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Abstract

We investigate the e↵ect of sensor errors on situated human-

computer dialogues. If a human user instructs a robot to perform

a task in a spatial environment, errors in the robot’s sensor based

perception of the environment may result in divergences between

the user’s and the robot’s understanding of the environment.

If the user and the robot communicate through a language based

interface, these problems may result in complex misunderstand-

ings. In this work we investigate such situations. We set up a

simulation based scenario in which a human user instructs a robot

to perform a series of manipulation tasks, such as lifting, moving

and re-arranging simple objects. We induce errors into the robot’s

perception, such as misclassification of shapes and colours, and

record and analyse the user’s attempts to resolve the problems.

We evaluate a set of methods to alleviate the problems by allowing

the operator to access the robot’s understanding of the scene.

We investigate a uni-directional language based option, which is

based on automatically generated scene descriptions, a visually

based option, in which the system highlights objects and provides

known properties, and a dialogue based assistance option. In this



option the participant can ask simple questions about the robot’s

perception of the scene. As a baseline condition we perform the

experiment without introducing any errors.

We evaluate and compare the success and problems in all four

conditions. We identify and compare strategies the participants

used in each condition. We find that the participants appreciate

and use the information request options successfully. We find

that that all options provide an improvement over the condition

without information.

We conclude that allowing the participants to access information

about the robot’s perception state is an e↵ective way to resolve

problems in the dialogue.
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Chapter 1
Introduction

The core idea of this thesis is to investigate the e↵ect of perception errors

on situated human-computer dialogue. In particular, we are interested in

scenarios in which a human user interacts with a robot that experiences

perception problems, and in how the users resolve the problems.

In our basic application scenario, a human user interacts with a robot

that is in a remote location through a language based dialogue interface.

The robot uses a video camera to perceive the environment and sends a live

feed of the video to the user. The robot and the user therefore have a shared

perspective on the world. A set-up like this may be useful in environments

that are accessible to a robot, but inaccessible to humans. This may be due

to environmental hazards (such as fire, radioactivity or a danger of collapsing

structures in emergency situations), due to restricted physical accessibility

(e.g. in the exploration of the caves or archaeological structures) or generally
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extreme environments (such as under water or in outer space) (Summers-Stay

et al., 2014).

In scenarios such as these it may be advantageous to allow the human

user to instruct the robot with goals at a high level, while leaving low level

details of the implementation of the instructions to the robot itself. The

robot needs to be able to perceive the environment, detect and recognize

objects, and it needs to be able to establish a correspondence between the

discussion with the user and the contents of the environment. In order to

communicate successfully, the robot and the participant need to achieve a

shared understanding of the environment (illustrated in Figure 1.1). If they

do not have a shared understanding, e.g. because the robot has errors in

its object detection mechanism, problems may arise in the communication

(illustrated in Figure 1.2). Any statement the robot makes that involves

the environment, or information derived from the environment, is potentially

problematic to the dialogue partner, because the partner has a diverging idea

of the environment.

We are interested in this scenario for two reasons. First it presents a

problem. If the robot’s understanding diverges from the user’s understand-

ing, the potential for misunderstandings arises. These misunderstandings

can a↵ect the quality of the dialogue and make it di�cult or impossible to

solve tasks that the dialogue partners are meant to co-operate on.

Second, it also presents an opportunity. If the robot has access to a

dialogue partner with “better” perception, it may communicate with this

partner in order to improve its own understanding of the world and improve

2



Figure 1.1: The user and the robot have a shared understanding of the
environment. The user refers to the box in the scene, and the robot is able
to correctly resolve the reference. Communication is successful.
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Figure 1.2: The user and the robot do not have a shared understanding of
the environment. The robot does not perceive the box and is not able to
understand the user’s reference. Communication is unsuccessful.
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its perception for the future, e.g. by re-training its perception classification

models. An alternative option would be to, rather than having the robot

adapt to the user, enable the user to understand the problems experienced

by the robot, and resolve them by adapting to the robot. Adaptation, or

alignment, (Pickering & Garrod, 2006) is an important part of dialogue be-

tween human speakers, and utilizing the human ability to adapt to ameliorate

problems appears an approach worth investigating.

In this work we present a series of experiments in which the human par-

ticipants co-operate through a dialogue interface with a robot that is a↵ected

by perception errors. We investigate how participants react to problems that

arise due perception errors and how they resolve them. We also o↵er a num-

ber of di↵erent ways to request information about the robot’s understanding

of the environment to the participants, and observe how the di↵erent options

a↵ect the problems in the dialogues and the resolution strategies.

1.1 Contributions

The contributions of this thesis arise from the Toy Block experiment and the

evaluation of its results. The main contributions are as follows:

1. The experiment itself and the dialogue system that was implemented

to perform the experiment. The experiment design describes a set-up

in which a human user interacts with a robot to resolve an object ma-

nipulation task. In the di↵erent phases of the experiment, the robot

experiences perception errors, and o↵ers di↵erent ways to request in-
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formation about the robot’s perception of the world.

The dialogue system simulates a robot with a dialogue interface that is

able to manipulate objects in a virtual world. Errors can be introduced

into the robot’s perception and the robot is able to provide information

about its perception of the world through descriptions, visual markup

and through dialogue.

2. We show through the experiment that if a robot’s perception is a↵ected

by errors, this makes it harder to complete tasks in cooperation with a

human user, and that the user experiences an increase in frustration.

3. We show that if users are given information about the robot’s percep-

tion of the world, this increases the users’ confidence and their ability

to complete tasks in cooperation with the robot.

4. We show that, to resolve problems arising from perception errors, users

tend to align their descriptions to the robot’s understanding of the

world if they can access information about it.

