smart object is told by that person object

that the NPC should perform the goto action by going to the person,

keeping a little distance from person, and to face the person.

� There is a decentralization of logic as logic can be removed from the

NPC and placed into the objects. This can make it easier to create and

maintain the actions associated with an object.

� Action authoring is conceptually easier with smart planning objects

because the designer only needs to consider what an object can do and

not whether some particular kind of NPC can do it as that logic is

stored within the NPC e.g. a piano only needs to know that someone

can play it but not all people will be able to play the piano.

� Smart planning objects can allow faster authoring through action in-

heritance e.g. a keyboard can inherit all piano actions and then have

some of its own.

A weakness of smart objects is that abstract smart objects, such as a

weather object, can be hard to conceptualise. However, smart objects are a

simple, robust, and tried-and-tested method for implementing game objects.
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2.6 Conclusions

Artificial intelligence has a number of uses in computer games. The focus of

this research is on the artificial intelligence systems used to select behaviour

for NPCs. A wide variety of these behaviour selection systems have been

developed, including simple systems, such as purely rule-based systems, and

very complex systems, such as cognitive architectures. The simple systems

allow for quick behaviour authoring but might be limited in their ability to

consider future events and may not scale well. The complex systems may be

excellent for creating long term strategies and handling a large number of un-

expected behaviours but can be difficult to setup and maintain, particularly

with limited time and money. The number of STRIPS-based systems used

in computer games suggests that there may be a desirable middle ground in

action planning systems used for behaviour selection.

GOAP was the first STRIPS-based action planning system used in a

AAA computer game. A number of systems have been developed based

upon GOAP to address certain weaknesses of GOAP. Pittman (2008) ex-

tended GOAP to allow individuals to overrule orders from superiors if the

individual had more contextual knowledge and believed a better plan was

available. Cerpa (2008) extended GOAP with motivations to dynamically

generate goals, and allowed actions that only partially satisfied a condition,

making it possible to perform multiple actions to satisfy a condition. Cerpa’s

improvements addressed GOAP weaknesses of having a fixed set of goals and

having goals and conditions that are either completely satisfied or completely
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unsatisfied.

There were other improvements developed independent of GOAP but that

can be used to address GOAP weaknesses. Mark (2009) developed a utility-

based behaviour selection system that combined information about how an

action would effect all goals belonging to an NPC. Abaci et al. (2005) created

smart objects with planning information embedded within them, creating a

more decentralized planning system and allowing objects to specify how an

action should be performed in a more contextually specific way.

The research presented in this thesis attempts to create a behaviour selec-

tion system that combines the aspects of these systems that address weak-

nesses of GOAP into one cohesive system and add additional features to

address other weaknesses of GOAP. The system created as a result of this

research is called Utility-Driven Goal Oriented Action Planning (UDGOAP)

and will be described in the next chapter.
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Chapter 3
The UDGOAP System

This chapter describes the Utility Driven Goal-Oriented Action Planning

(UDGOAP) system, a single NPC behaviour selection system which has been

developed for use in static or dynamic environments with a focus on formu-

lating plans that generate states most useful to the drives of the planning

NPC.

The chapter begins by giving an overview of UDGOAP. The chapter goes

on to describe each component and process of the UDGOAP system. The

chapter continues with a worked example of how the UDGOAP system runs

and ends with conclusions and a summary.

3.1 Overview

Champandard (2011a) performed a survey of commercial computer game de-
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velopers that showed that one of the top open challenges for game AI is to

have NPCs simultaneously consider multiple goals in a highly dynamic envi-

ronment. This is challenging because behaviours are often hand crafted by

designers for certain world states and the same state might warrant different

behaviour depending on the current set of NPC goals. As the goal set of an

NPC may include a different set of goals at any time, a designer would have

to craft the appropriate behaviour for every state and every combination

of goals. This is often too much work so many designers instead fall back

to only considering the most important goal, but doing this may overlook

behaviours that satisfy multiple goals.

GOAP is a planning system that has been used successfully in a num-

ber of commercial games, such as F.E.A.R.1 and S.T.A.L.K.E.R.: Shadow

of Chernobyl2. However, GOAP suffers from the limitation that by only

considering a single goal, NPCs might attempt to complete one goal at the

expense of others, which often leads to undesirable behaviour. For example,

the wizard in the situation shown in Figure 3.1 has goals for increasing its

health and mana (magic points required and consumed through spell cast-

ing). The wizard is in an environment with a potion that increases health

by 30, a potion that increases mana by 30 and an elixir potion that increases

both health and mana by 20. The wizard is low on both health and mana.

Ideally, the wizard would search for plans that achieve both the goal of in-

creasing health and the goal of increasing mana. If the wizard followed a

1F.E.A.R. - Monolith Productions - http://www.fear3.co.uk/the-game.html
2S.T.A.L.K.E.R.: Shadow of Chernobyl - GSC Gameworld - http://www.stalker-

game.com/
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behaviour selection system that restricted him to only attempting to achieve

one goal, the wizard would have to choose to satisfy the goal of improving

either health or mana. If the wizard chose the goal of increasing its health,

the best plan for satisfying this goal would be to drink the potion that gives

30 health. A system that only considers a single goal during plan formula-

tion, such as GOAP, would have overlooked the best overall plan of drinking

the elixir potion that increases both health and mana. UDGOAP has been

designed to address this short-coming.

Figure 3.1: A wizard with the actions of drinking the health potion, drinking
the mana potion, or drinking the elixir potion (where the elixir restores both
health and mana) available to him.

UDGOAP has several major differences to GOAP and many other single

goal planners:

� UDGOAP attempts to achieve multiple goals simultaneously.

As UDGOAP can consider the effects of an action on a set of goals

instead of a single goal and can measure the completeness of each goal

instead of just whether the goal is entirely complete or not, the UD-
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GOAP planner can be guided to prefer plans that move closest to the

achievement of multiple goals, rather than a single goal.

� UDGOAP considers not just if a condition is satisfied or not,

but how satisfied. The ability of UDGOAP to know both how many

goal conditions are unsatisfied and how unsatisfied each condition is

makes it possible to know how close to achievement a goal is after the

execution of an action or sequence of actions. This makes it possible

to know that a behaviour that nearly achieves a goal is better than a

behaviour that has no impact on a goal.

� UDGOAP can chain multiple actions together to satisfy a sin-

gle precondition. There may be situations where an NPC cannot

perform a single action to satisfy some precondition but where chain-

ing multiple actions will satisfy it. Consider the following example. The

planner is looking for a plan to satisfy the (target is dead, true) precon-

dition. The shoot action in GOAP would have the (target is dead, true)

effect because this action should be considered when trying to kill a

target. However, a single shot might not be enough to kill an enemy,

but the planner must assume it will be as the planner would otherwise

not consider the shoot action when trying to satisfy the (target is dead,

true) precondition. The result is a plan that likely won’t actually kill

the enemy but will still result in a sensible plan. However, by instead

making the precondition that the health of the enemy become zero and

making it so an action can partially satisfy a precondition, the planner
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could know that the current gun available will take, say, half of the

health of the enemy, and would know to follow up with another action,

such as a melee.

� UDGOAP uses smart objects that tell the NPC how to per-

form the action in a more contextually appropriate way. For

example, when the goto action is performed on a door, the NPC per-

forming the action should move right up close to the door so that the

door handle is easily within reach. When the goto action is performed

on a person, however, the NPC performing the action should go to the

person but stay far enough away to not invade their personal space.

� UDGOAP integrates object selection with plan formulation.

In GOAP, each goal is associated with some domain-specific subsystem

that, before plan formulation, determines which particular object is

best for achieving the goal. The GOAP planner only considers that

object when trying to achieve the goal. In UDGOAP, the UDGOAP

planner considers a set of objects, rather than a single object, and

the set is selected during plan formulation, rather than before plan

formulation. By considering a set of objects, the planner may discover

that although a particular object seemed best at first glance, developing

the plan a little unveiled that a different object was best. By delaying

object selection until during plan formulation rather than before it,

the planner can consider objects that might be better for the state the

planning NPC would be in at the time of actually executing the plan
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rather than its state at the beginning of the plan. For example, after a

goto action has been performed, the potion nearest the planning NPC

might not be the one nearest to the NPC before the goto was executed.

By delaying the selection of which potions to consider until this point

in the plan, a better plan might be found.

� UDGOAP simulates the world that the planner believes would

exist after executing an action or sequence of actions, rather

than only considering more abstract key-value pairs. GOAP

builds a set of key-value pairs that represent the world in which the

planning NPC exists. These key-value pairs are derived from facts

about the world that the NPC has learned through its sensors. Working

with these key-value pairs make plan formulation faster at the expense

of abstracting over some lower-level details that were present in the

facts known top the NPC. Gaming hardware has become more powerful

since the creation of GOAP and can now consider more details during

plan formulation. As a result, the UDGOAP planner can work directly

with a detailed fact set during plan formulation. This fact set makes

more information available during plan formulation than the GOAP

planner key-value pairs do. UDGOAP can use these facts, combined

with information on how actions alter facts, to accurately simulate the

state that would exist if an action was executed.

The purpose of the UDGOAP system is to formulate plans that consider

multiple goals for a single NPC in a highly dynamic, object rich environment.
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Figure 3.3: An overview of how the different components in the UDGOAP
system interact.

Figure 3.2 shows a class diagram of the major components and functions in

UDGOAP. Figure 3.3 shows an overview of how the components interact

with each other. UDGOAP NPCs receive data from the environment using

a set of sensors and derive facts about the environment from what was

sensed. An NPC selects behaviour based on these facts.

Drives are given to the NPC at design-time and steer the high-level

behaviour of an NPC. Drives are responsible for generating goals for the NPC

at run-time based on the set of available facts. The hierarchical relationship

between drives, goals, conditions and facts is shown in Figure 3.4. Each drive

is equipped with evaluation functions that specify how useful a state is
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based on the closeness to completion of the generated goals. Goals evaluate

their completeness based on the satisfaction of its conditions. Conditions

evaluate their satisfaction based upon the facts available to the NPC. Facts

are generated from the sensors of the NPC. A top-level utility function

takes the satisfaction of all drives as input for generating a state utility.

The planner evaluates and selects plans based on the overall utility of the

states that the plans lead to, which is calculated using this top-level utility

function. The remainder of this chapter will describe each the components

of the UDGOAP system in more detail.

Figure 3.4: A representation of how the hierarchy of facts, goals, drives, and
top-level utility functions are connected in UDGOAP. Each goal references
a fact. Each drive references the goals it generated. The top-level utility
function references the drives.

3.2 Facts and Memory

The world as a UDGOAP NPC knows it is described by facts. A fact in

UDGOAP has five parts:
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� ID — A number for unique identification of a fact.

� entity — The entity in the world to which the fact refers. The entity

could be an object or NPC and is usually a smart object.

� attribute — The attribute of the entity to which the fact refers. For

example, the health attribute would mean that the fact refers to the

health of the entity.

� value — The value of the attribute the fact refers to.

� timestamp — The time at which the fact was last updated.

For example, an NPC might have a fact regarding its own health in the

form (ID: 48, entity: hero1, attribute: health, value: 50, timestamp: 1.2), which

indicates that the NPC that is called hero1 has a value of 50 for its health

attribute. Each NPC has a set of facts that represents everything it knows

about the world. The timestamp is used to give preference to more recent

facts and to make it easier to garbage collect facts when there are too many.

The fact set is updated every time the NPC queries its sensors. The newest

set of facts, as well as the previously known facts that were stored in memory,

are used to inform which behaviour will be selected by the NPC.

3.3 Drives

A drive is high level director of NPC behaviour. This direction is performed

through the pursuit of goals that are generated by goal generators belong-

ing to drives. For example, the kill all enemies drive of the wizard could have
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one goal to kill one goblin and another goal to kill another goblin, both gen-

erated upon seeing the goblins. Each drive has of the following components:

� name — The unique identifier of the drive.

� goal generator — A set of rules that will create goals that, if achieved,

will increase the satisfaction of the drive.

� goals — The set of goals generated by the goal generator of the drive

that will improve the satisfaction of the drive when one of its goal is

nearer to achievement.

� weight — A number used to represent the importance of the drive.

The weight may be used in the top-level NPC utility function.

� removal triggers — Triggers activated when certain conditions are

satisfied, resulting in the removal of the drive from the set of drives

belonging to an NPC.

� satisfaction evaluation function — The function that calculates and

returns a normalised value denoting how satisfied the drive is based on

the degree to which the goals of the drive are achieved.

� satisfaction — Stores the value output from the satisfaction utility

function.

A goal generator can create goals to be pursued by an NPC. Each drive

is associated with one goal generator. Each goal generator is associated with

a set of trigger-goal pairs. When a trigger is activated at run-time, the
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corresponding goal is added to the goal set of the drive to which the goal

generator belongs. Triggers are activated by the presence of certain facts,

e.g. an enemy has been spotted.

The goal generation process takes the newest set of facts, the previous

(or old) set of facts, and a goal generator for some drive d. The condition of

the goal generator triggers are checked for satisfaction against the available

facts. When a trigger is activated, the goal generator to which the activated

trigger belongs runs a process to find the fact relevant to the goal that is

about to be generated. For example, if the goal generated will be to keep a

particular ally alive, the fact relevant to that goal is the current health level

of the ally. The goal associated with the goal generator is then generated for

use with the relevant fact. The newly generated goal is then added to the

drive d if it is not already in the list of goals for drive d. A newly generated

goal has its completeness evaluated after it is added to the set of goals of the

drive responsible for the generation of the goal.

For example, the kill all enemies drive has a goal generator with a trigger

that activates upon the presence of a fact that an enemy has been sensed and

that the NPC does not already have a goal to kill that NPC. For a second

example, the maximize mana drive has a goal generator with a trigger that

activates when the mana of the NPC is less than its maximum.

Each drive also has a satisfaction function that can evaluate how useful

a particular state is to the goals it has generated. The completeness of a

goal depends on facts available to the NPC. The drive satisfaction function

considers the completeness and weight of the goals it generated and returns a
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value from zero to one. The satisfaction function could be something simple,

such as a weighted sum, or something more complex and domain specific.

Consider the example of an NPC with the kill all enemies satisfaction func-

tion for a drive that only has the goal of reducing the health of a particular

goblin to zero and the fact associated with the goal regards the health of

the goblin. After applying the effects of the attack action, the health of the

goblin is 50. If the drive satisfaction function is updated, the normalized

current value of the health of the goblin is 0.5, indicating that the current

satisfaction level of the drive is 0.5.

3.4 Goals

Goals in UDGOAP have the purpose of increasing the satisfaction of the drive

from which they were spawned, where a state in which the goal is closer to

achievement is better. Each UDGOAP NPC has a set of goals it endeavours

to achieve. Each UDGOAP goal has the following components.

� ID — The unique identifier of the goal.

� name — The name of the goal, e.g. kill enemy.

� conditions — The set of conditions required to achieve the goal. For

example, the goal of killing an enemy may have a condition that the

health of the enemy is zero. Each goal must have at least one condition.

� weight — A number used to represent the importance of the goal. The

weight may be used in the evaluation function of the drive to which the
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goal belongs. Goals belonging to the same drive might have different

weights. For example, the goal of killing a bomb slinging goblin might

be weightier than a goal to kill a sword wielding goblin.

� removal triggers — Triggers activated when certain conditions are

satisfied, resulting in the removal of a goal from the goal set of the drive

that owns the goal. Removal triggers are used to remove goals that are

complete or no longer relevant.

� evaluation function — The function used to calculate the degree to

which the goal is complete based on the set of conditions relevant to the

goal. The level of completion of a goal ranges from zero to one, where

zero represents a goal with no progress towards its completion and one

represents a goal that is complete and fully achieved. For example, the

evaluation function of a goal to kill an enemy would return a value of

zero when the associated enemy has full health and a value of one when

the enemy has zero health.

� completeness — Holds the completeness value output by the evalua-

tion function.

Just as there are triggers that generate goals, there are triggers that

destruct existing goals. The removal triggers of a goal specify when a goal

should be removed from the goal set of a drive. For most goals, this is simply

when the completeness of the goal reaches one. For example, the goal of

killing a particular enemy has a completeness value of one when the fact

referring to the health of the enemy is associated with a value of zero. After
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the drive updates the completeness value of each goal, it checks if any of the

removal triggers are satisfied. For example, the kill all enemies drive could

generate a goal that is achieved and destructed when the health of the NPC

for whom it was generated reaches zero. Alternatively, the maximize health

drive could generate a goal of maximizing the health of the planning NPC

and has no destruct condition because maximizing NPC health will always

be a concern to the NPC.

3.5 NPCs

An NPC in the UDGOAP system is responsible for sensing the world using

sensors, building and storing a set of facts to represent the world, keeping

its drives up to date, keeping its goals up to date, and enacting behaviours

returned from the UDGOAP planner. Each UDGOAP NPC has the following

components:

� ID — The unique identifier of the NPC.

� sensors — The set of sensors through which the NPC can sense its

environment.

