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Abstract

The increase of terrestrial solar ultraviolet radiation (UVR) due to the reduction of 

the ozone layer has promoted a variety of research into establishing the impact of this 

elevated potential dose of UVR on biological tissues. Anterior ocular tissues such as the 

cornea have been found to be susceptible to damage by terrestrial solar UVR and diseases 

such as pterygium are commonly thought to be a direct result of absorbed UVR at the 

nasal limbus. There is a need for more accurate quantification and localisation of incident 

UVR at the anterior ocular surface. A novel solar blind photodiode sensor array system 

has been designed, constructed and tested for this purpose. The distribution of terrestrial 

solar UVR across the palpebral fissure for two test subjects has been quantified for a 

range of head orientations under different environmental conditions. The results herein 

outline the protection provided by different facial anatomies and the methodology has 

been proven through the repeatability of measurements over a range of cardinal point 

orientations.

Added to the ambient terrestrial irradiance across the palpebral fissure, the 

phenomenon of Peripheral Light Focusing (PLF) has been investigated. Through the 

incorporation of modeling software and an anatomically based artificial eye, a novel fibre 

optic method has been developed to measure the corneal transmission in vivo.
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Chapter 1

Environmental Ultraviolet Radiation and The Eye 

1.1 Introduction 

As one of our primary senses, vision is crucial to our everyday activities 

and one which is often taken for granted. The nature and enjoyment of outdoor 

activities can prove harmful over prolonged periods of time to both the skin and 

ocular tissues. Only over the last number of decades, with the thinning of the 

ozone layer, have people been made aware of the perils of non-ionising solar 

radiation and in particular short wavelength ultraviolet radiation (UVR)1. A UV 

index (UVI) forecast, based on the human erythemal action spectrum, was 

introduced by the World Health Organisation (WHO) in 1995 so that the public 

could easily discriminate between safe and acceptable ambient insolation, on a 

day to day basis, for a particular region through circulation in the local media. 

With the primary concern being skin cancer rates and an established global 

industry dealing in cosmetic products and UVR-blocking skin care ranges, by 

comparison very little information outlining solar UVR induced pathologies of the 

ocular surface is easily accessible to many societies. One of the most effective 

ways for blocking terrestrial UVR incident at the eye is to wear UVR-blocking 

contact lenses, but unfortunately such protection is inaccessible to many for 

socioeconomic and geographical reasons. Although increasingly researched over 

the last three decades, the incidence and effect of solar radiation at the ocular 

surface have not been as widely acknowledged or disseminated as the insidious 

1



dangers the skin faces as a result of UVR exposure, such as, the erythemogenic 

dangers of solar radiation, premature skin-aging, wrinkling and cancer. As a result 

of this, many populations around the globe are unaware of the ocular dangers 

posed by UVR and the subsequent damage it can cause, some cases even resulting 

in irreversible blindness. In a survey sponsored by Transitions Optical Inc. in 

2002, results showed that only 6 % of Americans randomly sampled knew of the 

ocular threat posed by UVR, as compared to 79 % with awareness of the link 

between skin cancer and UVR2 3. Although the pathogeneses of many ocular 

conditions have not been completely elucidated, UVR absorption by ocular tissues 

has been implicated through strong epidemiological and clinical evidence as a 

causative agent in a host of acute disorders such as, photokeratoconjunctivitis and 

chronic conditions due to extended exposure including pterygium, pingueculum, 

cataracts, limbal tumours and to a lesser extent, ocular melanomas4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19.

The need to gain a fundamental understanding of the solar UVR field at 

the human eye and the physiological and environmental factors that influence the 

overall irradiance (W m-2) variations at the anterior tissues is paramount in 

influencing the design, construction and testing of preventative methods such as 

contact lenses or other UVR absorbing eyewear. The aim of the research 

presented here was to demonstrate the first real-time quantification of the UVR 

field at the human eye in the field for a range of solar angles, environmental 

conditions and head orientations. The predilection of solar UVR induced ocular 

diseases to certain portions of the eye can be investigated more thoroughly and 

2



with greater efficiency using a purpose designed and constructed solar blind 

photodiode sensing array. By doing so, the incidence of terrestrial solar UVR at 

the anterior ocular tissues, namely the cornea, conjunctiva and sclera, for these 

orientations and environmental conditions could be quantified in terms of 

assessing the irradiance across the horizontal lid margin. It has been noted that 

many anterior ocular manifestations, such as pterygium, occur at the nasal aspect 

more so than the temporal one20 21. As can be expected, varying environmental 

conditions, such as solar zenith angle (SZA), which is the angle between the 

zenith and the position of the sun, and highly variable cloud cover, have profound 

effects on the distribution of solar UVR across the palpebral fissure. Clear skies 

result in direct solar rays being incident at the anterior ocular surface, and as such, 

the main determinant in the spread of UVR across the ocular surface is the SZA. 

Cloudy or diffuse skies cause the ocularly incident UVR to arrive from all angles 

due to atmospheric scattering and should result in a more uniform distribution 

across the lid margin. By incorporating a novel photodiode sensor array in the 

field to measure the ocular irradiance, data sets are presented for different head 

carriages and orientations, under different atmospheric conditions, for two human 

test subjects and the relative nasal-temporal biases are elucidated and discussed.

Further to the distribution of solar UVR across the anterior ocular surface, 

aside from its role in focusing light towards the more anterior ocular structures, 

namely, the lens and retina, the cornea is the principle component in a 

phenomenon referred to as Peripheral Light Focusing (PLF). PLF occurs when 

environmental and physiologic factors permit radiation to strike the corneal dome 
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at temporally oblique angles. Such conditions can occur when the sun is low on 

the horizon, and a person’s orientation is such that their eye is exposed to these 

temporally oblique rays. Depending on the temporally oblique angle of incidence 

at the corneal dome, solar rays can focus to a maximum intensity at the stem cell 

rich nasal limbus, the site of corneal regeneration22 23. Further still, less oblique 

rays can be transmitted through the cornea and reach the lens through this 

phenomenon. As a result of this focusing, there is a greater radiant exposure 

received at the nasal limbus or lens than would ordinarily be received due to 

normally direct or diffuse incident radiation at the hours around noon for a person 

standing upright. This is principally due to less anatomic shading of the anterior 

ocular structures when the sun is low in the sky, as the brow ridge serves to only 

shield the eye from direct rays originating from the sun around the hours of noon, 

when it is relatively high in the sky. However, when direct solar rays originate 

from the horizon, the cornea is completely exposed with little anatomic 

protection.

This thesis will outline the issues relating to the complex nature of 

quantification of the solar UVR field at the anterior ocular surface. The many 

environmental and physiological factors which influence the distribution of 

terrestrial solar UVR across the palpebral fissure will be outlined and a 

comprehensive discussion of the novel detection methods used in the field to 

quantify this ocular distribution is given. Specifically, it will address the 

distribution of solar UVR across the palpebral fissure for a range of solar zenith 

angles under clear and cloudy skies. An intercomparison of test subjects is also 
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given, highlighting the repeatability of the novel solar blind photodiode array 

designed, constructed and tested to quantify the ocular distribution.

Further to this, investigations of PLF through computer modelling 

software, in tandem with empirical measurements incorporating an anatomically 

modelled artificial human eye within a purposely designed in vitro novel fibre 

optic sensing system will be presented. Through development of this technique, 

the latter was adapted to measure the corneal transmission in vivo.

1.2 Solar Radiation, The Environment and The Anterior 
Segment

1.2.1 The Electromagnetic Spectrum 

The electromagnetic radiation spectrum encompasses an extensive range 

of wavelengths, quantised as photons24. In a vacuum, all electromagnetic waves 

have the same velocity, c = 3 x 108 m s-1, so wavelength,  (nm), and frequency, f 

(Hz), are simply related by: 

      
f
c                 Eq.:1.1 

The energy E (J) and frequency f (Hz) of a photon can be related through a 

constant of proportionality known as Planck’s constant, h (6.6260755 x 10-34 J s-

1):

hfE     Eq.:1.2
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The sun, which can be considered a black body radiator at 5800 K, emits a 

spectral continuum, and at ground level, this ranges from approximately 280 nm 

to 4000 nm, peaking at ~ 500 nm as seen in figure 1.1. This spectral continuum 

has been split into three defined wavebands; the UV region (100 nm to 400 nm), 

the visible region (400 nm to ~ 700 nm) and the infrared region (~700 nm 

upwards). The Commission Internationale d’Eclairage (CIE) has subdivided UVR 

into three convenient photobiological wavebands which are UVC, 100 – 280 nm, 

UVB, 280 - 315 nm and UVA, 315 – 400 nm25. Slight inter-disciplinary 

variations of these wavebands exist, such as defining the UVB as 290 nm to 320 

nm, but the CIE defined sub-wavebands are used commonly for dosimetric 

measurements26 27.

Figure 1.1:
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Spectral Power Distribution of the extraterrestrial solar spectrum.  

The total radiant power reaching unit area of the earth’s upper atmosphere, 

perpendicular to the solar rays, is  1,367 W m -2 on average28 29. The solar spectral 

distribution is modified due to scattering and absorption by nitrogen, oxygen (O2)

and ozone (O3) along with other absorbing particulates such as water vapour and 

aerosols as it passes through the atmosphere to the earth’s surface30.

The extraterrestrial solar spectrum shown in figure 1.2 highlights the 

relative amount of UVR with respect to the spectrally adjacent visible 

wavelengths, or those we perceive as ‘light’, beyond which the solar spectrum 

tails off in the adjacent infrared region. At ground level typical irradiances will be 

less due to absorption and scattering by the atmospheric components. From the 

UVR perspective, broadband absorption and specific absorption by ozone will 

reduce the solar irradiance to near zero below ~ 280 nm to 290 nm and the 

integrated irradiance in the UVA and UVB wavebands will decrease by as much 

as 30% from ~ 75 W m-2 to ~ 50 W m-2 for latitudes just outside the tropics (23° N 

and S), such as Houston, Texas (latitude: 29° 45' N) at local noon during the 

summer months.  

7



Figure 1.2:

Extraterrestrial solar irradiance highlighting UVR, visible and infrared 

wavebands between 200 and 1000 nm. 

In terms of biological toxicity, shorter wavelength electromagnetic 

radiation possesses higher frequency and thus greater energy. Although there is a 

much greater spectral irradiance at ground level in the visible region, it is the 

higher energy UVR that causes most photobiological damage, comprising 

approximately 5 % of total terrestrial solar irradiance. Within this waveband, the 

most photobiologically active is the UVB, which itself comprises ~ 5 % to ~ 10 % 

of total terrestrial solar UVR, depending on presence and type of clouds and 

SZA31 32. In addition, the relative efficacy of shorter wavelength electromagnetic 

radiation in eliciting a pre-defined biological response is determined by an action 

spectrum, discussed in section 1.2.333 34 . The terrestrial UVR solar spectrum is 
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shown in figure 1.3 outlining the relative amounts of each UVR waveband. It 

must be emphasised, that there is no standard solar spectrum, as it varies with 

environmental factors such as season, latitude and time of day. 
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Figure 1.3:

Terrestrial Spectral Irradiance in the UVR waveband, showing typical levels of 

each waveband  - after Diffey35.

1.2.2 The Actinic UVR Waveband 

The potential health risks of short wavelength ultraviolet electromagnetic 

radiation have been well documented both clinically and epidemiologically36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54. Due to the short penetration depths in 

skin and ocular media, ultraviolet wavelengths pose a significant risk if absorbed 

in sufficient quantities by exposed tissues and cause substantial photochemical 

and morphological changes within these tissues55 56 57 58 59. All three of these 
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sub-wavebands, UVA, UVB and UVC, are present within the extra terrestrial 

solar spectrum, but due to absorption by atmospheric oxygen (O2) and ozone (O3),

the entire UVC component is blocked from the earth’s surface. As a result, the 

most toxic wavelengths remaining at ground level are those in the UVB 

waveband. Due to the nature of the skin and ocular tissues response to these 

wavelengths, UVB radiation induces sunburn and skin pigmentation with greater 

efficiency than UVA, although biological effects of UVA such as skin tanning or 

‘melanogenesis’, photoageing and ocular tissue damage should not be 

underestimated60 61 62 63 64 65 66. It has been noted that UVA penetrates the skin 

more deeply than UVB in the dermis and can cause greater vascular insult, while 

UVB is almost completely absorbed in the epidermis67 68 69 70. Since energy is 

inversely proportional to wavelength, UVB photons possess greater energy than 

those in the UVA and erythemal effectiveness, which is based on the skin’s action 

spectrum, increases greatly with decreasing wavelength71. An action spectrum is 

used to describe the relative effectiveness of monochromatic light of different 

wavelengths in causing a pre-defined tissue response, the standard and most 

commonly referenced of which is the human erythemal action spectrum72. Indeed, 

the erythemal effectiveness of monochromatic UVB varies from wavelength to 

wavelength. It should be noted that UVA can also cause erythema effectively, but 

much higher radiant exposures of between 500 and 1000 times are necessary73 74

75 76 77. Ocular tissue action spectra are not as well established as the erythemal 

action spectrum discussed here. An action spectrum for photokeratoconjunctivitis

was found by Pitts and Tredici and peaked at ~ 270 nm, falling off dramatically in 

the UVA78. Based on the human erythemal action spectrum and that for 

10



photokeratoconjunctivitis, it is broadly reasonable to assume that since the ocular 

tissues are not as rugged as the skin, by incorporating these action spectra, and the 

ACGIH/ICNIRP UV action spectrum discussed in section 1.2.3, as guideline 

spectra relating to the biological effectiveness of UVR, one would hope to 

overcompensate in the pursuit of ocular protection.  

The erythemogenic risk associated with solar UVR absorption is a 

reciprocal relationship, in that it depends on the total exposure dose delivered and 

absorbed by the skin which may result in sunburn, and not the dose rate. Low 

absorbed doses over extended periods of time will lead to the same degree of 

erythema or photobiological damage as high absorbed doses over shorter periods. 

This is known as the Bunsen-Roscoe Law and applies to the ocular tissues also79

80. For complete protection from solar UVR, it is advised that sunscreens, clothing 

garments, sunglasses and contact lenses should contain both UVA and UVB 

absorbers81. Ideally there should be a sharp cut-off point at 400 nm for all 

photoprotective devices, preventing 100 % of the incident UVR from reaching all 

tissues, and possibly a percentage of the blue wavelengths also 82 83 84 85 86 87 88

89 90.

To standardise and raise awareness of the levels of solar UVR, the World 

Health Organisation (WHO), in collaboration with the World Meteorological 

Organisation (WMO), the United Nations Environmental Organisation (UNEP) 

and the International Commission on Non-Ionising Radiation Protection 

(ICNIRP) developed UVI measurements and forecasts to estimate and 
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disseminate the potential risks of solar UVR at given latitudes91. The 

dimensionless UVI is a diurnal forecast of the maximum biologically effective 

solar UVR in causing erythema anticipated to reach ground level at solar noon, 

averaged over between 10 and 30 minutes.  It can range from values between 0 

and ~15, where the latter would occur predominantly in the tropics under clear 

skies at high altitudes. By adhering to the guidelines set out in the UVI, not only is 

the skin afforded protection, it follows that by incorporating the recommended 

protection for both the skin and eyes, the ocular tissues will be safeguarded 

against the actinic UVR. As an internationally agreed joint recommendation of 

these bodies, forecasts are routinely made available through the media by 

meteorological agencies and are based upon burning risk for fair skinned people, 

thereby over-estimating the risk for people in higher skin categories92 93 94. Six 

sun-reactive skin categories have been outlined by the ICNIRP and these are95:

Type I:  Very fair white skin which burns but does not tan. 

Type II: White skin which burns easily and tans minimally. 

Type III: White skin which burns moderately and tans. 

Type IV: Light brown skin which burns minimally and tans easily. 

Type V: Brown skin which rarely burns; tans easily/considerably. 

Type VI: Black skin which never burns; prolifically tans. 

The UVI is generally given for clear sky conditions, as there is less 

variability in these estimates compared to hazy or cloudy skies. The values of UVI 

for fair skinned people are not accurate if the forecast is incorrect regarding cloud 

12



cover. It must also be noted that diffuse skylight can also pose a serious risk at the 

ocular surface in particular, as our natural aversion response and squint 

mechanism are disabled. Pupil constriction may also be lessened if ambient 

visible light levels are relatively low, allowing potentially harmful short 

wavelength blue radiation to pass through the crystalline lens and irradiate the 

retina. Exposure categories range from ‘low’ to ‘extreme’ and correspond to UVI 

ranges of ‘<2’ and ‘11+’ respectively. For the UVI range of 3-7, shade should be 

sought during the hours around local noon and sunscreen protection applied. For 

UVI values greater than 8, rigorous protection is recommended, including the use 

of wide-brimmed hats and UVR absorbing sunglasses/contact lenses or complete 

avoidance. It must be noted that the UVI represents solar erythemal induction and 

gives an indication of associated risk to different skin categories, and as such it 

does not pertain to the ocular tissues. However, due to the ocular tissues being 

more delicate than skin, the incorporation of UVR absorbing eyewear is implicit 

in the guideline for mid to extreme exposures96 97 98 99 100. In addition, seeking 

shade from direct solar rays provides less protection in the UVR than it does in 

the visible, so the instinctive assumption that shade reduces ambient UVR levels 

paralleling those in the visible can be misleading, as it only offers less protection 

from the direct solar rays; the scattered diffuse UVR is omnipresent101 102.

Often given with the UVI forecast are the MED values anticipated. The 

unit Minimum Erythemal Dose (MED) is used widely in photobiological research 

and can be described as the radiant exposure of UVR which produces a barely 

noticeable reddening of otherwise unexposed skin with well-defined borders 24 
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hours after irradiation103. 1 MED corresponds to a radiant exposure of 

monochromatic radiation at the maximum spectral efficacy for erythema 

(~ 290 nm to ~ 300 nm), as seen in figures 1.4 and 1.5, of between approximately 

150 J m-2 and 2000 J m-2 effective, depending on skin type and degree of 

pigmentation, since erythemal thresholds vary significantly with skin 

pigmentation. Values of 200 – 300 J m-2 effective correspond to 1 MED for white 

skin104.

The discrepancy between the radiant exposures necessary to produce 

erythema can be attributed to variation of human skin types and, as such, has been 

criticised due to its variable nature of individual sensitivity. For this reason, the 

Standard Erythemal Dose (SED) has been proposed as a standardised measure of 

erythemal effective radiant exposure105 106. 1 SED is equivalent to a dose of 

100 J m-2 and is weighted by the CIE erythemal action spectrum and the source’s 

spectral power distribution107. It has been found that an exposure of ~ 3 to ~ 4 

SED produces just minimal erythema on previously unexposed skin of type I to 

IV108.

1.2.3 Action Spectra 

Many environmental and physiological factors affect the distribution and 

receipt of solar UVR at the ocular tissues. Since UVB radiation possesses more 

energy per photon than UVA, it is far more detrimental to biological tissue, 

irrespective of the fact that UVA accounts for a much higher percentage of UVR 
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received at the earth’s surface, although UVA can cause significant photodamage 

at a cellular level, and should still be considered a risk factor. As stated earlier, the 

ideal protection from terrestrial UVR will absorb all wavelengths below 

400 nm109.

The relative effectiveness within a wavelength region of eliciting a 

particular biological response is known as an action spectrum with each tissue 

having a unique spectrum for a specific response110 111. The effectiveness of 

terrestrial solar irradiance in causing a specified biological effect, or its 

biologically effective irradiance (UV [BE]), can be determined once the solar 

spectral irradiance and the action spectrum of a specified biological response are 

known across a predetermined waveband112. Thus, the biologically effective 

terrestrial solar irradiance is the product of the intensity of the solar spectrum and 

the action spectrum in question. The area under the resultant curve is the 

biologically effective irradiance (UV [BE]) and may be given as: 

dEBEUV )()(][               Eq.:1.3 

where E( ) is the spectral irradiance distribution (W m-2 nm-1),  ( ) is the 

relative effectiveness of radiant energy at that wavelength in producing the 

specified biological effect (unitless), or its action spectrum and d  is the 

bandwidth (nm) of the measurement interval 113 114 115 116 117 118. UV [BE] has 

units of W m-2.
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The CIE agreed what is now the standard erythemal response function, or 

action spectrum, first proposed by McKinlay & Diffey in 1987, which represents a 

person’s skin response over the entire UVB and UVA bands from 280 to 400 nm, 

as shown in figure 1.4119. The data is normalised on a logarithmic scale to the 

most effective wavelengths, namely the UVB. As shown, the shorter wavelength 

UVB radiation is significantly more effective in inducing erythema, with this 

effectiveness falling off towards longer UVB wavelengths and through the UVA 

waveband120 121. The erythemal effect of UVA should not be under-estimated 

though, as it can be as high as ~ 40%122 and the terrestrial solar irradiance levels 

are significantly higher in this waveband, compared to the UVB. In addition, the 

fact that the action spectrum changes by 3 orders of magnitude between 290 and 

330 nm means that the spectral bandwidth of measurements made in this region 

needs to be precise as small uncertainties in wavelength can mean large changes 

in efficacy123.
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Figure 1.4:

CIE action spectrum for induced human erythema over the UVA and UVB bands 

and terrestrial solar spectrum124.

 A typical terrestrial solar spectrum is also shown in figure 1.4, 

highlighting the low relative percentage of UVB when compared to the UVA, 

which accounts for approximately 90 % to 95 % of the UVR at ground level. 

Although, accounting for only ~ 5 % to ~ 10 % of the total terrestrial UVR, it can 

be seen from the erythemal response that UVB is the most actinic waveband 

reaching ground level. 

First proposed by Sliney in 1972, an envelope action spectrum combining 

the action spectra for skin erythema and photokeratoconjunctivitis, was later 

adopted and further developed by the American Conference of Governmental 

Industrial Hygienists (ACGIH)125. It is a smooth curve beneath the energies 
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required to cause these and other acute pathologies directly related to UVR 

exposure, as shown in figure 1.5126. Also known as the UV hazard function for 

evaluation of UVR sources, it highlights the UVR exposure threshold limit values 

recommended for protection of the skin and eyes127 128 129 130 131.
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Figure 1.5:

ACGIH/ICNIRP UVR envelope action spectrum between 180 nm and 400 nm, 

emphasising relative exposure limits. 

As an envelope spectrum of acute skin and ocular action spectrum data  

such as photokeratoconjunctivitis and cataract, it can be seen that similar to the 

CIE erythemal action spectrum, the shortest wavelength UVB wavelengths are the 

most effective in inducing all pathologies included under its envelope, with 

effectiveness falling off in the UVA132. Peak effectiveness was found to be 

~ 270 nm to ~ 275 nm, approaching the UVB waveband. As a generic hazard 

function, it was later adopted as an international protection guideline by the 
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ICNIRP who recommend that exposure from a broadband source should not 

exceed 30 J m-2 effective over an 8 hour period133 134 135. This is related to MEDs 

in that an exposure of radiant energy at this recommended limit will result in one 

quarter of an MED, and no erythema should occur136 137.

1.2.4 Factors Determining Ocular UVR Field 

Individual ocular exposure to UVR can be considered to result from 

environmental and physiological factors.  Ambient UVR levels at a given time 

and place depend on atmospheric and environmental conditions, and vary greatly 

from region to region138. Due to the many combined environmental and 

physiological variables contributing to total irradiance received by the eye, the 

distribution of solar terrestrial UVR across the lid margin is a significant 

challenge to quantify at a given time and location. Environmental factors include 

clear or cloudy skies, cloud distribution, SZA factors such as latitude, time of day 

and season, altitude, surface albedo, total ozone and physiological factors 

including facial structure, brow ridge prominence, skin colour, ocular orientation 

with respect to the solar rays, shading wear such as wide-brimmed hats, 

sunglasses and contact lenses and degree of lid opening or squint139 140 141 142 143.

1.2.4.1 Environmental Factors 

The most predictable condition for terrestrial solar irradiance is for that 

under clear skies, as the rays propagate through the atmosphere without being 

modified by cloud cover. Global insolation is the sum of the direct component and 
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that of the diffuse component, the latter comprising that insolation resulting from 

multiple cloud reflections and subsequent scatter144. When inhomogeneous cloud 

cover is present, the resultant insolation varies rapidly, both temporally and 

spatially, and is much more complex to quantify in terms of ocular receipt of solar 

UVR. It follows that under clear sky insolation, the distribution of ocular UVR 

will be highly dependent on SZA and cardinal point orientation and should result 

in a bias of UVR across the eye. Under cloudy skies, the spread of UVR across 

the ocular surface should be more uniform as UVR rays are incident from all 

angles. For this reason, it may be considered more challenging to reduce the 

irradiance at the ocular surface under diffuse insolation, than for that under direct 

insolation145.