5. We furthermore show that if users have no direct information about

the robot’s perceptions, they tend to avoid using descriptions that can

be a↵ected by perception errors, and use descriptions that are robust

to them instead.

6. We show that users request information about the robot’s perception

of the world particularly often after they encounter a problem in the

dialogue.
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7. We present models based on the data from the experiments that de-

scribe the sequences of actions participants perform to resolve prob-

lems that arise in dialogues due to perception errors experienced by

the robot.

We see Contribution 2, 4 and 5 as the most important contributions

of this thesis. With Contribution 2 we show that perception errors have

a negative impact on situated dialogue, and thereby highlight the need to

address this issue. With Contribution 4, we show that if we give par-

ticipants information about the problem-a↵ected understanding the robot

dialogue partner has of what it perceives, they use that information to facil-

itate the interaction. With Contribution 5 we show that if participants do

not get access to this type of information, they develop strategies that avoid

unreliable information and instead utilize information that is robust. We

believe that our findings may be generalized to other problems in dialogue

that arise from non-shared information. Table 1.1 contains an overview of

the contributions of this thesis, the chapters they are discussed in and the

research questions and publications related to them.
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Contribution Chapter Research
Questions

Publications

1. The Toy Block experiment, an ex-
periment for investigating dialogue be-
tween a human user and a robot that
experiences perception problems.

Chapter 3
and Chap-
ter 4.

(Schütte et al.,
2014c)

Experimental findings showing that:

2. Perception errors cause prob-
lems in human-robot interaction.

3. Giving users access to infor-
mation about the robot’s percep-
tions helps them to resolve the
problems.

Chapter 5 RQ 5.1,
RQ 5.2,
RQ 5.4

(Schütte et al.,
2014b)

Experimental findings showing that:

4. Users align to the robot’s per-
ception if they can access infor-
mation about it.

5. Users avoid descriptions that
are prone to perception errors.

Chapter 8 RQ 8.2,
RQ 8.3

(Schütte et al.,
2014a),(Schütte
et al., 2015)

6. Experimental findings showing
that users request information about
the robot’s perception after they en-
counter a problem in the dialogue.

Chapter 6 RQ 6.3

7. Models of actions human users
performed to resolve perception based
problems.

Chapter 7 RQ 7.3

Table 1.1: The contributions presented in this thesis.
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1.2 List of Research Questions

In the following we present a list of the research questions addressed in this

thesis. The were addressed through a set of experiments in the Toy Block

experiment setup.

In Chapter 5 we evaluate the high-level results of the Toy Block exper-

iment about perception errors in situated human-computer dialogues

and address the following questions. Our main goal here is to show

that perception errors have an impact on a situated dialogue, and that

giving participants information about the robot helps reduce problems.

– Research Question 5.1: How did the participants experience the

task and the problems in the dialogues?

– Research Question 5.2: Do perception errors as experienced by

the robot have an impact on the di�culty of the task?

– Research Question 5.3: If participants are o↵ered the option to

request information about the robot’s understanding of the scene,

do they use it?

– Research Question 5.4: Does the ability to request information

about the robot’s understanding of the scene have an impact on

the participants’ ability to solve the task?

– Research Question 5.5: How do the information request options

compare to each other in terms of e↵ectiveness?
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After investigating the e↵ect of the errors on the dialogues, we inves-

tigate in Chapter 6 how and under what circumstances participants

request information about the robot’s perception of the world.

– Research Question 6.l: How often did the participants request

information?

– Research Question 6.2: Did the way the participants requested

information evolve during the course of the experiment?

– Research Question 6.3: Under what circumstances did the par-

ticipants request information?

– Research Question 6.4: What were the e↵ects of sequences of

queries?

After we showed in the previous chapters that perception errors have an

impact on the dialogues, and that participants use information request

options to resolve the problems, we then focus in Chapter 7 in more

detail on the participants’ reaction to perception based problems in the

dialogue. We investigate what actions the participants performed to

resolve perception based problems. We address the following questions:

– Research Question 7.1: How successful were the outcomes of

the resolution attempts?

– Research Question 7.2: How long did the resolution attempts

take?
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– Research Question 7.3: What structures can be observed in the

resolution attempts?

After we investigated what actions participants performed after they

encountered a perception based problem in Chapter 8, we investigate

how participants modified references after they had encountered a per-

ception based problem in the dialogue. In a sense, we focus in this

chapter on the content of what is being said in the resolution attempts,

as compared to the previous chapter where we focused on the sequences

of actions participants performed. We address the following questions:

– Research Question 8.1: What attributes did the participants

include in their initial and final reference?

– Research Question 8.2: How did the participants modify their

expressions between the initial and the final reference?

– Research Question 8.3: What e↵ect did information requests

have on how the participants modified the references?

1.3 Structure of the Thesis

The thesis is structured as follows:

In Chapter 2 we discuss technologies and literature related to dialogue,

dialogue systems and understanding in dialogue.

In Chapter 3 we present the Toy Block experiment. We discuss the

experiment setup, the di↵erent phases of the experiment.
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In Chapter 4 we present the dialogue system that was used to perform

the experiment.

In Chapter 5 we provide a general overview of the results of the ex-

periment. In particular we quantify the e↵ect of the introduction of

perception errors on task success and user satisfaction and the e↵ect

of allowing the participants to request information about the robot’s

understanding of the world.

In Chapter 6 we investigate how often the participants used the di↵erent

information request options, and under what circumstances.