� facts — The set of facts known to the NPC about itself and its envi-

ronment.

� consumable actions — The set of actions the NPC is able to perform

(described in more detail in Section 3.7).
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� supplied actions — The set of actions that other NPCs are able to

perform on this NPC (described in more detail in Section 3.7).

� drives — The set of drives that direct the behaviour of the NPC.

� internal state — The set variables that describe the information avail-

able to the NPC about itself, e.g. its current health level.

� top-level utility function — The utility function that is used to

determine how preferable a world state is based on the weighted satis-

faction of the drives belonging to the NPC.

These NPC processes are represented in Figure 3.3. This section details

how each of these processes work as part of the UDGOAP system.

3.5.1 Sensing

The NPC receives data about its own internal state and data from the en-

vironment that it is able to sense with its set of currently active sensors.

The NPC creates a set of facts, described in Section 3.2, about the percepts

(data generated by sensors) it has sensed. The facts generated from sensor

information are combined with the existing facts from the memory of the

NPC, including information about the current internal state of the NPC,

e.g. the health of the NPC. This combination yields the most up-to-date set

of facts available to the NPC, which is stored in memory to be used in the

next planning iteration. The sensing and fact update processes are the first

and second processes in the NPC update process, as shown in Figure 3.3.

The up-to-date facts are used to update the NPC drive set.
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3.5.2 Updating Drives

The process of updating drives has three phases.

1. Add new drives given by some outside source.

2. Remove drives that are no longer applicable to the NPC.

3. Update the goals belonging to each drive.

There are two ways in which an NPC receives drives - internally and

externally. Internal drives are assigned to a particular type of NPC at design-

time. For example, a soldier starts with the kill all enemies drive but a medic

does not. External drives are given to an NPC by other world entities at

run-time. For example, a commanding officer could give an order to a soldier

NPC that it must protect a particular medic. An annotated map could also

add drives. For example, when an NPC reaches a certain point in the map,

it should man a machine gun. All orders to add a new drive to the existing

drive set comes through the sensors of an NPC.

Each drive has a set of removal triggers that are activated upon the

satisfaction of a particular condition, just like goal removal triggers. Such a

condition being satisfied will result in the drive being removed from the list

of drives for an NPC. Most internal drives would not have a removal trigger

because it might not make sense to stop being concerned about. For example,

there is no removal trigger for the goal of maximizing health because that

the NPC should be concerned with that goal for its entire lifetime. External

drives are more likely to be removed when they are no longer relevant. For
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example, a commanding officer might add the drive of defending a base from

an attack but the drive is no longer relevant when the base is no longer under

attack. When a drive is removed, so are all goals generated from the goal

generators of that drive.

The process of updating drives comes after the sensing process and before

the planning process of the NPC update process, as shown in Figure 3.3.

Updating goals belonging to a drive is part of the process of updating a

drive.

All goals in UDGOAP belong to the drive that generated them. In order

for drives to accurately evaluate the utility of a state, each goal must know

how complete the goal would be for a particular world state. The process of

keeping drive goals up to date has three steps:.

1. Generate new goals.

2. Update goal completeness.

3. Remove complete goals.

The drive update process requires:

� the input of the up-to-date set of facts.

� the old set of facts that were the most up-to-date in the previous sensing

iteration.

� the set of goal generation triggers.

� the set of existing goals.
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The output of the process are the goals that have been removed, and the

goals that were not destructed, which become the new goal set for the NPC.

The first step in the goal update process is to check which goal generation

triggers have been activated. The up-to-date set of facts is used to check

triggers that only depend on the current state, e.g. the current mana level

of the planning NPC. The newly generated goals are added to the goal set

of the drive responsible for their creation.

Once this is done then the completeness of each goal in the goal set

is updated. Each goal has its own evaluation function that calculates the

completeness of the goal as a normalized value. These functions can be

simple linear functions or more complicated response curves, as described

by Alexander (2002). The evaluation function type most frequently used

throughout this research was the inverse linear function. This works by

normalizing a variable and subtracting the normalised value from 1.0. For

example, when being used the calculate how complete the goal of killing an

enemy is, the current health of the enemy is divided by the maximum health

of the enemy and the result is subtracted from 1.0.

After all goals have had their completeness updated, the next part of

the process is to see which goals should be destructed and which should

remain. Each goal is associated with a set of removal triggers that indicate if

a particular goal should be removed from the set of NPC goals. All triggers on

all goals are checked. Any goal that does not have a removal trigger activated

remains part of the goal set of the drive responsible for its creation.
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3.6 Smart Objects

Actions in UDGOAP can only be applied to smart objects (described in

Section 2.5.4). UDGOAP uses smart objects to reduce the number of objects

the planner needs to consider, to perform actions in suitable manners, and

to help find better plans.

Smart objects help reduce the number of objects the UDGOAP planner

must consider by encapsulating actions and advertising to the planner which

actions can be applied to them. Actions not in this list cannot be applied

to the smart object. For example, a potion smart object advertises that

the drink action can be applied to the potion. A door smart object does not

contain nor advertise the drink action so although the planner might consider

applying drink to the potion, it wouldn’t consider applying drink to the door.

Smart objects help NPCs perform actions in a a way that is more suitable

for the object by having the object specify how to perform the action. For

example, the NPC can perform the goto action, but if performed on a door,

the NPC should stand directly in front of the door, facing it, and close enough

to open it. However, if the goto action is performed on another person, the

performing NPC should get close to the person but not so close as to invade

their personal space.

UDGOAP has two types of smart objects with which it is concerned:

objects and NPCs. Objects are any entity to which actions are applicable.

Each UDGOAP object has a set of actions it supplies. For example, a door

supplies the open door, close door, lock door and unlock door actions. Objects
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cannot perform actions — objects can only have actions applied to them. For

example, a door can not open of its own accord. A UDGOAP NPC is a type

of smart object that can both apply actions and have actions applied to it.

Each NPC has a set of actions that it can supply and a set of actions it

can consume, called the supplied action set and consumable action set,

respectively. For example, the knight supplies the heal action, indicating that

other NPCs can apply that action on the knight. The knight may not have

the heal action in its consumable action set, meaning that it cannot heal itself

or others. However, the wizard NPC has the heal action in its consumable

action set. The set of actions available to UDGOAP NPCs and objects are

decided at design-time, but the applicability of these actions may change at

run-time.

3.7 Actions

An action is something that can be performed by an NPC to change the

world. Each UDGOAP action has the following components:

� name — A unique identifier of the action.

� preconditions — A set of functions returning a value between zero

and one that must be satisfied (have a value of one) in the world state

for the action to be executable.

� effects — A set of changes that will become part of the world state after

the execution of the action. Each effect has an application function that
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returns a fact that would exist if that fact was applied to another fact.

� supplier — The smart object upon which the action is being per-

formed. It is called the supplier because the smart object made the

action available for application.

� consumer — The NPC performing the action. It is called the con-

sumer because it uses the action made available by the action supplier.

� world effect generator — A function that can dynamically add ad-

ditional effects to an action based on the current world state (described

in more detail in Section 3.8.5).

The preconditions associated with a UDGOAP action indicate the pred-

icates that must be true before that action can be performed. A UDGOAP

action precondition consists of a key, a fact ID, and a predicate evaluation

function. A key describes how the precondition might be satisfied and takes

the form entity attribute change. For example, a precondition for the heal

action is that the action consumer has the required amount of mana, so the

key to describe how to satisfy that condition is consumer mana increase. The

fact attribute and fact ID are used to find which fact the precondition applies

to, described in more detail in Section 3.8.4. The key is also used to reduce

the number of actions that need to be considered during plan formulation,

as described in Section 3.8. The evaluation function tests if some predicate

is true for a particular fact, e.g. if the NPC consuming the heal action has

enough mana to execute the action. Each precondition evaluation function

is made by a designer specifically for each action.
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The effects associated with a UDGOAP action describe how the world

will change upon the execution of the action. A UDGOAP action effect

consists of a key just like that used in the UDGOAP precondition, and an

application function. The key is used during the planning process to reduce

the number of actions considered during plan formulation and in the process

of mapping keys to facts. The process of mapping keys to facts is described in

Section 3.8.4. Effect application functions calculate how a fact would change

as a result of the application of the effect. For example, one of the effects of

the heal action increases the health of the action supplier. The application

function could take the fact associated with the current health of the action

supplier and return the same fact but with an increased health value of 20.

Each effect application function is made by a designer specifically for each

action.

Each action must have both a supplier and a consumer. For example,

the wizard unit has a heal action that decreases the mana of the wizard, and

increases the health of the target of the heal action, e.g. a knight. When the

wizard applies the heal action to the knight, the heal action supplier is set

to the knight and the heal action consumer is set to the wizard. The wizard

can apply the heal action to a knight only if the knight has the heal action in

its supplied action set and the wizard has the heal action in its consumable

action set.
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3.8 Planner

The UDGOAP planner is a regressive planner (previously described in Sec-

tion 2.5.2.1) that creates plans that create a world state of maximum utility

to the NPC. The utility of a state is increased by achieving goals belonging to

the NPC drives. To improve the accuracy of the estimated utility of a state,

the UDGOAP planner executes actions in a simulated world and evaluates

the utility of the world it believes will exist after the action execution. A rep-

resentation of the UDGOAP planner is shown in Figure 3.5. The UDGOAP

planning algorithm is shown in Algorithm 3.

The output of the UDGOAP planning algorithm is the plan that maxi-

mizes state utility for the planning NPC. The inputs to UDGOAP planning

algorithm are:

� initial facts — The set of facts in the fact set of the planning NPC at

the time the planning process begins.

� consumable actions — The set of actions that the planning NPC can

perform.

� [(action supplier, action supplied)] — A set of tuples where the first part

of the tuple specifies which smart object supplied the action and the

second part of the tuple is the action being supplied, e.g. (door1,

open door).

� planning agent — The NPC for whom the plan is being made.
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� drives — The set of drives belonging to the planning NPC.

� top level utility fn — The top-level utility function being used by the

planning NPC.

Everything from lines 9 to 22 in Algorithm 3.5 is for generating succes-

sor plan states to be considered further during planning. A plan state in

UDGOAP is a snapshot of the world and the state of the planning NPC

along with several components of the NPC relevant to the plan, where a new

plan state is generated at the beginning of plan formulation and through the

application of an action1 during planning. Planning can be represented as a

graph where plan states are nodes and actions are edges that cause transi-

tions from one plan state to another. The root node in this graph would be

initial plan state and leaf nodes would represent the most developed plans in

this graph. A plan state has the following components:

� ID — A unique identification number.

� hard goal — A set of conditions that must be satisfied as part of plan

formulation. Failure to find a solution for this goal will result in plan

failure. A hard goal in UDGOAP is equivalent to a goal state in GOAP.

� soft goals — A set of soft goals, where each soft goal is a goal that

is desirable to satisfy but if unsatisfied, will not result in plan failure.

These goals are used when calculating the utility of a state.

1To make the explanations easier to follow, whenever an action is just being simulated,
we will say the action is being applied. Whenever the action is being performed by the
agent, we will say the action is being executed.
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Input: initial facts, consumable actions, [(action supplier,
action supplied)], planning agent, drives, top level utility fn

Output: plan
plan states = generate from initial state(initial facts,1

extract all goals(drives), consumable actions,
[(action supplier, action supplied)])

/* begin planning main loop */

while plan states 6= ∅ do2

best plan state = plan states.argmax((s) ⇒ s.utility)3

plan states -= best plan state4

unsatisfied pre = select unsatisfied precondition(best plan state)5

if unsatisfied pre = null then6

return extract actions that led to plan state(best plan state)7

else8

/* begin generating successor plan states */

applicable actions =9

find applicable actions(unsatisfied precondition,
consumable actions, [(action supplier, action supplied)])
actions = ∅10

for (action, supplier) ∈ applicable actions do11

actions += map keys to facts(action, initial facts)12

end13

unrated successor states = ∅14

for a in actions do15

unrated successor states += simulate action execution(a,16

best plan state)
end17

rated successor states = ∅18

for s in unrated successor states do19

rated successor states += calculate utility(s, drives,20

top level utility fn)
end21

/* end generating successor plan states */

plan states += rated successor states22

end23

end24

/* end planning main loop */

return empty plan25

Algorithm 3: The UDGOAP algorithm.
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Figure 3.5: A representation of UDGOAP plan formulation.

� utility rating — A rating to represent how useful the world state rep-

resented in the plan state is to the set of drives of the planning NPC,

where higher is better.
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� generative action — The action responsible for the generation of the

plan state.

� parent — The plan state from which this plan state was generated via

an action.

The collect predecessor actions function generates a list of the actions that

led to a plan state. This is done by iterating through each of the predecessors

of a plan state and collecting their generative actions. This list of actions is

used later during the process of rating a plan state.

The rest of this section will describe the processes involved in UDGOAP

plan formulation:

1. Root plan state generation.

2. Best state selection and goal completion.

3. Finding applicable actions.

4. Mapping action precondition and effect keys to facts.

5. Action application and world effect simulation to generate new plan

states.

6. Evaluating the utility of newly generated plan states.

3.8.1 Root Plan State and Successor State Generation

The initial state is the state of the world state that existed at the when the

planning process initiated. The generate from initial state function (called on
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line 1 in Algorithm 3) generates a new plan state, based on the initial state,

for every action the NPC can perform that has an effect key that matches a

condition key of any goal. This includes the processes of finding applicable

actions, mapping action preconditions and effects to facts, simulating action

execution to produce new plan states, and evaluating the utility of the newly

generated plan states.

The function first generates a root plan state from the initial state: sroot =

new PlanState(ID: 1, hard goal: null, soft goals: all goals, rating: 0, action: null,

parent: null), where initial facts is the set of facts in the fact set of the planning

NPC at the time the planning process begins, and where all goals is the set

of all goals belonging to all drives of the planning NPC that were collected

in the extract all goals function (line 1). This root plan state becomes the

parent of the remainder of the plan states generated in this function.

A plan state is generated for each action in the consumable action set

with an effect key that matches a condition key of any goal in the set of all

goals of the planning NPC. For example, if wizard1 had the melee action that

it could apply to goblin1, the following plan state would be generated:

� s1 = (ID: 2, hard goal: (fact key: supplier health decrease, fact ID: 5,

evaluation function: fn linear minimize), soft goals: all goals, rating: 0.9,

generative action: (name: melee, consumer: wizard1, supplier: goblin1,

...), parent: 1)

where the fact with the ID of 5 refers to the health of goblin1. The

successor plan state of the root plan state associates itself with its parent
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using a plan state ID, which is set to 1 as that is the plan state ID of the

root plan state. The set of soft goals of the initial successor plan state is the

set of all goals belonging to all drives. This is so all drives are considered

during planning.

3.8.2 Best State Selection and Goal Completion

After the successors to the root plan state have been generated and added

to the set of plan states, the main loop of the planner is entered (line 2) with

the purpose of developing plans states in the search for the plan that leads

to the state with the highest utility to the set of drives of the planning NPC.

The main planning loop begins by selecting the best (highest utility) plan

state from the set of plan states for further development (line 3). The best

plan state is the plan state associated with the highest utility.

If the goal associated with the selected plan state has no unsatisfied con-

ditions and is not the initial state, the goal state is reached and plan for-

mulation is complete. The complete plan is extracted from the plan state

by extracting all of the actions that had to be performed to reach that plan

state (lines 6 and 7). These actions would be returned from the planner to

the UDGOAP NPC who would execute them as behaviour.

3.8.3 Finding Applicable Actions

If a goal state has unsatisfied conditions, the planning process searches for ac-

tions that will satisfy an unsatisfied condition using the find applicable actions

function (line 9). The function to find these applicable actions is shown in
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Algorithm 4. The inputs to the algorithm are:

� unsatisfied precondition — the unsatisfied precondition belonging to the

highest utility plan state.

� consumable actions — the set of actions the planning NPC is able to

perform.

� [(action supplier, action supplied)] — the set of pairs of all actions being

supplied by the smart objects in the environment, where the first part

of the pair is the smart object supplying the action and the second part

is the action being supplied. For example, this set might be {(knight1,

heal), (knight1, melee), ...}, meaning that the heal and melee actions

can be applied to knight1.

In Algorithm 4, the planner searches through the set of consumable ac-

tions of the planning NPC for an action with an effect key that matches

the key of the unsatisfied condition being considered. This yields the set of

applicable actions that the action consumer (the planning NPC) could po-

tentially apply. These potentially applicable actions require a smart object

that supplies the potentially applicable actions.