Under both clear and cloudy skies, environmental factors determining the 

spectral irradiance at the earth’s surface are highly variable and include SZA, 

season, ozone column, terrain reflectivity, altitude, latitude and aerosol loading of 

the atmosphere146 147 148 149. As the SZA is the angle between the zenith and the 

position of the sun, with the exemption of cloud cover, it has the most profound 

effect on terrestrial UVR levels diurnally as the change in the relative levels of the 

UVR wavebands is highly dependent on the pathlength of atmosphere the rays 

must traverse to reach ground level150.
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1.2.4.1.1 Solar Zenith Angle 

The solar zenith angle is the angle between the local vertical and the 

position of the sun in the sky. Directly related to latitude, season, and time of day, 

SZA is the most predictable influence on the spectral shape and intensity of the 

terrestrial solar spectrum151 152. To define the position of the sun in the sky, both 

the SZA and the Solar Azimuth (SA) coordinates are necessary. While SZA 

defines the position of the sun with respect to the local vertical, SA defines the 

position the sun is in the sky with respect to true North. SA proceeds from 0 º due 

North and progresses clockwise to 359 º due North. As one of the main 

determinants of UVB radiation at the earth’s surface, SZA dominates the 

atmospheric pathlength of direct solar radiation falling upon an area on the earth’s 

surface153. SZA is expressed as a value between 0° and 90°. The smaller the SZA, 

the higher the sun is in the sky and vice versa, i.e. SZA = 0° implies the sun is 

directly overhead, and occurs at local noon at the equator for both the vernal 

(spring) and autumnal equinoxes on March 21st and September 22nd respectively. 

The solar elevation angle (SEA) is another commonly used term and is essentially 

the same as SZA. In the case of SEA, the smaller the angle, the lower the sun is in 

the sky. It progresses from 0 º at the horizon to 90 º at the zenith.

At larger SZAs the solar beam irradiates a larger surface area. At such 

angles the air mass becomes greater than 1 and as a consequence of both factors, 

the direct irradiance is effectively decreased. As radiation passes through the 

atmosphere, it undergoes Rayleigh scattering. This elastic scattering shows a 
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strong wavelength dependency ( -4) and can be multi-directional, in that it can be 

forward-scattered and back-scattered. Scatter increases for decreasing 

wavelengths, giving the sky its blue colour, and so UVR is more strongly 

scattered than visible wavelengths154 155. As such, within the UVR waveband, the 

UVB is scattered considerably more so than the less toxic UVA156 157. The 

significance of SZA and changing irradiance with changing angle cannot be 

underestimated as the diffuse fraction of radiation from the sky increases with 

SZA158 159. Peak UVB exposures on earth are found in the tropical latitudes, 

which lie between 23° 30' north and south of the equator, during the summer 

months around local noon, as it is at these latitudes where the pathlength through 

the atmosphere is shortest and the SZA is smallest160.

1.2.4.1.2 Cloud Cover 

Another major factor, and the most unpredictable one, influencing UVR at 

the earth’s surface is cloud cover161. The rapid temporal and spatial variability of 

cloud cover, along with the three dimensional character of cloud cover, make it an 

appreciably difficult environmental factor to qualify in terms of the impact such 

cover has at ground level162 163. As stated earlier, global or total terrestrial 

insolation may be categorised as being direct or diffuse, the former being 

radiation which permeates the atmosphere without being modified by cloud cover 

and reaches ground level freely. In the absence of cloud and particulate matter, 

Rayleigh scatter dominates the terrestrial solar spectrum, and as stated, is highly 

dependant on wavelength and SZA. With the presence of cloud and particulate 
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matter in the lower atmosphere, another type of scattering is introduced – Mie 

scattering. While Rayleigh scattering is highly wavelength dependant, giving the 

sky its blue colour, Mie scattering is inversely proportional to wavelength, and is 

caused by particulates on the order of, or larger than, the wavelength of interest. 

In the atmosphere, it is predominated by water vapour and aerosols and is the 

cause of diffuse isolation beneath cloudy skies164. Diffuse terrestrial insolation is 

more complex as the extraterrestrial direct solar rays pass through various 

atmospheric cloud densities and types, at each stage being reflected, redistributed 

and scattered before finally being received at ground level as illustrated 

schematically in figure 1.6165.

In terms of determining whether or not a UVR bias exists across the 

human eye for an upright position fixing at the horizon under diffuse insolation, it 

could be hypothesised that a less dramatic bias would exist than that under direct 

insolation due to the radiation being received from all angles, thereby minimising 

shading effects of the brow ridge and the adjacent facial anatomy that occur for 

direct insolation. The resultant ocular UVR field at any moment is determined by 

the presence or absence of cloud cover and this UVR field is also linked 

inextricably to SZA and SA. It is a combination of these factors which determine 

the ocular UVR field for a fixed latitude, altitude and season. As can be seen in 

figure 1.6, direct solar rays are spectrally modified only by the atmosphere and 

reach the eye without undergoing scattering and reflections by clouds. These may 

be termed clear diffuse rays as, although they do undergo scattering in the 

atmosphere, they are not as randomly distributed as those rays passing through 
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clouds. Cloudy diffuse irradiance at the anterior ocular tissues firstly undergoes 

similar atmospheric scattering to clear diffuse rays, but also further undergoes 

multiple scattering and reflections through the cloud densities and results in a 

much more diffuse irradiance at the anterior ocular surface. Coupled to both are 

ground reflections which redirect direct and diffuse rays. Depending on the 

density and UVR reflectivity of upright or inclined surfaces in the surrounding 

terrain, these surfaces can play a very important role in the radiant exposure at the 

ocular surface. Inclusive of surface reflectivity, in terms of clear skies, these 

reflections will depend on surface inclination with respect to the eye, and surface 

finish, in terms of their being specularly or diffusely reflected. This is also the 

case under diffuse skies, but surface inclination and finish only serve to further 

enhance the diffuse nature of the receipt of ocular diffuse UVR, and would not be 

expected to cause as dramatic an effect at the ocular surface as specularly 

reflected radiation under clear skies from the surrounding terrain. 

From here on ‘clear diffuse’ irradiance will be termed ‘clear’ or ‘direct’ 

irradiance and ‘cloudy diffuse’ irradiance will be termed ‘cloudy’ or ‘diffuse’ 

irradiance. 

24



Figure 1.6:

Ocular receipt of UVR through direct, diffuse scattered and terrestrially reflected 

rays.

The most straightforward atmospheric condition to discuss is that of clear 

skies. Fluctuations of ground level irradiance are minimal for a given SZA with 

no cloud cover overhead and as such, the most repeatable measurements of ocular 

solar UVR incidence should be achievable.

Under diffuse skies, or those with perceivably constant cloud cover, 

similarly constant measurements should also be attainable. However, cloud cover 

is determined by atmospheric turbidity and local climate, and thus its temporal 

and spatial profile is infinitely variable, providing a greater challenge when 

recording UVR measurements.  
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One may broadly group cloud cover as follows166:

Reasonably constant early morning haze which covers an observer’s 

skyward field of view perceivably uniformly. Examples of such are the 

high Cirrostratus and Cirrocumulus clouds which provide little shading of 

the sun. 

High altitude, thin fibrous Cirrus clouds sparsely scattered across an 

observer’s skyward field of view, not occluding the sun. 

Mid altitude Altocumulus white clouds scattered across the sky which 

intermittently obstructs direct rays from the sun. This type, along with 

Altostratus cloud cover, often appears mid-morning and early-afternoon. 

Such cloud cover may appear intensely white at the cloud’s leading edge 

and can in fact possibly enhance surface irradiance momentarily. 

Low altitude, grey stratus cloud cover which appears to blanket the 

observable sky and which can cause dramatic fluctuations in surface 

irradiance. They are the lowest-forming of all clouds and may have very 

diffuse edges.

Cumulus clouds which appear puffy white and are generally relatively low 

in altitude. When passing the sun, the surface irradiance may drop 

considerably, but equally, terrestrial irradiance may be enhanced 

depending on density and height. Similarly, low-altitude Stratocumulus 

clouds are patchy and can appear from bright white to dark grey. Under 

conditions where diffused bright white light is perceivable, enhanced 

terrestrial UVR may also occur. 
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Cumulonimbus clouds, which appear dark and can be found at any 

altitude. Reaching vertical heights of thousands of meters, these are often 

associated with heavy showers and violent thunderstorms. As a result of 

their height and resultant dark bases, these essentially block all solar UVR 

from reaching ground level.  

As mentioned above, and being strongly dependent on cloud type, height 

and density, a number of effects can result from the interaction of the 

extraterrestrial solar rays and cloud cover. Although normally such interactions 

cause a reducing effect, there are endlessly variable and intrinsically difficult to 

quantify and describe, conditions which can enhance the terrestrial UVR 

irradiance levels to above expected clear sky values or conversely, reduce the 

irradiance received167 168 169 170. The most influential factor in UVR enhancement 

is the location of the leading cloud edges with respect to the sun. Diffuse UVR 

irradiance can be enhanced under broken clouds when the sun is not obscured and 

rays are reflected by the broken cloud’s leading edges171 172 173. Since light cloud 

cover is practically transparent to UVR, it can be hazardous to underestimate the 

levels of UVR over prolonged outdoor exposure based on the fact that the 

sensation of heat and visible intensity varies more significantly than UVR levels 

do with intermittent cloud cover174 175 176. It has been reported that, on average, 

between 30% and 50% of the total global UVB component is that of diffuse 

irradiance177. As a result, due to our natural aversion from direct sunlight, we are 

therefore exposed to this level of UVB irradiance unknowingly. Such diffuse 

exposure significantly increases our total UVR exposure, as often protective 
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measures are not as widely used under diffuse skies as they are under clear skies. 

As cloud cover is perpetually changing and modifying incident direct beam 

radiation, it is widely acknowledged that quantification of this variability in cloud 

cover and the effect it has in the field for a given application can prove very 

difficult178. The design, construction and testing of the photodiode sensor array 

for the research presented here aimed to make the quantification of the 

distribution of solar UVR at the ocular surface under both direct and diffuse skies 

a relatively timely, reliable and repeatable method. A major advantage in its 

design was its physical construction and ease of interfacing with a specifically 

written data acquisition program and robustness. Real time data acquisition and 

display on a laptop PC also aided in quick analysis of the acquired data whilst in 

the field, readily permitting discrimination of poor data immediately minimising 

the requirement for processing of information using other equipment post-

acquisition. The design was such that recording and analysis of data was 

performed on the same laptop during measurement runs and further analysis was 

performed later. A problem with other dosimeter methods is that analysis is only 

carried out after exposure to solar irradiance and corrective measures cannot be 

implemented on-site. 

The degree to which cloud cover can absorb, reflect or scatter radiation is 

a function of cloud type, density, height and the distribution of these across the 

observable sky. Similar to visible light, UVR is attenuated dramatically by 

extensive cumulonimbus dark clouds. It has been found that such clouds can 

attenuate UVB to approximately 1 % of clear sky levels. It has also been noted 
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that scattered clouds on the horizon may reduce terrestrial UVR appreciably 179

180. Conversely, it is also possible that low level stratus clouds or broken clouds 

near the sun can increase surface UV irradiance levels to higher than that of a 

cloudless sky due to forward reflections by cloud edges, although firm spectral 

dependency on such enhancement has yet to be ascertained181 182 183. As they pass 

closer to the sun, forward scatter and multiple reflections will increase the 

irradiance at ground level, momentarily increasing the diffuse component with 

respect to that of the direct solar component. This increased component owes 

itself also to the fact that a percentage of UVR striking the earth’s surface is 

reflected skywards (depending on surface terrain reflectivity), possibly striking 

the base of the cloud and through this mechanism, reflecting back towards the 

ground, effectively reinforcing the ground level irradiance to a total irradiance 

exceeding a similar clear sky value184 185.  This scattering of radiation by diffuse 

clouds can also potentially increase the UVR exposure dose at different parts of 

the body, of particular interest here, the nose and surrounding facial features 

which may reflect UVR towards the ocular regions186 187 188. In general, for a 

clear day with direct rays arriving at the earth’s surface, the head and shoulders 

receive the greatest amount of radiation for small zenith angles. For similar zenith 

angles, but with diffuse skies, the radiation is efficiently scattered across the 

whole sky, increasing radiation exposure to body areas which would normally not 

receive such exposure doses189.

Due to global climate change, the average cloud cover on a yearly basis 

may be reduced in certain regions, appreciably affecting the terrestrial UVR 
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levels. Coupled with this is the likelihood of people spending further time 

outdoors pursuing recreational activities and taking holidays abroad, thereby 

increasing their cumulative UVR exposure. With between 65 % and 90 % of skin 

melanomas caused by UVR, an already increased partaking in outdoor activities 

and changes in head wear and hair cover, the global climate change trends 

indicate much higher rates than present of skin and ocular disorders in the 

future190 191. Combining knowledge, education programmes for sun protection, 

individual responsibility and improving behavioural aspects towards preventive 

measures relating to the insidious dangers posed by terrestrial solar radiation will 

hopefully reduce the number of patients presenting with solar-induced pathologies 

of the skin and ocular media192 193 194 195 196 197 198 199 200 201. The need for a 

better understanding of the distribution of solar UVR across the anterior ocular 

segment is paramount for recommending improvements in ocular protection. The 

research presented here provides one with a survey of the ocular distribution of 

terrestrial solar UVR in the field and will further enhance our understanding of the 

environmental and physiological variables which influence the irradiance at the 

ocular surface. 
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1.2.4.1.3 Latitude 

Average ambient terrestrial solar UVR levels decrease with increasing 

distance from the equatorial latitudes during the year, assuming uniform ozone 

depth and constant altitude202. This is due to the equatorial latitudes having 

minimal air mass with respect to the direct solar rays, which is a result of the 

earth’s axis of rotation being tilted by an angle of ~ 23.44 ° with respect to the 

sun203. Indicative of the effects of latitude and the earth’s tilt is that global skin 

cancer rates and incidence of pterygia have been found to be among the highest 

globally in Australia (10° - 43° S), due to it having relatively higher levels of solar 

UVR throughout the year, and particularly during summer months, for its given 

latitude range with respect to equivalent latitudes in the Northern Hemisphere204

205 206 207. Australia has peak summer UVI values of circa 20, which are 

alarmingly large by comparison with European latitudes, with peak UVI forecasts 

of 8-10 during the summer208. Due to its geographical location in the southern 

hemisphere, the summer months in Australia bring with them an increase of 

approximately 7% UVR by comparison with average levels at similar latitudes in 

the northern hemisphere. This can also be attributed to the fact that the southern 

atmosphere is cleaner and stratospheric ozone depletion has been more prevalent 

over the Antarctic resulting in less total ozone and thus, decreased absorption and 

attenuation of extraterrestrial solar UVR, resulting in an intensification of solar 

UVR at these southern latitudes209 210 211.
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1.2.4.1.4  Time of day 

Between 60 % and 70 % of the daily biologically effective terrestrial solar 

UVR occurs two hours either side of local noon212 213. Diurnally, as the SZA 

proceeds to larger angles, pre- and post-local noon, the ratio of the UVA and UVB 

irradiance and the short wavelength cut-off of the terrestrial spectrum increases 

and decreases significantly from noon maximum also214. These diurnal variations 

are due to a longer direct pathlength and as a result of this increased pathlength, 

there is an increased amount of Rayleigh scattering. This can be explained in 

terms of ‘air mass’, or the amount of atmosphere the solar radiation must pass 

through215.Although scattering increases with SZA and less UVR reaches ground 

level, forward scattering coupled with direct rays at these angles can result in a 

solar beam striking the temporal cornea at angles which may result in Peripheral 

Light Focusing effects, which will be described in detail in section 1.4.3.  

1.2.4.1.5 Altitude 

Solar ultraviolet levels increase with increasing altitude at a rate of 

approximately 3 % to 4 % for every ~300 m216 217. This effect is primarily due to 

there being less tropospheric absorption of UVR at higher altitudes than ground 

level due to less air mass. At small SZA’s, the air mass approximates 1 at ground 

level and the irradiance is maximum. This occurs at local noon at a particular 

latitude. At the same latitude, time and SZA, but at increasing altitudes, the 

irradiance increases due to their being less air mass to pass through.  
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Similar to ground level, it is also the case that at altitudes above cloud 

cover, there is back-scattering of light from the upper regions of cloud cover 

causing a further increase in the already elevated UVR levels at a that altitude. 

The work detailed in later sections was performed at ground level and as such, 

measurement variations due to changes in altitude were an insignificant factor.

1.2.4.1.6 Season 

Reasonably constant yearly averages of seasonal UVR variations exist 

from region to region, depending on the hemisphere. In the Northern hemisphere, 

terrestrial UVR irradiance increases from late spring, peaking during the middle 

of summer and decreases similarly towards early autumn. In the Southern 

hemisphere, the reverse is true; peak UVR irradiance occurs during the middle of 

December with irradiance decreasing through November and January. For this 

reason, it is vital to protect the skin and ocular tissues during peak summer 

months in both hemispheres around local noon.   

1.2.4.1.7 Surface Albedo

Surface reflectance, or albedo, is another major determinant of ocular 

exposure to UVR radiation. Reflections from horizontal surfaces which are highly 

reflective in the ultraviolet waveband coupled with reflections from inclined 

surfaces effectively increase the total exposure dose a person will receive due to 
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the fact that UVR is now incident from above, the side and beneath218 219 220.

Percentage reflectivity or ‘albedo’ can be broadly defined as the ratio of ambient 

downwelling irradiance to upwelling irradiance over a horizontal surface221. Since 

the human eye can not perceive UVR wavelengths, it is reasonable to assume that 

under diffuse insolation, while the squint mechanism is disabled and the pupil is 

relatively dilated, surfaces with high UVR albedo can only enhance the total 

irradiance at the ocular surface. For instance, fresh snow, with a very high blue 

wavelength and UVR albedo (~ 80 %), deposited on an extensive mountain range 

with few structures in the immediate surroundings will result in ground reflected 

direct rays originating from all angles222. Such high reflectance is a direct cause of 

photokeratoconjunctivitis, more commonly known as ‘snow-blindness’223. It is an 

acute photochemical injury of the cornea and takes a relatively short time without 

protection to manifest, but symptoms generally fade between 36 to 48 hours post 

appearance224 225 226 227 228 229. The standard preventative measure for 

photokeratoconjunctivitis is the use of fully wrap-around ski goggles which 

reduce glare and more importantly, the UVR content reaching the ocular 

structures. The incorporation of UV-blocking contact lenses alone or in 

combination with these ski goggles will also dramatically reduce the incident 

UVR at the anterior ocular structures. Other frequently encountered surfaces such 

as grass, soil and water have total UVR albedo of approximately 10 %, while dry 

sand and sea foam are approximately 15 % and 25 % UVR reflecting 

respectively230. In this sense, reflections from water surfaces over a defined period 

of time can cause a greater erythemal response than those reflections from grass 

for instance under similar sky conditions. Most pertinent to the work described 
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here is the UVR reflectance of the rooftop on which the field work was carried 

out. It had a UVR reflectance of approximately 5%, as measured by a broadband 

UVR radiometer. When compared to the other surfaces mentioned, this is a 

relatively low UVR surface albedo. 

Another important albedo is that of human skin. Depending on skin type 

and colour, the percentage reflectivity from the lower brow ridge and adjacent 

nasal structure will vary, with some skin colours reflecting UVR from this 

anatomical structure more efficiently towards the nasal aspect, possibly further 

emphasising why many ocular conditions have a nasal predilection. 

1.2.4.1.8 Ozone

The stratospheric ozone layer, stretching 10 – 50 km above the earth’s 

surface, yet only 3 mm’s thick at standard temperature and pressure (STP), 

contains most of the atmospheric ozone and provides a shield around the 

biosphere to the most toxic UVR waveband, the UVC. By absorbing all 

wavelengths within this waveband, the most toxic waveband reaching earth’s 

surface is the UVB, with ozone absorption decreasing rapidly with increasing 

wavelength across the UVB waveband231. Thus, the detectable terrestrial solar 

spectrum begins at approximately 290 nm and increases very steeply where the 

ozone layer becomes completely transparent to wavelengths longer than 340 nm 

in the UVA waveband. Strong absorption beneath approximately 330 nm may be 

attributed to atmospheric ozone absorption at these wavelengths232 233 234. This 
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absorption, and thus terrestrial UVB irradiance, is highly variable and depends on 

stratospheric ozone thickness235. The strong wavelength dependency of UVB 

intensity at ground level on stratospheric ozone density has led to the development 

of a number of networks which monitor the UVR levels in both hemispheres by 

various methods for the reason that any destruction of atmospheric ozone 

enhances the UVB levels at ground level, ultimately leading to the likelihood of 

greater skin and ocular disease rates236 237 238 239 240. As has been suggested by a 

risk model, the incidence of cortical cataracts due to continued ozone depletion 

could increase by 1.3 % to 6.9 % by 2050241.

Total ozone column is measured in Dobson units (DU) and is defined in 

terms of the equivalent thickness of pure ozone, the average value being about 

300 DU, which, as stated, equates to approximately 3 mm of ozone at STP. This 

value can vary from 250 DU in the tropics to 450 DU at much higher latitudes in 

both hemispheres. Daily variations of ozone column are of the order of 

approximately 20 – 30 DU, but these are far outweighed by the seasonal and 

latitudinal variations that exist around the globe. The relevance of this lies in the 

fact that regions with lower total ozone columns will have higher levels of UVB 

radiation242. As the skin and ocular tissues are extremely susceptible to radiation 

damage in the UVB, any increase in terrestrial UVB will increase the incidence of 

related illnesses243.
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1.2.4.2 Physiological Factors 

Terrestrial solar irradiance is normally expressed for a horizontal plane 

normal to a small SZA. However, the dose of radiation at the ocular surface is a 

function of the distribution of the atmospheric direct and diffuse solar 

components, the terrestrially reflected rays and the relative position and spatial 

orientation of the eye to these components. Depending on atmospheric conditions, 

cloud presence and density, SZA and the density of highly reflective structures in 

the foreground, the eye is subject to infinitely variable solar irradiance244.

The human eye is well protected from physical insult owing to the fact that 

it is situated deep within a bony orbit. The protection offered to it from solar 

radiation by the overhang of the upper brow ridge is paramount to blocking direct 

rays at small SZA’s, or when the sun is approximately overhead around the hours 

of noon. However, the extent of protection afforded by the brow ridge varies from 

individual to individual. Brow ridge prominence, coupled with the reflectivity of 

the skin, are two important factors which determine the dose received at the eye 

from the direct solar rays at small SZA’s. In general, direct solar rays propagating 

at small SZA’s are reflected away from or absorbed by the brow ridge before 

reaching the ocular tissue while standing and looking towards the horizon, a 

typical head carriage. A certain percentage of the incident radiation will also be 

reflected away by Fresnel reflection at the corneal surface, reducing the 

absorption by ocular tissues. The eyelids also serve to shield the delicate ocular 

tissues from varying degrees of direct and diffuse insult depending on ambient 

scene luminance. Similar to brow ridge prominence, relaxed eyelid margin 
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opening is individualistic and can have a marked effect on the UVR exposure 

dose received at the anterior surface in a diffuse environment when the instinctive 

squint mechanism is not enabled. This is due to the diffuse environment having a 

perceivably ambient scene luminance in the visible waveband, thereby minimising 

the effects of natural aversion, squint mechanism and pupil constriction, all of 

which serve to shield the ocular tissues from actinic UVR. The natural aversion of 

the human eye to bright areas of the sky, squint mechanism, coupled with pupil 

constriction and degree of lid closure, contribute largely to reducing the amount of 

absorbed UVR by the anterior and posterior ocular tissues respectively, from both 

the direct and diffuse rays245 246 247 248 249.

The nose may also serve to shield the eye from rays reflected by the 

surrounding terrain, but it has been hypothesised that terrestrial reflections 

striking the nose and lower brow ridge may in fact be reflected back and 

concentrated around the nasal portion of the eye, possibly increasing the 

accumulative absorbed dose, and contributing to the formation of pterygia and 

pinguecula250. However, UVR selectively absorbed and transmitted by the 

different ocular tissues is thought to result in disorders such as pterygium, 

photokeratoconjunctivitis or certain types of cataract through cumulative effects. 

In part, it has been hypothesised that absorption of UV photons by stem cells at 

the limbus, a region of tissue between the corneal epithelium, conjunctival 

epithelium and sclera, may result in the development of pterygium251 252 253 254.
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The effects of other environmental and physiological factors such as 

phenotype, genotype, atmospheric aridity and turbidity, dust content etc. cannot 

be overlooked, but many epidemiologic studies have inferred UVR to be the only 

common factor between different ethnic groups, as diverse as Eskimos and 

Aborigines, presenting with one of the ocular conditions mentioned above255 256

257 258. The occurrence and position of ocular UVR related disease, particularly 

the reported nasal bias of certain ocular pathologies, can be better understood 

when the ocular anatomy is considered.

1.3 Review of Ocular Anatomy 

The human eye is set deeply in the orbital cavity with the upper brow ridge 

and eyelids providing a defence against physical injury and more appropriately 

here, a barrier against downwelling skylight when the head is oriented towards the 

horizon. The eyebrow and eyelashes serve to entrap dust particles, but also 

provide some additional protection against radiation striking the ocular surface by 

shading exposed tissues. The main ocular components that are transparent to what 

humans perceive as light are the cornea and conjunctiva, lens, aqueous solution 

and vitreous solution, and can be seen in figure 1.7. By minimising light 

absorbance and scattering in these tissues, maximum light transmission to the 

retina occurs.  The other tissues presented in figure 1.7 are the limbus, sclera and 

iris. The limbus will be discussed in more depth in section 1.3.3. 
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Figure 1.7:

The human eye through cross section and frontal view, showing the 

principal ocular components259.

 It is the cornea and the annular tissue surrounding it, known as the limbus, 

which were the main focus of this study. The cornea is principally involved in 

absorbing and transmitting incident solar UVR to more anterior tissues and is 

susceptible to UVR induced photobiological pathologies, including pterygium260.