In Chapter 7 and Chapter 8 we investigate how participants reacted

after they encountered a problem in the dialogue that was due to a per-

ception error, and how they resolved the problems. In Chapter 7 we

investigate the sequence of dialogue acts that occurred after a problem

occurred in the dialogue due to a perception error and describe di↵er-

ences between the di↵erent phases of the experiment. In Chapter 8 we

focus on the choice of attributes in referring expressions that were used

in resolution attempts. In particular we focus on how the participants

reformulated referring expressions in repeated instructions and on how

this choice was influenced by the information request options that were

available.

Finally, in Chapter 9 we conclude the thesis and provide an overview

of possible future directions for this work.
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1.4 Other Relevant Publications

The following publications were produced in the context of this thesis but do

not directly contribute to it:

In (Schütte et al., 2010) we investigated reference in situated instruction

giving dialogues and used visual salience to disambiguate ambiguous

exophoric references.

in (Schütte et al., 2011) we suggested a method to automatically anno-

tate references in a situated instruction giving situated dialogue based

on the actions of the participants.
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Chapter 2
Background

In this thesis we investigate dialogues between a human user and a robot

that is experiencing perception problems. We are particularly interested in

the e↵ects the errors in the perception have on the dialogues, and in how the

participants resolve the problems. This thesis therefore involves the research

fields of dialogue, computational approaches to dialogues.

A dialogue is a conversation involving two (or more) participants. Some

topics of research into dialogue are:

1. The structure of dialogue

What are the elements of a dialogue and how do they relate to

each other?

2. The content of the dialogue

What information is exchanged in a dialogue, and how do the

15



participants form an understanding of what they discuss?

3. The relation of the dialogue with the world in general and the environ-

ment the dialogue takes place.

How do participants involve the environment in the dialogue, and

how can we attempt interpret a dialogue given the environment?

The application scenario in this work presents a case of a dialogue that

involves a human user and a computer system that controls a robot in an

environment. It therefore touches on all of these areas of interest.

The term human-computer dialogue is used to describe situations in

which a human user interacts with a computer system through a natural

language based dialogue interface. A computer system that is capable of

engaging in dialogue with a human participant is called a spoken dialogue

system (McTear, 2002). Dialogue systems have been a topic of research for a

number of years and have also found some practical applications, for example

in telephone based services. More recently, dialogue system technology has

begun to be integrated into mass market products such as Apple’s Siri1 on

the iPhone and Microsoft’s Cortana 2 in the Windows 10 operating system.

In this chapter we are going to discuss dialogue systems and topics from

dialogue that are related to our research. In particular we are going to focus

on reference and understanding in situated dialogue, and on how problems

in perception can lead to problems in the dialogues. Since this work focuses

on problems that may arise from errors in visual perception, we are briefly

1
http://www.apple.com/ios/siri/

2
http://www.windowscentral.com/cortana
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going to address computer vision and why it can potentially be a source of

problems.

We, however, will not attempt a general discussion of these topics but

focus on their aspects that are related to our research.

2.1 Situated Dialogue Systems

A dialogue system may serve as an interface for an embodied agent. For

example:

A virtual character in a video game world for example in the games

described by Chernova et al. (2010) or in the video game Façade1.

A character that exists in a virtual world but also perceives the physical

world (Thórisson, 2002)

A robot that performs tasks in an actual physical environment (Hawes

et al., 2012; Petrick & Foster, 2013).

Such dialogue systems are referred to as situated dialogue systems

because they are frequently faced with situations in which the environment

or objects from the spatial context are referenced in the dialogue. This

is a particular challenge because the use of spatial language introduces a

number of challenges that are not present in dialogue that is not situated.

For example, some of the following challenges are cited by Byron in the

context of reference in situated dialogue:

1
http://www.interactivestory.net/
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The system needs to create a model of mutual knowledge, and in partic-

ular keep track of knowledge which may be accessible from the physical

environment.

It needs to keep track of the attentional prominence of entities. Again,

while this is also a challenge in regular (not situated) dialogue, a sit-

uated dialogue needs to account for the salience of objects in the en-

vironment, and how it is influenced, e.g. by visual properties, gestures

or interaction.

The system needs to be able to understand spatial predicates that are

used in the dialogue.

In the following we are going to discuss situated human-computer dialogue

and the di↵erent topics related to it.

2.1.1 Elements of a Situated Dialogue Systems

As stated earlier, dialogue has been extensively studied in a number of dis-

ciplines. We will therefore not attempt to provide a general discussion of all

aspects of dialogue but focus on those aspects that are related in practical

terms to the issue of perception based problems in human-computer dialogue.

Dialogue systems in their early development were often understood as

interfaces to database driven applications such as travel information (Sen-

e↵ & Polifroni, 2000) or banking services (Melin et al., 2001). Their main

tasks consisted in interacting with the user to formulate valid requests to a

database, and then to present the results of the requests. Therefore they

18



Figure 2.1: Architecture of a visually situated dialogue system.

typically were only concerned in relating the information discussed with the

participant to information that was already available in a purely symbolic

format which was closely related to the way information is presented in lan-

guage. A situated dialogue system on the other hand needs to be able to

deal with information that is available through the environment and that is

not necessarily a-priori available in a symbolic format.

Figure 2.1 presents the possible architecture of situated dialogue system

(based on an architecture presented in (Kelleher & Costello, 2009)). The

boxes represent modules of the system and the arrows represent flow in in-

formation between modules.

It can roughly be divided into three areas: The modules at the top row

of the image (labelled as the Language part) are responsible for handling

the dialogue based interaction with the user (this type of architecture is

sometimes referred to as a pipeline architecture for spoken dialogue systems

(Dzikovska et al., 2014)). The architecture of a classic dialogue system that is

only concerned with access to data typically consists of this pipeline with an
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additional module that mediates interaction with the application database.