The intersection of actions the planning NPC can consume and the ac-

tions that the smart objects in the environment supply is the set of actions

applicable to the unsatisfied precondition (line 11). The next step is to map

from precondition and effect keys to precondition and effect facts (line 12).
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Input: unsatisfied precondition, consumable actions, [(action supplier,
action supplied)]

Output: applicable actions
potential consumable actions = ∅1

for a ∈ consumable actions do2

if a.effects ∩ unsatisfied precondition 6= ∅ then3

potential consumable actions += a4

end5

end6

applicable actions = ∅7

for (supplier, supplier action) ∈ [(action supplier, action supplied)] do8

if supplier action ∩ potential consumable actions 6= ∅ then9

applicable actions += new Action(10

preconds: supplier action.preconds,11

effects: supplier action.effects,12

consumer: planning agent,13

supplier: supplier,14

world effect gen:15

applicable action.world effect gen)16

end17

end18

return applicable actions19

Algorithm 4: The UDGOAP planner function to find applicable actions.
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3.8.4 Mapping Action Keys to Facts

Algorithm 5 shows the function for mapping the precondition and effect keys

of an action to facts. The inputs to the algorithm are:

� unmapped action — the action with preconditions and effects that are

not yet associated with any facts. This action is already associated

with a supplier and consumer when it was created during the phase of

finding applicable actions.

� best plan state facts — all of the facts known to the NPC at the time

the plan state refers to.

Input: unmapped action, best plan state facts
Output: actions
mapped action = unmapped action.clone()1

for precond ∈ mapped action.preconds do2

precond.fact id = key to fact(precond.key, mapped action.consumer,3

mapped action.supplier, best plan state facts)4

end5

for effect ∈ mapped action.effects do6

effect.fact id = key to fact(effect.key, mapped action.consumer,7

mapped action.supplier, best plan state facts)8

end9

return mapped action10

Algorithm 5: The UDGOAP planner function for mapping keys to facts.

The function first maps each precondition of the passed action to its

relevant fact and then each effect of the passed action to its relevant fact.

This mapping is done to provide each precondition with the fact needed to

evaluate if the precondition is satisfied, and to provide each effect with the

fact needed to know which fact the effect will alter. The key to fact function

is an implementation specific mapping from keys to facts.
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An example of the mapping of precondition and effect keys to facts fol-

lows. There is a wizard NPC, wizard1, that has the goal of increasing the

health of a knight, knight1. The knight has the heal action in its supplied

action set and the wizard has the heal action in its consumable action set.

The heal action is selected by the planner belonging to the wizard for appli-

cation. The precondition and effect keys are mapped to facts in the set of

facts available for the current plan state.

Figure 3.6: The process of mapping action precondition and effect key to
their relevant fact.

As shown in Figure 3.6, the function map keys to facts takes the input of

the facts that comprise the world state at that particular time in the plan-

ning process and the action that will have its precondition and effect facts

determined. The output of the map keys to facts function is the action to be

applied, but with the keys mapped to facts so that the precondition evalu-

ation functions can be tested on the current facts and the effect application

functions can be used to see how action effects will change facts.
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For example, consumer mana increase is the precondition key for the heal

action, which will cause a lookup for a fact in the set of facts available to the

plan state for some fact about the mana level of the wizard, as the wizard

is consuming the action. In this instance, the consumer mana increase key

corresponds to the fact with the ID of 28 because the object portion of the

key specifies the consumer, which is wizard1, the attribute portion of the

key specifies mana, and the entity referred to by fact 28 matches with the

value wizard1 and the attribute referred to by fact 28 matches with the mana

attribute.

The precondition of the new action now has a fact that can be used in the

evaluation to determine if the action can be applied. This fact will be used

later with the fn has enough mana to heal function to determine if the heal

action is applicable. For example, it might check if the value associated with

fact 28 is above the amount of mana required to execute the heal action.

The effect of the new action associated with the fn increase health for heal

application function will take fact 52 as input and output the state of that

fact will be after the effect has been applied, which in this case is increasing

the health of the knight.

3.8.5 Action Application and World Effect Simulation

to Generate New States

The UDGOAP planner works by trying to simulate what the world state will

be after the execution of a particular action. This is done in an attempt
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to give the planner a more accurate view of the world so that better plans

can be generated. The simulation tries to compensate for the fact that the

actions other agents take are not accounted for during plan formulation. A

new plan state will be generated that reflects the effects of the executed

action on the previous world state. The new plan state will later have is

utility rated against the set of drives of the planning NPC, as described in

later in this section. This is similar to how Laird (2001) used a bot in Quake1

simulated possible futures by predicting what actions the other NPCs in the

environment might take.

The plan state is created by first collecting all actions that led to the

plan state. These actions are then applied in forward order, as they would

be executed in the game, from the initial state, where the initial state is the

fact set of the planning NPC at the beginning of plan formulation. Additional

effects beyond just the effects of the actions that led to the plan state are

simulated to help give a more accurate representation of the plan state.

The planner cannot perfectly simulate what state the world will be in

after executing an action because that calculation would be prohibitively ex-

pensive. To have a perfectly accurate simulation, the process would have to

create a sandbox simulation by copying all the data from the game world,

playing the simulation in the sandbox for a few seconds, and then returning

the planning NPC fact set for evaluation. Copying the entire game world

would double the data requirement of the game. The sandbox world simu-

lation would have to be sped up substantially to finish within an acceptable

1Quake - id Software - http://www.idsoftware.com/en-gb
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duration. This would require massive computational resources. Furthermore,

this sandbox world would have to be created every time a UDGOAP NPC

wants to select a behaviour, which could be several times a second. Finally,

these computational and memory costs would be incurred for every NPC

using UDGOAP. For these reasons, the approach of instead associating each

action with an approximate simulation function is taken, where the simu-

lation function includes the application of all effects in the action plus the

world effects of the action. As shown in Figure 3.7, there are three steps to

simulating action execution:

1. Apply the effects of each action to the plan state that was selected for

additional development, called the state under operation.

2. Detect any world effects triggered by the applied effects.

3. If there are any world effects detected and equilibrium isn’t reached,

apply the world effects to the plan state under operation and go back to

step 2. Otherwise, continue to the next planning step. Equilibrium

is the state at which there are no more world effects that have been

generated.

An example of action simulation follows. There is a knight, knight1, who

can engage in melee combat with a nearby goblin, goblin1, using the melee ac-

tion. The melee action has the following effect: (key: supplier health decrease,

application function:

fn reduce supplier health for melee attack), where the application function takes

the fact associated with the health of goblin1 and returns the same fact but
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Figure 3.7: Representation of planner simulating an action and calculating
the utility of the plan state.

where the value representing the health of the goblin is reduced by the melee

damage of the knight, which in this case represents a reduction of 50 health.

The execution of the melee action would generate a new plan state in

which the goblin has less health. The difference between this new plan state

and its parent plan state are the facts changed by the effects of the melee

action and the action that generated the plan state. Each action effect ap-

plied may also generate world effects, which will change other facts within

88



the newly generated plan state. World effects are used so that the planner

does not assume the world remains static during the execution of a plan.

World effects are what move planner action execution from simple plan-

ning to simulation. World effects are the effects entities in the world are likely

to produce as the result of an action and are used to get a more accurate

picture of the world state after the application of an action or sequence of

actions.

A world effect is created by a world effect generator in much the same

way a goal is created by a goal generator. A world effect generator has a

set of triggers and a set of effects. When an action is executed during plan

formulation, the set of facts that make up the world state of the plan state

are checked against the set of triggers for each world effect generator. If any

trigger of a world effect generator is activated, all of the effects belonging to

the world effect generator are applied to the world state of the plan state

created through the execution of the action. World effect generators are

created at design-time.

An example of world effect generation follows. A wizard performs the

goto action so that it can melee attack the goblin. The performance of the

goto action on the goblin puts the wizard within melee attack distance with

a goblin. It can be assumed whenever the wizard within melee attack range

of a goblin that the goblin will attack the wizard, so the designer made a

world effect generator that is triggered if the distance of a wizard is less than

the melee attack range of a goblin. The effect of this world effect generator

is to subtract the melee damage of the goblin from the health of the wizard.
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By evaluating the world state after the execution of the melee action, the

planner discovers that performing the melee action would actually reduce

the health of the wizard so much that it would result in the death of the

wizard, something that would not have been known without the additional

world effect that reduced the health of the wizard. The planner then finds a

better way to kill the goblin such as to use a range attack. This plan would

not have been considered by only applying the effects of the goto action if

the planner had assumed the world remained static during plan execution.

World effects make simulations more accurate and cause better plans to

be found as a result. However, they make it necessary to run the simu-

lation of action execution in the order that the actions would actually be

executed. Therefore, although actions are chained together in reverse or-

der when searching for a solution during plan formulation, the simulation of

action execution is performed in forward order.

Reusing the previous example, a wizard has the plan of going to a goblin

and then performing a melee attack, which would reduce the health of the

goblin to zero. Let’s say that there is a world effect generator with a trigger

that is activated if an NPC moves to any new location within melee attack

range of an enemy and that the effect generated is that the enemies range

cause damage to the NPC. For example, if a wizard performs the goto action

on a goblin, bringing the wizard within the attack distance of the goblin

thus triggering the world effect of the goblin causing damage to the wizard.

If the wizard’s melee action was simulated before its goto action, the melee

action would simulate that the goblin is no longer alive. As a result, when
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the goto action is simulated, there is no world effect applied for the wizard

taking damage because the goblin is not alive due to the melee action. Hence,

the simulated world will need the actions applied in the order they will be

performed in, even though the planner is chaining actions in reverse order.

It may be the case that a consumer would die if the actions were applied

in forward order. In this case, all actions after the action that causes the

consumer to die are ignored and not applied.

The utility of a plan state is evaluated after all of the effects of the actions

that led to the plan state have been applied. The process of rating the utility

of a state depends on many factors. A representation of the process is shown

in Figure 3.8. In short, each plan state holds a set of facts that describes the

world. The goals in the plan state use these facts with an evaluation function

to determine goal completeness. The completeness and weight of these goals

are used in a drive evaluation function to determine the satisfaction of a

drive, where the drive function belongs to the drive that generated the goals.

Drive satisfaction and weight is passed to a top-level utility function that

rates the utility of the state.

For example, a plan state contains facts describing goblin1 as having 0

health and goblin2 as having 50. The wizard has one goal to kill goblin1

and one to kill goblin2. Both goals have a weight of 1.0 and use the inverse

linear function to rate their completeness, giving completeness values of 1.0

and 0.5, respectively. Both goals belong to the kill all enemies drive which

has a drive evaluation function that takes the completeness of the goals and

outputs their average, which in this case is 0.75. This is the only drive this
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NPC has so the top-level utility function will output a utility value of 0.75

for this plan state.

Figure 3.8: Representation of calculating the utility of a plan state.

The completeness of the hard goal and soft goals are used to calculate the

level of satisfaction of the drives with which they are associated when rating

the utility of a state. The hard goal is a set of conditions that is analogous to

the goal during the GOAP planning process. The hard goal will start as the

goal of, for example, increasing the health of an NPC, but more conditions

will be added to it as additional actions are added to the plan to achieve

the goal e.g. have enough mana to heal. A soft goal is a goal that does not

require satisfied for the plan to be considered a solution. Moving soft goals

toward a more complete state during planning is preferred but not necessary.

For example, a hard goal might be to kill an enemy but a simultaneously

considered soft goal is maximizing the amount of mana the wizard has. The
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planner will then prefer plans that minimize the amount of mana used while

killing the enemy but the planner will still consider plans that use mana as

valid solutions so long as the plan results in the enemy being killed.

Every goal in UDGOAP, hard or soft, is associated with a function that

is used to evaluate the completeness of the goal. This function can be a

simple, linear function or something more complex, such as a response curve

(Alexander, 2002). For example, a knight has the goal to kill a particular

goblin. The function for evaluating the completeness of this goal takes the

fact associated with the health of the goblin as input and outputs a normal-

ized value describing how complete the goal of killing the goblin is, where

0.0 could mean the goblin is on full health and 1.0 means the goblin has

no health. For example, the goal evaluation function used for this scenario

could be a simple linear function that will return a normalized inverse of the

maximum health of the goblin. If the goblin has a maximum health of 100

and is currently on 60 health, then the goal is 0.4 complete. This normalized

value is stored in the goal to be used during the calculation of the the utility

of the state to the NPC based on the drive that generated the goal, e.g. the

kill all enemies drive.

A drive has an evaluation function that determines the satisfaction of the

drive by considering the completeness of the goals the drive generated. A

state will have a utility rating from zero to one for a particular drive, where

zero means all goals associated with that drive are in no way complete and

one means all goals are fully complete. Each goal in UDGOAP is associated

with a weight that is used as part of a weighted sum calculation to compute
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state utility. Goals from the same drive can have different weights. For

example, the kill all enemies drive could have one goal to kill a melee goblin

where the weight of the goal is 1.0, and a second goal to kill a ranged attack

goblin with a higher weight of 2.0 because ranged attack goblins are more

dangerous.

The weighted sum output of each drive is then fed into the NPC utility

function as input and the utility of the entire plan state is output. This

output is assigned as the utility of the plan state from which it was generated.

This utility function is likely to be more complicated than that of a single

drive utility function and likely to be very domain specific. For example,

the maximize health drive might be considered particularly important and so

when it hits zero, it means the planning NPC health is zero, so whatever else

might be happening in the plan state can be ignored as the planning NPC

would be dead in this state. However, any function would be allowed for use

as the top-level utility function so long as it takes drive satisfaction values

and returns a number representing the utility of the plan state that produced

those satisfaction values.

3.9 Worked Example

This section will give a simple example of two opposing NPCs, a wizard and

a goblin, using UDGOAP to select a behaviour. The wizard can perform

a melee attack with his staff and use mana to cast a lightning bolt spell

to kill a distant enemy. The wizard has the drive to kill all enemies and
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already has a goal to kill this particular goblin. The wizard also has a drive

to maximize his own health points and another drive to maximize his own

mana points. The wizard has many mana points but does not have many

health points.

The goblin can perform a slash attack and charge attack with his sword,

where a charge attack reduces target health points more than the slash

attack does. The wizard could survive a goblin slash attack but could not

survive a goblin charge attack. The goblin does not have many health

points and would die if the wizard successfully landed a melee attack or a

lightning bolt. The goblin has the drive to kill all enemies and already has

a goal to kill the wizard. Both NPCs can perform the goto action to move

to the target of their attack.

The goblin starts making his plan. The goblin first considers the state

that would exist if he performed the slash attack. In this state, the wizard

is low on health points but is still alive. The goblin then considers the state

that would exist if he performed the charge attack. In this state, the wizard

dies as a result of the goblin attack, which would completely satisfy the goal

of killing the wizard. The goblin selects the charge attack for execution as

it results in the highest utility state.

Meanwhile, the wizard has been making a plan of his own. The wizard

considers the state that would exist if he performed the melee attack. In

this state, the goblin would die as a result of the attack. The wizard then

considers that would exist if he performed the lightning bolt attack. In

this state, the goblin would die as a result of the attack but the attack itself
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would consume mana. Both melee and lightning bolt attacks result in

the death of the goblin but because casting the lightning bolt uses mana,

this lowers the state utility for the drive of maximizing mana. The result is

that the state generated from the melee action has a higher utility and so

the plan that generated that state is selected for further development. The

next planning iteration requires that the wizard satisfies the melee attack

precondition of being at the goblin that the attack is to be used on. The

goto action is selected because that action has an effect that satisfies the

precondition of being near the goblin. However, the goto action also has

a world effect. This world effect counts the number of enemies that would

be within range of performing their own melee attack on the wizard and

subtracts an amount of health equal to the damage that would be caused

by such attacks. The world effect function finds that the goblin would be

within range of attacking the wizard once the wizard moved to the goblin

and subtracts wizard health accordingly in this plan state. In the state after

the goto and melee actions are performed, the wizard would be dead as a

result of being attacked by the goblin. This state is given a very low utility

rating. The wizard instead chooses the plan that led to the highest utility

state, that is, performing the lightning bolt attack.

Both the wizard and goblin have finished planning. The goblin immedi-

ately charges at the wizard. The wizards begins casting his lightning bolt

spell. The goblin is just about to land his charge attack when the wizard

finishes casting the spell and zaps the goblin dead with a lightning bolt.

A similar but more detailed worked example is provided in Appendix A.
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The next three chapters describe experiments concerning utility-based be-

haviour selection systems. Chapter 4 describes an experiment with two pur-

poses. The first purpose is to test if GOAP, which requires more resources

than rule-based systems, is feasible for use in a real-time environment with

many NPCs and also compares GOAP to a simple utility-based system. The

second purpose of the experiment is to test if a simple utility-based system

is feasible in the same environment. Chapter 5 describes an experiment that

compares GOAP to UDGOAP by measuring how long it takes an NPC to

go from a bad state to a near optimal state. This experiment is designed to

test how each planner handles the pursuit of multiple goals. The experiment

takes place in a virtual household like one found in The Sims1. This house-

hold contains just one NPC and is used to test how UDGOAP works in a

discrete, static, deterministic, single-NPC environment. Chapter 6 describes

an experiment that compares the final version of UDGOAP (the version de-

scribed in this chapter) to GOAP and a finite state machine by measuring

how long an NPC controlled by each system can survive in an arena. The ex-

periment takes place in a fast-paced arena to test how UDGOAP compares

to the other behaviour selection systems in a continuous, dynamic, non-

deterministic, multi-NPC environment. Chapter 7 describes an extension to

GOAP that uses smart ambiance to select more contextually appropriate

actions for an NPC.