The consequences of PLF, illustrated in figure 1.8, and focusing of obliquely 

incident radiation at the peripheral cornea and the occurrence of such diseases as 

pterygium, believed to manifest at the limbal focal point, are thought to be a result 

of increased exposure dose received at this point.
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Figure 1.8:

Light delivered to temporal cornea posterior to the coronal plane and refracted to 

a focal point at nasal limbus. 

By selective absorption of UVR wavelengths by the cornea and lens, the 

more posterior tissues, including the uvea and retina, receive a much lesser 

irradiance, as described in section 1.5.1. 

1.3.1  The Cornea 

The refracting power (P) of a spectacle or contact lens is generally given 

in dioptres (D), as is the case with the refractive power of the cornea and human 

lens in optometric terms. The focusing or refractive power of a lens (m-1) is 
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defined as the reciprocal of the focal length (f) in metres and is given in equation 

1.4:

)(
1
mf

P              Eq.: 1.4 

Due to its convex nature, and since the largest change in refractive index 

of the ocular system is that between air (n = 1.0003) and the anterior corneal 

surface (ncornea = 1.376; nwater = 1.333), it is at this interface where most refraction 

occurs, providing approximately 70 %, or ~ 43 dioptres on average, of the total 

focusing power of the eye261 262.

Although not insignificant, the refractive power of the cornea’s posterior 

surface is much less (circa 10 % of anterior surface refractive power) which can 

be attributed to possessing a smaller radius of curvature than the anterior surface 

and the fact that very little refraction occurs at the posterior corneal surface since 

its refractive index is so closely matched to the aqueous solution (naqueous = 

1.336)263. The cornea does not have a constant radius of curvature across its 

diameter and flattens towards the periphery264. It has an average radius of 

curvature of 7.8 mm and 6.5 mm at the anterior and posterior surfaces 

respectively, with average corneal diameter of ~11.5 mm265 266.

For the emmetropic eye, or one which forms an unaided clear image on the 

retina, with an average axial length of approximately 24 mm, the average dioptric 

42



power provided is approximately 43 D of the total ~ 60 D power of the whole eye, 

inclusive of the lens, which contributes approximately 15 D267 268.

Uncorrected clear image formation at the macula, better known as 

emmetropia, is a result of the cornea and lens structures working in unison and 

their combined refractive power closely matching the axial length of the eye269.

Considerable variation exists within the emmetropic eye, with approximately 

24 mm being the average axial length, as emmetropic axial lengths of between 

20 mm and 30 mm are not uncommon. For those who require corrective 

prescriptions, by means of glasses or contact lenses, two main categories exist, 

myopia and hyperopia. The former will form an optical image in front of the 

retina due to the refractive power being too large relative to the axial length. The 

latter will form the same image beyond the retina due to the refractive power of 

the optical components being too weak with respect to the axial length.

The cornea is comprised of five adjacent tissues, each having a unique 

function; the epithelium (~50 µm), Bowman’s membrane (~8-14 µm), stroma 

(~500 µm), Descemet’s membrane (~5-15 µm) and endothelium (~5 µm)270 271.

The outermost layer is the epithelium, the function of which is to protect the 

corneal stroma from both physical insult and radiation through absorption of toxic 

wavebands272. Fortunately the epithelium has evolved to regenerate damaged 

tissue in less than 24 hours. In doing so, basal epithelial cells are generated at the 

limbus, migrate upwards towards the outer epithelium and are shed in a 

continuous process. This regeneration of epithelial cells by the limbus emphasises 
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the importance of this tissue and the need for adequate protection from radiation 

insult273 274. Posterior to the corneal epithelium lies Bowman’s membrane. 

Consisting of layered collagen fibres, this membrane serves to maintain the 

structure of the cornea. If injured, it does not have the ability to regenerate and 

can cause some visual disturbances. Adjacent to this membrane and more 

posteriorly located is the corneal stroma. Also consisting of collagen fibres, the 

stroma is the thickest layer of cornea, comprising ~ 80 - 90 % of its thickness, 

~ 78 % of which is water 275. Corneal transparency is due to the spacing 

arrangement and good index-matching of the collagen fibres within the hydrated 

stroma and the fact that the collagen fibres are poor light scatterers due to the 

wavelength of visible light being much larger than their radius’276. Descemet’s 

membrane is located posterior to the corneal stroma and serves to protect against 

infection and injuries. It is also comprised of collagen fibres and is self-

regenerating. Most posterior is the very thin endothelium. This acts as a fluid 

pump maintaining osmotic pressures and protects water from entering the corneal 

stroma from the aqueous humor, thereby stopping stromal swelling and 

maintaining corneal clarity. Damage to the corneal endothelium is irreversible and 

thus it is a vital component in maintaining corneal clarity and refractive power277.

1.3.2 The Conjunctiva 

The conjunctiva is a vascularised transparent mucous membrane which 

covers the outer surface of the ocular globe and is continuous with the limbus of 

the cornea and the inner eyelids. At the palpebral region, the conjunctiva meets 
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the skin at the junction of the lid margin. The palpebral conjunctiva lines the 

internal eyelid, while the bulbar conjunctiva lines the globe and merges with the 

limbal tissue. It possesses a circulatory supply of many small blood vessels, and is 

the most immunologically active tissue of the external eye278. Although lacrimal 

glands produce the greatest volume of tears to bathe the external eye, secretory 

glands in the conjunctiva produce a tear film which help to lubricate and protect 

it279.

Experimentally demonstrated by Cullen et al., the conjunctiva has a 

similar action spectrum to that of the cornea, with a peak spectral response at 

approximately 270 nm in the UVC, just outside the terrestrial solar spectrum280

281. The relevance of this lies in the fact that the conjunctiva is as susceptible to 

radiant exposure as the cornea. 

1.3.3 The Limbus

This limbus forms a highly vascularised annulus of tissue approximately 

1.5 mm wide around the cornea282 283. Clinically and histologically, it is a distinct 

transitional zone where the corneal epithelium gradually develops into the sclera 

and conjunctival epithelium and it comprises tissue both from the limboscleral 

junction and the corneo-limbal junction284 285. Its functional importance permits it 

to be considered as its own entity whose functions include: peripheral corneal 

nourishment, assistance in corneal epithelial regeneration and provision of an 

outflow for the aqueous humour. The main sources of corneal epithelial 
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regeneration are stem cells located in the basal epithelium at the corneo-scleral 

limbus286 287 288 289 290. Any photochemical alteration of stem cells due to 

phototoxic wavebands absorbed can result in loss of functionality and 

degeneration of adjacent healthy corneal and conjunctival tissue291.

It has been proposed that limbal stem cell alteration as a result of chronic 

UVR exposure is related to the pathogenesis of pterygium. Although the 

corneoscleral limbus is afforded protection from UVR damage due to the presence 

of melanin pigmentation292, PLF is implicated as a causative factor the aetiology 

of pterygium. This is best explained by the fact that the limbal basal epithelial 

cells are susceptible to UVR damage as they are not guarded against posteriorly 

concentrated refracted rays by the superficial layers of the corneal epithelium293.

Ordinarily the epithelium would offer protection for UVR incident ‘normal’ to the 

corneal surface, but in the case of angularly dependent PLF, any UVR transmitted 

by the temporal cornea, focuses to a maximum concentration at the nasal limbus. 

This gives further insight into why pterygia are regularly found along the 

horizontal meridian at the nasal aspect of the cornea294.

1.3.4  The Sclera 

The sclera, or white of the eye, functions to protect the intraocular 

components and along with the cornea, forms a complete and almost spherical 

envelope of the ocular components, maintaining its shape with intraocular 

pressure. Composed primarily of the same collagen fibres as the cornea, the sclera 
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appears opaque due to the disorderly nature of these fibres. The transparent cornea 

is a result of these fibres being arranged in a lattice and the fact that the cornea is 

dehydrated.

1.3.5  The Lens 

Located between the aqueous filled anterior and posterior chambers, the 

biconvex lens is the second and final refracting structure, providing approximately 

30 % or ~ 15 dioptres of the eye’s total refractive power295. As an adaptive 

refracting body, the lens changes its focal length, and thus its refractive power, by 

control of the nervous system, to form a clear image on the retina and it is this 

process of accommodation which signifies the importance of this refracting body.

It has an average refractive index of approximately 1.420, but this value 

can progressively increase with age296. Similar to the cornea, it is a very 

inefficient scattering tissue, and changes in its structure can cause an increase in 

scattering, resulting in a gradual opaqueness and cataract297 298. In cross section 

there are three main regions of the lens in which cataracts mainly occur – the 

cortex, nucleus and posterior pole299 300.

While accommodation is the lens’ primary function, it also efficiently 

absorbs approximately all UVR between 300 nm and 400 nm which is transmitted 

through the cornea301 302 303. It is the prolonged and repeated absorption of these 

wavelengths which is considered a risk factor in cortical cataracts304 305 306. As 
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the lens ages, it transmits lower amounts of short-wavelength visible and UVA 

and UVB as a result of its transmission curve being red shifted307 308 309. Thus the 

adult lens and cornea provide better filtering for these more actinic wavelengths 

thereby protecting the retina from UVR and the resulting pathological changes 

such as Age-Related Macular Degeneration (AMD) and possibly posterior uveal 

melanoma, both of which are epidemiologically linked to UVR absorption310 311

312 313. Furthermore, retinal absorption of UVR wavelengths increases with the 

removal of the lens during cataract treatment, and so replacement intraocular 

lenses (IOL’s) with spectral filters mimicking the healthy natural lens are mostly 

fabricated from biologically compatible materials which absorb short wavelength 

visible radiation and UVR, without impeding visual performance314 315 316 317.

1.4 UVR at the Anterior Segment 

The intricacies of quantifying the ocular radiation field have been 

described with respect to the environmental and physiological factors in section 

1.2.4. The phenomenon of PLF, along with direct and diffuse UVR incidence, will 

now be discussed with emphasis on each ocular tissue’s receipt of and response to 

solar UVR. A literature review of experimental research to date on PLF is also 

given.

1.4.1 Axes of the Eye 

The head and ocular structures are commonly divided into a number of 

orthogonal reference planes for descriptive purposes. Of particular interest here 
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are the coronal and sagittal planes. The coronal plane bisects the eye vertically, 

from front to back, or anterior to posterior, while the sagittal plane effectively 

bisects the eye vertically, or superiorly to inferiorly, along the primary line of 

sight, as can be seen in figure 1.9.  The angle of PLF investigated by others and 

used in investigations detailed in subsequent chapters will be referred to as an 

angle relative to the coronal plane, i.e. 0° being at the coronal plane. 

Figure 1.9:

Reference Axes for Eye and subsequent PLF descriptions (adapted from 

Oyster318)

49



1.4.2 Incident light field 

In an insolation environment, the human eye is subject to receiving solar 

radiation from a large range of angles depending on SZA and head orientation due 

to both the direct and scattered diffuse components, rendering it very difficult to 

determine the flux of UVR incident both temporally and spatially. As 

environmental conditions are changing, normally a person’s position and spatial 

orientation with respect to the environment also changes. Monitoring the UVR 

irradiance at the ocular surface requires a robust and portable sensing device 

which can provide real-time data reflecting a person’s spatial orientation to the 

solar radiation field and surrounding environment, encompassing environmental 

influences and surface reflections319. A sensor array was designed, constructed 

and tested for such field-based studies, and is detailed in section 3.3. However a 

refractive process can occur in certain light fields whereby direct solar rays from 

large SZAs, or reflections from vertical structures in a subjects surroundings, 

strike the temporal portion of the cornea and come to focus at the nasal aspect. 

This will now be discussed in section 1.4.3. 

1.4.3 Peripheral Light Focusing (PLF) 

In the first of a series of papers by Coroneo in 1990, the phenomenon of 

Peripheral Light Focusing (PLF) was hypothesised320. The notion of laterally 

focused UVR across the cornea served to reinforce the hypothesis that UVR plays 

a key role in the development of ocular disorders such as pterygium and other 
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intraocular disorders. Using a handheld penlight, his observations were captured 

qualitatively using photographic methods. It was noted that there are three main 

types of UVR concentrations refracted across the cornea and aqueous solution 

which coincided with sites of ocular disorders thought to be a result of solar UVR 

absorption, depending on incident angle, :

Type I: Focusing of light originating at oblique angles towards the medial 

limbus. 

Type II: Moving more anteriorly, rays progress through the anterior 

chamber and are absorbed by the crystalline lens. 

Type III: Moving more posterolaterally, rays leave the cornea above the 

limbus at the nasal aspect and strike the lid margin. 

Figure 1.10 provides a depiction of the PLF effect. As the completely 

transparent cornea is the principle component of refraction within the eye, it 

emerges anteriorly from the sclera with a radius of curvature of, on average, 7.8 

mm anteriorly and 6.5 mm posteriorly. Illustrating the cornea alone, figure 1.10 

highlights that rays striking the corneal dome at an incident angle, , posterior to 

the coronal plane, are coupled into the cornea and aqueous solution and refracted 

across the anterior chamber to focus at the limbus.  
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Figure 1.10: 

 Schematic of Peripheral Light Focusing (adapted from Maloof et al) 

As shown in figure 1.10, rays generally strike the corneal dome at the 

more exposed temporal aspect and come to focus at the nasal aspect. Coroneo also 

noted that with greater corneal curvatures, the greater the likelihood of PLF 

occurring. As Coroneo noted, pterygium may occur at the temporal limbus also, 

by symmetrical PLF (UVR incident nasally may be focused temporally), but this 

is far less common as the prominent nose blocks these rays321. The implications of 

these findings served to initiate a host of research into these initial observations as 

detailed in the next section.

1.4.4 Literature Review of Peripheral Light Focusing 

After the initial observations using the handheld penlight, which were 

photographically documented, and having described the PLF effect and 

hypothesising that certain ocular manifestations could be a direct result of a focal 
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concentration of UVR at the nasal limbus, such as pterygium, Coroneo et al made 

further investigations to quantitatively analyse the peripheral refraction 

phenomenon by inputting standard values for a human eye model using computer-

assisted ray-tracing322. Through this model, it was computed that for these 

parameters, an incident angle of approximately 18° posterior to the coronal plane 

resulted in an increase of light intensity up to 20 times at the limbus. To measure 

the computed concentration of light at the limbus empirically, a bovine eye model 

was irradiated by a tungsten halogen lamp, to provide visible light, and the effects 

of varying incident angle were studied. Light located peripherally (angle not 

given) at the temporal limbus resulted in a focal concentration at the temporal 

limbus. By moving the source more anteriorly, it was shown that the light was 

refracted more posteriorly striking the inner surface of the ocular globe. In doing 

so, it was incident upon the crystalline lens. Similar focusing effects were 

demonstrated for a laser line at 308 nm.  

Maloof et al also performed ray-tracing analysis on model corneas of 

various radii and various shape factors, varying the incident angle between 5° and 

18° posterior to the coronal plane323 324. They concluded that for all corneal 

models and angles modelled, the focused light was at minimum at least one order 

of magnitude of order greater than the incident intensity.  

Narayanan et al designed a model eye, situated within a human skull, 

consisting of plano-convex lens (n = 1.473), which transmitted radiation from 340 

nm upwards325 326. Attached to this was a base disc of photosensitive paper. The 
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gap between the two components was filled with a solution of refractive index 

1.333. Since there was no model iris, the entire base disc was exposed to radiation 

and later analysed densitometrically. They concluded that the peripheral temporal 

cornea concentrated incident light to the nasal aspect, due to the lid, bony orbit 

and nose preventing PLF from occurring from the nasal to temporal direction. A 

draw back was the difference in refractive index of their model cornea with that of 

the human cornea, 1.376.  

Cullen et al modified a slit lamp biomicroscope to produce a collimated 

beam of visible light. This was passed from the temporal to nasal limbus of 

twenty test subjects. Minimum and maximum angles of incidence producing a 

focal glow at the nasal limbus was recorded. They concluded that all temporal 

incidence angles between 0° and 25° posterior to the coronal plane can maintain a 

peripherally focused spot at the nasal aspect. It was further deduced that deeper 

anterior chambers result in wider temporal catchment angles, thus increasing the 

risk of PLF, type I, II and III327.

Findings by Kwok et al more recently included maximal peak intensities 

of UVA and UVB sensors placed at the nasal limbus of an anatomically based eye 

model of 28 ± 3° and 32 ± 3° from fixation respectively. These were achieved 

using a 350 W mercury arc source which produced a collimated beam within the 

200 to 2500 nm range. The incident angle was varied between 0° and 40° 

posterior to the coronal plane328.
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A series of papers by Blue et al and Miller et al describe in detail the 

evolution of a fibre-optic sensor to take real-time measurements of drug 

concentrations in the anterior chamber 329 330 331 332 333 334. The fibre optic 

sensing device they fabricated was termed a scleral lens which consisted of an 

input and output fibre optic machined to attach to the synthetic fused silica scleral 

contact lens. This permitted acquisition of absorbance data of various chemicals in 

the human and rabbit eye in vivo. No investigations into the PLF phenomenon 

were mentioned and no actual transmittance data of the cornea in vivo was given 

without administered chemicals present in the aqueous solution. 

Most recently, Twelker et al empirically measured the angular catchment 

range within which PLF occurred. A head mount apparatus consisting of a fibre 

optic guide which passed light from a halogen lamp was assembled and directed 

towards the temporal limbus of 30 human test subjects. By observation, the nasal 

limbal focus’ peak intensity was noted at the angle it occurred for every 

individual. The incident angle was varied between 15° anterior and 50° posterior 

to the coronal plane and it was found that the range of nasal focus for the group of 

30 subjects was between 14° and 31° posteriorly, with an estimated peak intensity 

of 27° posterior to the coronal plane335.

For the research presented in this thesis, a photodiode array was designed, 

constructed, and tested to measure the direct and diffuse terrestrial solar UVR 

fields at the anterior ocular surface and to distinguish between the levels of each 

reaching the eye for a range of head angles and carriages in the field. In doing so, 
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the distribution of terrestrial solar UVR across the ocular surface for such varying 

conditions was measured. Incorporated with these measurements are 

investigations of modelled PLF for various incident angles and empirical 

measurements of PLF in vivo and the resultant corneal transmission spectra as 

measured with the novel lab-based PLF setup.  

1.5 Ocular Effects of Solar UVR – The Ophthalmohelioses 

1.5.1 Introduction 

Ocular disorders associated with UVR insolation have been termed the 

‘ophthalmohelioses’. Other postulates suggest different environmental and 

biological conditions trigger the formation and progression of pterygia, 

photokeratoconjunctivitis, pinguecula and cataracts336. Environmental factors 

include heat, dust, humidity and UVR, while biological factors include genetics, 

pre-existing pathologies and infection337. Within the ‘pterygium belt’, which 

spans from the equator to approximately 30° – 40° north and south, a high 

proportion of globally reported pterygia have been found, further supporting the 

theory of UVR being implicated in its aetiology, although epidemiologic research 

based in Singapore, at 1º north of the Equator, by Wong et al. has concluded that 

the ‘pterygium belt’ hypothesis is oversimplistic and that other independent 

environmental factors could also be involved in its pathogenesis338 339 340 341. In 

2007, conclusive evidence linking sun exposure to pterygium formation remains 
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somewhat elusive, although many clinical and epidemiological studies have 

concluded a definite association between UVR and pterygium formation342 343.

Each ocular tissue selectively transmits radiation and in doing so filters 

radiation reaching subsequent tissues344. As a result of this selective absorption, 

the lens receives a far lesser percentage of the incident terrestrial solar UVB than 

the exposed cornea345. However, the cornea transmits a substantial percentage of 

UVA. Of the radiant energy incident at the corneal surface, approximately 0 % 

beneath 280 nm is transmitted and its subsequent transmittance is ~ 8 % at 

300 nm, ~ 55 % at 320 nm, ~ 63 % at 340 nm and ~ 66 % at 360 nm. As can be 

seen, the crystalline lens absorbs almost all radiation between ~ 300 nm and 

~ 360 nm in the UVA waveband. It has been noted that damage to the lens 

through UVA absorption would require prolonged and chronic exposure, far 

exceeding that normally encountered outdoors346. The selective absorption of the 

different ocular tissues can be seen in figure 1.11. 
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Figure 1.11: 

Selective Absorption of ocular media (after Sliney347)

 As can be seen in figure 1.11, the anterior cornea is the most vulnerable 

tissue with respect to terrestrial solar UVR. The more posterior tissues, chiefly the 

lens and retina, are afforded protection from the actinic UVB wavelengths. In 

order to protect the exposed corneal tissue, and adjacent annular limbus, the best 

possible protection is that afforded by UV-blocking contact lenses which cover 

the entire corneal diameter and extend slightly to the conjunctiva, thereby 

protecting the delicate limbal cells also. In turn, less UVR reach the intraocular 

tissues also348.

In order to ascertain the different photobiological effects occurring at the 

different ocular tissues due to the selective intraocular transmittance of the various 

media without protection, it is necessary to elicit an action spectrum for each 

tissue.
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1.5.2 Acute and cumulative effects of ocular UVR Exposure 

1.5.2.1 Photokeratoconjunctivitis

As indicated in figure 1.11, the cornea does not transmit radiation beneath 

280 nm and absorbs approximately 92 % at 300 nm. The corneal epithelium and 

Bowman’s membrane are responsible for this major increase in absorption 

between these wavelengths in the UVB band, and the clinical result is 

photokeratoconjunctivitis, or snow-blindness. Kolozsvári et al measured the UVR 

absorbance of freshly excised cadaver corneas from 240 to 400 nm and found that 

the epithelium and Bowman’s membrane have significantly higher absorption 

coefficients than that of the stroma. It was found that although the stroma has a 

lower absorption coefficient, but due to its thickness it is a very significant UVR 

absorbing layer also. As an acute response to UVR, there is generally an average 

latency period of approximately 6 to 12 hours before symptoms present. These 

generally include erythema of the skin surrounding the eyes, irritation and 

discomfort of the ocular surface, photophobia and visual impairment. Generally 

symptoms subside 36 - 48 hours post-trauma. The scale of impairment depends on 

duration exposure and also the spectral nature of the UVR source. Fortunately 

only in rare circumstances permanent ocular injury results 349 350 351 352 353. Arc 

welding can also induce this acute injury and cause insult to exposed skin if a 

UVR absorbing face-mask and accompanying protective measures are not utilised 

and is more commonly known here as ‘arc eye’ or ‘welders flash’354 355. Indeed, 

cases of photokeratitis, among other UVR related skin conditions, have been 

reported in the workplace due to faulty lighting which emitted UVR356 357.
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1.5.2.2 Pterygium 

Described as an ‘ophthalmic enigma’358, pterygium is a proliferative, 

invasive and fibrovascular ‘conjunctivalisation’ of the cornea, in which the 

conjunctiva encroaches onto the cornea, usually at the three and nine o’ clock 

positions at the limbus359 360 361. It has long been recognised as occurring more at 

the nasal portion than the temporal and can cause a loss of transparency, dry eye 

and may eventually lead to visual disturbances and refractive errors such as 

astigmatism due to localised flattening of the cornea’s apex if left untreated362 363

364 365 366 367 368 369 370 371. It is characterised by the encroachment of a wing of 

altered vascular tissue over the cornea and is considered to originate at the limbus 

and progress to the central cornea, through transformation of limbal stem cells372

373 374 375. The aetiology of pterygium has yet to be satisfactorily explained, but 

many population based studies and histologic studies have concluded that 

incidence of UVB is an actinic factor376 377 378 379 380 .  Furthermore it is also 

believed that pterygium is most probably a result of cumulative UVR absorption 

by the anterior ocular tissues and that outdoor activity in a person’s formative 

years can bear a significant impact on pterygium formation later in life, similar to 

skin cancer381 382. Among others, alarming rates in one study showed pterygia had 

recurred in ~97 % of patients one year after surgical excision, re-emphasising the 

seriousness of this disorder383 384 385 386.
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1.5.2.3 Cataract 

Considered to be age-related and characterised by a partial or complete 

and stationary or progressive opacity of the lens due to increasing scatter, 

cataracts are the result of a denaturing of lens protein structures and are a leading 

cause of blindness globally387. Risk factors associated in cataractogenesis include 

UVR absorption, in particular UVA wavelengths, since nearly all incident UVB is 

absorbed by the cornea, secondary effects of diabetes, smoking, diet and steroid 

use. Of all three types of age-related cataract; cortical, nuclear and posterior 

subcapsular (PSC), each type causes an opacity to a different region of the lens 

and invariably have distinct risk factors388 389 390. Of most interest to the research 

detailed here, lower nasal cortical cataracts are believed to be a result of UVR 

absorption for a number of reasons, namely the degree of lid opening, which is 

variable among different ethnic populations, and the subsequent role type II PLF 

may play in focusing temporal rays towards the cortex391 392. Radiation incident at 

shallow angles of incidence from the coronal plane striking the temporal cornea 

can be refracted through the pupil towards the nasal quadrant of the crystalline 

lens and it is thought that this amplification and focusing of UVR at this region 

may induce lenticular opacities393.  As suggested by the Chesapeake Bay 

Watermen Study, there is a clear association between UVB and potential for 

development of cortical cataracts more so than other types. This further 

emphasises the need for ocular protection via UVR-absorbing contact lenses, 

sunglasses and the incorporation of wide-brimmed hats394 395.
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1.5.2.4 Pingueculum 

Usually asymptomatic, pingueculae do not affect vision. They are 

characterised by an elevated yellowish growth at the limbus at either the three or 

nine o’ clock positions.  UVR is implicated in the pathology of pinguecula, but 

exposure to the elements may be a contributory factor in their manifestation also. 