The following modules are part of it:

The Speech Recognition module accepts waveforms representing the

sound of spoken utterances as input and produces a transcript of the

text of the utterance (or some sort of probabilistic hypothesis of the

text of the utterance such as a ranked list of possible results or a word

lattice).

The task of the Natural Language Understanding module is to

produce an abstraction of the content of the utterance at a level the

system can reason about. This module produces some sort of logical

expression or some other frame-based representation that represents

the content of the user’s utterance and the associated intention.

The task of the Dialogue Manager is to control the actions of the

dialogue system. To do this, it accepts the output produced by the

Natural Language Understanding module, interprets it in the context

of the current state of the interaction, and then to decides what to do

next. It produces an abstract specification of the next action the system

is to perform. We will discuss the problem of dialogue management

in the Section 2.2.1.2 in more detail after we have introduced more

dialogue concepts that are useful for this topic.

The Content Planner then takes the action produced by the dialogue

manager and fleshes it out an abstract specification of a response. In

20



particular it has to decide which information needs to be presented so

that the user can understand the contribution.

The Surface Realizer translates this specification into a text. This is

a Natural Language Generation task (Reiter & Dale, 2000). The text

is then presented to the user through the Speech Synthesis module.

The elements in the bottom row of Figure 2.1 represent the part of the

system that is related to processing vision. They are labelled as the Vision

part of the system. The task of theVision Subsystem is to provide a model

that can serve as a basis for the dialogue system to discuss the environment.

It accepts images from the world (e.g. from a video camera), and detects

objects of interest and their properties in these images. Based on this, the

system then constructs and maintains a model of the world in the Context

Model.

The elements between these two groups represent modules (labelled as

the Reference part) that provide interfaces between the speech pipeline and

the vision system. The Referring Expression Generation module helps

the system decide how to talk about objects in the environment, while the

Reference Resolution module helps the system decide what objects the

user is talking about. Both of these modules provide a link between the

dialogue and the contents of the Context Model. The Spatial Reasoning

module assists the referring expression generation and resolution modules by

relating qualitative spatial expressions from language (e.g. “to the left of”)

to quantitative concepts in the spatial context model. We will discuss the
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generation and resolution of referring expressions later in this chapter in more

detail in Section 2.3.

In the remainder of this chapter we are going to discuss di↵erent topics

that relate to the subject of this thesis. First we are going to discuss how

dialogue can be modelled for spoken interactions. Then we will address

reference and understanding in dialogue, and how problems can result from

this. Finally we are going to address topics related to perception in situated

dialogue systems.

2.2 Modelling Dialogue

In order to enable a system to engage in dialogue, it is necessary to investigate

how humans interact in dialogue. One avenue of research has focused on

the structure of dialogues. The goal of this type of research is to identify

typical sequences in dialogues, determine how these sequences combine and

interact, and to identify when and how the participants acted the way they

did. An ideal outcome would be to develop a sort of syntax of dialogues

that, analogously to grammars of natural languages, describes how elements

fit together to construct a meaningful dialogue.

While much research was originally based on a natural interest to under-

stand the workings of language and interaction, some of the resulting theories

can be useful in the context of human-computer dialogues. A theory that

accurately describes how participants act under given circumstances can be

useful to predict future actions of human dialogue partners and can provide
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clues for the interpretation of the actions of the human participants. On the

other hand, it can also be useful to plan the actions of the dialogue system.

The first step in discovering a structure in dialogue would be to determine

what the building blocks of this structure might be. The second step would

then be to describe how these building blocks fit together and to create a

theory about how these structures come about, and how these elements relate

to the task of the dialogue.

The work in this thesis is concerned with analysing the behaviour of

participants of a dialogue when perception based errors lead to problems

in the dialogue. We will therefore discuss in Section 2.2.1 the concept of

dialogue acts as a description of actions in dialogue. In Section 2.2.2 we

are going to discuss aspects dialogue structure.

2.2.1 Dialogue Acts

A concept that is frequently used in the analysis of dialogues is that of

dialogue acts (or speech acts in a more general sense). A dialogue act

describes a contribution to a dialogue not in terms of its literal content, but

in terms of its e↵ect as action in the sense that the speaker intends to achieve

an intended e↵ect (e.g. to make a listener believe a proposition by informing

them of it) when they produce the utterance — in the same way they intend

to achieve an e↵ect when they perform a physical action (e.g. to sweeten a

cup of tea by putting a lump of sugar in it). Most discussions of dialogue

acts begin with the classification of speech acts presented by Searle (1975).

In this theory each utterance is associated with an illocutionary act that
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represents the type of action the speaker performs with the utterance. Searle

describes five types of speech acts:

Assertives: Utterances in which the speaker asserts that some fact is

true.

Directives: Utterances by which the speaker requests the listener to

perform some actions.

Commissives: Utterances by which the speaker commits themself to

some action.

Expressives: Utterances by which the speaker expresses their psycho-

logical state of mind.

Declarations: Utterances by which the speaker directly brings about

some change in the world (e.g. by giving a name to an object.).

This classification describes at a general level the di↵erent types of ac-

tions that can be performed through the use of speech in general. For the

area of dialogue, more specific theories and formalizations have been inves-

tigated. Bunt (1994) describes dialogue acts in terms of their e↵ects on

di↵erent aspects of the context of a dialogue. Under this perspective, dia-

logue acts become similar to physical actions in that they have well defined

e↵ects (that become e↵ective when the act is successfully performed) and

conditions that need to hold for a dialogue act to be e↵ective. Cohen &

Perrault (1979) explicitly formalize the e↵ects and preconditions of dialogue

acts in terms of the belief states of the participants in the framework of a
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planning theory. The notion of dialogue acts is therefore particularly in-

teresting for dialogue systems because it provides a level of abstraction over

the actions in a dialogue.