1The Sims - Maxis - http://thesims.com/en US/home
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Chapter 4
Utility and Action Planning

Viability in Computer Games

A computer game is composed of many systems that must work together

simultaneously. Physics, graphics, sound and other systems all require com-

putational and memory resources to run. If the designer wants more out

of a system, more sophisticated AI from the AI system for example, more

resources must be allocated to that system. It is important that each system

stays within the resource limits specified for the system by the designer. If

an insufficient amount of resources are allocated to any system, the amount

of time required to perform processing will take so long that the frame rate

of the game can drop, which can cause noticeable lag and negatively impact

on the game playing experience.

The percentage of CPU allocated for AI in commercial games is reported
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to vary considerably over time and genre. In 1998, according to Woodcock

(1998), AI in real-time games was allocated 10 percent of the CPU processing

time. In 2000, due to increased offloading of computation to the GPU, real-

time games were allocated approximately 30 percent of CPU for AI with a

trend of AI being given an increasingly larger slice of CPU time (Woodcock,

2000).

This chapter details an experiment that was performed with two goals.

The first goal was to test if GOAP was feasible for use in a real time en-

vironment with dozens of NPCs. Feasibility is judged on the amount of

computational and memory resources required to run the system. Other

games that have used GOAP, such as F.E.A.R.1, had only a small number

of NPCs active at any time to limit resource consumption. The experiment

described in this chapter has dozens of active GOAP NPCs. The second

goal is to see if it is feasible to use a simple utility-based behaviour selection

system2, introduced in Sloan et al. (2011a) and described in the next sec-

tion, in the same environment with dozens of NPCs. The overall purpose of

this experiment was to give an idea of the feasibility of using a utility-based

action planner in a real-time environment.

4.1 Method

A simple utility-based behaviour selection system was compared to two other

behaviour selection systems: a finite state machine and a GOAP system.

1F.E.A.R. - Monolith Productions - http://www.fear3.co.uk/the-game.html
2This utility-based system is an early version of the system described in the previous

chapter.
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All of the systems were compared in terms of the processor and memory

resources required to run each system. A finite state machine was chosen for

comparison because it has a reputation for being a resource-light behaviour

selection system, and has been used in many games. GOAP was selected

because it has a reputation for being a resource-heavy behaviour selection

system and has also been used in many games. These two systems can be

used to form a range to better gauge the resource requirements of the utility-

based system.

Figure 4.1: A screenshot of the hospital simulation.

A simulated environment was developed as part of the experiment. The

simulation takes place within a virtual hospital where game NPCs play the

roles of nurses, doctors, patients, and visitors. A screenshot of this hospital

environment is shown in Figure 4.1. Nurses perform administrative duties,

socialize with other nurses and doctors, greet visitors, take breaks, and care

for patients by giving them food and medicine when necessary. Each nurse

has a level of fatigue and an inventory tracking if the nurse is currently

carrying any food or medication. Doctors occasionally check on patients by

looking at their charts. Patients ask for company when levels of loneliness
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rise above a predefined threshold. Visitors chat with patients when called

and rest when they are finished chatting. The actions executed by a game

NPC are chosen by the behaviour selection system controlling it.

Separate finite state machines were developed for patients, visitors, doc-

tors and nurses. These state machines are shown in Figure 4.2. A game NPC

controlled by a finite state machine starts off in a state that has been selected

as the starting state. In each state, the behaviour selection system checks if

certain conditions have been met that would trigger the NPC to move into

another state. For example, a nurse performing administrative duties would

switch into a state of giving medication if the medication level of any patient

fell below a certain threshold.

The particular implementation of GOAP is the same as the version de-

scribed in Section 2.5.2.2. This version of GOAP has no performance en-

hancements e.g. no caching. Abstaining from performance enhancements

was done to better gauge the maximum amount of resources a GOAP sys-

tem might require. The planning NPC controlled by GOAP has a set of fixed

priority goals, where goals and goal priority were authored at design-time. A

new plan is made if the planning NPC has no plan, has discovered that its

current plan has failed, or if a higher priority goal arises. The planner will

create a plan for the highest priority goal found. The list of actions a game

NPC can execute are specified at design-time and are used to form plans at

run-time. The actions available to a nurse are shown in Figure 4.3, where

rectangles represent actions, the arrow coming out of the top of a rectangle

represent the effects of the action, the inverted arrow heads coming from the
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bottom of a rectangle represent preconditions, and the number next the the

action represents the cost associated with the action.

Figure 4.3: A representation of some of the actions available to a nurse in
the simulation.

The utility-based system that was evaluated as part of this experiment

was the earliest form of what would later become UDGOAP. The system had

a set of drives, a set of predefined plans, and a utility function. Drives were

associated with a fixed weight and one fixed goal. The set of drives an NPC

has are defined at design-time and do not change at run-time. Like GOAP,

each goal was associated with one object that was selected as the best object

for satisfying the goal. Unlike GOAP, rather than having a set of actions,

the utility-based system had a set of predefined plans. For example, the

keep patients medicated goal has a precondition that could be satisfied with

some effect in a predefined plan, such as {goto pills, get pills, goto patient,

medicate patient}. The utility-based system rates the state that would exist

after executing the best plan for each goal. For example, it rates the state
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generated after performing the best plan to keep patients medicated, the

state after performing the best plan to feed a patient and so on. The plan

that results in the highest utility state is selected for execution.1

We believe it is acceptable to compare GOAP, a system that dynami-

cally generated plans, with this utility-based system, which uses predefined

plans, because the predefined plans are a subset of the plans that GOAP can

dynamically generate. However, we are aware that the search space for the

utility-based system is smaller than that of the GOAP system. This problem

is addressed in the later version of this utility-based system that we described

in Chapter 3 where the planner dynamically generates plan.

The environment was created as a modification of the game Half-Life 21

which use the Source Engine. This was selected because it was necessary to

run the simulation in a game engine to ensure that all behaviour selection

systems tested work within the computational and memory restraints placed

on a commercial game. All behaviour selection systems were run through a

Lua interface2.

First-person games often try to strictly limit the number of NPCs active at

any time. This is because each NPC can require a large amount of resources

to perform at an acceptable standard. There were 32 NPCs in the hospital

simulation because this is the default maximum (it can be increased with

1Although a utility-based behaviour selection system does not require predefined plans,
they were used in this implementation because this experiment was conducted early in the
research process and a method for dynamically chaining together actions based on state
utility had not yet been developed.

1Half-Life 2 - Valve Software - http://orange.half-life2.com/
2Lua is a light-weight scripting language designed for use in computer games and has

been used in a number of Source Engine based games.
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mods) for the Source Engine (Valve, 2014) as it is generally considered the

largest number that will not overburden the CPU of current generation mid-

end devices. The human player could not influence the simulation.

4.2 Evaluation

An NPC does not have to query its behaviour selection system during each

game frame because the difference in state from one frame to the next is often

so small that no new behaviour will be selected. As a result, each NPC queries

their behaviour selection system every 200 milliseconds. This frequency was

selected for two reasons. The first reason is because 200 milliseconds is a long

enough time that the game state for this particular simulation might have

changed enough to warrant the selection of a new behaviour. The second

reason is that is not so infrequent that an NPC will be left with an invalid

behaviour for very long.

The amount of time taken to perform behavioural selection for each NPC

is recorded every 200 milliseconds. The sum of the behaviour selection times

at these 200 millisecond snapshots is said to be the amount of time required

by that behaviour selection system. Only three runs were used for each

behaviour selection system because the simulation is deterministic, causing

the behaviour selection to be the same each time. However, a simulation was

run three times for each system because although behaviour was the same,

resource usage varied slightly between runs. The duration of a simulation

was approximately four minutes because it took that long for all NPCs to

106



perform every behaviour available to them at least once. It was also the

amount of time it took to reach a state very similar to the initial state of the

simulation, where all patients are not in need of medication, food, check-ups,

or company. Snapshots were taken every 200 milliseconds of the amount of

memory used.

Processor and memory usage are calculated using the same approach as

Khoo & Zubek (2002). For each behaviour selection system, the amount of

time taken to select behaviours for all NPCs in the simulation is recorded

in milliseconds. The average of the recorded times for each system is then

divided by the number of NPCs in the simulation, giving the average num-

ber of milliseconds taken to select behaviour for an NPC using a particular

behaviour selection system. This average per NPC is then divided by the

frequency at which the behaviour selection system is queried, which is 200

milliseconds for this hospital simulation, giving the average CPU usage per

NPC for a particular system. This CPU usage per NPC is used to approxi-

mate how many NPCs could be supported by a portion of the CPU allocated

for behaviour selection.

Khoo & Zubek (2002) calculate system memory usage based on the num-

ber of static bytes required by the system. This is calculated by analysing

the code for a system and counting the number of bytes required for the data

members used by the system. Counting only the number of static bytes used

and ignoring dynamic allocation makes sense because commercial computer

games are designed to minimize dynamic memory allocation for increased

efficiency. We use the same approach for calculating resource use as Khoo &
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Zubek (2002).

The computer used for all of the tests described had an Intel Core 2 CPU

6600 at 2.4Ghz, 4096MB of RAM and ran Windows 7 Ultimate 64 bit.

4.3 Results

system time taken (ms) % of CPU max no. of NPCs
FSM 5 0.025 400
GOAP 14 0.07 142
Utility-based 10 0.05 200

Table 4.1: Processor usage for behaviour selection systems in simulation

Table 4.1 shows the processor usage for each behaviour selection system

used during the simulation. The time taken column refers to the average

number of milliseconds it took the system to select behaviour for one of the

32 NPCs. The % of CPU columns refers to what percentage of the CPU

was required to select behaviour for an NPC. This % of CPU was calculated

by dividing the corresponding value from the time taken column by 200,

as behaviour is selected every 200 milliseconds. The max no. of NPCs

column shows the approximate number of NPCs that could simultaneously

exist in the simulation using the corresponding control system given only 10

percent of the CPU. If 30 percent of CPU is allocated for AI, as specified in

Woodcock (2000), we estimate that a third of that is for behaviour selection

while the remainder could be for pathfinding and other AI.

GOAP required the most memory but this was a trivially small 13 kilo-

bytes. The FSM used about 12 times less memory than GOAP and the
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utility-based system used slightly less memory than GOAP.

4.4 Discussion

The purpose of the experiment was to understand if GOAP and a utility-

based behaviour selection system are viable for use in environments with

dozens of real-time NPCs, where viability is judged on the amount of com-

putational and memory resources required to run the system. The amount of

resources used by GOAP in the hospital simulation environment containing

dozens real-time NPCs was the greatest of the three systems but far below

the amount typically made available to AI systems in modern commercial

games. The amount of resources required by the utility-based system was

small enough to easily fit within the 10% of the CPU we believe would be al-

located to behaviour selection in a commercial game. Furthermore, if GOAP

is used in commercial games and the utility-based system using predefined

plans requires fewer resources than GOAP, the utility-based system should

be viable for commercial games, from a resource perspective.

An interesting observation was made while watching the nurses under

the control of the utility-based system. Nurses under GOAP control always

preferred to medicate patients as soon as their medication level fell below a

certain threshold even in the presence of an extremely hungry patient because

the goal of medicating patients had a higher priority. With the utility-based

system, nurses would prefer to feed the very hungry more than medicating

those only slightly in need. This happened because the utility-based system

109



associated goals with weights and calculated that although hunger is less

important than medication level, a very hungry patient is more important

than a patient only slightly in need of medication. The utility function acted

as a kind of dynamic goal prioritizer.

The utility-based system had the ability to consider how a plan might

affect more than one goal but the design of the environment and plans (un-

intentionally) never gave an opportunity for the system to make such con-

siderations. The experiment described in the next chapter was designed to

test if a utility-based system could generate plans to achieve a set of goals

faster than GOAP can achieve a set of goals. The experimental environment

was designed to give ample opportunities for the selection of plans that can

affect the completeness of multiple goals.
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Chapter 5
Multiple Goals and Complex

Environments

The experiment in Chapter 4 showed that both GOAP and a utility-based

behaviour selection system were capable of controlling dozens real-time NPCs

using an amount of resources that could make the system feasible for use in

commercial games.

The experiment (introduced in Sloan et al. (2011c)) in this chapter, we

compare the ability of NPCs to satisfy a number of drives within an environ-

ment, where the behaviour of the NPCs is controlled by different systems.

The systems compared are the GOAP system and UDGOAP. The main met-

ric used to compare the performance of NPCs using these systems is how

quickly the NPCs can nearly completely satisfy all of their drives. The hy-

pothesis is that the NPC whose behaviour is controlled by the utility-based
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planning system will satisfy its drives more quickly because it is able to con-

sider how its selected plans affect multiple goals, unlike GOAP which only

considers a single goal.

5.1 Method

The experiment takes place in a virtual household like those in the game The

Sims1. A screenshot of the household is shown in Figure 5.1. The house is

filled with objects with which the NPC can interact.

The NPC has a set of drives just like those in the Sims. These drives are:

entertainment, energy, hunger, comfort, hygiene, bladder, and social. Each drive

has a value ranging from zero to 100. In the initial state of the simulation, all

drives are in their least preferred state, i.e. they start with a value of zero.

The termination criteria of the simulation is when the value of all drives

are in a near-optimal state. A near-optimal state is one where all drives

simultaneously have a value above 90. The NPC uses the actions available

to increase the value of its drives and reach a near optimal state.

Figure 5.1: A screenshot of the Sims-like household environment.

1The Sims - http://thesims.ea.com/
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action cost attribute affected
wash in bath 10 hygiene, comfort
sleep in bed 10 energy, comfort
sit on chair 2 comfort, energy
drink cappuccino 2 bladder, energy
eat meal 2 hunger
cook meal 2
get meal 2
play computer game 10 entertainment
browse social network 10 social
chat on phone 10 social, entertainment
wash in sink 2 hygiene
eat snack 1 hunger
get snack 2
watch tv 2 entertainment
pee in toilet 2 bladder
poop in toilet 10 comfort, bladder
goto bed 1
goto fridge 1
goto coffee machine 1
goto chair 1
goto pc 1
goto food 1
goto phone 1
goto toilet 1

Table 5.1: Actions available to the NPC during the simulation.

There are 25 actions available to the game NPC, shown in Table 5.1. For

each drive, there are at least two actions available to the NPC that affect the

value of the NPC drive. For example, the watch tv and play computer game

actions both have some effect on the entertainment drive. Many actions

affects more than one drive. For example, the wash in bath action increases

both the hygiene and comfort drive. The reason for having multiple actions

that affect each drive was to make it so there were many ways to reach one

of the goal states and to encourage more complex plans.
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Actions in this simulation generally follow the rule that an action with

a longer duration results in a larger increase to drives. For example, the

wash in bath action takes longer than the wash in sink action but has a greater

positive effect on hygiene. Some actions, such as wash in bath always take

the same length of time to complete, while others, such as sleep in bed, only

lasted as long as needed to maximize some drive. In many cases, it takes

longer to increase a drive by performing multiple short duration actions than

just one long duration action.

Furthermore, all actions that do not increase the value of the energy

drive, decrease its value. For example, the drink cappuccino action increases

the value of the energy drive, but the make cappuccino action decreases the

value of energy.

All drives decrease over time. As a result, even if the NPC used the phone

until it maximized the value associated with his social drive his social level

might need topping up again after performing other actions.

The evaluation metric is the time it takes an NPC to reach a near-optimal

state while under the control of a particular behaviour selection system. As

a secondary focus, the complexity and diversity of behaviours performed by

the NPCs under each of the control systems was observed. The near-optimal

state required for the termination of the simulation was that each NPC drive,

comfort, energy etc., were above 90% of their maximum level.

There is one NPC in the Sims household. The NPC begins with all

NPC drives set to zero. The NPC performed under the control of GOAP

and UDGOAP. The experiment takes place in a single-NPC, deterministic
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environment so only one simulation run with each behaviour selection system

was necessary to determine the time required by each behaviour selection

system to reach the termination condition. As in the hospital experiment,

the behaviour selection system was queried every 200 milliseconds.

The simulation took place using a modified version of the Half-Life 2 1

Source engine. The computer used to run the simulation had an Intel Core 2

CPU 6600 running at 2.4Ghz, 4096MB of RAM and ran Windows 7 Ultimate

64 bit.

5.1.1 Behaviour Selection System Design

This section describes the design decisions and the justification for these

design decisions regarding the two behaviour selection systems used as part

of this experiment.

5.1.1.1 GOAP

This experiment used the same version of GOAP described in Section 2.5.2.2,

which is the same used in Chapter 4. The only difference is the new set of

actions specific to the Sims environment. These actions include wash in bath,

sleep in bed, and drink cappuccino. The costs associated with these actions

are important because it is the cost of an action that decides if it will be

selected during plan formulation.