They show the same predilection for nasal presentation as pterygia, possibly due 

to reflected UVR from the nose to the nasal aspect, but a definite link between 

UVR and pinguecula occurrence nasally has yet to be established396 397.
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1.5.3 Protecting the Eye in an insolation environment 

1.5.3.1 Squint mechanism and natural aversion 

In visibly bright conditions the natural response of the human eye is to 

gaze at a region in the foreground which causes relatively less sensory discomfort 

than the brightest visible regions. This instinctive aversion response is one of the 

body’s mechanisms to protect the retina from intense light. Fortunately this 

mechanism not only protects the retina, but as a direct consequence safeguards 

other ocular tissues at risk from intense radiation fields such as the cornea and 

lens. Although there is a high degree of protection afforded by looking away from 

an intense source, the inability of the human eye to perceive UVR poses another 

threat. If the immediate foreground has a high UVR albedo, such as that of snow 

(~ 80%), the eye still receives reflected UVR when gazing away from the sun. 

Squinting can reduce received reflected rays, but proper ocular protection by 

means of UVR absorbing contact lenses is the most beneficial protection for 

everyday practical protection, with possibly the wearing of a wide-brimmed hat or 

other shading headwear398. The insidious nature of non-UVR absorbing 

sunglasses or UVR absorbing sunglasses with shapes that are not completely 

wrap-around is apparent. It has been suggested that by wearing darkly tinted 

sunglasses without 100 % UVR protection, one’s voluntary and involuntary 

aversion responses are suppressed, thereby leading to a net increase in dose of 

solar UVR at the anterior ocular tissues399. The use of typical darkly tinted 

sunglasses with UVR absorbing properties reduces UVR exposure dose for rays 
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near normal to the sunglass surface, but rays can enter the ocular region 

temporally, or be reflected towards the eye from the back surface of the spectacle 

lens which does not have an anti-reflective coating, in effect limiting the 

functionality of such sunglasses400. The natural squint mechanism is suppressed 

under such conditions which effectively increases the field of view for diffuse and 

temporally incident radiation to strike the cornea and be refracted to its nasal 

aspect401. If a subject has a preference for sunglass protection over contact lens 

protection, the most beneficial types are those which block temporally oblique 

rays and absorb all UVR, such as Oakley's trademark wrap-around series of 

sunglasses, XYZ Optics®, incorporating Plutonite® which they claim absorbs 

100 % of all UVR wavebands effectively to 400 nm402.

1.5.3.2 UVR absorbing contact lenses and sunglasses 

By covering the entire cornea, and in many cases encroaching onto the 

limbus and conjunctiva, a UVR absorbing contact lens provides the most 

beneficial protection for everyday activities without being cumbersome, as is 

often the case with fully wraparound sunglass protection. Most commercially 

available UVR absorbing sunglasses offer protection only to the rays along a 

person’s fixation. The need for adequate lateral protection of directly, reflected 

and diffusely incident radiation was confounded by the discovery of the PLF 

effect The most beneficial protective device for such incident radiation would be a 

100 % UVR absorbing contact lens in conjunction with the protection provided by 

fully wrap-around, UVR absorbing glasses or ski-goggles403 404 405 406 407.
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The UVR absorption properties of various contact lenses has improved 

extensively over the last number of years with Johnson and Johnson Vision Care 

(Jacksonville, FL) now providing a range of silicon hydrogel lenses which afford 

excellent ocular protection from these phototoxic wavelengths in the UVR 

waveband in the form of their daily disposable contact lenses. The functionality of 

such disposable lenses is no different from lenses of old; the distinguishing factor 

is their UVR blocking capabilities. The transmission curve of a contact lens is 

controlled by features such as the type of hydrogel and UVR blocker used, the 

water content and lens thickness across its surface.  

During the research described in this thesis, the UVR transmission of a 

range of blocking and non-blocking contact lenses was investigated but is not 

directly part of the PhD research project described here408. However, many of the 

methods described by the author were applied to the contact lens research and 

forms part of the overall ocular research carried out in Dr. Walsh’s group in 

conjunction with his colleague, Prof. Jan Bergmanson.  

1.6 Conclusion

The insidious nature of ultraviolet radiation for both human skin and 

ocular tissues has been described in this chapter. The various environmental and 

physiological factors that influence the receipt of UVR at the ocular surface have 

been outlined and emphasised and the inherently difficult nature of ocular UVR 
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dosimetry. Also outlined were the various protective devices available currently 

and the merits of each. To further understand the complex nature of terrestrial 

solar UVR at the anterior ocular surface, novel UVR sensors are required to make 

real time measurements of all aspects of the radiation field at the human eye under 

a range of environmental conditions. As no optical sensing device currently 

available is capable of measuring all the distinct interacting mechanisms of UVR 

with the ocular surface, two different optical sensing systems have been designed, 

constructed and tested in this thesis, to gain further understanding of the 

distribution of UVR across the horizontal margin and the possible increase in 

UVR irradiance at the nasal aspect due to the PLF effect. By incorporating the 

array in field-based measurements, the repeatability, ease of use, and variations of 

UVR across the palpebral fissure due to different head shapes will be 

demonstrated together with the increased dose received at the nasal aspect due to 

PLF that is attenuated by the corneal transmission. Data from these two systems 

can then be combined to gain a better overall perspective on the human ocular 

UVR field and go a long way towards the implementation of the ideal ocular UVR 

sensor.

Chapter 2 reviews the theory of the optical instruments and components 

used in the design and methodology of the resulting ocular array, described in 

chapter 3, with its field based results in chapter 4. The design, methodology and 

results of PLF investigations and the related corneal transmission spectra are 

described in chapter 5.
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Chapter 2

Radiation Detection Methods 

2.1 Introduction - Radiation Detection at the Eye 

Measurement of the terrestrial solar UVR field at the anterior ocular 

surface would ideally be performed with one detecting device. But due to the 

infinitely complex nature of such an environmental measurement, it is necessary 

to incorporate a number of different sensing devices and techniques, and 

subsequently present the data. By doing so, as many variables as possible can be 

accounted for, thereby gaining a better understanding of the incident radiation and 

its spatial distribution and variation for a given spatial orientation with respect to 

the direct solar beam. Coupled with the direct solar beam may be the diffuse, 

diffuse-scattered, diffuse-reflected, and resultant PLF effects due to a combination 

of the (aforementioned) environmental conditions discussed in Chapter 1. No 

single instrument is capable of accurately quantifying all of these409.

For this reason a number of distinct sensing devices and techniques have 

been employed by many groups for field, in-vitro and in-vivo measurements. 

Included in these are the commonly used passive polysulphone dosimeters (i.e. 

capable of operating without an external power source), broadband radiometer 

and spectrometer methods, and photodiode sensors, the latter three of which were 

employed for the research presented in this thesis. A description of these is 

presented in sections 2.3 to 2.5. A description of one of the most commonly used 

67



devices in the field for solar UVR dosimetry at different body parts is given in 

section 2.2, the polysulphone dosimeter.  

In addition to the following optical theories of components used in the 

sensing systems in this thesis, the optics of the human eye and facial structure and 

how they have an effect on sensor design need to be considered. Some of these 

can be outlined as follows: 

Does the sensor see what the human tissues see in terms of field of view 

and spectral response? 

Can data be recorded rapidly to reflect the real time changes in solar 

irradiance and head carriage? 

Can the sensor record radiation incident on the ocular tissues and that 

refracted across it due to PLF? 

While all aspects of the optical engineering of human ocular radiation field 

detection systems have not been resolved, the complexity of designing and 

implementing such systems is highlighted and subsequent results show that the 

research presented has progressed the science considerably.    

2.2 Polysulphone Dosimetry 

Polysulphone dosimeters have been employed by a number of groups at a 

variety of points on the body and in various contact lens and headform designs. 
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These have been exposed to terrestrial sunlight at different locales, head positions 

and orientations to investigate the whole body and ocular exposure in such 

conditions and the effectiveness of ocular shading provided by hats and 

sunglasses410 411 412 413 414 415 416 417 418 419.

First recognised and developed by Davis et al420 as a possible dosimeter 

for UVR and now used extensively as a means of quantifying the UVR dose at 

various points at the body, polymeric polysulphone dosimeters have also been 

used to measure the exposure dose received at the ocular tissues421 422. The 

requirement of a dosimeter such as this is that its spectral response corresponds 

closely to the action spectrum of a photobiological effect of the biological tissue 

under investigation over a pre-defined waveband. Polysulphone is predominantly 

employed to quantify UVR incidence at the skin as its spectral response is 

comparable to the human erythemal response curve423 424 425 426. The basis of 

such dosimeters is that absorbed radiation induces changes in their optical 

properties, and the changes in absorbance are generally measured at 330 nm by a 

spectrophotometer which compares an exposed and unexposed polysulphone 

film427 428. Since polysulphone responds only to wavelengths shorter than 

~ 330 nm, this wavelength elicits the maximum UV-induced change in 

absorbance of polysulphone and increased absorbance is proportional to UVR 

exposure dose429. Due to the polysulphone manufacture process, resultant non-

uniform thickness profiles and surface blemishes on the film are inherent and can 

lead to erroneous exposure dose-response relationships at skin locations being 

investigated. Although the incorporation of polysulphone as a solar ultraviolet 
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dosimeter is advantageous for many research applications, there are several 

drawbacks for ocular UVR dosimetry including repeatability, reliability of 

manufacture process, dosimeter calibration, response time, possibility of dark 

repair, and the fact that it can be used only once, providing only a cumulative 

erythemally weighted UVR dose430 431 432. It was considered that an alternative 

sensing device may be equally accurate, more adaptable, more robust and capable 

of acquisition in real-time. By continuously logging and recording data, 

extrapolations and quick analyses could be performed during measurement with 

better efficiency. 

2.3 Photodiode Sensors  

The principal aim behind the detection of radiation is largely similar for 

many different electronic photodetectors, including photomultiplier tubes, 

pyroelectric detectors, light dependent resistors and photodiodes. Absorbed 

radiant energy is converted into an electronic signal, which ideally is proportional 

to the intensity of the incident radiation. 

Photodiodes are sensing devices that are fabricated from semiconductor 

materials and absorb radiation over a specific spectral band, depending on the 

semiconductor bandgap. The main advantages of the photodiodes used in the 

design and construction of the sensor array for the field-based work here was that 

their physically small dimensions permitted five to be placed across the exposed 

ocular tissue, thereby covering key points on the surface, they had a relatively 
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large field-of-view, similar to that of the exposed ocular tissues433, and they had 

efficient photon-electron conversion. They were also solar blind, meaning that 

they were responsive only to photons in the UV region of the electromagnetic 

spectrum through utilisation of a filter which eliminated photons above 400 nm 

from reaching the detection region. 

In order to discuss the operation of semiconductors, it is essential to 

briefly outline the band theory of solids. The distinguishing factor between a 

metal, semiconductor and insulator can be described best in terms of the energy 

bands within which electrons can exist. Each of these bands has a number of 

discrete energy levels. The valence electrons within conductors can be readily 

freed. Conversely, electrons are bound intensely to their constituent atoms within 

an insulating material and it can typically take more than 3 eV to liberate an 

electron and make it available for conduction. Here, there is a forbidden region 

between the valence and conduction bands known as the bandgap within which 

no electrons exist. This is the energy difference between the most energetic 

valence band and the least energetic conduction band.  Providing energy to a solid 

by means of an electric field will cause electrons to be accelerated by the field, 

thereby gaining energy. This will occur only if the electrons can move from their 

current energy level to that of an unoccupied higher level. A material is insulating 

if the valence band is completely filled, with a large forbidden band between it 

and a higher energy band, the conduction band. At absolute zero (T = 0 K), the 

energy diagram for semiconductors illustrates that all energy levels in the valence 

band are occupied by electrons and the conduction band possesses no electrons. In 
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this case the material is considered insulating. The bandgap of most 

semiconductors is relatively small, generally of the order of 1 eV434. As the 

temperature is increased gradually above 0 K, electrons in the valence band gain 

sufficient energy through crystal lattice vibrations to break covalent bonds. Once 

free, these can contribute to increasing the electrical conductivity of the 

semiconductor and the process of free electron formation is known as electron-

hole generation. In turn, these freed electrons leave behind positive charge 

carriers or holes, the sites where there were once electrons. The further the 

temperature is increased, the more energetic the lattice vibrations, the greater the 

number of electron-hole pairs are made available for conduction. The electrons 

promoted from the valence band to the conduction band can migrate around the 

empty sites known as holes, themselves leaving behind a hole at that exact 

moment, and the process is known as electron-hole pair recombination. The 

process increases the material’s conductivity. An electron gaining enough energy 

to jump from the highest level in the valence band to a level within the conduction 

band gains kinetic energy to migrate further through an applied electric field.

By altering the structure of a semiconducting material, the conductivity of 

a semiconductor can be greatly changed. This is achieved by joining it with 

another semiconducting material with a similar crystal structure, forming one 

continuous crystal. The conductivity is dependant on the type of impurity and its 

concentration. This procedure is known as doping. Materials which have been 

doped (generally one part in a million) are known as impurity semiconductors.  
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This semiconductor photodiode device responds to photons absorbed by 

generating a photocurrent. In its simplest form, a photodiode is comprised of a  p -

n junction. An n-type semiconductor is a material which contributes mobile 

electrons and a p-type is one which introduces mobile positive holes when used as 

the dopant in another material. The diffusion of electrons from the n-type to the p-

type material and holes from the p-type to the n-type develops a voltage across the 

junction causing a current to flow initially through an external circuit. This 

diffusion at the boundary results in a region known as the depletion region which 

has no free carriers. Electron-hole pairs generated at this region by absorption of 

light within the correct range of frequencies are swept away by drift in an external 

field across the depletion region and are collected by diffusion from the 

undepleted region. Radiation striking this semiconductor device of greater energy 

than the material’s bandgap energy excites electrons into the conduction band, 

thereby creating a hole in the valence band. Within the depletion region, an 

electric field is thus set up by diffusion of the charge carriers. When connected to 

a loaded external circuit, the EMF exists across that load and an electric current 

flows through it proportional to the energy of the incident radiation.

2.4 Broadband Radiometry and Spectrophotometry  

In order to gain quantifiable radiometric data in conjunction with UVR 

levels at the ocular surface as measured by the novel sensor array in the field, a 

UVR sensitive broadband radiometer was used to measure the downwelling 

global irradiance at the same time and location. Using a pre-determined 
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calibration factor, voltages measured from the photodiodes could be converted to 

irradiance data and subsequently permitted dosimetric extrapolations to be made 

across the anterior surface. 

In vivo corneal transmission measurements taken with a novel fibre optic 

system were achieved through use of a spectrophotometer, which facilitated 

qualitative and quantitative data to be recorded. A description of the 

instrumentation used to accomplish field-based and in-vivo measurements is now 

given.

2.4.1 Broadband Radiometry  

Radiometry describes the propagation and detection of radiation purely in 

terms of energy, power and geometry of propagation. The physical, radiometric 

description of electromagnetic radiation is expressed as radiant flux or power (W), 

irradiance (W m-2), exitance or emittance (W m-2). While radiometric 

measurements provide a quantitative irradiance value over the spectral response 

range of a detector, a spectroradiometer provides both qualitative (spectral) and 

quantitative (intensity) information about a source. The application of such data is 

crucial when considering the spectral response of a biological tissue across a 

measured spectral distribution. Radiometric quantities alone do not suffice as both 

qualitative and quantitative data are necessary when determining the hazard 

function of incident photon energy with respect to different biological tissues.
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It is important to note also that the CIE has made a clear distinction 

between spectroradiometry and spectrophotometry. The former has now been 

defined as: ‘Measurement of radiometric quantities in narrow wavelength 

intervals over a given spectral region’; the latter; ‘Measurement of the ratio of two 

values of a radiometric quantity at the same wavelength’435.

2.4.2 Spectrophotometry 

Where a radiometer’s sensing component is generally a single photodiode 

with a stated spectral response, incorporated with a cosine diffusing element, 

conventional bench-top UV-Vis spectroradiometer configurations consist of a 

broadband source, a scanning monochromator system with a dispersive element 

for wavelength selection, and a detection system. The principle dispersive element 

in most UV/Vis spectroradiometers nowadays is a diffraction grating436. A 

diffraction grating facilitates constructive interference of identical wavelengths to 

occur at specific angles depending on the wavelength of the radiation incident at 

its reflective surface. The dispersive power of a diffraction grating is determined 

by the density of grooves which have been etched onto it, generally expressed as 

the grating line spacing (grooves mm-1). The linear dispersion of a diffraction 

grating describes the degree to which a spectral portion is spread across the focal 

field of the spectrometer and is expressed in nm mm-1. Spectrophotometers with 

high linear dispersions will disperse a 0.1 nm spectral portion over 1 mm. The 

greater the spectral portion dispersed over 1 mm, the lesser the resolving power of 

the instrument.  
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The dispersion of a broadband source into its constituent wavelengths is 

based on the diffraction principle and as such, each wavelength is diffracted at a 

slightly different angle given by equation 2.1. 

sindn              Eq.: 2.1 

where n is the order of diffraction, d is the grating line spacing and  is the 

diffracted angle for a given wavelength,  (nm).  

The basis for the portable microspectrophotometer used in the work 

described in subsequent chapters is similar to conventional single monochromator 

UV-Vis spectrometers, except the sensing device is a charge-coupled device 

(CCD) array. A CCD uses a linear photodiode array and can rapidly capture 

multi-spectral information. The main difference between these and conventional 

spectrometers is the polychromatic dispersive behaviour of the former due to its 

Czerny-Turner design.

In this design, depicted in figure 2.1, light passing from a broadband 

source, A, passes through a slit (if present), B, and strikes a concave mirror, C, at 

its effective focus to promote collimation. A reflected beam is then delivered to a 

plano reflecting diffraction grating, D. Since the angle of the diffracted beam is 

wavelength dependent and thus each having a dissimilar diffraction angle, the 

now dispersed broadband beam strikes a second concave mirror, E, and is focused 
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on the CCD array, F. Radiations dispersed by the diffractive element and directed 

towards the CCD array are simultaneously detected by the CCD array. The 

reverse-biased photodiodes discharge a capacitor at a rate proportional to the 

photon flux. Once the charge has accumulated in the sensing array over the pre-set 

integration period, it is shifted to the transfer register where it is read out 

sequentially. As the data is read out, the next image is simultaneously building up 

on the detector array.

Figure 2.1:

Cross Czerny-Turner Monochromator 

The advantages of such microspectrophotometer systems are the fact that 

they are very portable, adaptable and have no moving parts. Their main 

drawbacks are their stray light levels, and overlapping of diffracted orders when 

no blocking filter is present. Stray light can be produced by randomly scattered 

77



light by surface imperfections on an optical surface within the monochromator or 

nonperiodic errors in the ruling of grating grooves and is generally eliminated by 

the incorporation of a double grating monochromator system. Double grating 

monochromator systems are generally the preferred choice above single systems 

described above. This is mainly due to their stray light rejection capacity. Due to 

their design though, radiation throughput is considerably reduced and this is an 

undesirable facet when measuring low light levels or more appropriately, when 

the detecting element has a low responsivity in a particular wavelength region. 

It is important to note that any apparent wavelength feature in an extended 

spectrum may in fact be a second or third order effect occurring at one half and 

one third the wavelength of the fundamental. For example, a spectroscopic feature 

at 1200 nm, could also be present at 600 nm (2nd order), 400 nm (3rd order) or 300 

nm (4th order). These effects can be negated by the incorporation of a blocking 

filter in the optical path. It operates as a filter wheel which the spectrometer 

automatically sets as the correct filter for a given wavelength during a scan and 

limits the width of diffracted orders so they do not overlap. 

To quantify the degree of light transmittance or absorbance by a material 

across a given waveband, a spectrophotometer is employed in tandem with a 

workstation which facilitates acquisition of measurements, analysis and storage of 

spectral data which can be analysed and interpreted more thoroughly after 

acquisition.
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Using a broadband source, the acquisition of complete spectral 

information for a given sample can be accomplished by scanning across the 

spectral region of interest, in this study, the UV-Vis. As it is a non-invasive 

analytical technique, the sample under study undergoes no physical damage.  

When radiation of initial intensity, Ii, passes through a homogenous 

medium of pathlength, x, there is a loss of initial intensity due to absorption in the 

medium due to the pathlength and the material’s absorption coefficient, . The 

transmitted intensity, It, is wavelength dependent. A material having a high 

transparency will have a small absorption coefficient so the transmitted intensity 

does not become appreciably less until the pathlength is very large. Visually 

opaque materials have large absorption coefficients for all wavelengths and so the 

transmitted intensity becomes very small even at the shortest pathlengths. This 

interaction of radiation with matter is described by the Beer-Lambert Law given 

in equation 2.2437:

x
it II exp                Eq.: 2.2 

The absorbed radiation is usually converted to heat or could cause the 

material to fluoresce at less energetic wavelengths.
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2.5 Fibre Optic Sensing 

For in vivo PLF corneal transmittance measurements, the requirement was 

that the sensing device be as normal to the beam of emerging radiation at the nasal 

cornea. To achieve this, a fibre optic sensing technique was designed as it 

permitted the sensing element to be placed as close to the anterior ocular surface 

as possible with greater flexibility than using a photodiode, which was considered 

too bulky for this application.. Comprising a launch and collection fibre system, 

the launch fibre, along with collimating optics, allowed a defined circular beam to 

strike the temporal cornea at a known angle of incidence. The collecting fibre at 

the nasal side was linked to a spectrophotometer which permitted the acquisition 

of corneal transmittance data. 

Generally consisting of a fused silica core and a cladding of plastic or 

glass with a lesser refractive index, a fibre optic transmits light by means of a 

phenomenon known as Total Internal Reflection (TIR). The index of refraction (n) 

may be defined as the ratio of the velocity of light in a vacuum to the velocity of 

light in a given medium, and similarly as a result of the difference of n between 

core and cladding, light may be guided along a waveguide such as a glass or 

quartz fibre438.

Light passing from one medium, n1, to a second medium, n2, of a lower 

refractive index at a specific incident angle, 1, to the normal will be refracted, or 

bent, at a specific angle, 2 measured from the normal of a plane surface as 

illustrated in figure 2.2.  
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Figure 2.2:

Refraction at a plane surface.

This angular displacement of the light depends on the two refractive 

indices in question and is described by Snell’s Law given in equation 2.3439:

2211 SinnSinn                       Eq.:2.3

As light propagating in the more dense medium (one of high refractive 

index), n1, approaches a boundary with a less dense medium, n2, at an angle 1, at 

or greater than c, the critical angle, it is totally internally reflected. This implies 

that none of the light striking the less dense material at this angle escapes the 

boundary and remains propagating along the length of the optical fibre440.
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As mentioned above, the basis for TIR and light propagation along a fibre 

optic is the angular limitation of critical angle. This critical angle can be best 

described by equation 2.4441:

1

2

n
nSin c      Eq.:2.4

The conditions for TIR to occur are as follows: 

(i) n1 > n2

(ii) 1 > c

When coupling light into a fibre optic, only rays incident at the input face 

within a certain range of angles will actually enter the fibre and propagate along 

its length. This limited acceptance cone is known as the (dimensionless) 

numerical aperture (NA) and it characterises a cone of rays which will be 

accepted or emitted from the fibre442. An extreme ray of light, propagating within 

a medium (for our purposes, air) with refractive index nair, striking the input face 

of the fibre optic at the limiting angle, max, to the normal will be refracted and 

propagate along the fibre. Since max is the half-angle of the maximum cone of 

light that can enter or exit, all light entering within this defined cone will be 

accepted. The NA of a system as described by equation 2.5 cannot be greater than 

1, where nair = 1:
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maxsinairnNA     Eq.:2.5 

The NA of a fibre optic is fixed by the fibre characteristics and can 

alternatively be calculated by equation 2.6443:

5.022 )( claddingcore nnNA     Eq.:2.6 

The importance of this concept will become more apparent in Chapter 5, 

where a fibre optic probe was used to investigate PLF across a model anterior 

section. For efficient light collection, the fibre optic probe had to be placed within 

a confined range of angles to collect the refracted radiation. 

.2.6 Conclusion 

In summary, the incorporation of solar blind photodiodes in a novel ocular 

sensor array will be used to measure the irradiance distribution across the 

palpebral fissure in the field. The voltage output from the photodiodes will be 

calibrated against a broadband radiometer with a broadly similar spectral response 

under the same illumination conditions to relate output voltage to irradiance. 

Further to this, a novel fibre optic microspectrophotometer setup will be presented 

to investigate PLF across the cornea. Through this method the transmission of the 

human cornea in vivo will be demonstrated.  