Depending on the task of the dialogue system, di↵erent actions can be

relevant. Therefore specific dialogue applications often feature specific dia-

logue act tag sets. Traum (2000) discusses some of the considerations that

go into the design of a dialogue act tag set.

Dialogue acts have often been used as a tool to analyse dialogues after

the fact by manually annotating corpus data. In order to use them in an

actual human-computer dialogue scenario, the computer system needs to be

able to determine dialogue acts expressed in the contributions by the human

participant. In the next section we are going to describe approaches towards

the automatic classification of the dialogue acts of utterances.

2.2.1.1 Dialogue Act Classification

In order to understand the dialogue acts performed by its human partner, a

dialogue system needs to able to determine the dialogue act of each utterance.

The process of automatically determining the dialogue act expressed in an

utterance is called dialogue act classification (or dialogue act tagging).

Unfortunately recognizing dialogue acts is not a simple task. While some

aspects of the intention of an utterance can be determined directly from

the grammatical form of the utterance (e.g. the mood is a good indicator),

other aspects may heavily depend on inference, context and convention. For

example, if a speaker produces the utterance “Can you pass me the salt?”
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they normally do not intend this as a question about whether the listener is

capable of providing them with salt, but as a request.

Keizer (2001) present an approach to dialogue act classification that uses

a belief state and linguistic features extracted from the utterance and uses

a Bayesian network. Surendran & Levow (2006) present an approach that

uses contextual knowledge about the preceding dialogue act and combines

this with textual and acoustic features through a machine based approach

using support vector machines.

2.2.1.2 Dialogue Manager

As stated in our review of dialogue system architecture, the primary task of

the dialogue manager is to direct the behaviour of the dialogue system. In

order to do this, it has to relate the contributions by the user to the current

context, update the context with new information, and decide when and how

to act. There are di↵erent approaches towards this issue.

Three classic approaches are listed by McTear (2002) – the finite state

based approach, the frame based approach and the agent based approach.

The finite state based approach is relatively strictly structured. Dia-

logues follows pre-defined scripts. The information structure underlying the

dialogues is a discrete set of states that represents all possible situations in

the dialogues. For example, one state may represent a greeting to initialize

the interaction, while other states represent requests for specific bits of in-

formation. Each state represents a specific situation in an interaction script

and sets up specific expectations for the following actions. Actions by the
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user and the system trigger transitions between the states. Finite state based

dialogue managers support strongly directed interactions and are somewhat

inflexible.

The frame based approach represents is more flexible. It is particu-

larly appropriate for dialogues in which the system needs to elicit specific

information from the user in order to formulate a query to a data base or

to formulate an order. The state of the dialogue is represented by a frame

structure that the system fills out using keyword spotting and pre-defined

questions. It is more flexible in that the interaction is not driven by pre-

defined scripts but is able to use information that is provided without prior

prompt. This approach is less restrictive than the finite state approach. but

appears to be primarily focused on information retrieval domains. It also

poses higher demands on e.g. the natural language understanding compo-

nents of the system since it provides fewer restrictions for the user’s inputs

and fewer expectations for the interpretation of the input.

The term agent based approach is used to describe approaches towards

dialogue management in which the actions of the system are based on some

sort of psychologically inspired model of the dialogue system and the human

user as agents, where goals and intentions of the participants are explicitly

modelled. The dialogue manager can for example use automatic planning to

determine the actions of the dialogue system. The information state based

approach to dialogue management (Traum & Larsson, 2003) presents a model

of dialogue management in which the state of the system is modelled as the

belief state of the dialogue agent, the agent’s agenda, and a representation of
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the agents model of the state of the information shared with the other partici-

pants. Actions in this theory correspond to modifications of these structures.

Agent based systems can be quite complex and pose high demands on the

other components of the system. They are therefore not particularly widely

used in practical applications.

More recently, approaches that are based on statistical methods have

been applied to dialogue management. In the POMDP (Partially Observable

Markov Decision Process) based approach (Young et al., 2013) the dialogue

is modelled as a stochastic process. Unlike in the finite state based approach,

where the dialogue at each point in time has one fixed state, in the POMDP

approach the system maintains a probability distribution over a set of states,

which it updates based on a user’s actions using the Bayes’ theorem. The

fact that this update is probabilistic makes it particularly robust towards

errors related to the recognition of the user’s intention that, for example,

often arise from errors in the speech recognition component. One interesting

aspect of POMDP based dialogue managers is that they can be trained using

reinforcement learning with data from observed interactions.

Common to all the dialogue models is that they need to be informed

about how interactions in the domain are performed. In the finite state

based approach this is coded directly into the structure of the states and

the transitions between them — interactions following pre-specified scripts.

In the frame based approach dialogue is mostly controlled by the needs of

the underlying frame structure — for example, some slots may specify that

other slots need to be completed before them. In the agent based approach,

28



examples from observed dialogues can be used to formulate the operators

of the planning system. In statistical approaches, observed interactions can

be used to train the system or to inform user simulations that are used

for training. One part of our research is therefore focused on identifying

sequences of actions that were used in the dialogues to successfully resolve

problems in the dialogue that occurred due to errors in perception.

2.2.2 Dialogue Structure

The idea behind dialogue structure is that dialogue is not a linear sequence

of separate utterances, but that each utterance relates to the utterances

preceding it and the discourse so far in a specific way. Furthermore, dialogue

also appears to have a structure in that interaction does not just proceed

in a linear fashion, but may include interruptions and digression, yet still

ultimately return to its original purpose. If a computer system engages in

dialogue with a human user, it needs be able to understand how the actions by

the user and its own actions relate to the context of the dialogue. It therefore

needs to be able to not only understand the content of the contributions but

also their relation to the overall structure of the dialogue.