The Sims environment presents an obstacle to GOAP regarding action

costs. There are only simple preconditions for the actions available. For

1Half-Life 2 - Valve Software - http://orange.half-life2.com/
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example, the wash in sink and wash in bath actions only have the precondition

of being at the sink and bath, respectively. As the goto action costs the same

amount for satisfying the first precondition of each action, the lowest cost

operator of either wash in sink and wash in bath will always be selected to

achieve the goal of increasing the value of the hygiene drive. If the designer

gives a lower cost to wash in sink than wash in bath, the NPC will never

perform wash in bath. This is a limitation of static action costs in GOAP.

The use of dynamic action costs to create more context sensitive behaviour

is described in Chapter 7.

This action cost problem limits GOAP to only ever being able to apply

less than half of the actions available to the NPC in the Sims environment.

A way around this may be to add more preconditions, such as “only use the

bath when very dirty”, but this is tailoring behaviour in a manner used by

systems like FSMs. This is not how GOAP is meant to work. A GOAP

action should specify only when it can be applied, not when it should be

applied. Determining when an action should be applied must be done based

on action cost.

After testing, it was decided that action cost would be based on how long

it would take the corresponding action to complete, such that shorter action

execution time meant lower action cost. This decision was made based on

the fact that it was impossible for a GOAP NPC to satisfy the simulation

termination condition if long execution time actions were associated with low

costs. The simulation termination condition was never satisfied because by

the time a long execution time action is executed to improve one drive, other
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system duration (seconds)
GOAP 146
UDGOAP 118

Table 5.2: Time taken in seconds for an NPC using a given behaviour system
to reach the experiment termination condition of a near-optimal state for all
NPC drives having started in a state where all drive began with a value of
zero.

drives fall below the termination condition threshold. This meant that for

consistency and ability to achieve the simulation termination condition, the

actions associated with short execution durations had the lowest cost.

The goal selected to be achieved by GOAP is the goal associated with

the lowest drive value at the time of goal selection. For example, if hunger

is associated with a value of 30, and this value is lower than the values

associated with entertainment, energy, comfort, hygiene, bladder, and social,

then the goal of improving hunger will be selected.

5.2 Results

Table 5.2 shows how long it took for an NPC under the control of each

selection system to change from the worst state for its drives to a near-optimal

state. The table shows that the UDGOAP NPC finished approximately 19%

faster than the GOAP NPC.

As we have already noted, the version of GOAP used in this experiment is

the same as the one used in the hospital experiment described in the previous

chapter but the utility behaviour selection system is quite different. The

differences in the utility behaviour selection system did have an impact on
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the resource requirement of the system: UDGOAP required approximately

23% more CPU time than GOAP. UDGOAP also required approximately

37% more memory than GOAP.

5.3 Discussion

The GOAP NPC took longer to finish than the UDGOAP NPC. There ap-

peared to be two main reasons behind this. The first is that the UDGOAP

NPC used its ability to consider multiple goals to find the best overall action.

The second is that GOAP only performed short duration actions and missed

out on potentially more beneficial long actions as a result.

UDGOAP used its ability to consider multiple goals to find better plans.

Observation of the UDGOAP NPC showed that after it selected a hard goal,

it always preferred actions that improved not only the drive associated with

that goal, but also associated with other goals. For example, although the

goal might be to improve NPC hygiene, rather than executing the wash in sink

action, improving only NPC hygiene, it instead preferred the wash in bath

action, which improved both NPC hygiene and comfort.

The GOAP NPC performed many short duration actions that had a small

impact on the drives, whereas the UDGOAP NPC performed some long

duration actions that had a large impact on the drives, followed by short

duration actions. For example, eat snack and eat meal both affect just the

same drives, hunger and energy, but eat meal takes longer and has a greater

effect on hunger. Using long, high impact actions first, UDGOAP could make
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a large improvement to a very low value drive. Following up with short, low

impact actions, such as the eat snack action, allowed the UDGOAP NPC to

then cause small increases to drives without taking too much time.

Another observation in the behaviour of the GOAP NPC was how the

inability of GOAP to perform long actions caused it to move around the

apartment more. This happened because the drive with the lowest value

changed more often those of the UDGOAP NPC drives. For example, the

NPC might wash itself a little, increasing hygiene and causing entertainment

to become the new lowest value drive, then the NPC would watch a little

television for entertainment, causing hygiene to have the new lowest drive

value, then the NPC would wash a little again to improve hygiene. On the

other hand, the UDGOAP NPC would have a bath, hugely improving hygiene

so that it was far from the lowest drive. This behaviour the GOAP NPC

displayed is not to be confused with dithering as the NPC always completed

the actions after one was selected.

UDGOAP may have outperformed GOAP in the Sims environment but

this was a static, single-NPC, deterministic environment where all goals were

known at design-time. The next iteration of UDGOAP built upon UDGOAP

to work in a dynamic, multi-NPC, non-deterministic environment where goals

are not known until run-time.
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Chapter 6
Dynamic Goals and

Environments

The experiment in the previous chapter tested if the ability of UDGOAP

to consider multiple goals when planning could produce superior plans to

the GOAP system that only considers a single goal. However, the experi-

ment took place in a static, single-NPC, deterministic environment and not

the dynamic, multi-NPC, non-deterministic environments for which GOAP

was designed. This chapter describes an experiment that takes place in a

complex, continuous, highly dynamic, multi-NPC, non-deterministic envi-

ronment similar to those found in modern action games that GOAP and

finite state machines have been designed for. The purpose of the experi-

ment is to compare the performance of UDGOAP to a finite state machine

and GOAP in a fast-paced environment. The performance of the UDGOAP
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NPC is compared to that of a GOAP NPC and a finite state machine NPC

designed for Half-Life 2, a fast-paced action game.

6.1 Method

The simulation takes place in a large arena containing a magical alien wizard

and an endless supply of enemies, giant antlions that try to kill the wizard.

The wizard is placed in the centre of the arena at the beginning of the

simulation. The objective of the wizard is to live as long as possible. A

screenshot of the arena is shown in Figure 6.1.

Figure 6.1: A screenshot of the alien wizard fighting enemy antlions in the
arena.

Four spawn points create enemy antlions with a randomly selected fre-

quency from 2.5 to 5 seconds. Antlions attempt to kill the wizard by per-

forming close-combat melee attacks that reduce the health of the wizard.

Antlion behaviours are those that are already built into the Half-Life game.
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The behaviour selection system built into the Half-Life game is described in

Section 6.1.1. Only the wizard used different behaviour selection systems.

The wizard can attack antlions either by using a melee attack or one of

two spells: a long-range lightning attack that kills exactly one antlion, or a

blast attack that kills all antlions within a short range of the wizard. The

wizard also has a heal spell that increases his health. All spells expend a

fixed amount of a resource called mana which is subtracted upon beginning

to cast the spell. A spell can fail if it is interrupted by an attacking enemy

antlion or if the wizard moves.

The wizard starts in the arena with his maximum 100 health and max-

imum 100 mana. Items that increase health or mana by a random amount

from 1 to 100 spawn in random locations within the arena. These items

spawn with a random frequency from 10 to 20 seconds. Only the wizard

can use these items. Items are immediately used by the wizard upon coming

within a small distance of the item.

The arena is completely reset upon the death of the wizard. The reset

causes the removal of all existing antlions and items. The time in between

which the wizard spawned and died is referred to as an episode. The wizard

can perform the following actions.

� goto — Moves the wizard from one position to another. This action can

only be performed on object positions rather than arbitrary (X,Y,Z)

coordinates. This is a limitation of GOAP and UDGOAP that both

require an object for an action to be executed upon, be they potions
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or way point nodes.

� melee — A close-combat attack. The wizard will usually take dam-

age while performing this attack. This attack can sometimes miss the

target.

� lightning — A spell that kills one visible target within a long range

at the cost of 20 mana. This spell can sometimes miss the target if the

target moves quickly while the wizard is casting the spell. This missed

attempt still spends the wizard’s mana. This spell can be interrupted

if the wizard receives heavy damage during the casting of the spell.

� blast — A spell that kills all enemies within a short distance of the

wizard at a cost of 60 mana. This spell cannot miss any targets inside

the blast radius.

� heal — A spell that heals the wizard 25 health at the cost of 15 mana.

This spell cannot miss the target. This spell can be interrupted if the

wizard receives heavy damage during the casting of the spell.

The goal of the experiment is to test if UDGOAP can use its ability to

consider both multiple goals and closeness to the completion of a goal to have

the controlled NPC live longer than an NPC controlled by industry tested

systems in the kind of environment for which those systems were designed.

These industry tested systems are GOAP and the finite state machine used by

the Half-Life 2 engine, both of which were designed for fast-paced, complex,

many-NPC environments. The arena in which the wizard fights is such an
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environment. The arena is typical of arenas in other games where there is

an endless supply of enemies but health and other items are made available

periodically. Those typical arena designs were imitated during the design of

this wizard arena so as to create an environment not tailored for the benefit

of the UDGOAP system.

The wizard performed 300 episodes in the arena under the control of each

behaviour selection system. UDGOAP is compared to GOAP and the Half-

Life 2 finite state machine by measuring the average lifespan of the wizard

under the control of those systems.

6.1.1 Behaviour Selection System Configuration

This section describes the behaviour selection systems used in this experiment

and how these systems were configured in an attempt to produce behaviours

optimized for the experiment environment. The three behaviour selection

systems that were used in the experiment are the finite state machines used

in the Half-Life 2 game, GOAP, and UDGOAP.

Each behaviour selection system had values that had to be optimized for

the arena environment. Finding the optimal configuration for the finite state

machine involved searching for the health and mana thresholds at which the

wizard would take actions to increase its health and mana levels. For GOAP,

the search for the optimal configuration was a search for the set of action

costs that maximize the lifespan of the wizard. For UDGOAP, the search

for the optimal configuration was a search for the set of drive weights that

maximize the lifespan of the wizard.
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6.1.1.1 Half-Life 2 Finite State Machine

The behaviour selection system used in Half-Life 2 is a type of finite state

machine. This behaviour selection system will be referred to as the Half-Life

2 finite state machine (HL2FSM). An overview of the system is shown in

Figure 6.2.

Figure 6.2: A flowchart showing the behaviour selection process used by the
HL2FSM.

Each HL2FSM has a set of flags, states, and schedules. The pro-
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cess of behaviour selection for the HL2FSM begins by the NPC sensing the

world. The sensed data is used to set boolean flags1. For example, the

cond heavy damage flag is set if the NPC to whom the HL2FSM flag belongs

has taken a lot of damage since the last time a behaviour was selected. An

NPC state is then selected based on the values of the flags. These states

include the idle, combat, and dead states.

A schedule is a behaviour within a HL2FSM that takes the form of a

predefined plan. Each schedule has a set of optional failure flags indicating

under what conditions the schedule can fail, an optional predefined failure

schedule to execute should the schedule fail, and a sequence of tasks. A task

is similar to a low-level action. Each task can change some variable specific to

the schedule to which it belongs, or the NPC performing the schedule. Every

action the wizard could perform, described in the previous section, has an

equivalent schedule. For example, the heal action has the equivalent schedule:

heal = {(set fail schedule, alert), (get heal target, null), (stop moving, null),

(face target, null), (heal target, null), failure: cond heavy damage}, which sets

a schedule to switch to should this schedule fail, selects a target to heal, stops

the NPC from moving, faces the selected feeling target, and heals the target.

The schedule only fails of the NPC takes heavy damage.

The failure flags are a subset of the recently updated flags. If any flag is

set to true, the schedule fails. Upon failure, a new schedule will be selected.

If the schedule specifies a failure schedule, the failure schedule will be se-

lected for execution. When in a particular state, an NPC can only select a

1These flags are referred to as conditions within the engine but we avoid that term
because the term condition is already used to refer to something else in this thesis.
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schedule relevant to that state. However, any specified failure schedule can

be transitioned to, regardless of if the other schedule could only have been

selected while the NPC was in a different state.

One of the goals of this experiment was to implement behaviour for the

wizard using the HL2FSM while preserving as much of the existing behaviour

as possible so the other systems could be compared to a system used in a

successful action game. However, certain behaviours were specific to the

arena simulation, such as the behaviours to pick up mana potions when the

cond critical mana flag is set, and to pick up health potions or cast a healing

spell when the cond critical health flag is set. These flags required thresholds

to be set so as to determine when the flag would be set to true.

A brute-force approach was used to determine the optimal values for the

thresholds at which the cond critical mana and

cond critical health flags should be set. A pair of values was generated where

one value was used as the health threshold and the other was used as the

mana threshold. Each value in the pair was a multiple of five, had a minimum

value of zero, and had a maximum value of 100. Each permutation of the pair

was tested, e.g. (0, 0), (0, 5), (0, 10), ..., (100, 95), (100, 100). The wizard

performed 40 episodes in the arena with each threshold pair permutation and

the lifespan of the wizard was recorded for each episode.

Figure 6.3 shows a surface plotted using the mean lifespan of the wizard

for each health-mana threshold pair. Each mean was based on 40 episodes

of the wizard in the arena with a particular pair of values for the health and

mana thresholds at which the wizard will select behaviour to increase his
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Figure 6.3: The surface produced by the mean 40 episodes for a pair of health
and mana thresholds.

health or mana.

The (health: 35, mana: 0) pair had both the highest mean lifespan of all

of the health-mana threshold pairs. This pair intuitively makes sense because

the wizard should only pick up mana potions when his mana level is very

low because spells do not cost much mana and mana is not crucial, but the

wizard should take actions to increase his health before its too late, as the

wizard often takes damage while running to a health potion. The HL2FSM

for the wizard with this optimal health-mana threshold pair was selected as

the final configuration for use during the experiment.
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6.1.1.2 GOAP

The GOAP system used in the arena experiment was the same as that used

in the hospital and Sims experiment. The GOAP wizard has all five of the

actions described in Section 6.1. Ideally, the actions would be associated with

their optimal costs, where the optimal action cost set maximizes the lifespan

of the wizard using the actions associated with that cost set. A brute force

approach was not used for finding this optimal GOAP action cost set because

the brute force search on just two variables used in the HL2FSM system took

approximately three weeks to complete, and scaling to the six values, one for

each GOAP action, would be computationally infeasible.

In the search to find the optimal action cost set, random action cost sets

were created consisting of five action costs1. A total of 270 random action

cost sets were tested for 10 episodes each. The action cost set associated

with the longest average lifespan from random sets was selected as the final

set. The final set of action costs is shown in Table 6.1.

Table 6.1: The final set of GOAP action costs.

action cost
goto 0.23
melee 0.38
lightning 0.71
blast 0.53
heal 0.3

1A hill climbing approach was originally taken but was found ineffective because of the
geography of the action cost landscape. The random start approach finally used covered
more ground and produced cost sets associated with longer lifespans.
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6.1.1.3 UDGOAP

The UDGOAP system used in the experiment is the same as the system

described in Chapter 3. Each drive in UDGOAP requires a weight that de-

notes its importance to the utility of the state to the NPC. The wizard had six

drives: kill enemies, maximize health, maximize mana, maximize health potions,

maximize mana potions, and minimize enemies nearby.

In the search to find the optimal drive weight set, random drive weight

sets were created consisting of six drive weights1. A total of 270 random drive

weight sets were tested for 10 episodes each. The drive weight set associated

with the longest average lifespan from random sets was selected as the final

set. The final set of weights selected is shown in Table 6.2.

Table 6.2: The final set of UDGOAP weights.

action cost
kill enemies 0.38
maximize health 0.48
maximize mana 0.34
maximize health potions 0.38
maximize mana potions 0.33
minimize enemies nearby 0.66

6.2 Results

The histograms in Figure 6.4 are produced from the lifespans of the wizard

in the arena. Each histogram was created from the wizard performing 300

episodes under the control of the behaviour selection system specified in

1As with GOAP, a hill climbing approach was originally taken but was found less
ineffective than a random start approach.
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the histogram. The lifespans of the HL2FSM wizard are bundled together at

values less than 500 seconds with a peak near the 125 seconds mark. Lifespans

for the GOAP wizard have a much more even distribution. Lifespans for the

UDGOAP wizard are much more scattered across the histograms.

(a) HL2FSM (b) GOAP

(c) UDGOAP

Figure 6.4: Histograms showing the wizard lifespan for each of the three
behaviour selection systems.

Table 6.3 shows the mean and standard deviation in lifespan of the wizard

using each behaviour selection system for 300 episodes. The table shows that

the wizard using UDGOAP lives substantially longer on average than the

wizard using the other systems, but the standard deviation of the lifespans
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of the UDGOAP wizard is far greater than those of the other two systems.