 Having outlined the ideal sensing devices that can be used to achieve the 

specifications for ocular radiation sensing listed in the first section of this chapter, 
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the specifications of components and systems that most closely match these can 

be examined. It is these components and systems that were used to record the data 

presented and while they do not cover all of the ideal specifications, they show 

significant improvements on more widely used sensor devices such as 

polysulphone.  Not to imply that the latter is without its merits, but advances in 

readily available optical technology provide us with the means to cover more of 

the desired specifications listed for real time, in-vivo quantification of the human 

ocular UVR field.
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Chapter 3

Novel Photodiode Array Materials and Methods 

3.1 Introduction 

To reliably and repeatedly quantify the solar UVR field at the ocular 

surface, a portable sensing device with robust physical design was necessary to 

facilitate ease of use. The majority of investigations relating to the ocular UVR 

field previously have been achieved using polysulphone film and have been noted 

in section 2.2. Solid state technology has been used by other groups to ascertain 

the degree of protection afforded by sunglasses and palpebral fissure angle at the 

ocular surface in an insolation environment444 445. An early system to incorporate 

the use of numerous photodiodes was developed by Sakamoto et al. to measure 

the distribution of UVR on a mannequin head and around the ocular region. For 

this relatively preliminary study, it was found that the nasal brow ridge reduced 

the amount of UVR incident at the nasal aspect of the lid fissure and that 

irradiance was highest temporally, similar to the results presented in detail in 

chapter 4446. There were drawbacks relating to experimental design, primarily the 

fact that no human faces were used for quantification of the UVR levels at various 

facial sites, instead relying on a mannequin model, which would have had a 

different reflectivity in the UVR waveband to that of human skin. Walsh et al.

integrated Texas Instruments TSL-250 photodiodes which had a spectral range 

from 300 nm to the infrared, and measured the ocular UVR bias for a number of 
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human models within an artificial light box447. From these initial investigations, 

the idea for a more meticulous ocular UVR field survey stemmed.  

An ideal sensor for applications similar to those described for the research 

presented here will have specifications such as:

o Flat spectral response over the waveband being investigated. 

o Solar Blind 

o High quantum efficiency 

o Large field-of-view 

o Large dynamic range 

o Linear output 

o Fast response time 

o Ease of use 

As is the case with many sensing systems, a compromise must generally 

be agreed by considering the key sensor specifications which are essential to the 

given application. As the ideal sensor does not exist for the outdoor field 

measurements and PLF investigations described here, the sensor chosen fulfilled 

as many of the requirements and met as closely as possible the specifications 

outlined above. This photodiode sensor array developed in DIT will be described 

in section 3.3 and a brief account of previous sensor systems is given now. 
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3.2  First generation ocular sensor array 

Preliminary research into the ocular light field was conducted by Dr James 

Walsh at the School of Physics, Dublin Institute of Technology. Initially, active 

photodiodes (i.e. needed an external power source) were soldered to an elliptically 

shaped piece of flat circuit board with similar diameter to the human eye. Wiring 

difficulties, bulk, sensor flatness, and distance from the eyelid made it impractical, 

but demonstrated the principle of ocular UVR measurements upon which the 

sensor used for the research presented in this thesis was based. Subsequently, a 

first-generation novel UVR sensing array was designed by a final year BSc 

undergraduate, Helen McEvoy, along with Dr Walsh in 1999, and can be seen in 

figure 3.1448.

Figure 3.1:

First Generation Sensor Array 
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This first generation array had many improvements on the original 

concept, mainly the fact that it incorporated a curved plastic shell which would 

commonly be used in eyelid surgery to protect the eye and smaller active 

photodiodes. This shell was obtained from the Royal Victoria Eye & Ear Hospital, 

Dublin and served as the base upon which five Texas Instruments TSL-250 

photodiodes were fixed, as seen on the left hand side of figure 3.2; also included 

in this figure is the shell and passive photodiode used for the research presented 

here.

Figure 3.2:

First generation sensor array on left compared to second generation solar blind 

array components on right hand side. 

The basic specifications of interest which resulted in the incorporation of 

the Texas Instruments photodiodes were their physical size, ability to measure 

ultraviolet wavelengths from 300 nm upwards, and their larger field-of-view. As 

such, they served favourably for initial measurements which were laboratory-
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based. Their specifications were the most desirable of similar specification 

photodiodes available at the time. 

For in vitro testing of the first generation array, a test-environment (1 m3)

lined with white paper, to simulate a uniform light field was purposely 

constructed. A small hole was punctured at one face of the test-box, over which 

several sheets of paper were attached, and a tungsten lamp was situated just 

outside this test-environment. This lamp provided light from approximately 360 

nm to around 2 µm and the arrangement diffused the light such that it was more 

uniform within the box. A Styrofoam mannequin head was placed at the entrance 

to the test-box for initial measurements with the sensor array placed upon the right 

eye, and a black cloth was draped over the entire system. For human test subjects, 

a headrest was positioned at the entrance to the diffusing test-box with the array 

clamped in place. For both mannequin and human test subjects, the actual on-eye 

light field was recorded firstly, and the background light field was recorded by 

moving the head away from the sensor array.  

With this system, the fundamental aspects of sensor design for ocular light 

field measurements were achieved. As with all research and development, there 

were inherent flaws, which were primarily due to the photodiode specifications. 

They had a broad spectral response, from 300 nm to 1100 nm and since the skin 

has a different reflectivity in the UV region of the spectrum than it does in the 

visible, visible light being reflected from facial structures onto the nasal side of 

the eye caused a signal that was not indicative of the actual levels of damaging 
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UVR striking the anterior surface. Another drawback was that the TSL-250 

photodiodes required an external power supply, which, along with the ground and 

output pins, and wiring, increased the bulk of each photodiode. Finally, each of 

the five photodiodes set onto the plastic shell had their own plano-convex lens, 

causing light incident at oblique angles to focus on the active area, subsequently 

providing an unrealistic measure of the amount of light which would actually be 

incident across the palpebral fissure in an insolation environment. A flat detector 

is a closer approximation of the ocular surface than one with a lens above the 

detecting surface. An important consideration in trying to approximate the field of 

view and response of the ocular surface with a mechanistic sensor is whether the 

latter is a true representation of the former. 

3.3   Current UVR sensor array design and construction 

The novel solar-blind sensor array designed, constructed and tested for the 

research described here was based upon a Cantor & Nissell scleral lens. It was a 

spherical shell type and mimicked the curvature of the human eye more closely 

than the first generation plastic shell as can be seen in the superimposed 

photograph in figure 3.3. The current shell was made from a medical grade plastic 

with back optic radius of 8.25 mm, a scleral radius of 14.00 mm and a diameter of 

23.50 mm, thereby mimicking the anterior ocular structures. These are designed to 

cover the whole of the ocular surface as pre-formed fitting shells as can be seen in 

figure 3.3. Being multipurpose and made from medical grade plastics, they can be 
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utilised by an optician to assist such diversities as surgery, disease, trauma or 

physical protection of the eye post surgery449 450.

Figure 3.3:

Solar-blind sensor array with sensor 1 at temporal portion and sensor 5 at nasal 

portion. Curvature illustration is superimposed. 

The full specifications of the Hamamatsu G5842 photodiodes are provided 

in Appendix I, however there are a range of other specifications pertinent to this 

research that also require consideration. Including their electrical contacts, the 

dimensions of the surface mount photodiodes are 6.5 ± 0.2 mm x 4.0 mm, with 

thickness 1.5 mm. Since the front surface of the eye exposed when the lids are 

open is elliptical, the horizontally exposed tissue, that is, from temporal to nasal 

canthus, is approximately 25 mm. This permitted five photodiodes to be placed 

across key areas of the exposed ocular tissue, as shown in figure 3.3. The centre 
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sensor was mounted over the corneal apex, with two photodiodes extending either 

side of this, covering the temporal and nasal limbal and conjunctival tissues 

further outwards. Since the active area of each individual photodiode was 

0.8 mm x 0.8 mm, located centrally in the base and filter, the five-element array 

extended 20 mm across the ocular tissue. 

Due to the G5842 photodiode’s specifications best suiting the novel sensor 

system requirements, such as responsivity to the UVR waveband only, large field 

of view, large dynamic range and linearity across anticipated UVR irradiance 

levels during late summer at noon in Texas (maximum ~ 50 W m-2), Hamamatsu 

G5842 Gallium-Arsenide-Phosphide photodiodes were chosen as the sensing 

device to measure the terrestrial solar UVR irradiance at the palpebral fissure. 

These had a number of advantages over similar photodiodes available and the 

previously used TSL-250’s, primarily, the combination of their size, their field of 

view, being passive devices, as opposed to the active TSL-250 type, and the fact 

that they are solar-blind, i.e. their spectral response is solely in the UVR region 

from 260 nm to 400 nm, with peak sensitivity at 370 nm, as shown in figure 3.4 

with a Solar Light Co PMA2107 A+B UVR radiometer. Measurements taken by 

the PMA2107 A+B detector were non-weighted and the relative response is given 

in figure 3.4. This detector had a spectral response over a similar spectral range to 

that of the GaAsP photodiodes, 260 nm – 400 nm, but their sensitivities were 

different per nanometre.  
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Figure 3.4 shows the G5842 photodiode’s relative spectral response over 

the range 260 nm to 400 nm compared to an ideal flat response, and a Solar Light 

Co. PMA2107 UVA+B broadband radiometer, which was used in conjunction 

with the solar blind photodiodes during field based measurements. Using an 

absorption filter that eliminates portions of the visible that the photodiode 

semiconducting material alone is sensitive to, these photodiodes only detected 

ultraviolet photons within the 260 nm to 400 nm waveband. This feature was 

important when making UVR measurements in sunlight as the solar irradiance 

spectrum increases rapidly from ~ 300 nm in the UVR region to a maximum at 

around 500 nm in the visible region as shown in figure 1.1. The photodiodes could 

therefore quantify the relatively low UVR irradiance levels in the presence of the 

spectrally adjacent high visible levels. 
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Figure 3.4:

Spectral response of Hamamatsu GaAsP photodiodes used in solar-blind sensor 

array (blue) and Solar Light Co. PMA2107 UVA+B broadband radiometer 

(green) compared to ideal flat response (orange line). 

As described earlier, an ideal photodiode sensor will have a flat spectral 

response over a desired spectral range, as depicted in orange in figure 3.4. After a 

thorough search, the chosen photodiodes, when compared to others available at 

the time, were deemed to have the optimum specifications, principally the solar 

blind spectral response in the UVR waveband and large field of view. 

In addition to measuring the ocular light field with the purposely designed 

sensor array, it was necessary to cross calibrate sensor output voltage levels with a 
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calibrated broadband radiometer so that the digitised analogue voltage output 

from the solar blind sensors could be related to the irradiance falling on them. For 

this, a NIST traceable portable Solar Light Co. PMA 2100 radiometer, with sensor 

PMA2107 A+B, was used to measure the absolute ambient irradiance levels. The 

five analogue voltage outputs from the photodiode array digitised by the data 

acquisition card could then be related to irradiance by cross-calibration between 

the photodiode array and UVR radiometer. A cross-calibration factor was 

calculated relating the irradiance and the sensors output voltages by locating the 

radiometer and the centre photodiode adjacent to each other and facing the zenith 

at approximately two hours either side of noon under diffuse/direct sunlight in 

Houston, Texas. This permitted simultaneous measurements to be taken from the 

photodiode array and radiometer under various sky conditions with fluctuating 

irradiance values, thereby permitting the cross calibration to be measured over a 

wide range of irradiances similar to the levels when used to measure the ocular 

UVR field. The resultant conversion factor of 25 W m2 per sensor volt was given 

by the slope provided in figure 3.5. 
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 Figure 3.5:

Cross calibration of photodiode output voltage with calibrated UVA/B 

radiometer.

The photodiodes specified photosensitivity of 0.06 A/W at 370 nm meant 

that a corresponding solar irradiance value of 1 W/m2 would produce 0.04 V 

across a 1 M  resistor, given their active area is 0.8 x 0.8 mm.  Therefore, if there 

was the same A/W over the 140 nm spectral response range of the detector, and 

assuming 1 W m2 at all solar UVA-B wavelengths, one would expect an overall 

signal of 3.8 V which correlates well with the 0.04 V/W signal from the detector. 

To avoid saturation, ensure a linear response and maintain high photon 

conversion efficiency, the photodiodes were wired in a reverse bias circuit, as 

shown in figure 3.6 powered by the 5 V PCMCIA output from a laptop PC. In 

96



forward bias mode, the dynamic range of the photodiode was exceeded by the 

intense levels of UVR presented in Texas, and saturation resulted.  

Figure 3.6:

Schematic of typical forward and reverse bias photodiode circuits 

The G5842 sensor’s field of view can be seen in figure 3.7, as quoted by 

the manufacturer. As with many optical sensing devices, such as broadband 

radiometers and optical fibres, peak sensitivity occurs when a source is normal to 

the sensors surface, with sensitivity falling off at more oblique angles. For the 

sensor employed for this research, the fall off in sensitivity is primarily 

attributable to Fresnel reflection from its specularly reflecting surface. Analogous 

to reflections from this mechanistic device are reflections from the exposed ocular 

surface itself. At more oblique angles, the ratio of corneal transmission to 

reflections from its surface will change. The more oblique the angle of incidence, 

the greater the reflectivity from the corneal surface. Related to such reflections 

from the corneal dome is PLF, and for this reason, PLF only occurs within a 

narrow range of angles, just temporally oblique from the cornea. Outside of this 
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range, most incident radiation is reflected from the corneal surface and does not 

refract across the aqueous humour.  
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Figure 3.7:

Hamamatsu GaAsP G5842 photodiodes

sensitivity to the UVR waveband only over field of view. 

In addition, prior to being attached to the shell, the relative response of 

each photodiode in the array was tested in the laboratory by placing each in the 

same UVR field for ten measurements, as this was considered sufficient to 

measure any variations in sensor responsivity across the array. As such, the 

variations in the measured response across the array were found to agree to less 

than 1 % variation and this variation can possibly be attributed to an inability to 

exactly place the sensors in the same location for each recorded measurement.
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3.4 LabVIEW Data Acquisition

The National Instruments (Austin, Tx) LabVIEW data acquisition suite 

serves as a most efficient tool for acquiring and presenting data using the 

principles of virtual instrumentation. A virtual instrument consists of a standard 

PC workstation which hosts powerful application software that takes advantage of 

the computing power and connectivity capabilities of such stations. These are 

interfaced with a measurand-specific sensing device and perform the functions of 

traditional instruments such as dataloggers or oscilloscopes with greater flexibility 

and control. As it is a graphical development environment, the need for reams of 

code is now replaced by a user-friendly graphical interface consisting of a front 

panel and block diagram. The former consists of controls and indicators, while the 

latter contains the graphical code. 

A LabVIEW program was written specifically to allow real time ocular 

UVR field measurements to be made. The program was written such that it had a 

variable sample rate, but the highest possible rate, determined by the processing 

speed of the computer in tandem with the acquisition speed of the data acquisition 

card, was always chosen to account for the rapidly varying atmospheric 

conditions. A DAQCard-700 was used as the analogue to digital interface and its 

maximum sample rate was 100 kHz. As there were five photodiodes comprising 

the ocular sensor array, this maximum sample rate was separated into five 

maximum sample rates, which resulted in each sampling at 20 kHz. This sampling 

rate permitted an excellent signal to noise ratio and invariably had the ability to 
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measure rapidly varying UVR levels in an ambient insolation environment. For all 

field–based measurements recorded, data was recorded for 10 seconds; 5 seconds 

on, and 5 seconds off the eye. Along with the sampling rate of 20 kHz, it was 

determined that this measurement duration was sufficient to permit as many 

samples to be taken as possible, in as short a timeframe as possible, to acquire 

UVR levels both on and off the eye, under a perceivably uniform insolation 

environment. In cases where the UVR levels varied over the course of 

measurement, as recorded by the calibrated UVR radiometer, these measurements 

were simply re-taken.  

Figure 3.8 shows the block diagram for the program. The AI Acquire 

waveforms acquires data from the specified channels and samples the channels at 

the specified sample rate, the output of which is sent to an index waveform array. 

This selects one waveform out of an array of waveforms by array index or channel 

name. It does so in the order specified by the user, and wires data directly to a 

waveform graph, where it is displayed on the front panel as a varying voltage 

signal. The elements of the 2-D array are transposed just before being saved for 

ease of use when analysing in Matlab. 
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Figure 3.8:

LabVIEW Block Diagram which acquires real-time field based measurements. 

The Front Panel user interface which displayed the voltages from the array 

is now shown in figure 3.9. Each sensor’s voltage was displayed individually 

within the given waveform charts. The benefit of this was to ensure that no 

malfunctions occurred during a given acquisition, as after each, the five voltages 

over the course of a ten second measurement were displayed for user-analysis, 

prior to more data being acquired. 
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Figure 3.9:

LabVIEW Front Panel display which provided graphical representations of 

varying voltages across array from nasal to temporal sensor. 

3.5 Laboratory Based Photodiode Testing 

To quantify the ocular UVR field in an insolation environment, a purpose 

designed photodiode sensor array was constructed and tested. Initial 

measurements and characterisation of the photodiode array were carried out in the 

laboratory in DIT, and the field methodology used in Houston, Texas, was tested 

102



on the roof of the Facility for Optical Characterisation and Spectroscopy 

(FOCAS), DIT.

Due to the anticipated levels of irradiance in Houston towards the end of 

summer (~ 50 W m-2), it was necessary to test the photodiodes in both forward 

and reverse bias under similar irradiance levels as those typically found in 

Houston. To do so, a Q-Panel Xe-1-C solar simulator was used to irradiate the 

photodiodes as it had a spectral power distribution resembling that of solar UVR 

at a summer’s midday near the equatorial latitudes. It was found that by reverse 

biasing the photodiodes, their dynamic range increased permitting the 

measurement of irradiance without photodiode saturation. 

3.6 Houston field based measurements 

As there are much higher yearly average levels of UVR at latitudes 

progressing closer to the equator, accompanied by expected clearer skies in 

general, field based measurements were carried out with the aid of Dr James 

Walsh and Prof. Jan PG Bergmanson at the Texas Eye and Research Technology 

Centre (TERTC), University of Houston College of Optometry, Houston, Texas. 

Measurements were taken on consecutive days during August/September 2004 

and early August 2005. Expected clear skies in Houston for these times of year 

proved to be quite intermittent, which ultimately allowed investigation of the 

ocular UVR field for a range of different orientations with respect to the zenith 
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and intercomparison of the variation in these ocular UVR field for direct and 

diffuse insolation environments.  

By comparison with Dublin (53° 20' N, 6° 18' W, altitude 85 m above sea 

level), Houston, (29° 45' N, 95° 22' W, altitude 40 m above sea level) is 

appreciably closer to the tropics, which themselves lie between 23° 30' north and 

south of the equator, and is well within the ‘pterygium belt’, which spans from the 

equator to approximately 30° – 40° north and south451.

104



Chapter 4

Novel Photodiode Array Field Results 

4.1  Introduction 

Many previous measurement systems designed to quantify the ocular 

exposure to terrestrial solar UVR incorporated mannequin heads, as highlighted in 

section 2.2. As mannequin heads have been used extensively in these other 

studies, it was thought that the design and ease of use of this novel sensing 

system, along with the use of human heads, would give a more realistic measure 

of the UVR intensities across the anterior ocular surface. The use of mannequin 

heads and interpretation of field results gained through their incorporation in 

dosimetric studies is very limited. Although much better models are available 

these days, with varying facial structures resembling different ethnic groups, they 

could still be considered anatomically imprecise, as they are only representative of 

what is perceived to be an average ethnic facial structure. Coupled with this is the 

mannequin’s albedo. The reflectivity of human skin is highly individualistic, and 

such factors as perspiration will come in to effect also. The use of a single 

mannequin head could ultimately lead to misleading results. Therefore two human 

test subjects were used for field based measurements. 
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4.1.1 Field based Measurements Environment 

Two Caucasian males, Dr. James Walsh and Mr. David Fleming were test 

subjects A and B respectively for the field-based measurements recorded and 

presented in this thesis. The solar UVR field at the ocular surface for a range of 

orientations under direct and diffuse skies was measured, highlighting the 

variation in irradiance at the anterior ocular surface due to differing facial 

structures. The Facial structures can be seen in figure 4.1. It can be seen that there 

is only a slight difference in facial structure around the brow ridge, with test 

subject A on the left hand side having a more deeply set eye, thus potentially 

greater protection from solar rays. 

Figure 4.1: 

Test Subject A on the left and B on the right hand side highlighting test subject B 
having a more protrusive eye socket.
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The repeatability of the sensor array was also demonstrated under different 

conditions, emphasising its strong potential in the field. All field-based 

measurements were carried out on the roof of the Texas Eye and Research 

Technology Centre (TERTC), Houston. Due to the distances between this 

building and the surrounding ones, the view of the entire sky from this rooftop 

was considered to be free of obstruction, as seen in figure 4.2. Measurements were 

always recorded under totally clear skies or under skies with perceivably uniform 

cloud cover and were taken at the centre of the roof.

Figure 4.2:

The roof of TERTC with an unimpeded view towards the foreground and 

horizon.

 For all data recorded, the photodiode sensor array was always worn on the 

right eye of both test subjects A and B since the shell used was specific to the 

right eye, with sensor number 1 to the temporal side of the sagittal plane and 
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sensor number 5 to the nasal side.  The system was operated by both test subjects. 

While one subject wore the sensor array, correct alignment and orientation was 

verified by the other while also operating the specifically written LabVIEW 

acquisition program. For every orientation recorded and presented, five sample 

data measurements were made per cardinal point orientation for a given data set. 

The reason for taking no more than 5 samples per orientation for each test subject 

was that the time spent outdoors would have been too long in the intense heat and 

humidity with no shade, and 5 samples per orientation was found to be enough to 

compute good standard deviations of the data sets. Potential sources of 

measurement error were due to ambient light level variation, head movement and 

in particular sensor placement. To monitor ambient light levels the Solar Light 

PMA2107 UVA+B radiometer was always used in tandem with the array. Any 

changes noted on the radiometer during a measurement run resulted in that data 

set being discarded and re-started. To minimise head movement, the test subject 

relaxed prior to measurement and as stated, the array positioning at the ocular 

surface was checked by the other test subject.  

4.1.2 Field Based Study Expectations 

Before the field results for both test subjects are presented over a complex 

range of cardinal point orientations for different solar zenith angles and under 

direct and diffuse skies, it is important to consider what general trends might be 

expected across the sensor array. The following list narrows down the many 

environmental and physiological factors which, when combined, cause large 
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variations in irradiance across the anterior ocular surface. This list is not definitive 

due to the nature of the countless environmental variations (and combinations 

thereof) that occur, which ultimately affect the intensity and distribution of solar 

UVR across the anterior ocular surface.  

4.1.2.1  Direct Irradiance 

1) Absolute data should be dominated by facial anatomy and the test 

subjects orientation to the sun and solar zenith angle, except where 

there is considerable shading and/or field of view variations in specific 

direction, e.g. trees and buildings in the surrounding foreground and 

vastly varying UVR reflectances of nearby objects. 

2) Facing due south at local noon, one would expect data recorded off-

eye (i.e. the background UVR levels) to show a trend where the centre 

sensor is irradiated greater than the two adjacent sensors, at the 

temporal and nasal limbal locations. Further still, adjacent to these 

limbal sensors, one would expect the most temporal and nasal sensors 

to be irradiated least, assuming no objects in the foreground alter the 

solar UVR field.

3) For data recorded with the array on the eye under similar conditions, 

one would expect the nasal sensors to be shaded by the brow ridge and 

nasal anatomy, with the temporal sensors recording the highest 

irradiances. 
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4) By calculating the relative intensity, which is on-eye data divided by 

the off-eye data, it is possible to quantify the effects the facial structure 

has on the distribution of solar UVR across the palpebral fissure. One 

would expect the relative intensities to be similar for a particular 

subject regardless of sky conditions and cardinal point orientation as it 

is subject specific.

5) There are therefore two ocular biases which can be examined. The 

environmental bias which gives the irradiance at that time across the 

eye and the relative bias which gives the irradiance variation across the 

eye by eliminating the variations of the background radiation field. In 

calculating the relative intensity, it is found to be subject specific.

Having outlined what one would expect under direct insolation, the following is a 

list of what might be expected under diffuse skylight: 

4.1.2.2   Diffuse Irradiance 

1) Lower solar UVR irradiance than under direct insolation, although it is 

important to note the values as they will be incident on possibly less 

protected ocular tissue as protective measures and squinting may be 

reduced.

2) Less variation in irradiance between the four cardinal point orientations. 

3) Less variation in irradiance across the sensor array than under direct 

insolation due to the absence of direct solar component, resulting in a 
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more uniform distribution of irradiance across the array. This is suggested 

to be true of completely uniform diffuse cloud cover. However, as 

sometimes occurs, portions of the sky may be perceivably brighter, 

particularly when the sun is present in this area. 

4) Similar variations in the relative intensities as under insolation due to head 

anatomy dominating the relative intensities, thus showing that a persons 

facial anatomy is a major determinant in ocular UVR dose.  

The preceding list is what one would expect in the data that follows. 

4.2 Example data for zenith facing field measurements 

In order to present data of the measured irradiance levels at the human eye 

for a range of different environmental conditions, it is important to present the 

maximum possible irradiance at the ocular surface, as it is these values which 

other measurements will be compared against to show the difference between 

looking towards the horizon and zenith. The maximum possible irradiance 

expected at the ocular surface would be while lying down, looking towards the 

zenith at local noon. Any measurements of ocular irradiance taken while looking 

towards the horizon would not be expected to surpass this zenith facing data, as 

the brow ridge should provide some protection from the direct rays and related 

Fresnel reflections would be expected from the surface of the photodiodes also.  

Unfortunately, measurements were not taken at local noon whilst facing 

the zenith, due to time constraints and more significantly, changing environmental 
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conditions. Due to intermittent cloud cover during the field measurement period in 

Houston, the best possible sets of direct or diffuse data were recorded at times 

when reasonably consistent direct/diffuse skies were presented. However, the 

methodology and reasoning behind zenith facing measurements is described, and 

the reliability and repeatability of the instrument is borne out through the figures 

presented for this data, prior to data presented for test subjects fixated on the 

horizon.