At a low level, there are relationships between individual pairs of utter-

ances that are adjacent (the second utterance follows directly after the first).

Scheglo↵ & Sacks (1973) use the term adjacency pairs to describe pairs

of utterances where an utterance of a specific type by one speaker normally

induces the second speaker to respond with an utterance of a corresponding

type. For example, utterances in which the speaker expresses a question are
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typically followed by an answer type utterance by the other speaker.

Coulthard & Brazil (1981) describe a structure for information exchange

which consists of three actions: an initiating move by the first speaker, a re-

sponse move by the second speaker and a follow-up move by the first speaker

that comments on the information provided in the response. Adjacency pairs

and the structure for information exchange describe coherence between con-

tributions to a dialogue at a local perspective.

Dialogue structure can also be understood from a more global perspec-

tive. At a global level, the structure of dialogues depends strongly on the

purpose of the dialogue, and in task-oriented dialogues, strongly on the struc-

ture of the task. Orkin & Roy (2007) describes an online-experiment in which

they use crowd sourcing to observe and learn structures of interactions in

restaurant scenario in a video game engine. Their experiment primarily fo-

cuses on discovering typical sequences of actions in a given domain in order

to inform an automated system.

The focus stacks model presented by Grosz & Sidner (1986) attempts

to describe the structure of discourse at a more abstract level by relating

the emergence and satisfaction of goals in the task with shifts in attention.

Pieces of discourse (called discourse segments) give rise to focus spaces.

Focus spaces represent the set of elements that are under discussion during

a segment of the discourse. Each discourse segment has a purpose that

represents the intentions the speaker intends to realize with the discourse

segment. Critically, these purposes are interrelated, in particular the purpose

of one segment may contribute to the completion of the purpose of another
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segment (and conversely, a segment purpose may depend on the completion

of the purpose of another segment). These relations therefore describe how

the elements of the discourse relate to each other in terms of the intentions

expressed through them (the intentional structure of the discourse). If a new

discourse segment brings up a new purpose that has to be completed before

the purpose that is currently under discussion can be completed, the focus

space associated with this segment takes precedence over the space of the

current segment. After the purpose of the new segment has been completed,

the discussion returns to the old discourse segment. The structure that stores

the focus spaces is therefore modelled as a stack. A stack represents the

introduction of a new focus space that supersedes the current space as the

push operation. If the task that is associated with the topmost space is

completed, the space is removed through the pop operation.

This structure where the current purpose of the dialogue is temporarily

put aside and returned to after another problem has been solved, is often

referred to as to as a sub-dialogue. Sub-dialogues are relevant to our work

because they can be triggered by problems in the dialogue that prevent the

dialogue from proceeding as intended. Sub-dialogues that serve to resolve a

problem or to clarify an issue are referred to as clarification dialogues.

Sub-dialogues have previously been investigated in general dialogue and

for human-computer dialogue systems. Purver et al. (2003) discuss di↵erent

forms and interpretations of clarification questions in corpus data, under the

perspective of clarification questions a dialogue system might be asked by a

human speaker. Gabsdil (2003) discusses clarification questions in a frame
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based dialogue system and in a system that involves deeper analysis of the

spoken content. They propose that the system ask the participant clari-

fication questions to achieve a better grounding of ambiguous information

(mostly arising from acoustic problems).

Clarification sub-dialogues arise from problems in the language based

interaction. Such problems can arise due to divergences of the participants’

understanding of the environment. One reason for such divergences can be

perception errors. We therefore believe that perception errors may trigger

clarification dialogues, and that clarification dialogues may be used to resolve

problems that arise from perception errors. We therefore plan to identify and

analyse clarification dialogues in this work.

2.3 Reference in Dialogue

One particularly interesting aspect of language in situated dialogue is the

problem of reference. The term reference is used to describe the phe-

nomenon that expressions in language represent concepts or objects. The

expression that is used in an utterance to make a reference is called the re-

ferring expression, and the target of the reference is called the referent

of the expression. References can be distinguished into three categories:

A reference to an object that has previously been discussed in the

dialogue is called an anaphoric reference. In the following example,

the first sentence introduces a new reference (a tall man). In the second

sentence, the pronoun “he” is used to refer back to this referent.
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“A tall man walked into a shop. He bought a newspaper.”

The pronoun “he” represents an anaphoric reference. The expression

“a tall man” is called the antecedent of the anaphor.

A reference that introduces a new object into the discourse (either from

general background knowledge of the world the participants share or as

an imaginary object, as in the previous example) is called an evoking

reference. For example, if a participant mentions the name “Barack

Obama”, both participants are likely to know that the reference refers

to the current president of the USA, even if he has not been discussed

in the dialogue recently and is not physically present.

A reference to an object that has not been discussed previously in the

dialogue, but that is available in the spatial context of dialogue is called

an exophoric reference. References of this type are particularly com-

mon in situated dialogues as discuss them in this work. For example,

Figure 2.2 presents a scene from the Toy Block experiment (Chapter

3) in which a dialogue takes place. In this scene, the human user may

give the following instruction to the robot:

“Pick up the green box.”

In this utterance, the term the green box is an example of an exophoric

reference. In order to understand the instruction, the robot has to

identify the object in the world that matches the description given by

the user in the referring expression.
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Figure 2.2: A scene in which an exophoric referring expression is interpreted.

A referring expression can be understood as a description that the speaker

believes is appropriate for the listener to identify the intended referent object.