This suggests that the UDGOAP wizard sometimes lived a very long time

and sometimes lived for a very short time whereas the wizard using the

other systems would have more predictable lifespans. This is reflected in the

histograms in Figure 6.4. This large standard deviation is probably due to

the UDGOAP wizard preferring melee attacks and using a blast attack when

surrounded by antlions. At the beginning of each episode, the UDGOAP

wizard quickly meleed with the antlions. Health potions spawn periodically

but sometimes the health increase from the first couple of potions would be

small and the UDGOAP wizard could not regain the health it had lost during

the first several melees and die as a result. However, other times the first

couple of health potions healed very well and by the time the wizard needed

health again, several health potions would have spawned and but there would

be very few antlions alive because of how the UDGOAP wizard would melee

when there were few antlions and blast when there were many. The result

was that once the UDGOAP wizard got past the initial phase where health

potions were unavailable, the melee attacks when there were few antlions and

blast attack when surrounded was a good strategy. The HL2FSM wizard took

a more conservative approach of often shooting enemies from afar but this

back fired as the HL2FSM wizard might later have no mana available for

his blast attack when it became surrounded by antlions. The GOAP wizard

frequently meleed like the UDGOAP wizard but did not use its blast attack

when surrounded because the cost of that action was higher than the melee

action.

133



Table 6.3: The mean lifespan and the standard deviation of the lifespan of
the wizard over 300 episodes for each behaviour selection system with its
configuration optimized for lifespan in the arena.

System Mean Std. Dev.

HL2FSM 233.62 203.52
GOAP 242.71 236.52

UDGOAP 381.98 639.41

We wanted to know if there was a significant difference between the lifes-

pans of the wizards under the control of the behaviour selection systems.

The experiments performed using the three behaviour control systems gen-

erated unpaired, non-normalized, non-parametric data, so a Kruskal-Wallis

test (Kruskal & Wallis, 1952) was applied to the lifespan data generated

from the 300 episodes run by each of the behaviour selection systems. This

Kruskal-Wallis test returned a p-value of 0.038, suggesting that the at least

one of the three wizard lifespan populations came from a different source.

This rejection of the null hypothesis was followed up by a post hoc Dunn

test (Dunn, 1961) where p-values were adjusted for multiple comparisons us-

ing the Hochberg procedure (Hochberg, 1988). Table 6.4 shows the results of

this test. There is a significant difference in the lifespan of the wizard using

the UDGOAP system when compared to the other two behaviour selection

systems.

6.3 Conclusion

This chapter detailed an experiment to compare a UDGOAP NPC to HL2FSM

and GOAP NPCs in the kind of highly dynamic, multi-NPC environments
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Table 6.4: The p-values of a Dunn test comparing the lifespan of the wiz-
ard using each behaviour system for 300 episodes, checking if each system
performed significantly better than the others, where the values are adjusted
using the Hochberg procedure.

HL2FSM GOAP UDGOAP

HL2FSM — 0.439 0.0332

GOAP 0.439 — 0.0337

UDGOAP 0.0332 0.0337 —

in which the HL2FSM and GOAP systems have been used successfully in

games. The purpose of the experiment was to determine if UDGOAP can

use its ability to consider multiple goals to outperform the HL2FSM and

GOAP in the kind of environment for which they were designed.

The performance of each system was based on the lifespan of the NPC

controlled by that system in an arena. The results showed that the UDGOAP

NPC had the longest lifespan and that the UDGOAP NPC lived significantly

longer than the NPCs controlled by both HL2FSM and GOAP.

These results show that even in the kind of environment that HL2FSM

and GOAP were designed for and even in an environment where there are few

opportunities for selecting behaviours that affect multiple goals, UDGOAP

still performed best.
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Chapter 7
Smart Ambiance

The last three chapters described the evaluation of different versions of the

UDGOAP system and how utility can benefit action planners games. This

chapter focuses on a system called smart ambiance to select more contextu-

ally appropriate actions, demonstrated by examples of NPCs preferring quiet

actions in a library, NPCs becoming nervous and running across a road after

seeing other NPCs run, and a spy who walks when near cameras but runs

when not near cameras. Smart ambiance uses the environment to select more

contextually appropriate actions, unlike UDGOAP that used smart objects

to enact plans in a more contextually appropriate manner. Smart ambiance

alters action costs so that contextually appropriate actions are more likely

to be selected. This chapter provides the architecture for smart ambiance

and demonstrations using smart ambiance. All of the demonstrations in this

chapter were performed by using smart ambiance with GOAP but smart
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ambiance can be used with any numeric based planner, including UDGOAP.

GOAP is a powerful behaviour selection system. The costs associated

with actions make it possible for a designer to specify which plan an NPC

should prefer given multiple ways of achieving a particular goal. However,

static action costs become a hindrance when there are either multiple actions

have the same preconditions and a shared effect, or certain actions become

more or less appropriate at certain times or places.

If an NPC has multiple actions with the same preconditions and a shared

effect, the lowest cost action will always be selected when trying to achieve a

precondition that requires that effect1. For example, an NPC might have the

kick and punch actions, both of which have the precondition that the enemy

they are performed on is within melee distance and both of which have the

effect of killing the enemy. If the punch action has a lower cost than the kick

action, the punch action will always be selected when attacking an enemy

within melee distance. This can lead to repetitive behaviour but also means

that the kick action is essentially unavailable to the NPC.

There may also be times and places where certain actions become more

or less appropriate. For example, shouting at a football pitch is normal but

shouting in an office is not. Adding a precondition so that the shout action

cannot be performed when in an office is equivalent to a rule-based system

where the designer is trying to anticipate every situation in which the NPC

might find itself because not being in an office is not really a precondition of

1This assumes the plans needed to reach these actions are the same cost, but in our
experience, most plans consist of a goto action followed by some other action, so this
assumption has very often been true for us.
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shouting. This additional precondition specifies when the action should be

performed rather than how the action is performed, robbing GOAP of one

of its best attributes.

Smart ambiance, introduced in Sloan et al. (2011b), uses the environment

of an NPC to inform the behaviours of the NPC. This makes it possible to

have multiple actions with the same preconditions and still have different

actions selected according to different contexts. It also makes it possible to

have the NPC prefer more contextually appropriate actions, for example,

making it unlikely for the NPC to shout in an office.

As well as creating more contextually appropriate behaviours, smart am-

biance can lead to the generation emergent behaviours. Emergent behaviours

are described by Li et al. (2007) as behaviours that have not explicitly been

designed for but instead emerge from a combination of rules for other be-

haviours. Emergent behaviours are desirable in some game environments

because such behaviours have been shown to be interesting to players and

add longevity to games (Bauckhage & Thurau, 2004).

Smart ambiance works as an extension of GOAP by associating actions

with ambiance annotations that specify which actions are more appropriate

given a particular ambiance. GOAP actions associated with appropriate

ambiance annotations have their cost reduced.

We use three proof-of-concept demonstrations to show how different as-

pects of smart ambiance can be used to cause the selection of more contextu-

ally sensitive behaviour. These demonstrations take place in an environment
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like those found in The Sims1 games, where several ordinary human charac-

ters exist in a world not too unlike the real world but where interactions and

emotions are exaggerated. The three aspects of smart ambiance that will be

described in this chapter are location ambiance, event ambiance, and object

ambiance. All demonstrations are implemented using Valve’s Source Engine.

The implementation of GOAP used with smart ambiance is the same as the

implementation used in the hospital, Sims, and arena experiments and is

described in Section 2.5.2.2.

This chapter has the following structure. An overview of smart ambiance

is given in Section 7.1. Each of the three aspects of smart ambiance — lo-

cation, event and object ambiance — are then described along with demon-

strations of each in use in Section 7.2. The chapter ends with conclusions on

smart ambiance in Section 7.3.

7.1 Smart Ambiance Overview

A smart ambiance is an area of space inside a virtual world where the area

itself, the presence of objects in the area, and the occurrence of events in

the area, all alter the cost of actions for NPCs inside the area so that more

appropriate actions cost less and less appropriate actions cost more. Luck &

Aylett (2000) describes intelligent virtual environments that can assist

NPCs by providing the NPC with information about the environment. Smart

ambiance is a type of intelligent virtual environment that uses information

1The Sims - Maxis - http://thesims.com/en US/home
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from the environment to help create a context for the environment.

Figure 7.1: A class diagram of smart ambiance. Lines connected by filled
diamonds denote a has-a relationship.

Figure 7.1 shows a class diagram of the components of smart ambiance

that make these cost modifications possible. Each smart ambiance action is

associated with a set of ambiance annotations, e.g. the work action might

have the serious ambiance annotation and a set of ambiance effects that de-

scribe how an ambiance is altered by the performance of the action. Each

NPC has smart ambiance information. This information describes which

annotations are applicable to the NPC. For example, an NPC with a seri-

ous personality would have the serious ambiance annotation in its applicable

ambiance annotation set, meaning that this NPC can have its serious action

costs modified by the smart ambiance. The NPC ambiance information also

contains a set of ambiance modifiers that are active and currently applied to

an NPC, called the active ambiance modifier set.

An ambiance modifier adds a value to the predefined cost of an action,
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either positive or negative, where the predefined cost is a static cost chosen

by a designer. This cost modification occurs during plan formulation and

applies only to an NPC with the ambiance modifier in its active ambiance

modifier set. A ambiance modifier has the following components:

1. cost booster — A cost booster alters the cost of an action to be

different from the predefined action cost.

2. cost dampener — A cost dampener has the opposite effect of the

booster in that it brings the cost of an action back to its predefined

value.

3. triggers — A set of rules that will generate and activate the ambiance

modifier.

4. calculate total modification — A function that combines the booster

and dampener cost modifications to get a final cost modification amount.

5. should stop — A function that checks if both the booster and damp-

ener are finished applying their cost alteration effects. If they are fin-

ished, the ambiance modifier should be removed from the list of am-

biance modifiers that are currently applied to the NPC.

The cost booster and cost dampener are both cost modifiers. A cost

modifier alters a GOAP action cost. Each cost modifier has a start time at

which it was created, a total amount denoting how much it should change

action cost by, a set of ambiance annotations that the cost modifier applies
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to, and a function that describes the rate at which the cost modification

should occur.

For example, the m = (start time: 123.0, end amount: 10, ambiance

annotations: serious, rate of change: fn instantaneous) cost modifier instan-

taneously causes a change of 10 to the cost of all actions that have a serious

ambiance annotation, assuming the ambiance modifier that contains this cost

modifier is in the set of active ambiance modifiers for the NPC.

A smart ambiance is an area inside the world. A smart ambiance contains

a list of all of the ambiance modifiers. These modifiers are applied to any

NPC inside the area when that NPC is selecting an action. If an ambiance

modifier is relevant to the NPC, the modifier alters the costs of the relevant

actions. The NPC ambiance info determines which modifications are relevant

to the NPC.

7.2 Aspects of Smart Ambiance

This section defines each of the three aspects of smart ambiance, describes

their implementation, describes a demonstration that was created to show-

case each aspect, and mentions previously researched techniques similar to

these aspects.

7.2.1 Location Ambiance

Location ambiance is the inherent ambiance of an area. For example, a

graveyard has an inherently serious ambiance, so actions associated with the
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serious ambiance annotations should be more likely to occur.

Location ambiance works by associating ambiance modifiers with a smart

ambiance and causes any NPC who enters the area of the ambiance to imme-

diately have those associated ambiance modifiers added to their set of active

ambiance modifiers of the NPC. These modifiers then alter the cost of cer-

tain actions. The location ambiance of an area is defined at design-time and

remains unchanged at run-time.

A scenario was constructed to demonstrate location ambiance. In the

demonstration, an outgoing character like those found in The Sims is in

a library occupied by other characters and several computers, as shown in

Figure 7.2. The outgoing character has the goal of socializing. There are

two actions with effects that satisfy this goal: the chat action, which is

associated with the loud ambiance annotation, and the check social network

action, which is not associated with any ambiance annotations. This is an

outgoing NPC so when the costs of these actions were being set, the designer

assigned the chat action a lower cost than the check social network action to

encourage the character to be chatty. However, in the context of a library, the

chat action is less appropriate. In the library, there is a friend of the character

that can be chatted with, and there is a computer that the character can use

to check his social network. The scenario is played twice: once for the NPC

with smart ambiance enabled and once without ambiance enabled.

When the NPC without smart ambiance enabled enters the library, no

ambiance modifiers are applied to the NPC, which causes the chat action

to remain the lowest cost action that achieves the goal of socializing. As
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a result, the character walks up to his friend in the library and begins to

chat loudly, which is something that normally does not happen in a library.

However, when the scenario is played for the character affected by smart

ambiance, the costs associated with all actions that have the loud ambiance

annotation are increased. This increases the cost of the chat action, causing

the check social network action to become the lowest cost action to achieve

the goal of socializing. The character then performs the check social network

action. The consideration of location ambiance allows the character to per-

form a more contextually appropriate action in a given location.

Figure 7.2: A screenshot taken in the virtual library.

There is some overlap with location ambiance and Paanakker (2008),

where soldiers would stay away from parts of a map that had dead allies in

them. The work most similar to location ambiance is Sung et al. (2004).

Sung’s approach uses spatial situations. The spatial situations use smart

objects and predefined zones that give possible actions to NPCs when they

come within a certain range of them. For example, a bus stop area would add

the actions of getting on or alighting a bus. However, Paanakker’s method

only works for path finding and Sung’s method enables certain actions in
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certain areas. Location ambiance does not enable or disable actions in a

particular area but instead makes certain actions more likely to occur or not

occur through the alteration of action costs.

7.2.2 Event Ambiance

An event ambiance changes the smart ambiance in a location based on

the occurrence of a particular event. Each action in the smart ambiance

framework has the usual GOAP symbolic and context effects, but may also

have ambiance effects. Each ambiance effect is associated with an am-

biance modifier that is added to the smart ambiance in which the action

was performed. The ambiance then queries each NPC inside the ambiance

to see if the newly added ambiance modifier should be applied to the NPC.

The ambiance modifier should be applied to the NPC if any of the ambiance

annotations of the ambiance modifier is also present in the set of ambiance an-

notations applicable to the NPC. If such an ambiance annotation is present,

the newly attached ambiance modifier is then added to the set of active

ambiance modifiers of the NPC.

For example, consider a smart ambiance within which the give out to ac-

tion occurred. This action has an ambiance effect that causes the generation

of a cost modifier. This cost modifier has the serious annotation. The smart

ambiance queries each NPC inside the smart ambiance and finds an NPC that

has the serious annotation in its set of applicable ambiance annotations. The

NPC has this serious ambiance annotation in its set of applicable ambiance

annotations because the designer wanted this NPC to respond to events that
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affect the serious actions of the NPC. All actions that are associated with

the serious ambiance annotation then have their costs modified by the cost

modifier associated with the ambiance effect of the give out to action.

Figure 7.3: A screenshot pedestrians crossing a road.

A scenario was constructed to demonstrate event ambiance. In the demon-

stration, there is a traffic crossing with a number of pedestrians who wish

to cross, as shown in Figure 7.3. The crossing and all NPCs are contained

within a smart ambiance. The pedestrians have the goal of crossing the road.

There are two actions available to the pedestrians: the walk action, which

is not associated with any ambiance annotations or ambiance modifiers, and

the run action, which has the nervous ambiance annotation and has an event

ambiance effect that is associated with an ambiance modifier that decreases

the cost of all nervous actions. This means that every time a pedsetrian

runs across the road, the ambiance effect of making nervous actions cost less

is added to the ambiance modifiers of the smart ambiance, making nervous

actions, such as the run action, more likely to occur.

There are two types of pedestrians: a normal type with a lower cost for
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the walk action than the run action, and a nervous type with a lower cost for

the run action than the walk action. When there are only normal pedestrians,

all pedestrians walk across the road. When there are several nervous pedes-

trians, at first, only the nervous pedestrians run, but shortly after, even the

normal pedestrians run. This happens because several ambiance modifiers

are added from the ambiance effects of the run action, causing a threshold to

be crossed where the cost of the run action becomes lower than the cost of

the walk action for normal pedestrians. This makes it so ordinarily, a normal

character will perform regular actions, but the presence of a nervous person

will have an infectious nervous effect on the normal character, making it also

become nervous and perform actions associated with being nervous.

7.2.3 Object Ambiance

Object ambiance is the effect an object has on the smart ambiance. An

ambiance is modified when an object with object ambiance enters the area

of a smart ambiance. Object ambiance allows an area that is not inherently

associated with any ambiance to have its ambiance dynamically generated

by the objects within the area. Object ambiance is interesting because the

cost modifiers generated by the objects may interact in unpredictable ways,

facilitating emergent behaviour. Furthermore, object ambiance allows the

likelihood of actions to be be influenced by the surroundings of the NPC,

making the actions performed more contextually appropriate.

Object ambiance works by associating each object, be it an item or NPC,

with a set of ambiance modifiers that are added to the smart ambiance in
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which the object resides. Objects may instead not add their ambiance to

the entire smart ambiance but only add their ambiance to NPCs that trigger

certain rules belonging to the object, such as coming within a certain distance

the object. In each case, the ambiance modifiers of the object are added to

the set of active ambiance modifiers for the NPC affected by the object

ambiance.

A scenario was constructed to demonstrate object ambiance. In the

demonstration, there is a spy trying to escape from a facility as quickly as

she can but without behaving suspiciously in the presence of security cam-

eras. The area containing the spy and cameras is within a smart ambiance.