One set of digitised data from each of the five sensors are shown in figure 

4.3 for a measurement duration of ten seconds as defined in the specifically 

written LabVIEW program. The sensor array was held directly on the closed right 

eye for the first five seconds of the recorded data and the test subject’s head was 

then moved back from the array for the final five seconds, thereby quantifying the 

background or reference UVR levels, since shading by the brow ridge and nose 

were eliminated due to their being no head present. The order in which the 

individual photodiode outputs are displayed in figure 4.3 and all subsequent 

figures is given in table 4.1:
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Sensor Position Sensor Colour Sensor Number

Temporal Blue 1

Temporal-Middle Green 2

Middle Red 3

Nasal Middle Cyan 4

Nasal Magenta 5

Table 4.1:

Sensor Array Reference Table. 

The unstable voltage regions at the crossover point, where the head was 

moved back, were not used in any calculations. However, the stability of the 

system under constant direct sunlight can be clearly seen through the raw voltage 

data shown in figure 4.3, and the stable off-eye levels compared very well to the 

un-shaded radiometer values recorded which was placed a distance of five meters 

from the test subject and oriented skywards. It was placed this distance away so 

that any movement by the person recording the data behind the test subject did not 

cause shading. 

The sample output data from the array provided in figure 4.3 for test 

subject A was recorded at approximately two hours before local noon due to there 

being extremely clear skies, with the test subject looking directly towards the 

zenith, or in the supine position, for a southern facing aspect. At this time and 

date, the solar azimuth and solar elevation angles proceeded from ~ 123º to ~ 134º 
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and ~ 56º to ~ 61º respectively. These angles were found at the National Oceanic 

and Atmospheric Administration (NOAA) Surface Radiation Research Branch 

website452. At these solar coordinates, for a test subject, with the sensor array 

worn on the right eye and looking towards the horizon for a southern facing 

aspect, one would expect a nasal bias across the array as the direct rays originate 

from this portion of the sky. While lying down, the nose would not be expected to 

protect the nasal aspect for these solar coordinates as the sun is progressing 

closely towards its zenith. This is true of the data presented in figure 4.4, where 

there is a pronounced nasal bias.
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Figure 4.3:

Sample photodiode array output voltages of test subject A facing the zenith at 

11.30 am under direct insolation. 
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4.2.1 Calibrated Mean Absolute Zenith Facing Irradiance Intensities

Using the calibration factor of 25 W m-2 / V calculated in section 3.3 it was 

possible to determine the mean absolute UVR irradiance values for each 

photodiode and plot these values as a function of photodiode number and 

irradiance level in W m-2 for on and off the eye.

Figure 4.4 shows the calibrated mean absolute UVR irradiance values of 

the raw data for direct insolation, with the sensor array on and off the eye while 

subject A looked towards the zenith for a southern facing aspect. The black 

dashed lines are the calculated mean absolute UVR values of five measurement 

runs with the sensor array on the eye, while the blue dashed lines are the absolute 

background levels across the array after the head was removed. The five 

measurement runs presented here highlight the repeatability of the measurement 

method. The photodiode output voltage presented in figure 4.3 was one of five 

data sets used to produce figure 4.4.
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Figure 4.4:

Calibrated mean absolute irradiance values of raw data for test subject A, off 

(Blue) and on-eye (Black), facing the zenith for the southern aspect. 

As anticipated under direct insolation for the sensor worn on the right eye, 

due to the south-easterly position of the sun, the nasal photodiodes received a 

greater irradiance than the temporal photodiodes, as can be seen in figure 4.4. This 

was expected of the zenith facing array as the nasal photodiodes were illuminated 

more so than the temporal ones both on and off-eye, with the former exhibiting 

minimal nasal and brow shading, and the direct rays being more normal to the 

nasal photodiodes surfaces than those of the temporal ones. Off-eye, one would 

expect no shading at all, and thus a higher irradiance was found. The trends for 

both the on-eye and off-eye data are very similar, with a more or less uniform 

decrease in intensity across the entire array, attributable to brow shading above 

that of nasal shading, the latter of which would have resulted in a flatter trend if it 
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dominated. From the on-eye data, it can be seen that sensor 4 received 40 W m-2

with the irradiance falling off dramatically across the curvature of the sensor array 

as the sun ascended towards its diurnal peak. Figure 4.4 demonstrates how 

effective a tool the array is in determining solar UVR levels at the ocular surface. 

Figure 4.5 provides the observed trends for test subject A looking towards 

the zenith at two hours pre-local noon for the four cardinal points. For each data 

set and all subsequent data sets, starting at the top left, and progressing 

clockwise, the orientations are East, South, North and West. The data for the 

southern aspect was computed using the data presented in figure 4.4. The error 

bars were calculated from the standard deviation around the mean for the five sets 

of readings taken and indicate statistically significant variations across the array. 

The black error bars are on-eye values and the blue error bars are the off-eye 

values or background levels. 
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Figure 4.5:

Calibrated mean absolute irradiance values for test subject A, off and on-eye, 

facing the zenith for the four cardinal points 2 hours pre-local noon. 

In figure 4.5, sensors 1, 2 and 3 received a greater UVR irradiance on-eye 

than 4 and 5 with the trend dropping off nasally for the eastern aspect. This would 

also have been expected due to the solar azimuth being south-easterly, and the 

direct rays irradiating these sensors more normal to their active surface than the 

more nasal ones, which were afforded a certain degree of protection due to the 

curvature of the shell and the sun being ~ 30º from zenith. 

For the western aspect, sensor 4 received the greatest irradiance with the 

general trend falling away temporally. This also would be expected considering 

the south-easterly azimuth of the sun and the fact that the sun was not yet high 

enough to illuminate the temporal side of the array. It can be further explained by 
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forward reflections from the nasal and brow ridge concentrating UVR towards the 

nasal region. The northern oriented on-eye data highlights a trend peaking at 

sensor 2 and falling off nasally. For the given azimuth angle range, this would 

also have been expected due to sensors 1 and 2 being illuminated mostly, and 

sensors 3, 4 and 5 being progressively more shaded by the brow ridge and 

receiving less irradiance due to the array curvature. Taking the middle sensor, the 

average on-eye irradiance value for the four orientations was approximately 30 W 

m-2, with the off-eye data only slightly greater for the southern and western 

aspects. From figure 4.5, it is clear that the irradiance across the ocular surface 

whilst looking skywards, with the sun not quite at zenith, is a result of the 

combination of the solar position, cardinal point orientation, and facial shading,

4.2.2 Relative Intensities For Zenith Facing Field Measurements 

Figure 4.6 compares the relative light field across the eye for test subject A 

for the four orientations presented in figure 4.5. The relative intensities are 

calculated by dividing the off-eye values presented in figure 4.5 into the on-eye 

values, essentially therefore, eliminating the background, or reference, and 

leaving one with the relative intensity of solar UVR at the ocular surface for a 

particular SA, SEA, insolation environment and head carriage relative to all of 

these.

119



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Sensor Number

R
el

at
iv

e 
In

te
ns

ity

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Sensor Number

R
el

at
iv

e 
In

te
ns

ity

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Sensor Number

R
el

at
iv

e 
In

te
ns

ity

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Sensor Number

R
el

at
iv

e 
In

te
ns

ity

East South 

West North 

Figure 4.6:

Relative Intensities for test subject A facing the zenith for the four cardinal points 

2 hours pre-local noon. 

From figure 4.6 it can be seen that for all aspects, the largest variation in 

photodiode output signal across the sensor array occurs for the southern aspect, 

with a temporal bias for this orientation. East, west and north are relatively flat, 

highlighting that the ocular surface receives relatively comparable UVR 

intensities across the lid margin for these aspects due to less shading by the facial 

structures at this time of the day and under such atmospheric and environmental 

conditions.
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4.3 Horizon Facing Measurements, Houston, Tx. 

4.3.1 Introduction 

Section 4.2 demonstrated the progression of output voltage from the five 

photodiodes, through calibrated mean absolute irradiance values, to relative 

intensities for test subject A lying down facing the zenith for the four cardinal 

points. A more natural head carriage is that of gazing towards the horizon 

standing upright. For this typical upright head carriage, the head’s orientation with 

respect to the sun coupled with the solar angle under direct insolation are the 

dominant factors when assessing UVR levels at the anterior ocular surface. This 

can be explained by the fact that a horizontal surface is always receiving direct 

radiation; however, standing upright at local noon, a sensing device such as the 

array described here, is dominated by its orientation to the sun and solar angle, in 

which case one would expect a southern facing device to generate a higher output 

voltage than a northern oriented one in the Northern Hemisphere. It follows that 

both east and west oriented devices will be intermediary ones under direct 

insolation453. Under diffuse insolation, one would not expect radical differences in 

the irradiance trends across the array for a southern facing array, as the direct 

component is weaker or absent. It also follows that mean irradiance levels across 

the array should be more uniform for the four cardinal points as the diffuse nature 

of the irradiance dominates under uniform diffuse skies. After preliminary 

surveys, a substantial database of field results for this more natural position was 

acquired over the course of two field-based trips to Houston. These measurements 
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were recorded for test subjects A and B under both direct and diffuse skies and at 

varying times around local noon, which was approximately 13.20hrs for all 

measurements. In building up this database, variance in the calibrated mean 

absolute irradiance values and consequent relative intensities between test 

subjects under direct and diffuse insolation at different solar angles was analysed 

and is presented in sections 4.3.2 to 4.3.6. Along with the sensor arrays cardinal 

point orientation, the respective solar azimuth and elevation angles are also given 

for each figure presented as it is the combination these which govern the array 

trends found in the field.

Starting at approximately 2.5 hours pre local noon, figures 4.7 to 4.10 

show test subject A looking towards the horizon until approximately 40 minutes 

post local noon under direct insolation. As already mentioned, due to variable 

weather conditions, measurements were taken on different days when there were 

definite direct or diffuse skies, and subsequently are now presented over time. 

Thus, the progression of the sun with respect to the four cardinal point 

measurements orientations can be analysed under direct insolation. 

4.3.2 Test Subject A Irradiance Intensities - Direct Insolation 

Figure 4.7 shows test subject A gazing towards the horizon under direct 

insolation at approximately 2.5 hours pre-local noon. At this time the SA and SEA 

proceeded from ~ 102º to ~109º and ~ 53º to ~ 60º respectively.  
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Comparing to test subject A in the supine position presented in figure 4.5 

for the southern facing aspect, the off-eye trend is similar, albeit with a lower 

solar irradiance. Sensors 4 and 5 were illuminated greatest, which would be 

expected, given the solar position with respect to the array. The key difference 

between both southern oriented aspects presented in figures 4.5 and 4.7 is that the 

on-eye trend is actually lower nasally whilst standing (figure 4.7). This can be 

explained by the fact that the right eye brow ridge coupled with the surrounding 

facial anatomy prevented direct rays striking the more nasal sensors. As the SA 

and SEA are quite similar for both sets of measurements presented in figures 4.5 

and 4.7, it can be concluded that for this orientation and time, the facial anatomy 

plays a huge role in preventing direct rays from reaching the nasal anterior 

surface, when compared to lying on one’s back and fixating at the zenith, where 

the brow ridge protection is limited. Moving across the array more temporally for 

the on-eye data, there is a slightly higher irradiance than sensor number 5 for 

sensors 1, 2, and 3, which all receive a fairly constant irradiance, thereby further 

emphasising the degree of UVR reduction afforded by the brow ridge.
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Figure 4.7:

Calibrated mean absolute irradiance values for test subject A, off and on-eye, 

facing the horizon for the four cardinal points ~ 2.5 hours pre-local noon.

Progressing clockwise from top left: East, South, North & West.

The off-eye eastern facing orientation in figure 4.7 shows sensors 4 and 5 

receiving the greatest illumination. The on-eye trend for the eastern facing aspect 

shows the more temporal to middle sensors, namely 1, 2 and 3, receiving a larger 

irradiance than 4 and 5. This can also be explained by the SA and SEA. While 

facing due east, or 90º east, the sun was between ~ 102º and ~ 109º. This meant 

that the temporal sensors of the array worn on the right eye were illuminated more 

so than the nasal sensors.  

Due to the sun being located more easterly in the sky, with the western sky 

exhibiting no real direct component, the resultant off-eye and on-eye irradiance 
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levels for the western facing aspect were much less than those for the eastern 

facing aspect in figure 4.7. They were also much flatter, with no significant trend 

to either the off- or on-eye data, notwithstanding the fact that the nasal sensors 

received a slightly lesser irradiance than the temporal ones on-eye. This can be 

attributed to no direct solar rays being incident at the array surface for both on-eye 

and off-eye, only scattered and reflected rays illuminating its surface. It can be 

further deduced that the brow ridge did provide protection from the ambient 

diffuse rays since the on-eye irradiance is less than that off-eye nasally. 

The off-eye northern facing orientation in figure 4.7 illustrates that the 

temporal sensors receive a marginally greater UVR irradiance than the central and 

nasal sensors. When placed on-eye, this trend does not deviate much. The most 

significant difference is that similar to the western facing data; the nasal sensor is 

protected by the facial anatomy from the scattered and reflected diffuse rays.

Figure 4.8 presents test subject A gazing towards the horizon under direct 

insolation at approximately 2 hours pre-local noon. At this time the SA and SEA 

proceeded from ~ 113º to ~123º and ~ 61º to ~ 67º respectively. These angles are 

a progression towards local noon from those presented in figure 4.7. Very similar 

trends to figure 4.7 can be seen for all directions of sensor array orientation in 

figure 4.8, and most significantly, these trends and corresponding irradiance, 

while very similar, also exhibit higher irradiance values both on- and off-eye. As 

the difference in time was only 30 minutes between figures 4.7 and 4.8, these 

higher irradiance values show that the sensor array was very responsive to slight 
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changes in both solar azimuth and solar elevation angles across its horizontal 

diameter due to it measuring the increased direct irradiance due to the sun being 

higher in the sky.
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Figure 4.8:

Calibrated mean absolute irradiance values for test subject A, off and on-eye, 

facing the horizon for the four cardinal points 2 hours pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Approaching 20 minutes pre-local noon, figure 4.9 presents test subject A 

gazing towards the horizon under direct insolation for solar azimuth and solar 

elevation angles proceeding from ~ 167º to ~176º and ~ 64º to ~ 66º respectively.
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Figure 4.9:

Calibrated mean absolute irradiance values for test subject A, off and on-eye, 

facing the horizon for the four cardinal points ~ 20 minutes pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Trends shown in figures 4.7 and 4.8 for the southern and eastern facing 

orientations are quite different to those presented in figure 4.9. Taking the 

southern facing aspect, the off-eye trend is flatter than the previous two figures. 

This was expected for local noon, as the sun was located almost due south, and 

illuminated the array evenly, if one negates the shell’s own curvature. As 

measurements were recorded 20 minutes before noon, it can be seen that sensor 4 

on the nasal side received a slightly higher irradiance than the others. This shows 

that the array can distinguish between minor deviations in solar angles, i.e. if 

measurements had been recorded at exactly local noon, sensor 3 would have 

yielded the highest output voltage, with the array output voltage falling off on 
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either side. Due to the fact that the measurement was recorded just 20 minutes 

pre-local noon, this meant that sensor 4 on the nasal side of the right eye array, the 

one which would have been most normal to the direct solar rays, recorded the 

highest irradiance, with the array output voltage falling off temporally, as 

expected. The irradiance recorded by sensor 5 was similar to that of 2 and 3, due 

to the curvature of the shell and its shallower angle with respect to the direct rays.

On-eye, however, for this southern facing aspect, the protection presented 

by the prominent brow ridge can once again be seen. The nasal sensors experience 

a much larger reduction in received direct irradiance at 20 minutes to local noon. 

It is suggested here that this reduction would be less evident if the measurements 

were recorded at exact local noon as the brow ridge and nose would have less 

impact on blocking the direct rays reaching this nasal region. 

Due to the sun being located due south, all other measurement orientations 

presented in figure 4.9 demonstrate no significant attributes. For this reason, there 

is no real distinguishing factor in the off-eye trends for the east, west and north 

orientations. It can be seen that for the western orientation, the nasal sensors off-

eye are higher than the temporal ones and this can be attributed to the direct rays 

originating from due south are illuminating these. The temporal sensors are 

shaded due to the right eye sensor’s curvature. However, the on-eye data for the 

western facing aspect shows a marked decrease in surface irradiance at the nasal 

sensors, and this is due to the nose and brow blocking these direct rays.  Both the 

eastern and northern facing aspects present a quite diffuse irradiance across the 
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array when off-eye, as would be expected with the sun in the south and no there 

were no highly reflective features in the foreground. These rather diffuse, flat 

trends are altered slightly with the array placed on-eye, with the nasal sensors 

experiencing a reduction in diffuse radiation falling upon them due to anatomical 

protection.

Approximately 40 minutes post-local noon, figure 4.10 presents test 

subject A gazing towards the horizon under direct insolation for solar azimuth and 

solar elevation angles proceeding from ~ 217º to ~234º and ~ 73º to ~ 68º 

respectively. As the sun had now reached its peak and was progressing towards 

evening and sunset, the off-eye trend for the southern facing aspect was 

surprisingly uniform. However, the on-eye data reveals yet again the protection 

afforded by the nasal brow ridge at reducing the apparently relatively uniform 

foreground. As expected, sensors 1 and 2 received the highest irradiance.
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Figure 4.10:

Calibrated mean absolute irradiance values for test subject A, off and on-eye, 

facing the horizon for the four cardinal points ~40 minutes post-local noon.

Progressing clockwise from top left: East, South, North & West.

For both the eastern and northern facing data, once again the foregrounds 

appear relatively diffuse off-eye, with the brow decreasing the irradiance nasally 

on-eye. The most remarkable feature is that of the western facing data. There is a 

substantial difference in the on- and off-eye trends. The more nasal sensors, 

namely 4 and 5, receive the lowest direct UVR irradiance prior to the face being 

moved away from the array. Once moved back, the protection afforded by the 

facial anatomy is clear to see. With the sun at a south-westerly location, one 

would expect that sensors 4 and 5 were irradiated the greatest when facing west 

when the head is not present. As can be seen, with the head present, sensors 4 and 
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5 experience a huge decrease in surface irradiance, further emphasising the 

significance of facial shading at the anterior ocular surface. 

The relative intensities for each sensor across the array will now be given 

in section 4.3.3 for test subject A under direct insolation. These correspond to 

figures 4.7 to 4.10. By calculating the relative intensities, the background, or 

reference UV radiation field is eliminated and the actual relative intensity of 

terrestrial solar UVR across the ocular surface is presented.  

4.3.3 Test Subject A Relative Intensities - Direct Insolation 

The relative intensities for test subject A facing the horizon under direct 

insolation for the four cardinal points are presented in figure 4.11. These relative 

intensities were calculated from the calibrated mean irradiance values presented in 

figure 4.7. 
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Figure 4.11:

Relative intensities for test subject A facing the horizon for the four cardinal 

points 2.5 hours pre-local noon.

Progressing clockwise from top left: East, South, North & West.

As shown in figures 4.11 to 4.14, there is a consistent relative intensity 

trend for test subject A under direct insolation. By broadly analysing each of these 

figures for all cardinal point orientations, it can be seen that the more temporal 

sensors receive a higher relative intensity than the more nasal ones.  In each 

figure, irrespective of orientation, sensors 1 and 2 are substantially greater than 

sensors 4 and 5. This can best be explained by test subject A having a very 

prominent brow ridge/nasal structure. For the same measurement window, the 

relative intensities for test subject B will be presented and compared to those 

presented here for test subject A in section 4.3.6. Having a less pronounced brow 

ridge, test subject B showed consistently flatter relative intensities for the most 
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part, further emphasising the protective role at the nasal portion of the nasal brow 

ridge.

Figure 4.12 presents the relative intensities calculated from the data 

presented in figure 4.8. For all orientations, temporal sensors 1 and 2 were higher 

than the nasal sensors 4 and 5, due to the facial anatomy dominating the spread of 

UVR across the ocular surface, through shading of the nasal sensors. 
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Figure 4.12:

Relative intensities for test subject A facing the horizon for the four cardinal 

points 2 hours pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Figure 4.13 presents the relative intensities calculated from the data 

presented in figure 4.9. Once again, there is a consistent temporal bias across the 
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array. Slightly higher relative intensities for the east, west and north oriented data 

than figures 4.11 and 4.12 are the product of the off-eye and on-eye data presented 

in figure 4.9 being comparable in intensity. Taking the south facing data presented 

in figure 4.9, there is a significant difference in the on and off-eye irradiance 

intensities. As this data was recorded at 20 minutes pre-local noon, the sun was 

approaching its zenith and also approaching due south in the sky. This is evident 

in figure 4.9 as the off-eye irradiance intensities are much higher for the south 

facing data than the other three orientations. Due to facial shading of a near 

uniform south facing UV radiation field across the array, there was a significant 

difference in on and off-eye intensities when compared to the other three 

orientations. As the relative intensities are calculated by dividing the off-eye data 

into the on-eye data, thereby essentially eliminating the background radiation 

field, the southern facing relative intensities across the array presented in figure 

4.13 are actually lower than those of the east, west and north relative intensities.

This is again indicative of test subject A having a deep set ocular surface. The fact 

that the sun was almost at its diurnal peak, the prominent brow ridge provided 

excellent protection across the eye, with the nasal aspect receiving the greatest 

protection.
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Figure 4.13:

Relative intensities for test subject A facing the horizon for the four cardinal 

points ~ 20 minutes pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Figure 4.14 presents the relative intensities calculated from the data 

presented in figure 4.10. Once again, there is a consistent temporal bias across the 

array. As this data was recorded at approximately 40 minutes post local noon, one 

would not expect any major departures from the relative intensity trends presented 

in figure 4.14. Taking figures, 4.9 and 4.10, the south, east and north facing data 

for on and off-eye are quite similar as would be expected. This is reflected in their 

corresponding relative intensities, figures 4.13 and 4.14 respectively. However, 

examining the west facing data in figure 4.10, as the sun was located west of due 

south, the nasal sensors were irradiated the greatest off-eye, by comparison with 

the other orientations and west facing off-eye data presented in figure 4.9. The on-
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eye irradiance values in figure 4.10 portray a marked reduction in the irradiance 

levels received at the nasal sensors due to nasal and brow ridge shading, with the 

temporal sensors receiving a slightly greater irradiance. Taking the corresponding 

west facing relative intensities computed for figure 4.14, due to the substantial 

reduction in on-eye irradiance, there is a more pronounced drop across the sensor 

array from temporal to nasal, as compared to the west facing relative intensity 

data presented in figure 4.13.
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Figure 4.14:

Relative intensities for test subject A facing the horizon for the four cardinal 

points ~ 40 minutes post-local noon.

Progressing clockwise from top left: East, South, North & West.

Having examined the data recorded with test subject A looking towards 

the horizon for the four cardinal points under direct insolation, sections 4.3.4 and 

4.3.5 will now provide the calibrated mean irradiance levels and corresponding 
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relative intensities for test subject A under diffuse sky conditions at similar times 

of the day. 

4.3.4 Test Subject A Irradiance Intensities - Diffuse Insolation 

Starting at approximately 2 hours pre local noon, figures 4.15 to 4.18 show 

test subject A looking towards the horizon until approximately 1.5 hours post 

local noon under diffuse insolation. As these figures are presented over time, the 

progression of the sun with respect to the four cardinal point measurements 

orientations is analysed. 

Figure 4.15 presents test subject A gazing towards the horizon under 

diffuse insolation at approximately 2 hours pre-local noon. At this time the SA 

and SEA proceeded from ~ 129º to ~134º and ~ 55º to ~ 58º respectively. Plotted 

on the same scale as the figures presented for direct insolation, it is clear that the 

irradiance levels on and off the ocular surface for all directions are markedly less 

under diffuse insolation.
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Figure 4.15:

Test subject A gazing towards the horizon under diffuse insolation at ~ 2 hours 

pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Due to the nature of diffuse skies having little or no direct component, as 

would be expected, the four orientations shown in figure 4.15 represent a much 

flatter UVR field both on and off the eye than those figures presented for direct 

insolation. There are no striking features indicating the position of the sun in the 

sky with respect to the 5 photodiodes on the sensor array. Indeed, each of the 

orientations, on and off-eye, bear a similar resemblance to each other, indicative 

of uniform cloud cover.  
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Figure 4.16 presents test subject A gazing towards the horizon under 

diffuse insolation at approximately 1 hour pre-local noon. At this time the SA and 

SEA proceeded from ~ 130º to ~152º and ~ 55º to ~ 58º respectively.
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Figure 4.16:

Test subject A gazing towards the horizon under diffuse insolation at ~ 1 hour 

pre-local noon.

Progressing clockwise from top left: East, South, North & West.

The most remarkable feature about figure 4.16 is that the levels both on 

and off-eye are comparable to the figures shown earlier for direct insolation. 

There is direct penetration of the suns rays through the perceivably uniform cloud 

cover from the eastern direction. This is particularly evident on the nasal sensors 

off-eye for the south facing subplot. Under clear sky conditions, the nasal sensors 

would be expected to receive greater irradiance off-eye than the temporal ones as 

the sun was still progressing towards zenith and located east of due south. The 
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fact that they still receive a similar irradiance under cloud cover only serves to 

highlight that a serious UVR hazard still exists under light cloud cover. As the 

data recorded for figure 4.16 was approaching local noon, one would expect 

higher levels than those presented in figure 4.15 due to the increase in diffuse 

insolation. For all orientations, the nasal sensors received less irradiance while on-

eye due to shading.