In practical terms the description provided by a referring expression is often

modelled as a set of attributes with given values. The expression “the green

box” can, for example, be notated as follows:

{hcolour : greeni , htype : boxi}

Referring expressions often involve descriptions that describe the referent

in terms of other objects. These descriptions are called relational descrip-

tions. They can be modelled as attributes whose values contain referring

expressions themselves. The expression “the ball near the box” can be rep-

resented in the following way:

{htype : balli , {hnear : htype : boxii}}

An attribute-value pair can also be represented as an attribute value matrix

(AVM). Complex referring expressions that involve relations between objects
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are often more legible in this notation. The AVM for the expression “the ball

near the box” looks as follows:

2

6666666664

type ball

rel

2

66664

reltype near

relatum

"

type box

#

3

77775

3

7777777775

We will use AVMs where space permits. Relational descriptions are often

used to express spatial relations that describe the relative location of ob-

jects in relation to a landmark object (such as in previous example).

In the context of referring expressions the following terms are often used:

Target: The intended referent of the reference.

Context set: The set of all objects in the scene.

Contrast set: The set of objects the target has to be distinguished

from.

In this work referring expressions occur in specific roles in instructions and

actions:

Patient: An object that is being a↵ected by an action (or, depending

on the context, a referring expression that is used to describe the object

that is a↵ected by an action).

Destination: A description of the targeted end point of a motion (or

the referring expression that is used to describe the location).
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The two main tasks a dialogue system that involve referring expressions

are the resolution of referring expressions and the generation of re-

ferring expressions. In the following section we discuss them and review

di↵erent approaches.

2.3.1 Resolution of Referring Expressions

Referring expressions in a situated dialogue can either be resolved anaphor-

ically (i.e. as a reference to the prior discourse) or exophorically (i.e. with

respect to the visual context). We do not discuss evoking references because

they are rarely of relevance in the type of dialogue we investigate in this

thesis.

We say that a referring expression is distinguishing if it can be resolved

to one and only one only referent. We call it ambiguous if it can be resolved

to more than one object, and unresolvable if it cannot be resolved to any

object at all.

2.3.1.1 Anaphoric References

To resolve an anaphoric reference, the system has to identify the antecedent

of the reference. A possible candidate as antecedent has to be compatible

with the referring expression in terms of its attributes – the description pro-

vided in the referring expression has to match the antecedent. A first step

towards determining the antecedent would therefore be to identify all previ-

ously mentioned entities with compatible attributes.

In order to do this, the system needs to keep track of all objects that are
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mentioned during the discourse. In a more general sense, the representation

of the contents of a discourse is called a discourse model. However, the

discourse may contain several references to objects that fit the description

of the referring expression. The expression would therefore be ambiguous if

only its attributes are considered. The system therefore needs to be able to

distinguish which object is most likely to be the intended reference among

all the possible referents based on other criteria.

One approach towards this problem uses syntactic properties of the dis-

course. In their centering theory Grosz et al. (1995) describe local coher-

ence of sentences in short texts based on the co-reference relations between

the entities mentioned in the sentences. Probable co-references are predicted

based on the syntactic roles of the words denoting the entities under discus-

sion. For example, entities that occur in the subject position of a sentence

are seen as more likely to co-refer to the focused object of the preceding

sentence than entities that occur in the object position. Based on the work

by Grosz et al., Brennan et al. (1987) present an approach to anaphora res-

olution by using the rankings produced in the centering approach to predict

the referents of pronouns.

Hajičová et al. (1992) present a method for pronoun resolution that is

similar to the centering approach in that it is also based on a notion of

linguistic prominence or salience. The salience in this case however is not

directly calculated based on the syntactic role of the expressions, but on the

focus status of the objects.

In general, early approaches towards reference resolution focus on refer-
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ence resolution in written text, and not on dialogue in particular. Byron

(2002) present rule based resolution of pronouns in dialogue. One particular

problem of pronoun resolution in dialogue is that pronouns more often than

in regular discourse have antecedents that are not objects that are introduced

as noun phases. Instead pronouns are often used to refer to entire sentences or

verb phrases. Strube & Müller (2003) present an approach towards pronoun

resolution in spoken dialogue that is based on machine learning (decision

trees).

The reference domain approach (Salmon-Alt & Romary, 2009) is a cog-

nitively inspired approach towards reference that models a number of phe-

nomena related to reference well. It is also suitable for anaphoric references

and has been used in dialogue systems (Kelleher et al., 2005).

2.3.1.2 Exophoric References

The resolution of exophoric referring expressions poses di↵erent challenges

than the resolution of anaphoric references. In the anaphoric domain, the

references are resolved against the so called discourse model. Its actual

implementation depends on the specific theory, but in general it is a symbolic

structure that is constructed based on information that is recorded during

the dialogue. It is therefore relatively unproblematic to compare a referring

expression with a record of the information available about an object that

has been discussed.

In the exophoric domain, this is not possible since the objects are not

present as language-derived symbolic information, but as phenomena the sys-
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tem observes in the environment. In order to resolve referring expressions,

it is therefore necessary to establish a link between the symbolic represen-

tation of the language-based attributes in the discourse and the phenom-

ena observed in the environment. This problem is known as the symbol

grounding problem (Harnad, 1990).

Coradeschi & Sa�otti (2000, 2003) describe the process of establishing

and maintaining a link between the symbolic contents of language and the

perception of a robot as the anchoring problem. They describe a predicate

grounding relation that associates symbol from the discourse representation

and planning with attributes that can be quantitatively measured in the

percepts of the system. The attributes of the symbolic object then determine

values the percept may have that would be acceptable for the concept to

hold. Roy et al. (2002) describe a vision system that learns to associate

vision based attributes with words it receives from descriptions generated by

human, and also learns a grammar. Gorniak & Roy (2004) describe a system

in which reference resolution is based on grounded expressions, and in which

the composition of expressions is based on visual processes as well.