The cameras have an object ambiance that is associated with an ambiance

modifier that has the effect of increasing the cost of suspicious actions. This

ambiance modifier is associated with the suspicious ambiance annotation.

The spy can perform two actions: walk and run. Both actions have no pre-

conditions but the run action has a lower predefined cost because it completes

any goal of getting to a destination faster than walking. However, the run

action is associated with the suspicious ambiance annotation. The walk action

is not associated with any ambiance annotations.

The scenario is played twice: once for a spy with smart ambiance enabled

and once for a spy without smart ambiance enabled. The spy that is not

affected by smart ambiance runs straight from the beginning to the exit,

including running past every camera. This behaviour does not make sense

given the context that the spy is trying to avoid suspicion. The spy that

is affected by smart ambiance performs the walk action to move down the
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corridor toward the exit as that is the lowest cost action due to the cost

modifiers applied by the object ambiance of the cameras. Once the spy is

beyond the ambiance of the camera, she runs for the exit.

A variation of object ambiance was used in The Sims 41, although the

research described in this chapter came a number of years earlier (Sloan et al.,

2011b). In the Sims 4, the objects in the environment affected the emotional

state of a Sim. For example, being near a painting might cause the Sim to

enter the inspired emotional state, causing the Sim to become more likely to

play an instrument or paint on an easel.

7.3 Conclusions

This chapter described smart ambiance, a system that makes use of an en-

vironment to cause NPCs within the environment to prefer actions that are

appropriate in the context of that environment. Three aspects of smart am-

biance were demonstrated: location ambiance, event ambiance, and object

ambiance. Smart ambiance adjusts the costs of actions so that more contex-

tually appropriate actions cost less than inappropriate actions.

Smart ambiance has several strengths. Smart ambiance increases the like-

lihood of more contextually appropriate behaviours being selected. This was

shown in all the demonstrations. Smart ambiance facilitates the emergence

of behaviours unforeseen by the designer. The pedestrian crossing scenario

demonstrated this. One could imagine that there might be a city filled with

1The Sims 4 - Maxis - http://thesims.com/en US/home

150



characters with different personalities, for example, some with a nervous

disposition. Although the designer might not have ever considered the situa-

tion where a cluster of nervous people might simultaneously arrive at a road

crossing with less nervous people, when the situation occurred, the behaviour

exhibited by normally calm pedestrians might be considered interesting. The

pedestrian crossing scenario shows another smart ambiance strength in how

smart ambiance creates infectious actions. Normal pedestrians were walking

across the road until they felt nervous because others were running across.

Smart ambiance also allows actions to be selected that might otherwise never

be. Consider that the spy could perform two actions, walk and run, both with

no preconditions and both that achieve the same goal of arriving at a desti-

nation. If action costs are fixed as they are in GOAP, the lower cost action

of the two will allows be selected to achieve that goal. However, by making

action costs change with context, a different action may be selected for par-

ticular situations. This selection of different actions may cause behaviours

to be less repetitious and may be more enjoyable for players.

Smart ambiance also has some weaknesses. Functions must be imple-

mented to model each ambiance modifier, burdening the designers. The

emergent behaviour that is created by combining several ambiance modifiers

might not be desirable. Also, the infectious behaviours could cause a run-

away effect where behaviour no longer becomes sensible and would have to be

moderated by the designer. An example of this runaway ambiance occurring

would be if the nervous actions of the pedestrians spread, causing more peo-

ple to become more nervous, having a domino effect that might eventually
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cause the entire city to become perpetually nervous.

The demonstrations showed aspects of smart ambiance in isolation but

these would ideally be combined. It is hoped that this combination of aspects

would create an ambiance that results in more appropriate behaviours that

players would find more enjoyable.
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Chapter 8
Conclusions

There are many types of systems for selecting the behaviour of NPCs in

computer games. Many games have used action planning systems as their

behaviour selection system. GOAP is a popular action planning system for

computer games. However, GOAP has several weaknesses.

� GOAP cannot plan for multiple goals, which results in plans that help

achieve multiple goals being overlooked, and may also result in plans

being selected that achieve one goal at the expense other goals held the

NPC.

� GOAP cannot tell how complete a goal is and so may select actions

that are more powerful than necessary to achieve a goal, e.g. using a

large healing spell when only a small healing spell is necessary.

� GOAP action effects are unable to partially satisfy a precondition. This
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makes it impossible to use multiple actions to satisfy a single precon-

dition, which can cause better plans to be overlooked.

� GOAP can only select one action when there are multiple actions avail-

able with the same desired effect, all preconditions of the actions avail-

able for application are satisfied, and the plan to reach those actions

costs the same amount.

The research in this thesis details how the UDGOAP system was de-

signed to address these weaknesses in GOAP. The remainder of this section

provides a summary of the contributions toward addressing these weaknesses

and suggests areas of research for future development.

8.1 Summary of Contributions

The following is a brief summary of the contributions made in this thesis:

� A review of literature regarding behaviour selection systems in computer

games. Chapter 2 described different behaviour selection systems that

have been used in games, discussed why action planning systems are a

promising approach, detailed some weaknesses of GOAP, and described

systems based upon GOAP that addressed some these weaknesses. The

chapter also defined utility and showed how utility had been used in a

number of computer games.

� A novel action planner that combines utility, drives, and smart objects

to create a behaviour selection system capable of planning for mul-
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tiple goals, using partially satisfying actions, dynamically generating

goals, and executing actions in a more contextually appropriate man-

ner. Chapter 3 introduced UDGOAP, the system developed as part of

this research to address weaknesses in GOAP. UDGOAP uses utility to

help measure the completeness of any number of goals. UDGOAP also

uses utility to be able to partially satisfy preconditions by measuring

the effects of actions more accurately. UDGOAP uses drives to generate

goals, allowing UDGOAP to have multiple goals of the same type and

allowing the planning for all of those goals simultaneously. UDGOAP

also uses smart objects to help reduce the complexity of the planning

system by placing information in the environment and also uses smart

objects to perform actions in a more contextually appropriate manner.

� A study of the feasibility of using action planners for real-time computer

games. Chapter 4 described an experiment that tested if GOAP could

be used in a virtual hospital environment with many NPCs. The exper-

iment also tested how a simple utility-based system compared to GOAP

regarding resource consumption. The results showed that GOAP was a

viable behaviour selection system as it used an amount of resources far

below the amount usually made available for a behaviour selection sys-

tem in a game. The results also showed that the utility-based system

used fewer resources than GOAP.

� An empirical evaluation of UDGOAP running against GOAP in a

static, single-NPC, deterministic environment. Chapter 5 described
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an experiment that took place in a virtual household like one found in

The Sims. The experiment compared GOAP to UDGOAP by measur-

ing how long it took an NPC to start from an undesirable state and

reach a near-optimal state. The results showed that the NPC controlled

by UDGOAP reached the near-optimal state substantially faster than

the NPC controlled by GOAP.

� An empirical evaluation of UDGOAP running against industry stan-

dard behaviour selection systems in a highly dynamic, multi-NPC, non-

deterministic environment. Chapter 6 described an experiment that

took place in a virtual arena environment. The experiment compared

the lifespans of a wizard in the arena under the control of the finite

state machine used in Half-Life 2, GOAP, and UDGOAP. The results

showed that the wizard controlled by UDGOAP lived a statistically

significant time longer than the wizard controlled by the finite state

machine and the wizard controlled by GOAP.

� A novel system using smart ambiance to dynamically alter action costs

to produce more contextually appropriate behaviours. Chapter 7 de-

scribed the architecture of smart ambiance and its different aspects:

location ambiance, event ambiance, and object ambiance. The chapter

also detailed demonstrations that had been performed using each of the

three aspects. The demonstrations showed that smart ambiance could

be used with GOAP to have NPCs select more contextually appropriate

behaviour than NPCs using GOAP without smart ambiance.
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Overall, the final UDGOAP system is satisfactory but far beneath the

original expectations for the system. The original goal of this research was

to create a system that would be so obviously better than the existing sys-

tems used in industry that game developers would feel compelled to use it.

Instead, the UDGOAP system improves upon several aspects of GOAP but

not enough to make it as enticing as originally hoped.

Improvements made by UDGOAP were not properly highlighted because

of the experimental setups. This was particularly true for the arena ex-

periment. A number of other things were left out of the simulation, such

as enemies with weakness to certain elements, wizard allies and spells that

have effects that are difficult to predict, though these things may have given

UDGOAP a chance to show where it could do things far better than either

GOAP or the Half-Life 2 finite state machine. These additions were not im-

plemented because of time constraints and difficulty controlling the lifespan

of the wizard so that he would live long enough to produce useful data but

not so long that it would take too much time to perform the required number

of runs.

It was interesting to watch UDGOAP perform actions that originally

thought would not be wise but ended up being better than what had been

thought to be the optimal behaviour in the arena. For example, it was

assumed that it would be better for the wizard to use its magical ranged

attacks against the antlions so that he would avoid taking damage. UDGOAP

instead preferred melee attacks and saved the mana that would have been

spent on ranged attacks and instead used that mana to heal damage taken
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during melee combat. Another example occurred while searching for a bug

in the code. The mana cost of the ranged attack had temporarily been set to

zero. The wizard immediately adjusted its behaviour and performed ranged

attacks instead of melee attacks. There were no weight, cost or formula

changes performed to keep the NPC working in a sensible manner, instead

UDGOAP immediately found the sensible behaviour itself.

Much effort had been put into the design of UDGOAP to make it simple

enough that any developer could pick it up. However, this seems top have

been a failed effort. UDGOAP requires a lot of work to setup. GOAP

requires NPCs to be setup a particular way but UDGOAP requires even

more by being needing the world to be represented a particular way in the

game engine. This is because of the way UDGOAP plans based on facts

rather than the more abstracted key-value pairs.

The authorship burden of NPC behaviours may actually be decreased for

some situations using UDGOAP. The design of UDGOAP lends itself well

to tooling so designers with little programming knowledge could use tools

to author action preconditions and effects. However, it may be difficult to

author tools to make it easier for these designers to tweak the drives of the

NPC to prefer certain situations over others. This is because UDGOAP in

its current form was not designed with tooling in mind.

UDGOAP may have performed well if it had been used on an NPC that

went to a lot of different locations filled with a variety of objects. A com-

panion in a game like Skyrim1 who accompanies the player throughout their

1The Elder Scrolls: Skyrim - Bethesda Game Studios - http://www.elderscrolls.com
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adventure into a number of varied environments may be an excellent use

of UDGOAP because of the number of opportunities to interact with world

objects in situations unforeseen to the designer. However, this would be dif-

ficult to evaluate because the player would have to play for a long time to

see how the companion behaves in several situations. It would also require a

lot of authoring to setup all of the items in the game to use the UDGOAP

system, so much so that it would only be possible for use in games with a

large team of developers.

The simulation system in UDGOAP was added late in the UDGOAP

development process. The simulation was added because UDGOAP was

failing to consider how the world might change during the execution of a

plan, in particular the behaviour of NPCs that were not involved in the plan.

GOAP was designed for the enemy NPCs in F.E.A.R.1 where they often only

need to think of the player as the only target that can cause them harm. The

wizard, however, had to consider several antlions at all times. I felt that the

simulation was good enough to capture how these other NPCs would hurt

the wizard, causing the wizard to be less cavalier, no longer charging into

the middle of a horde of antlions and instead picking off antlions at the edge

of a pack. I was disappointed that there was not time to expand upon this

simulation concept, allowing the simulation of antlions that explode upon

death, hurting the wizard, or a heat shields for the wizard that hurt nearby

antlions passively without the performance of any action.

1F.E.A.R. - Monolith Productions - http://www.fear3.co.uk/the-game.html
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I believe that players would notice the interesting NPC behaviours in

situations where an NPC should consider multiple goals. It was interesting

when the UDGOAP wizard used his blast to kill nearby enemies when the

wizard became surrounded. This happened instead of ranged or melee attacks

because UDGOAP calculated that the health that would be lost fighting the

antlions one by one was more valuable than the mana lost performing the

blast. Players may notice similar behaviour in other games. For example,

where a soldier has to decide if his grenade ammunition is more valuable than

the health it believes might be lost in the oncoming skirmish.

The added complexity of UDGOAP over GOAP may be worth the in-

vestment but only for reasonably large games and only for games with NPCs

with long lifespans. In small games, the developer can know all of the situa-

tions in which an NPC will exist so these situations can be specifically coded

for. In games where enemies do not live long, for example like zombies in

Left 4 Dead1, enemies are fun because they single-mindedly charged at the

player to be killed immediately. Using UDGOAP on such enemies would be

a waste of resources.

8.2 Open Problems and Future Work

The UDGOAP system was developed to address a number of weaknesses

in GOAP. However, a number of questions arose during the development of

UDGOAP that, if answered, could yield interesting research. This section

1Left 4 Dead - Turtle Rock Studios, Valve Corporation - http://www.l4d.com
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describes directions for future research relating to UDGOAP.

Every experiment described in this thesis was quantitative. This is com-

mon among theses in the game AI domain but it does overlook an important

aspect of that differentiates many games from simulations. Game AI is not

just meant to be about making an non-player opponent as strong as possible,

the opponent should also be fun to play against and ideally even behave in a

manner more like a human to add to the realism of the experience. Although

UDGOAP achieved goals more effectively than GOAP, A

B tests could be performed in future to help determine which system is more

fun to play with and which system behaves in the most realistic manner. This

could be done by having participants watch a GOAP NPC and a UDGOAP

NPC and have them rate how fun and realistic the behaviours of these NPCs

are for both the arena and Sims environments. It would also be interesting

to see how a player controlled wizard would fare in these environments com-

pared to the NPCs. It would also be interesting to see which system players

would have preferred to have controlling an ally.

GOAP has the ability to use a heuristic during plan formulation. This

reduces the number of actions that needed to be considered when searching

for the lowest cost solution and makes planning more efficient. Heuristics are

key in making path planning solutions feasible for use in real-time games.

The number of possible paths available during a path planning search can

be substantial whereas the number of possible plans available during plan

formulation is usually quite small, even for big budget games. This makes a

heuristic in GOAP less important than a heuristic in path planning because
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GOAP contains fewer possibilities. Having an admissible heuristic (Korf &

Reid, 1998) to guide plan formation in UDGOAP would be a great improve-

ment as the environments in computer games grow in complexity.

The soft goal selection mechanism in UDGOAP was quite simple. There

was no filtering process on soft goals. This meant that the UDGOAP planner

considered many more plans than GOAP, which only searched for a plan

that achieved one goal. Although this did not cause any performance related

issues, we feel that there is room for a more elegant solution that would select

only a smaller set of soft goals, focusing on soft goals that are more likely to

be achieved in tandem.

Actions in UDGOAP were associated with a world effects generator that

added effects based on the world state at the time of the execution of the

action. This leads to situations where the planner will check for effects that

could not possibly apply to certain actions. For example, the goto action

checks if the execution of the action puts the consumer of the action in

range of an enemy. This happens regardless of if an enemy is present in

the environment. There may be another way to implement world effects

by embedding more information into smart objects and their environment

instead of into the actions so that world effects are only checked in situations

where they are able to occur.

The UDGOAP system is designed to work for just a single agent. There is

massive opportunity for NPCs in an environment to make plans that require

actions from other NPCs. Using a utility-based planning system that allowed

multiple NPCs to coordinate their plans, it would be possible to find more
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effective plans than those that could be found by either NPC working on its

own.

There is still a lot of work that can be done to improve the state of be-

haviour selection for NPCs in computer games. Our hope is that the research

in this thesis can be built upon to create a system that will provide com-

pelling NPC behaviour in computer games that will be enjoyed by thousands

of people for many years.
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Appendix A
Detailed UDGOAP Worked

Example

To illustrate how UDGOAP works, this section will run through the entire

process of a UDGOAP NPC selecting a behaviour, spanning the sensing state

through to the output of the UDGOAP planner. The example takes place

from the perspective of a wizard named wizard that is in an environment

where there is a mana potion named mana potion and one enemy goblin

named goblin.

The initial state of the wizard is as follows1:

� sensors: { internal sensor, potion sensor, enemy sensor}

� facts: {}

1Some details have been omitted for brevity, e.g. the full list of actions the wizard
supplies.
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� supplied actions: {melee}

� consumable actions: {melee, lightning, goto, drink mana potion}

� drives: {

((name: kill all enemies, goal generators: {enemy spotted}, goals: {},

eval func: linear, weight: 1)),

((name: maximize health, goal generators: {self below max health},

goals: {}, eval func: linear, weight: 1)),

(name: maximize mana, goal generators: {self below max mana}, goals:

{}, eval func: linear, weight: 1)}

� internal state: {position: (0, 0, 0), health: 15, mana: 0}

� top-level utility function: linear with bad death

There are four consumable actions available to the wizard. The melee

action causes the wizard to engage in hand-to-hand combat with an enemy.