Figure 4.17 presents test subject A gazing towards the horizon under 

diffuse insolation at approximately 20 minutes to local noon. At this time the SA 

and SEA proceeded from ~ 151º to ~182º and ~ 76º to ~ 78º respectively.

1 2 3 4 5
0

10

20

30

40

Sensor Number

In
te

ns
ity

 W
/m

2

1 2 3 4 5
0

10

20

30

40

Sensor Number

In
te

ns
ity

 W
/m

2

1 2 3 4 5
0

10

20

30

40

Sensor Number

In
te

ns
ity

 W
/m

2

1 2 3 4 5
0

10

20

30

40

Sensor Number

In
te

ns
ity

 W
/m

2

Figure 4.17:

Test subject A gazing towards the horizon under diffuse insolation at ~ 20 minutes 

pre-local noon. 

Progressing clockwise from top left: East, South, North & West.

140



Similar to figure 4.16, for the south facing aspect there was direct 

penetration through the cloud cover from the sun located just east of due south 

resulting in sensors 4 and 5 receiving greater irradiance than the more temporal 

sensors while the array was held off-eye. This was most probably due to the cloud 

cover directly beneath the sun becoming slightly thinner during the time course of 

south facing measurement. This is also true of the west facing off-eye data, with 

the north facing off-eye data relatively flat as expected due to no direct solar 

component influencing off-eye data. However, the nasal ridge reduced the diffuse 

component for this orientation resulting in the temporal irradiance being higher 

than the nasal on-eye. The east facing off-eye data is relatively uniform, indicating 

stable cloud cover at that time, with the on-eye data dropping slightly at the nasal 

sensors due to shading. 

Figure 4.18 presents test subject A gazing towards the horizon under 

diffuse insolation at approximately 1.5 hours after local noon. At this time the SA 

and SEA proceeded from ~ 237º to ~247º and ~ 69º to ~ 63º respectively.
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Figure 4.18:

Test subject A gazing towards the horizon under diffuse insolation at ~ 1.5 hours 

post-local noon. 

Progressing clockwise from top left: East, South, North & West.

It is clear from figure 4.18 that the irradiance levels on and off-eye for the 

east and south facing data at the eye were taken under uniform cloud cover. There 

is no notable bias across the array for on and off-eye data, which is indicative of 

no cloud penetration of the direct beam. However, as the sun was located south-

westerly, sensors 4 and 5 were irradiated off-eye more so than 1, 2 and 3. This is 

due to the illumination through the cloud cover being brightest for this solar 

coordinate and sensors 4 and 5 being oriented most normal to this south-westerly 

solar position. On-eye shading resulted in sensor 5 receiving least irradiance for 

this orientation. East, south and north orientations were relatively flat both on and 

off-eye with no distinct features, evident of a uniform radiation field.  
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The relative intensities for test subject A looking towards the horizon 

under diffuse insolation will now be presented in section 4.3.5.  

4.3.5 Test Subject A Relative Intensities - Diffuse Insolation 

Corresponding to figure 4.15, figure 4.19 shows the relative intensities 

computed for test subject A under diffuse insolation ~ 2 hours before local noon.  

As this data was recorded with the sun relatively low in the east under 

diffuse insolation, there were no significant differences in the irradiance data 

provided in fig 4.15, and as a result of this, the relative intensities for each 

cardinal point orientation are very similar, indicative again of uniform cloud 

cover, with no penetrating direct component. As can be seen in figure 4.19, test 

subject A’s nasal and brow ridge offered excellent protection at the nasal portion 

for all cardinal point orientations.
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Figure 4.19:

Relative intensities computed for test subject A under diffuse insolation ~ 2 hours 

pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Figure 4.20 corresponds to the data recorded approximately 1 hour before 

local noon presented in figure 4.16. All 4 cardinal point orientations show a 

temporal to nasal bias. As suggested in the discussion of figure 4.16, there was 

direct penetration of the solar beam from the east direction in the south facing 

subplot, resulting in sensors 4 and 5 receiving greater irradiance than the temporal 

sensors when off-eye. The relative intensities across the array shown for the south 

facing data in figure 4.20 stress the importance of brow ridge shading again as the 

temporal sensors far exceed the nasal sensors, which were shaded from the cloud 

penetrating direct component when on-eye, leaving the temporal sensors exposed 
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to the diffuse component. All other cardinal point orientations show a temporal-

nasal bias, reflective of the facial structure shading the nasal portion under diffuse 

insolation.
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Figure 4.20:

Relative intensities computed for test subject A under diffuse insolation ~ 1 hour 

pre-local noon.

Progressing clockwise from top left: East, South, North & West.

Figure 4.21 presents the relative intensities across the array of test subject 

A gazing towards the horizon under diffuse insolation at approximately 20 

minutes to local noon, and corresponds to figure 4.17.  It can be seen that similar 

to the previous relative intensities, nasal shading dominates the trends for all four 

orientations, resulting in a temporal-nasal bias. 
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Figure 4.22 corresponds to figure 4.18 recorded ~ 1.5 post local noon and 

as before, nasal shading dominates again, reiterating that the brow ridge plays a 

fundamental role in protection of the nasal portion under diffuse insolation. 
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Figure 4.21:

Relative intensities computed for test subject A under diffuse insolation at

 ~ 20 minutes pre-local noon.

Progressing clockwise from top left: East, South, North & West.
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Figure 4.22:

Relative intensities computed for test subject A under diffuse insolation ~ 1.5 

hours post-local noon.

Progressing clockwise from top left: East, South, North & West.

4.3.6 Relative Intensity Comparisons of Test Subject A and subject B 

To compare and show the effects of different facial structures on biases 

across the ocular surface, the relative intensities of test subject B will now be 

superimposed on figures presented already for test subject A. Two figures are 

given for the relative intensities of both test subjects under direct insolation, and 

two figures under diffuse insolation. 

As test subject B had a less prominent brow ridge than test subject A, one 

would expect less shading across the array for test subject A and therefore a flatter 

relative intensity across the array.  
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To discriminate between facial structures, the most effective method of 

analysis is the comparison of relative intensities. As it is the effect of facial 

shading being examined, and the resultant elucidation of ocular bias under various 

environmental conditions, it is only necessary to present the relative intensities for 

test subject B, as the background, or off-eye UV radiation field, was the same for 

test subjects A and B for a particular measurement duration. For this reason, the 

only major variable was the test subject in question. Through comparison of the 

relative intensities of test subjects A and B, one can see the effect of different 

facial structures on spread of UVR across the ocular surface most effectively. In 

all figures, test subject A is in red, and test subject B is in black. For the four 

following, the calibrated mean irradiance data and relative intensities have already 

been analysed, and as such it is only the comparison of different facial features 

which are of interest. The efficacy of the array in discriminating between different 

facial anatomies is evident through the large differences in relative intensity. 

Measured under direct insolation, the data presented for test subject A in 

figures 4.23 and 4.24 has previously been shown in figures 4.12 and 4.14 

respectively. In figures 4.23 and 4.24, the overall difference in relative intensities 

reaching the ocular surface of both test subjects is illustrated. Indeed, for some 

orientations, the more central sensors on the array approach a relative intensity of 

1 for test subject B, indicating that no protection was afforded by the overhang of 

his brow ridge. This further emphasises the degree of overall and, in particular, 

nasal protection afforded by test subject A’s facial anatomy. For the most part, 

test subject B showed a flatter trend progressing from temporal to nasal. 
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Figure 4.23: 

Relative Intensities of test subject A (black) and B (red) under direct insolation. 
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Figure 4.24:

Relative Intensities of A and B under direct insolation. 
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Measured under diffuse insolation, the data presented for test subject A in figures 

4.25 and 4.26 has previously been shown in figures 4.20 and 4.22 respectively. It 

is clear from figures 4.25 and 4.26 that test subject B receives a greater irradiance 

than test subject A across the entire lid margin, and although not as significant, 

nasal protection is still offered by test subjects B’s anatomy under diffuse 

skylight.
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Figure 4.25:

Relative Intensities of A and B under diffuse insolation 

Progressing clockwise from top left: East, South, North & West.
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Figure 4.26:

Relative Intensities of A and B under diffuse insolation.  

Progressing clockwise from top left: East, South, North & West.

4.3.7 Conclusion

In conclusion, a novel solar blind UVR sensor array has been designed 

constructed and tested in the field to measure the background and actual on-eye 

raw voltage levels for the four cardinal points under direct and diffuse insolation. 

By calculating a calibration factor between raw voltage produced by the 

photodiodes and solar UVR irradiances measured by a calibrated broadband UVR 

radiometer, the absolute intensities in W m-2 have been computed at the ocular 

surface under these different insolations. A survey of ocular irradiance has also 

been shown progressing from pre- to post-local noon, highlighting the substantial 

differences in irradiance occurring across the lid margin for the four cardinal 
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points, and the degree of protection offered by the facial anatomy. The relative 

intensities for the aforementioned field measurements has also been presented, 

indicating that in general a temporal-nasal bias exists while standing in an upright 

position with a typical natural head gaze towards the horizon. Intercomparison of 

test subjects has also been shown, and the most notable feature of this 

intercomparison is the major differences in UVR levels received across the entire 

lid margin, revealing that the levels of UVR at the eye is very individualistic. It 

has been shown that for most orientations and solar angles, the facial anatomy 

affords the nasal portion greater protection than the temporal portion. This is true 

for both direct and diffuse insolation environments. As had been previously 

suggested in section 1.2.4.2, it would appear that for the most part, reflections of 

diffuse UVR from the nasal structure towards the nasal portion are superseded by 

the degree of protection afforded by the brow ridge, and paradoxically, by the 

nasal structure also under direct and diffuse skies.

For this reason, and since many ocular pathologies occur nasally, the 

phenomenon of peripheral light focussing has been investigated and will be 

presented in the following chapter. As has been suggested by Coroneo, 

intensification of refracted terrestrial solar UVR at the nasal limbus due to UVR 

striking the temporal corneal dome obliquely, could play the major role in the 

aetiology of pathologies such as pterygium, since it would appear that the nasal 

portion is relatively well protected from both direct and diffuse sunlight when 

compared to the temporal portion, which consistently showed higher relative 

intensities in the research presented here.  
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Chapter 5

Novel Peripheral Light Focusing Measurement 
System and Results 

5.1 Introduction 

Peripheral Light Focusing has been credited as a possible key agent in 

affecting nasal pterygia, a hypothesis first outlined by Coroneo. In an insolation 

environment, PLF at the nasal region is primarily dependent on grazing incident 

angle, which in itself is a function of SZA, the albedo of the surrounding terrain, 

the dioptric power, or convexity of the temporal peripheral cornea, ocular 

prominence and lateral protection provided by hair or sunglasses and/or other 

shading headwear. Depending on the incident angle, the relative amount of UVR 

reflected from the corneal surface will vary, thus increasing or reducing the 

available amount of UVR for refraction at this surface. 

As it has also been termed by Sliney, PLF, or the ‘Coroneo Effect’, most 

possibly accounts for the occurrence of more nasal pterygia than temporal and 

could play a role in UVR cataractogenesis454. This can be best described by the 

fact that the nose obstructs light striking the nasal cornea at angles which 

contribute to instigating the nasal to temporal refraction phenomenon. Only in rare 

circumstances may rays be refracted across the corneal dome from nasal origin. 

Considering the right eye, an example of nasally originating PLF would occur if 

one was to strain the eyes towards the extreme right side. Assuming a low horizon 
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sun originating from the subjects left hand side, and a relatively protruding eye, 

radiation could strike the nasal corneal dome and be refracted towards the 

temporal limbus. 

 Conversely, with the temporal cornea of either eye exposed, oblique rays 

incident can readily be refracted to the nasal limbus, provided there is a quite 

large SZA, and the ocular tissue is situated in a position conducive to the 

refraction process. Such conditions occur when the sun is low in the horizon sky 

and the temporal portion is oriented such that rays may be incident here obliquely. 

Equally, if one is lying down on their side and the temporal portion is exposed to 

UVR from the sun at its zenith, PLF will occur. These are straightforward 

examples of instances where PLF may occur. Of course, PLF can occur at any 

time outdoors, once the sun is located within a catchment range behind the 

temporal cornea.  

 In the research presented here, the phenomenon of PLF was modelled 

using ray tracing software in tandem with a laboratory based setup utilising an 

anatomically based model eye. Through development of this novel laboratory 

based PLF measurement system, the transmission of the human cornea was 

measured in vivo across the UVR waveband.  

5.2 RubrEye – Anatomical Model Eye 

In order to investigate PLF in vitro, a number of anatomically based 

polymer eyes (polydimethylsiloxane) were manufactured at the Texas Eye and 

Research Technology Center, located in the College of Optometry University of 
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Houston, Tx. These ‘RubrEye’s’ are available with different optical powers and 

used by TERTC as model eyes to demonstrate emmetropia, hyperopia and 

myopia. As the whole RubrEye is made of the same material and thus has a 

constant refractive index of 1.406, the focussing power of its cornea is slightly 

different to that of the human cornea. The human cornea provides 70 % of the 

eye’s total focussing power and has a refractive index of 1.376. However, as a 

model cornea for investigations into PLF in situ, the RubrEye served adequately 

to aid in the construction of the fibre optic sensing system used later to measure 

the corneal transmittance in vivo. By measuring the transmission of a bisected 

RubrEye with the conventional method of directing a beam straight through the 

horizontal thickness of the sample, and collecting the transmitted radiation with a 

butt coupled fibre optic, the transmission of the material was found. Assisted by 

ray tracing techniques, and based on the phenomenon of Peripheral Light 

Focusing, a new method was developed to measure the RubrEye’s transmission 

and was later adapted and advanced to measure the human corneal transmission in

vivo.

The two part miscible silicone-based elastomer compound which was used 

to produce the RubrEye was supplied by General Electric and is better known as 

RTV-615 a+b. As a two-part addition cure, the silicone compound resin and 

curing agent were mixed by parts in a 10:1 ratio respectively. Due to their 

individual viscosities, after adding the curing agent, both were mixed for 

approximately five minutes. By doing this, many air bubbles were introduced to 

the mixture, so it was necessary to degas. This was achieved by pouring the 

155



mixture into a beaker, more than twenty times the volume of the initial mixture, 

and placing it inside a BOC Edwards Auto 306 coating system. By gradually 

pumping the vacuum chamber down to ~ 10-5 mbar (typical pressure at earth mean 

sea level is 1013.25 mbar, or 1 atm), the volume of the initial mix expanded due 

to outgassing of absorbed atmospheric gases. This pressure was confirmed 

through correspondence with TERTC, and was held for 5 minutes, after which the 

viscous mixture was deemed to be completely outgassed, and the vacuum was 

suspended. The mix was then carefully poured into the RubrEye mould, so as to 

avoid reintroducing air. If necessary, any visible air bubbles introduced into the 

mixture at this point were enticed to the surface using a dissecting needle and the 

mixture was then sealed and left to set for 24 hours at room temperature. 

When finally cured, the globe was optically clear with a quoted refractive index of 

1.406. As with most nominal refractive indices, this value is for wavelengths in 

the yellow region of the visible spectrum. 

The RubrEye eye model consisted of a corneal segment also. Due to the 

manufacture process, which took place by pouring the viscous mixture into an 

aluminium mould, the transition from the globe to cornea, where the limbus 

physiologically occurs, was slightly stepped, but by finely paring this transition 

zone with a scalpel, a smooth continuous surface from globe to cornea was 

attainable. 
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5.3 AutoRAY Modelling of RubrEye PLF and Angular 

Dependence on Input Optics 

Using the AutoCAD (rel.13) environment, AutoRAY (ver.5) optical ray 

tracing software developed by RayCAD (MA, USA) was used to model PLF of 

the RubrEye. To ensure input model parameters were behaving correctly, the 

parameters outlined in the Gullstrand Exact Schematic Model of the emmetropic 

human eye were used to trace the optical path of normally incident light on the 

retina455 456. As can be seen in figure 5.1, these parameters focused a collimated 

beam of light to the retina, as one would expect.

Figure 5.1:

Gullstrand’s Exact Schematic Model of the human eye illustrating the emmetropic 

focusing power. 
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The homogenous RubrEye simulates the focusing power of the 

emmetropic human eye so that when parallel light strikes the cornea, it is refracted 

to a focal point at the retina, as can be seen in figure 5.2. Unlike the human eye, 

which has a number of refractive indices, there is only one change of refractive 

index from air to polydimethylsiloxane in the RubrEye. Along with this and the 

corneal radius of curvature, the RubrEye’s refractive power is acceptably 

emmetropic.

Figure 5.2:

Corneal focusing of collimated rays at RubrEye retina 
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The dimensions of the RubrEye are as follows: 

Corneal diameter:    12.5 mm 

Radius of Curvature:    7.65 mm 

Mechanical Axial Length:  26.67 mm 

PLF effects of rays striking the temporal cornea of the RubrEye were 

investigated in AutoRAY using the dimensions above as a function of the angle of 

temporal incidence for a known wavelength. AutoRAY only permitted one 

wavelength to be simulated at a time and so the 633 nm emission line of a 

Helium-Neon laser was chosen in AutoRAY to illustrate the effects of incident 

angle on the resulting focal point. The reason the 633 nm emission line was 

chosen was that a small portable He-Ne laser was available and could be easily 

incorporated into the laboratory based setup for comparison of the AutoRAY 

model and the actual lab setup based on the RubrEye. Photographic stills were 

captured also for the 633 nm line to visually compare PLF effects. It should be 

noted that for a particular incident angle at a point on the RubrEye’s corneal 

dome, different wavelength lasers will have different focal points. However, the 

incorporation of the He-Ne laser in the model and lab setup were purely for 

preliminary investigations to give the researcher a more fundamental 

understanding of PLF and to aid in subsequent setups. 

Figure 5.3 illustrates refraction of the He-Ne line by the RubrEye’s 

temporal cornea at what was found to be the optimum angle of 20 º posterior to 

the coronal plane to maximise focusing at the nasal aspect in AutoRAY. 
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Figure 5.3:

Refraction of 633 nm laser line at temporal cornea 

Figure 5.4 depicts the cross section of the same ray trace provided in 

figure 5.3 and illustrates strong focusing of the beam across the cornea. The trace 

comes to a focus along its path just before the nasal limbus. This can possibly be 

attributed to the refractive index of the RubrEye being slightly different to that of 

the cornea. At smaller and larger angles than 20 º posterior to the coronal plane, 

the resulting traces traversed towards the lens and emerged above the nasal limbus 

respectively. This is outlined in more detail now with corresponding photographic 

stills.
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Figure 5.4:

Beam exhibiting temporal focusing at 20 º posterior to coronal plane 

Figure 5.5:

Photographic still exhibiting maximum nasal-limbal focusing at 20 º posterior to 

the coronal plane 
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As verified through initial novel lab-based measurements, the beam 

incident temporally at the optimum 20 º was focused intensely enough to 

empirically measure the transmission of the RubrEye. When compared to the 

photographic still of PLF captured across the RubrEye at a 20 º input angle in 

figure 5.5, it can be seen that the refraction of a He-Ne laser corresponds well 

with the model. It was at this angle where maximum nasal-limbal focusing was 

noted both in the model and through focusing of the laser beam. Please note also 

the glare from the RubrEye’s surface at the temporal side due to the relatively 

large angle of incidence (20 º) in figure 5.5. This inevitably contributes to losses 

by inter-media Fresnel reflections. 

There is a large dependency on input angle for PLF effects to result in 

focusing of UVR at the nasal limbus. With the system designed here incorporating 

the RubrEye, it can be demonstrated that a beam emerging from a steep angle of 

approximately 30 º posterior to the coronal plane and striking the temporal cornea 

will result in the beam traversing the corneal dome and emerging above the nasal 

limbus, striking the palpebral fissure, as shown in figures 5.6 and 5.7. As this 

beam is modified to a less oblique coronal angle, the resultant focal point shifts 

towards the nasal limbus until finally striking it at 20 º posterior to the coronal 

plane, as shown in figures 5.4 and 5.5. Further reducing the coronal angle of 

incidence to approximately 10 º causes the beam to focus at a point intraocularly 

where the inner retina is situated beneath the nasal limbus, as shown in figures 5.8 

and 5.9. These observations confirmed the critical nature of angular input optics 

on eliciting maximum PLF occurrence at the nasal-limbal region. These 
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observations could possibly further back up the hypotheses of a causal 

relationship of UVR with basal cell carcinoma’s occurring at the inner canthus 

and cortical cataracts occurring due to focusing of UVR at this region.
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Figure 5.6:

30 º angle of incidence at temporal cornea resulting in light emerging above nasal 

limbus.

Figure 5.7:

30 º angle of incidence at temporal cornea of He-Ne laser demonstrating light 

escaping from cornea above nasal limbus. 
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Figure 5.8:

10 º angle of incidence at temporal cornea of He-Ne laser resulting in light 

focusing at inner retina, possibly being absorbed by the human lens. 

Figure 5.9: 

10 º angle of incidence at temporal cornea resulting in light being intensely 

directed towards the lens. 
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5.4 Novel Lab Based PLF Transmission System Design 

Having gained a good understanding of the mechanisms and temporally 

incident angles by which PLF causes rays to focus at the limbus for a 633 nm He-

Ne emission line, a novel laboratory-based setup was designed, constructed and 

tested to measure the RubrEye’s transmission for a broadband source, prior to 

performing similar measurements at the human cornea. The RubrEye was used as 

a test eye with the broadband source and novel fibre optic setup so that any 

problems encountered during testing would be resolved before testing on a human 

eye, thereby limiting the radiation exposure to the human eye. In addition, if 

problems were encountered while measuring the corneal transmission in vivo,

they could be more easily remedied through the fundamentals of measurement 

gained through testing with the RubrEye.

An Ocean Optics DH-2000 Deuterium Tungsten Halogen source was used 

for measurements as it provided a combined continuous spectrum from 215 – 

2000  nm in a single optical path. Consisting of two separate lamps, the deuterium 

had a wavelength range of 215 – 400 nm, while the halogen provided radiant 

energy in the 360 – 2000 nm range. When both sources were in use, the operating 

principle was based on the tungsten halogen lamp being directed through a small 

diameter aperture in the deuterium bulb, resulting in one continuous spectrum 

which can be seen in figure 5.10 in green. The blue spectrum is that of the 

tungsten halogen lamp only. When both were switched on it can be seen that the 

UVR region was very intense by comparison with the tungsten halogen alone, the 
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UVR output of which was too low to measure RubrEye and corneal transmission 

in vivo. To gain optimal spectral output, with little drift, the lamps were always 

left to warm up for 40 minutes, as recommended. 
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Figure 5.10: 

Continuous Spectrum provided by Ocean Optics DH-2000  

Deuterium Tungsten Halogen Source in green, and Tungsten Halogen in blue 

The DH-2000 Deuterium Tungsten Halogen source was used for 

transmission measurements of the RubrEye and human cornea as it provided UVR 

to 215 nm457, although as with most spectrometers the reliability of the S2000 

employed for detection fell off closer to its detection limit of 200 nm. However, 

while both the tungsten and deuterium were used for the RubrEye measurements, 
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only the tungsten was used for in vivo measurements initially. For the in vivo

measurement shown in section 5.6, the setup was finalised and a reference 

spectrum recorded without the test subject in place. The tungsten source was then 

passed across the eye, from temporal to nasal limbus, so that a pronounced 

focusing of the tungsten halogen light was clear at the nasal limbus. Only then 

was the deuterium switched on and a transmission spectrum recorded.  

The original spectrometer used in spectral testing was an Ocean Optics 

S2000 single beam miniature fibre optic spectrometer which is designed to accept 

light most efficiently through single strand optical fibres with SMA 905 

connectors. This consists of a 2048-element linear CCD-array which detected 

radiant energy dispersed by a fixed diffraction grating across this CCD-array. Its 

spectral range was 250 – 800 nm, with spectral resolution limited by the size of 

the slit (if present) or in this case, the diameter of the collecting fibre optic 

attached458.

As increasing noise was introduced to the system at wavelengths shorter 

than approximately 300 nm due to the inherent problem of relatively poor UV 

response associated with micro-spectrometers, an updated version of the S2000, 

the USB2000 UV/Vis, was assessed. This spectrometer had a 50 µm slit and 

spectral range of 200 – 850 nm. While the size of this slit gave better spectral 

resolution, the practicality of using it in a set-up to measure PLF had to be 

considered. The main drawback was the slit size. Radiation throughput to the 

detector did not permit good signal-to-noise across the UV/Vis wavebands. In 
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effect, it was a trade-off between spectral resolution and signal-to-noise. Due to 

the low light levels involved with this type of research at the fibre optic sensing 

end, the S2000 micro-spectrometer was chosen above the USB2000 as the 

spectral resolution could be determined by changing the fibre optic employed 

depending on the level of resolution sought for a given measurement. 

To determine the spectral resolution of the Ocean Optics S2000 

spectrometer used for RubrEye and corneal transmission and to ensure it was 

sufficiently accurate to determine the “true” shape of these transmission spectra, 

an Ocean Optics CAL-2000 Mercury Argon wavelength calibration source which 

produced low pressure mercury and argon emission lines from 253 - 1700 nm was 

used. A number of prominent emission lines fell within the bandpass of the 

spectrometer used and these are outlined in Table 5.1. 