The lightning action causes the wizard to shoot a lightning bolt from his

hands, killing his target but consuming some of the wizard’s mana. The goto

action causes the wizard to move to some destination. The drink mana potion

action causes the wizard to consume the target mana potion. The actions

are defined as follows:

� name: melee, preconditions: {(key: consumer position change, evalu-

ation function: supplier within melee distance)}, effects: {(key: sup-

plier health decrease, application function: melee damage)}, world ef-

fect generators: {}
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� name: lightning, preconditions: {(key: consumer mana increase, eval-

uation function: supplier enough mana lightning)}, effects: {(key: con-

sumer mana decrease, application function: reduce mana lightning),

(key: supplier health decrease, application function: lightning damage)},

world effect generators: {}

� name: goto, preconditions: {}, effects: {(key: consumer position change,

application function: goto supplier)}, world effect generators:

{nearby enemy damage}

� name: drink mana potion, preconditions: {(key: consumer position change,

evaluation function: within potion distance)},

effects: {(key: consumer mana increased, application function: in-

crease mana by supplier), (key: supplier existence ended, effect func-

tion: destroy potion)}, world effect generators: {}

The goblin supplies the melee, lightning and goto actions. The mana

potion supplies the drink and goto actions.

When the simulation starts, the wizard runs its sensing process (described

in Section 3.5.1) when the behaviour selection system has been queried for a

behaviour after, for example, 2000 milliseconds has passed in the game. This

first runs the internal sensor sensing process, then the potion sensor sensing

process, and the the enemy sensor sensing process. This sensor sweep gener-

ates the facts shown in Table A.1 which are saved into the memory of the

wizard planning NPC:

The drives will then be updated (as described in Section 3.5.2). The drive
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id entity attribute value timestamp
1 wizard position (0, 0, -10) 2.00
2 wizard health 15 2.00
3 wizard mana 0 2.00
4 mana potion position (0, 0, 10) 2.00
5 goblin position (0, 0, 20) 2.00
6 goblin health 30 2.00

Table A.1: Facts known to wizard after first round of sensing.

update process first generates new goals, then evaluates the completeness of

those goals, and then evaluates the satisfaction for each drive according to the

completeness of its goals. The goal generators iterate through their triggers,

checking if any have been activated by the up-to-date set of facts. The

kill all enemies drive checks its enemy spotted goal generator, which looks for

facts regarding the position of enemy units where a goal to kill that enemy

is not already present in the goal set of the kill all enemies drive. The goal

generator trigger for this drive will be activated by fact 6 (which contains the

details of the health of the goblin). The goal generated is the kill enemy goal

because that is the goal associated with the enemy spotted goal generator.

The goals generated will be as follows:

� id: 1, name: kill enemy, weight: 2.0, conditions:

{key: supplier health decrease, fact id: 6, evaluation function: in-

verse linear}, evaluation function: inverse linear, removal triggers: en-

emy no health, completeness: null

This goal is added to the goal set of the kill all enemies drive, as it was the

goal generator belonging to the drive that created the goal. The completeness

of the goal is updated using the inverse linear evaluation function of the goal1.

1Each goal evaluation function depends on the satisfaction of the conditions the goal
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In this instance, the goblin has 30 health, which is its maximum, giving a

normalized value of 1.0, which when inverted gives a value of 0.0, indicating

that the goal of killing the goblin has no progress made toward its completion.

Hence, because the goblin is on full health, the completeness value associated

with the goal of killing the goblin is 0.0.

The triggers for the goal generators in the maximize health and maxi-

mize mana drives are checked against the up-to-date facts. These goal gen-

erators trigger upon the fact of health and mana being less than their maxi-

mum. The maximum health and mana of the wizard is 100. Currently, the

wizard has 15 health and 0 mana, according to facts 2 and 3, referring to the

health and mana of the wizard, respectively. These facts cause the triggers

to fire for the self below max health and self below max mana goal generators

because the predicates in those triggers test if the current value of the rele-

vant fact is less than the maximum value that the attribute can have. This

triggering generates the following goals with their completeness calculated

using the linear evaluation function. These goals will be added to the their

parent drive after the goals have been generated:

� id: 2, name: maximize health, weight: 1.0, conditions: {key: con-

sumer health increase, fact id: 2, evaluation function: linear}, evalua-

tion function: linear, removal triggers: self max health, completeness:

0.15

� id: 3, name: maximize mana, weight: 1.0, conditions: {key: con-

depends on but because every goal in this worked example only has one condition, the
condition satisfaction functions have been omitted for brevity.
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sumer mana increase, fact id: 3, evaluation function: linear}, evalu-

ation function: linear, removal triggers: self max mana, completeness:

0.0

After all goal triggers have been tested, the utility of the state for each

drive based on the completeness of the goals associated with that drive is

updated. The evaluation function for each drive in this example will use a

weighted sum of the completeness of the goals belonging to the drive. The

maximize health drive uses the linear evaluation function and takes its one

goal of maximizing the health of the wizard as input, the goal with the ID

of 2, and because the goal has a completeness of 0.15 and a weight of 1.0,

returns a utility rating of 0.15 for the drive (0.15 * 1.0). This utility rating

is saved in the drive. The same process of rating and saving the utility is

performed on the maximize mana drive, giving it a rating of 0.0. The same

utility calculation process is performed on the kill all enemies drive, returning

a rating of 0.0 because the goal to kill a goblin has not made any progress

toward completion.

The wizard now searches for objects to which it can apply actions. For

simplicity in the example, it simply selects the objects within a particular

range of the wizard, which includes the goblin and the mana potion. For each

of these objects, a pair is created for each action they supply. This results

in the following object action pairs:

The set of all goals belonging to all drives, the set of up-to-date facts,

the set of consumable actions for the wizard, and the set of object-action
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object action
mana potion drink mana potion
mana potion goto
goblin lightning
goblin melee
goblin goto

Table A.2: Wizard object-action pairs.

pairs are passed into the planner to generate a behaviour that maximizes

the utility of the world state to the set of drives of the NPC. The planner

will first generate root plan states (as described in Section 3.8.1) and then

generates successors from this until either the planner finds the plan state

with the highest utility and with all goal conditions satisfied, or it will return

an empty plan if no plans are found.

The initial plan state generation phase will first set up a root plan state:

(id: 1, hard goal: null, soft goal ids: {1, 2, 3}, rating: 0, generative action:

null, parent: null). The generative action is null as this state was not gen-

erated through actions, the predecessor plan state is null as this is the root

plan state not generated from any previous state, and the utility rating is

calculated.

After root plan state generation, we then generate successor plan states

for each action with an effect key matching any condition key in the set of

goals. The melee and lightning actions have an effect with the supplier health decrease

key, which matches the condition key for the goal of killing the goblin, and

the drink mana potion action has an effect with the consumer mana increase

key, which matches the condition key for the goal of maximizing mana. Each

of the actions that contained a match will have its keys mapped to facts be-
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cause later this action will become the generative action of a successor plan

state of the root plan state.

Each of the three actions that had an matching effect key has its precon-

ditions and effects mapped by combining information about the action with

the up-to-date set of facts (as described in Section 3.8.4). This key to fact

mapping results in the following action set:

� name: melee, preconditions: {(key: consumer position change, fact

ID: 1, evaluation function: supplier within melee distance)}, effects:

{(key: supplier health decrease, fact ID: 6, application function:

melee damage)} world effect generators: {} supplier: goblin, consumer:

wizard

� name: lightning, preconditions: {(key: consumer mana increase, eval-

uation function: supplier enough mana lightning)}, effects: {(key: con-

sumer mana decrease, fact ID: 3, application function:

reduce mana lightning), (key: supplier health decrease, fact ID: 6, ef-

fect function: lightning damage)}, world effect generators: {}, supplier:

goblin, consumer: wizard

� name: drink mana, preconditions: {(key: consumer position change,

fact id: 4, evaluation function: within potion distance)}, effects: {(key:

consumer mana increased, fact ID: 3, application function:

increase mana by supplier), (key: supplier existence ended, fact ID: 4,

application function: destroy potion)}, world effect generators: {},

supplier: mana potion, consumer: wizard
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The actions and their world effect generators now need to be applied,

altering the facts that will be associated with each successor plan state (as

described in Section 3.8.5). We will focus just on the melee action. The melee

action applies its only effect. This effect has its melee damage application

function run, which takes the fact ID of the effect and returns a new version

of the a health fact with 30 less value than the one passed in. This effect is

associated with fact 6, the health of the goblin, so 30 is subtracted from its

current value and a new fact referring to goblin health is generated: (id: 6,

entity: goblin, attribute: health, value: 0, timestamp: 2.00). This action has

no world effect generator so action application is complete.

The world that would exist if the melee action was applied is then rated

for utility by using the most up-to-date facts as input to the relevant soft

goals, which will be input to their associated drive, which will be input to

the top-level utility function.

The planner first gathers all of the newest facts before calculating goal

completeness. Here the newest facts are the set of initial facts but with the

health value of the goblin at 0. The completeness functions of the soft goals

are then updated based on these facts. Focusing just on the goal related to

killing the goblin, (id: 1, name: kill enemy, weight: 2.0, conditions: {key:

supplier health decrease, fact id: 6, evaluation function: inverse linear},

evaluation function: inverse linear, removal triggers: enemy no health, com-

pleteness: null), we can evaluate goal completeness. Fact 6, which refers to
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the fact of the newly reduced goblin health, is input to the inverse linear evalu-

ation function. The normalized inverse of the goblin health of 0 is calculated,

returning 1.0 for the completeness value of the goal.

The drive satisfaction is calculated using the goal completeness value and

the goal weight as input to the linear evaluation function for the kill all enemies

drive, which also returns a value of 1.0 because, in this instance, the eval-

uation function combines goal completeness and goal weight to create a

weighted sum. The linear evaluation function maximize health drive returns

0.15 because the health of the wizard is 15 and the goal associated with the

drive has a weight of 1.0. The linear evaluation function maximize mana drive

returns 0.0 because the mana of the wizard is 0 and the goal associated with

the drive has a weight of 1.0.

The top-level utility function of the wizard receives the satisfaction value

and weight of all drives as input and returns a value that will become the

utility rating of the plan state that was generated by the melee action. The

linear with bad death top-level utility function gets a weighted sum of the

satisfaction value and weight of each drive and sums them, then normalizes

this sum. The linear with bad death top-level utility function considers the

maximize health drive to be special, outputting a utility rating of 0.0 if the

satisfaction level of the maximize health drive is 0.0. This is done to reflect

the idea that no matter how good the state is for the satisfaction of the

other drives, if the health of the wizard is 0, he is dead and everything else is

irrelevant. The linear with bad death function takes the drive satisfaction and

weight triples: (name: kill all enemies, satisfaction: 1.0, weight: 1.0), (name:
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maximize health, satisfaction: 0.15, weight: 1.0), (name: maximize mana,

satisfaction: 0.0, weight: 1.0), which gives (1.0 * 1.0) + (0.15 * 1.0) + (0.0 *

1.0), giving 1.15, which is normalized against a maximum weight sum of 3.0,

finally giving 0.38 as the utility of the state generated from the application

of the melee action.

The same calculation of goal completeness, drive satisfaction, and top-

level utility is calculated for the plan states generated from the application of

the drink mana potion and lightning actions. This particular potion gives 40

mana. The final result is three rated plan states shown in Table A.3 (some

details omitted for brevity).

generative actions utility
{melee} 0.38
{lightning} 0.38
{drink mana} 0.18

Table A.3: Plan states after initial state generation.

A new plan state is then generated for each these actions. These plan

states will be successors to the root plan state. These plan states would

have their generative actions and ratings set using the values just calculated

and shown in Table A.3. The hard goals of these plan states is the set of

preconditions not satisfied for the respective action of the plan state. These

plan states are as follows.

� ID: 2, hard goal: {(fact key: consumer position change, fact id: 1, eval

func: supplier within melee distance)}, soft goals: {1, 2, 3}, rating:

0.38, generative action: (name: melee, consumer: wizard, supplier:

goblin, ...), parent plan state id: 1
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� ID: 3, hard goal: {(fact key: consumer mana increase, fact id: 3, eval

func: supplier enough mana lightning)}, soft goals: {1, 2, 3}, rating:

0.38, generative action: (name: lightning, consumer: wizard, supplier:

goblin, ...), parent plan state id: 1

� ID: 4, hard goal: {(key: consumer position change, fact id: 4, evalu-

ation function: within potion distance)}, soft goals: {1, 2, 3}, rating:

0.18, generative action: (name: drink mana, consumer: wizard, sup-

plier: mana potion, ...), parent plan state id: 1

These new plan states are then added to the set of plan states to be

considered in the main plan loop. The main loop is entered and continues

because there is at least one plan state to be developed in the set of plan

states. The plan state with the highest utility rating is selected for devel-

opment. In the case of a draw, the first will be selected, which means that

the melee plan state is selected. A check is performed to see if all hard

goal conditions of the selected plan state are satisfied by running the sup-

plier within melee distance evaluation function with fact 1, referring to the

position of the wizard. The evaluation returns false so planning continues

by trying to find actions applicable to the unsatisfied condition, i.e. actions

with the consumer position change key in their set of effects (as described in

Section 3.8.3). The goto action has that key in its effects set. The keys of

the effects of the goto action are mapped to facts.

The action application phase used at this point has two differences from

the phase used in the beginning when generating plan states as successors to

176



the root plan state. The first difference is that those initial plan states were

generated from single actions being applied, but the plan state currently

being developed, that is associated with the goto action, is a successor to

the plan state generated through the application of the melee action. The

application of both the goto and melee actions will need to be simulated (in

forward order) so as to determine the utility of the plan state that would arise

from applying these actions. These actions will be applied to the initial facts.

For example, the effect of the melee action will be applied to its respective

plan state, which changes the fact relating to the health of the enemy from

the enemy being on full health to the enemy being full health minus the

damage done by the melee action.

The goto action that just had its keys mapped to actions is applied and

simulated first. Its goto supplier application function creates a new fact with

a new position for the wizard that is next to the position of the goblin

who supplied the action. The nearby enemy damage world effect generator,

which was specified as part of the goto action at design-time, generates an

effect because the generator has a trigger that activates when the consumer

comes into range of a supplier melee attack. The effect generates a fact

where the health of the wizard is reduced by the melee damage of the goblin,

which would set the wizard health to zero. The application of the melee

action is ignored because the wizard would be dead at this time because

its health is zero. The utility of this plan state is rated at 0.0 because the

linear with bad death top-level utility function returns zero if the soft goal

relating to the health of the consumer is zero. A new plan state is generated

177



with the goto generative action and a utility rating of zero. The new plan

state is added to the set of plan states and the main loop performs another

iteration. At this time in plan formulation, the set of potential actions looks

as follows.

generative actions utility
{melee, goto} 0.0
{lightning} 0.38
{drink mana potion} 0.18

Table A.4: Plan states after one iteration of the main loop.

The plan state generated from the lightning action is selected for further

development as it is the highest rated plan state. The condition of the hard

goal is that the consumer has 20 mana and the only action found to satisfy

the condition is the drink mana potion action performed on the potion object.

This results in a plan state where the wizard has 40 additional mana points

and where the goblin is dead. This plan state would have the rating of 0.51,

giving the newest set of plan states.

generative actions utility
{melee, goto} 0.0
{lightning, drink mana} 0.51
{drink mana} 0.18

Table A.5: Plan states after two iterations of the main loop.

At the next iteration of the plan loop, the plan state generated from the

lightning and drink mana actions is selected for development because it has

the highest rating. The next unsatisfied condition of the hard goal has the

consumer position change key. The goto action supplied by the potion object

has an effect matching this key. The facts are mapped for the goto action.
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The plan state generated from that action is rated. The rating is the same

as its parent state in this instance because no goal depends on the position

of the wizard. The new plan state is added to the set of plan states that now

is as follows.

generative actions utility
{melee, goto} 0.0
{lightning, drink mana, goto} 0.51
{drink mana} 0.18

Table A.6: Plan states after three iterations of the main loop.

The highest rated plan state is selected for development. All of the con-

ditions of the hard goal have been satisfied so the plan is extracted from the

plan state for execution by the wizard. The final plan is to go to the mana

potion, drink the potion, and shoot lightning at the goblin.

A.1 Summary

This chapter described the UDGOAP behaviour selection system. This sys-

tem attempts to overcome a number of challenges faced by planning systems

in modern computer games, namely the problems of:

� planning for multiple goals.

� creating an accurate estimate of the efficacy of a plan and how close to

completion a goal is.

� being limited to a single action to satisfy a single precondition.

� brittle behaviours that can break when the values of items change e.g.
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the strength of a particular enemy increasing, invalidating behaviours

that were made based on the strength of that enemy.

UDGOAP plans for multiple goals by using a utility function that is

based on the completeness of a set of conditions belonging to the soft and

hard goals. UDGOAP tells how effective a plan is by judging the utility of

the state that the plan is likely to create. UDGOAP is able to use an action

to partially satisfy a precondition, which allows it to use multiple actions to

satisfy a single precondition. UDGOAP creates robust behaviours that are

not invalidated even when the value of items change by not using a predefined

set of actions costs or a predefined behaviour to achieve some goal.
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