Mercury Argon Calibration Peaks 

253.65 nm 404.66 nm 

296.73 nm 407.78 nm 

302.15 nm 435.84 nm 

313.16 nm 546.08 nm 

334.15 nm 576.96 nm 

365.01 nm 579.07 nm 

Table 5.1:

CAL-2000 Mercury Argon Calibration Source Emission peaks 
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A number of fibres were tested with the CAL-2000. These included 50 µm, 

100 µm, 200µm, 400µm and 600 µm fibres and their respective colours in figure 

5.11 are blue, black, red, green and magenta. As can be seen from figure 5.11, a 

number of these emission lines were well resolved for the smaller diameter fibre 

optics, most noticeably the lines at 253.65 nm, 296.73 nm, 313.16 nm, 365.01 nm, 

435.84 nm and 546.08 nm. However, two emission lines appear at approximately 

507 nm and 626 nm and these can be attributed to 2nd order effects of the 253.65 

nm and 313.16 peaks respectively.  
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Figure 5.11:

Illustration of difference in bandwidths of different diameter fibres. 
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The Full-Width Half-Maximum (FWHM) for the peaks 365.01 nm and 546.08 nm 

were calculated. The width of each peak for the five fibres at the two separate 

wavelengths was determined and these fibre optic bandwidths are given in figure 

5.12. The blue circles are the widths at the 546.08 nm peak and the red circles are 

the 365.01 nm peak. 
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Figure 5.12:

Full Width Half Maximum Bandwidth (nm) against Fibre Diameter (µm) for 

365.01 nm and 546.08 nm lines from CAL-2000. 

Considering the trade off between light levels in the fibre optic 

transmission system and spectral resolution required to accurately determine the 

shape of the RubrEye and corneal transmission spectra, the 200 m fibre was 

considered to provide sufficient spectral resolution, while permitting satisfactory 
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light levels pass to the micro-spectrometer. The bandwidth provided by a 200 m

fibre of around 7 nm is considered adequate for the investigations of corneal 

transmission when typical data in the literature is examined, particularly the UVR 

cut-off around 290 to 300 nm459 460 461 462 463 464. The RubrEye equivalent cut-off 

was found to be similar in shape to the cornea.  

In summary, the best available source and detection instrumentation and 

components were researched and tested rigorously. Their combined application 

was the measurement of the RubrEye transmission across the UV/Vis wavebands, 

and ultimately through these investigations, the corneal transmission was 

measured in vivo.

5.5 Novel PLF Transmission of RubrEye 

To prove the methodology of measuring the spectral transmittance of the 

RubrEye via the PLF method, the RubrEye used for these investigations was 

bisected using a ceramic blade along the equator leaving a hemisphere with the 

cornea at front and a clear equatorial rear plane. This was performed as the 

exterior retina of a whole RubrEye was a diffuse surface and optical coupling of 

focused light here into a fibre optic proved complex. The axial length from the 

corneal apex to the clear back section was very similar to the corneal diameter of 

the RubrEye, both being approximately 12.5 cm. This was advantageous for the 

purpose of transmission measurements, since a reference spectrum of a known 

thickness of polydimethylsiloxane was needed for comparison with subsequent 

PLF measurements. A 200 m fibre optic from the DH-2000 source was directed 
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precisely through the corneal apex and the collecting 200 m bare fibre was butt 

coupled to the clear rear section, as in figure 5.13. The RubrEye used for this 

work did not have an iris inserted during the manufacture process. This was 

purposely designed as it was found that the insertion of an iris increased the 

intricacy of detection as it bordered on the limbus and caused unwanted 

reflections and absorption of the focused beam. 

Figure 5.13:

RubrEye transmission setup with bare fibre butt coupled to rear section 

The launch end of the novel setup to investigate PLF across the RubrEye 

consisted of a 200 m launch fibre to which an Ocean Optics’ 74-UV UV/Vis 

collimating lens was attached. To limit the diameter of the adjustable collimated 
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beam, a 1 mm aperture was attached to the other side of the lens. This system 

provided a collimated beam of 1 mm diameter over approximately 15 cm. The 

whole setup was fixed inside a fine control X-Y-Z translation stage, which itself 

was attached to a standard X-Y-Z translation bench stage which allowed greater 

movement of the launch end by shifting the whole stage up or down an optical 

post so that the collimated beam was always centred at the temporal cornea. The 

angle of this launch fibre was adjusted by means of a 1 º incremental rotational 

stage. A similar setup was assembled for the collecting fibre, as seen in figure 

5.14.

Figure 5.14:

Novel angular PLF measurement system with RubrEye 
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If there was focusing of the 1 mm beam across the cornea to a point at the 

limbus, the requirement of the sensing fibre optic was that it was as close to the 

nasal limbus as possible for the focused beam to be coupled. A standard SMA 

fibre optic did not suffice as its coupling ferrule prohibited close contact with the 

limbus. In order to get within close proximity of the limbus, a 600 m fibre was 

modified by removing the ferrule, cleaving the whole fibre and stripping the 

surrounding protective plastic back to 1 cm from the bare fibre tip. The bare tip 

was then polished using Buehler® Metadi® Supreme Polycrystalline Diamond 

Suspensions. Firstly 1200 grit silicon carbide paper was used to polish the fibre 

tip’ surface and was subsequently finely polished using a water based 3 µm 

diamond suspension. The tip was then analysed with a microscope objective lens 

to verify no degradation or blemishes on the surface. A mount was assembled 

which allowed the fibre to fit snugly inside with no movement, and this in turn 

was secured inside the fine control X-Y-Z translation stage. Care was taken to 

ensure that the only light striking the collecting fibre was the focused beam at the 

limbal region by recording measurements in a dark room. It must also be noted 

that the bare 600 m fibre was connected via a barrel connector to a 200 m fibre 

for all subsequent measurements for adequate spectral resolution. This coupled 

with the fact that it provided good light throughput and signal-to-noise when 

compared to smaller diameter fibres made it the most beneficial choice, as shown 

in section 5.4.

Although the transition from cornea to sclera of the RubrEye was a good 

representation of the limbus and a smooth continuous surface was attainable, 
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actually detecting a beam of radiation at this point proved quite difficult. This was 

due to the fact that at this curved boundary, radiation did not escape the RubrEye 

as it would do at a plane surface. It appeared to escape almost conically from the 

non-optically smooth surface, making detection of this refracted and scattered 

radiation by a fibre optic impractical. By finely cutting a small section of the 

RubrEye’s limbus away with a ceramic blade along the limbus, optically clear 

vertical and horizontal surfaces were left exposed just at the limbus. This 

permitted the bare fibre tip to be placed just at the limbus above the horizontal 

surface and facilitated the detection of radiation traversing from the temporal 

cornea to the nasal aspect. Regular inspection and cleansing of the fibre tip was 

conducted prior to every set of measurements, including those of a human test 

subject to avoid contamination. This section is shown in figure 5.15 with the 

1 mm aperture at a 20 º angle on the temporal side and the bare fibre tip at the 

sensing region of the sectioned limbus. 
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Figure 5.15:

Plan view of bare fibre at clear limbal section 

For all transmission measurements of the RubrEye, the distance between 

the DH-2000 lamp launch fibre and the collection fibre was ~ 15 cm, 

approximating the distance which would be used in later experiments with the 

RubrEye and human cornea. The collecting fibre was axially manipulated using 

the fine controls of the X-Y-Z translation stage so that the collimated beam 

striking it was at a maximum at all times for repeatability prior to taking a 

reference spectrum. For each axis, the bare fibre progressed from relatively weak 

signal at the periphery of the beam, through the most intense signal at centre, and 

finally passing through relatively weak signal at the opposite periphery. Once the 

signal was maximised, a dark current spectrum with an integration time of 5 msec 
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and 100 spectra averaging was recorded. These values were chosen as they 

provided good signal-to-noise and good smoothing of the curves in the shortest 

time possible. This was important when coupling the tungsten and deuterium 

across the human eye. It was necessary to perform measurements as quickly as 

possible so as not to irradiate the eye for any longer than necessary. A reference 

spectrum of the light source was then recorded with similar PC acquisition and 

physical setup parameters, such as distance from launch to coupling fibre. With a 

reference spectrum recorded, the RubrEye was moved into place without 

disturbing either fibre optic. The bare fibre tip was located at the horizontal 

section of the limbus and transmission spectra were recorded for comparison with 

those recorded straight through the RubrEye. 

The transmission of the RubrEye is now presented in figure 5.16. The 

black transmission curve is the average of five transmissions which were recorded 

by passing the collimated beam through the corneal apex and collecting the 

focused light with the butt coupled fibre optic at the back of the exposed clear 

hemisphere. The transmittance displayed in red is the average of five 

measurements which were recorded at a temporal incident angle of 20 º posterior 

to the coronal plane and collected by the fibre butt coupled to the nasal limbus.
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Figure 5.16:

Transmittance of RubrEye as measured through the corneal apex and at a PLF 

angle of 20 º posterior to the coronal plane. 

While the transmission recorded with the micro-spectrometer through the 

corneal apex was very consistent, there was slight variation in the transmission 

recorded via the PLF method, as would be expected with such an oblique angle. 

This variation was minimised by reducing the effect of chromatic aberration 

associated with off-axis fibre optic light coupling. Chromatic aberration could be 

observed as the sensing fibre was moved along the horizontal plane around the 

exposed limbal region. The peak intensity of the real-time transmittance spectrum 

shifted from the UVR region to the red in the visible as the fibre was moved 

further back from the exposed vertical section. As it was the UVR region which 
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was of most interest, the collecting fibre was always situated a distance away from 

the vertical section such that the UVR waveband intensity was maximised and the 

visible did not vary across. In doing so, the highest possible UVR transmission 

was achieved, and as can be seen, this PLF method of measuring the transmission 

across the RubrEye cornea compared well with the standard procedure for 

measuring the transmission of a homogenous material.  

5.6 Novel PLF Transmission of Human Cornea in Vivo

To date, published human corneal transmission data from many different 

groups from the UV to visible portion of the spectrum has been quite inconsistent. 

This is most probably due to differences in experimental design, instrumentation 

used and condition of cadaver corneas. Preservation of corneas immediately post-

mortem is essential in maintaining optical clarity of this tissue. Since the 

transmission decreases dramatically with time across the UV-Vis, ideally the 

corneal transmission would be measured in vivo.

Using the principles and capabilities of the PLF system demonstrated in 

section 5.5, a novel transmission measurement system was designed to measure 

the corneal transmission of a human test subject in vivo.

The experimental method devised to measure the human corneal 

transmittance in vivo was adapted from the work with the RubrEye in section 5.5. 

The same 200 m launch fibre was used, but the sensing fibre was a 200 m fibre. 

The bare 600 m fibre used for the measurements with the RubrEye was 
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considered too hazardous due to the necessity for it to be extremely close to the 

exposed human cornea. In general, a distance of 1 mm separated the bare fibre tip 

and cornea, so an unmodified 200 m fibre was chosen as the sensing fibre as it 

provided adequate spectral bandwidth and good signal to noise, as noted in 

section 5.4. 

A headrest removed from a slit lamp biomicroscope was adapted and fixed 

to a 90 cm x 60 cm optical bench. The headrest allowed a subject’s head to be 

supported firmly as is the requirement during slit lamp biomicroscopy. It allowed 

reasonably sensitive vertical movement of a subject’s head over a relatively large 

distance which was desirable when aligning the optics of the transmission setup. 

Due to the symmetrical design of the headrest, a 5 cm piece of the left upright was 

removed at a height level with the average subject’s lateral ocular field. This 

facilitated a relatively large lateral angular rotation field of the launch fibre and 

ease of movement closer to and away from the ocular orbit when necessary. The 

launch and detecting fibre were adapted slightly from the RubrEye setup to suit 

the upright in vivo setup, but the same principles of the X-Y-Z setup and 

alignment applied as described in section 5.5. 

When aligned, and a reference spectrum of the stabilised DH2000 lamp 

was recorded, the launch fibre was rotated to a preset angle of usually between 

15 º to 25 º posterior the coronal plane. The subject then sat at the headrest with 

the distance of the collimated launch beam approximately 10 cm away from the 

temporal cornea. This value depended on incident angle and wasn’t a critical 
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factor since the beam was considered well collimated by the lens over a distance 

of up approximately 15 cm. With the aid of a point of fixation on a mirror placed 

in front of the subject, adjustment of the head was made to an upright and 

comfortable position. Through use of the mirror, both the subject and aid guided 

the launch fibre on the X-Y-Z translation stage until the brightest spot perceivable 

appeared just at the nasal limbus. It was assumed the beam was at the limbus 

when the sclera was strongly illuminated by diffuse scatter from the limbal-scleral 

junction as in figure 5.17. 
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Figure 5.17:

Illumination of the limbal-scleral junction by a collimated beam 20 º laterally 

oblique.

By rotating the launch fibre slightly more posteriorly, the beam emerged 

from the cornea and could be seen faintly on a piece of paper inserted adjacent to 

the inner canthus. The launch fibre was then clamped to the optical bench with a 

magnetic base. At this point, the subject was helped guide the 200 m sensing 

fibre over the nasal ridge and carefully towards the nasal limbus while gazing at a 

point of fixation marked on the mirror. With guidance from the aid, the fibre was 

moved to within 2 mm from the illuminated corneo-limbal region. At this point 

the fine control was used by the subject to move to approximately 1 mm from the 

surface of the cornea, at which point real-time corneal transmission signal was 
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observed. The aid always verified by visual inspection that the direct beam did not 

illuminate the sensing fibre optic and that no stray light emerged over the corneal 

apex. Either of these would have caused a false transmission spectrum. In this 

way, any light entering the sensing fibre optic had to have traversed and escaped 

from the cornea itself. 

A number of trial measurements were taken using this setup for a series of 

angles. It was found that a similar temporal catchment angle to that of the 

RubrEye and in the literature of approximately 20 º posterior to the coronal plane 

produced maximum transmission spectra.  

The spectra recorded at temporally oblique angles of approximately 20 º 

showed variation initially, but by making slight setup adjustments, better 

measurement consistency was achieved. The main factor contributing to 

variability in this novel setup were chromatic aberration effects of the cornea. By 

finely scanning the sensing fibre across the emergent beam at the cornea’s curved 

surface, the maximised signal shifted from the red to the UV region always. As 

the sensing fibre could not be placed at a symmetrical angle to the launch fibre on 

the opposite side of the eye due to the presence of the nasal ridge, to minimise this 

effect a compromise was reached whereby the UVR transmittance was always 

maximised with the visible region reaching a plateau. The reasoning behind this 

was similar to that of the RubrEye outlined in section 5.4. By maximising the UV 

and visible regions in this way, it is acceptable to assume that data obtained via 
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this methodology are a true representation, as demonstrated by the RubrEye 

transmission tests, of the corneal transmission spectrum across this waveband in 

vivo as they compare favourably to other published data, in particular that of 

Dillon’s cadaver cornea465, as can be seen in figure 5.18. 
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Figure 5.18:

In vivo corneal transmission measured with designed PLF method in blue, 

compared to cadaver human cornea.

 The in-vivo corneal transmission has a similar profile to that of Dillon but 

with greater attenuation, particularly down at UVB wavelengths where the 

specific corneal attenuation coefficient is greater, due to the additional pass 

through the cornea and the greater corneal thickness encountered at PLF incident 

angles. It should be noted that due to difficulties in acquiring the PLF 
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transmission spectra in-vivo and the desire to limit ocular UVB exposure, the 

transmission spectrum shown is part of a limited set of data used to prove the 

method. Further research is currently underway in the Biomedical and 

Environmental Sensing Group to acquire more rigorous data with an improved 

PLF optical system. 

5.7 Conclusion 

In conclusion, a novel and reliable method of measuring the corneal 

transmission in vivo has been designed, constructed and tested. By incorporating 

modelling software, it was possible to ascertain the range of angles for which PLF 

would occur for the anatomically based homogenous RubrEye. Based on this, a 

laboratory based setup was then constructed to investigate the modelling results 

both photographically and empirically, by measuring the transmission of the 

RubrEye straight through and at various PLF angles. As an extension to this, and 

to our knowledge, the first time it has been achieved, the human corneal 

transmission spectrum has been measured in vivo.
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Chapter 6

Discussion and Conclusions 

Coupled with typical facial structure, the intricate spatial and temporal 

variations that occur in the environment which affect the intensity and distribution 

of solar UVR across the anterior ocular surface are numerous. In this thesis, it has 

been endeavoured to narrow the environmental variables which affect this 

distribution by measuring the solar UVR irradiance across the palpebral fissure 

using a novel solar blind UVR sensor array under specific solar insolation. In 

doing so, the major environmental factors contributing to the distribution of solar 

UVR across the array include the solar zenith angle and the solar azimuth angle. 

By facing the horizon at the four cardinal points, it was possible to elucidate this 

distribution as a function of solar position with respect to the field site coordinates 

under both direct and diffuse insolation environments. By testing the array in the 

field with two test subjects, it has been shown through the relative intensity data 

that distribution of solar UVR at the anterior ocular surface is subject specific, in 

that a persons facial anatomy plays a crucial role in the irradiance received.  

Many previous studies have used alternative sensing devices such as 

polysulphone, which requires time consuming pre- and post-measurement 

analysis410  411 414 415 416 417 418 419 420 422412 413        421 . Although polysulphone has 

many merits, such as its action spectrum closely matching that of human skin, its 

reliability depends on rigorous calibration and any problems which may occur 

during measurement are only evident afterwards. It also only gives a cumulative 

187



UVR dose, and not a continuous real time acquisition of the terrestrial irradiance. 

By designing, constructing and testing a solar blind mechanistic sensing device, 

many pitfalls of earlier systems have been removed. Using photodiode technology 

environmental ocular UVR sensing has been advanced using rigorously 

characterised novel systems. The proven benefits of these devices include their 

robustness, repeatability, large dynamic range, ease of use through specifically 

designed data acquisition software and multiple real time acquisitions. This latter 

point was a key feature which allowed us to statistically discriminate in the field 

and reduce the measurement error.  

Together with the determination of the absolute irradiance values and the 

corresponding relative intensities at the ocular surface under direct and diffuse 

skies, for different test subjects at a range of solar angles, the potentially increased 

irradiance due to focusing of temporally incident radiation at the cornea to the 

corneo-scleral region was investigated. By employing an anatomically correct 

model eye, the RubrEye, investigations of PLF using ray tracing analysis in 

tandem with a novel laboratory based PLF were achieved. The determination of 

the optimum temporally incident input angle which resulted in a focusing of a 

beam of radiation striking the nasal limbus was realised using the ray tracing 

suite. Based on these observations, the novel in vitro fibre optic setup centred 

around the RubrEye showed that as the launch fibre optic progressed from 30° to 

20° to 10° posterior to the coronal plane, the temporally incident beam was 

refracted to above the nasal limbus, struck the nasal limbus and refracted 

intraocularly towards the lens and nasal retina for each of the angles respectively. 
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These launch angles compared favourably with other published data based on ray-

tracing models and empirical measurements of maximal UVR intensity at the 

nasal limbal region. In these studies, there were found a range of different angles 

which resulted in maximal focusing of UVR at the nasal limbal region 320 321 322

323 327

465

324 325 326  328 335. The reason for such disparity across these studies can be 

attributed to different optical parameters inputted to the ray-tracing software, and 

actual physical setup of lab-based measurement systems, inclusive of varying 

human corneal shapes and diameters.  

To establish if the refracted beam had a similar spectral transmittance to a 

uniform piece of the same RubrEye polymer, the transmittance of both were 

measured, by using the conventional method of directing the launch fibre normal 

to a homogenous polymer surface and detecting the transmittance, and by utilising 

the novel PLF setup to measure the transmittance across the RubrEye cornea, 

which was the same thickness. The resultant transmission spectra agreed 

favourably, permitting modification the setup to measure the transmittance of the 

human cornea in vivo, as the method had been proved with the RubrEye. Indeed, 

the resulting human cornea transmission spectrum correlated well with a cadaver 

transmission spectrum published by Dillon et al.  and improved on earlier 

published data by the Biomedical and Environmental Sensing Group 447.
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Key aspects of the data that confirm the predictions given in 4.1.2 have been 

vindicated including: 

o Predominantly, the absolute data was dominated by the test 

subjects facial anatomy and orientation with respect to the sun and 

solar zenith angle.

o The two test subjects showed consistently different relative 

intensities  across the eye for the range of test insolation conditions 

and orientations, with test subject A having a higher and flatter 

relative intensity 

One feature that one might have expected in the data was that there was no 

apparent nasal bias across the array for the insolation conditions tested, for the on-

eye irradiance data and the relative data. This is true of the horizon facing data, as 

the nose protects this region for the most part, where a temporal bias was found, 

as can be seen in figures 4.7 to 4.14 for test subject A under direct insolation. This 

general trend was also found by Sakamoto et al. 446 for measurements made with a 

system which incorporated photodiodes placed around the ocular region of a 

mannequin head. Measurements performed across a similar timeframe while the 

mannequin faced the horizon highlighted that the nasal brow ridge reduced the 

amount of UVR incident at the nasal aspect of the lid fissure and that irradiance 

was highest temporally. However, as seen in figure 4.4, a nasal bias was found 

when looking directly skywards, as the protection provided by the nose was 

removed. This is considered a key finding as this is the typical resting position of 
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the majority of sunbathers. Adding to this, if non-UVR blocking tinted sunglasses 

are used while reading in this position for instance, the squint mechanism is 

suppressed and essentially, the anterior segment receives an increased dose.  

Under diffuse insolation while looking towards the horizon, figures 4.15 to 

4.22 also show a temporal bias both on-eye and in the relative data, albeit with a 

slightly flatter bias for the on-eye irradiance data, as would be expected due UVR 

being incident much more diffusely. These results compare very well with the 

dose distribution map presented by Sydenham et al, who utilised a polysulphone 

lens to measure the ambient distribution of diffuse solar UVR across the eye 

socket of a mannequin headform facing the north just before local noon 410. In this 

study, the temporal portion was found to receive a greater solar UVR dose for this 

horizontal gaze due to nasal and brow ridge shading.  

As expected, the diffuse irradiance levels on-eye in the work presented 

here are also less than the levels under direct irradiance, but are still significantly 

high, particularly, when a person’s squint would be less pronounced due to the 

perceivably lower illumination conditions.  

Comparison of the relative intensities shown in figures 4.23 to 4.26 

highlights the significance of facial anatomy in determining the bias of UVR 

across the eye and the levels received at the anterior segment. Test subject B was 

shown to consistently have a higher and flatter relative intensity across the array. 

This is indicative of test subject B having a less pronounced nose and brow ridge. 

This finding demonstrates that along with SZA and other major environmental 
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determining factors, facial anatomy plays a key role in the levels and distribution 

of solar UVR across the palpebral fissure.

From the field research presented here, it has been established that the 

temporal cornea typically receives a greater UVR irradiance than the nasal cornea 

while gazing at the horizon. Yet, most ocular pathologies manifest at the nasal 

aspect. Although some ambiguity still exists regarding the pathogenesis of 

pterygium, it is commonly accepted that UVR plays a key role. For this reason, it 

is hypothesised that the focusing effects of PLF at nasal cornea, combined with 

the irradiance typically received under direct or diffuse irradiance, plays a key 

role in the increased lifetime exposure received here. By measuring the corneal 

transmittance in vivo with the novel fibre optic sensing system developed, the 

contribution of PLF could be added to the levels incident on the nasal limbal 

sensor. Although the terrestrial solar spectrum falls off in the UVB, the cornea 

transmits UVR to ~290 nm. It has been found by Coroneo that there can be a 20X 

focusing of UVR at the nasal limbus due to PLF, and through this focusing, there 

is an almost certain causal relationship between the focusing of these highly 

actinic UVR wavelengths and the nasal predilection of many ocular pathologies 

such as pinguecula and pterygia 322.

With the addition of a photodiode at a right angle to the temporal 

photodiode on the sensor array, it would be possible to determine the ambient 

irradiance at this point. In doing so, the additional contribution expected due to 
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PLF to the nasal photodiode could be estimated through multiplying the corneal 

transmittance data by the irradiance incident on the right angle photodiode.  

Two different optical detection systems were designed, constructed and 

tested for the research presented here. As part of the recommendations for future 

work already underway, it is suggested that a more rigorous field based survey of 

the solar UVR field using the novel solar blind array be carried out to include a 

broader range of solar zenith angles and subject orientations. In doing so, the 

temporal irradiance that results in PLF to the nasal limbus can be added to the 

overall direct/diffuse irradiance determined by the array. 

In conclusion, the novel solar blind sensor array system has been proven to 

be a reliable, quick and effective method for environmental ocular surveying to 

ascertain the levels and distribution of terrestrial UVR across the palpebral fissure. 

The distribution of terrestrial UVR has been found to be dominated by facial 

anatomy and solar zenith angle for a particular cardinal point orientation.

Human corneal transmission has been measured using PLF by a novel 

fibre optic detection method and the combination of the two systems will be the 

primary focus of future endeavours in the research group. A more rigorous sky 

survey with updated software and equipment is key to these future goals in 

tandem with further measurements of the human corneal transmittance in vivo. A 

recommendation for future objectives is to measure focusing of UVR at the nasal 
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cornea due to PLF and expand this method to measure the corneal transmittance 

in vivo and apply this to field measurements. 

One final interesting application of the in vivo PLF measurement 

technique is the ability to determine corneal thickness using the Beer-Lambert 

Law as described in papers published by the author466 408.
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