In most approaches towards visual reference resolution the context for

the resolution of an expression is taken to be the current visible scene. De-

termining the referent therefore is mostly based on selecting an object from

the scene that fits the attributes contained in the referring expression. As in

the anaphoric domain, this filtering approach alone is often not su�cient to

single out the intended referent because multiple fitting objects may exist in

the scene.

39



One possible strategy is to identify which objects in the context are par-

ticularly visually salient (Itti, 2007) (an approach towards computational

modelling of visual salience is discussed in (Itti & Koch, 2001)) in their own

right or in the focus of attention of the speaker. Kelleher & van Genabith

(2004) present an approach to resolve ambiguous references based on the vi-

sual salience of objects based on the (apparent) size of objects and on their

proximity to the center of attention (the center of the screen).

In a situated dialogue, often a trade-o↵ between linguistic salience and

visual salience has to be found. Kelleher (2006) presents an approach towards

reference resolution that integrates both visual and linguistic salience. Some

early systems (e.g. (Wachsmuth & Cao, 1995)) employ a notion related to

linguistic salience, but do not use visual salience. Instead they ask the human

speaker to clarify their references through a clarification dialogue.

While the task of resolving referring expressions is one problem, the com-

plimentary problem is the production of referring expressions. We discuss

this problem in the next section.

2.3.2 Generation of Referring Expressions

As discussed earlier, a spoken dialogue system presents its reactions to the

user as spoken language. It therefore needs to be able to translate the internal

representation of intentions and content into natural sounding text. This is

the problem that is addressed in the field of Natural Language Generation

(NLG) (Reiter & Dale, 2000).

There are a number of di↵erent approaches towards NLG, and dialogue
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systems have also used a number of di↵erent approaches. For example, Becker

(2006) use a so-called template based approach, where surface utterances are

composed from pre-formulated pieces of text in the context of the SmartKom

dialogue system (Wahlster, 2006). Foster et al. (2005) use a grammar based

approach, where text is generated through a generator that uses structural

language rules to create a text based on a high-level semantic specification

in the COMIC dialogue system1.

One important sub-problem of NLG that is particularly relevant to the

work presented in this thesis is the decision of how to refer to objects in the

domain. The system has to decide whether to use a pronoun to refer to an

object (and which pronoun), which attributes to include in a noun-phrase

based description, and – in a multi-modal domain – whether to use addi-

tional visual cues and how to combine them with the description. Following

the Gricean maxims (Grice, 1975), Reiter & Dale (2000) propose three re-

quirements that need to be taken into account when generating a referring

expression:

Adequacy: The expression has to provide enough information such

that the listener is able to identify the intended referent.

E�ciency: The expression should not contain unnecessary informa-

tion.

Sensitivity: The expression should make use of properties the ad-

dressee can evaluate, and avoid properties they cannot evaluate.

1
http://groups.inf.ed.ac.uk/comic/
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The last point is particularly interesting for the work in this thesis.

Whether or not a speaker believes that a listener is able to interpret an

expression depends on the speaker’s understanding of the listener’s under-

standing of the scene. While in most cases speakers may assume that they

have a shared understanding, this may lead to issues if the perception of one

of the participants is a↵ected by errors.

The full brevity algorithm (Dale, 1989) presents an approach that al-

ways aims to generate the shortest distinguishing description as the referring

expression for an object. It thereby maximizes the e�ciency of the expres-

sion, but the calculation may turn out quite expensive in more complex

scenes.

The incremental algorithm (Dale & Reiter, 1995) abandons this strict

e�ciency goal and instead bases its selection of attributes on a psychologically

based order of preference. Dale & Haddock (1991) and (Kelleher & Kruij↵,

2005) are examples of algorithms that generate descriptions for attributes

that contain references to other objects. This is potentially useful for situated

dialogue, because it enables the system to generate descriptions that involve

(spatial) relations between the objects in the scene. Van Der Sluis (2005)

presents an algorithm that includes the use of pointing gestures in multimodal

referring expressions.

One common problem of these approaches is that they assume that both

participants have a shared understanding of the environment. The incremen-

tal algorithm technically includes a provision to ensure that attributes used

are actually shared between the speaker and the listener, but this aspect is
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not particularly elaborated upon.

Horacek (2005) presents an algorithm for the generation of referring ex-

pressions under conditions of uncertainty. The algorithm is an extension

of the incremental algorithm that attempts to model the probability that

a candidate expression would be resolved to the intended referent. It also

keeps track of potential distractor objects. Three sources of uncertainty are

explicitly identified:

1. Uncertainty about knowledge: Whether or not the addressee knows

the terms that could be used in a referring expression.

2. Uncertainty about perception capabilities: Whether or not the

addressee perceives the intended referent.

3. Uncertainty about conceptual agreement: This source of uncer-

tainty arises from vague attributes.

The problems we address in this work are best represented in the second

point and the third point (in a more general sense). However, as Krahmer &

Van Deemter (2012) discusses, it is not clear how these uncertainties could

be estimated.

2.4 Understanding in Dialogue

A dialogue is not simply a sequence of statements put forward by its par-

ticipants, but an interactive and constructive process in which information

is exchanged and negotiated. Each contribution has to be interpreted in the
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context of the dialogue, and it also contributes to the context. Jurafsky &

Martin (2000) use the term discourse context to describe a body of infor-

mation that the participants share and construct during the course of the

dialogue through their discussions. This is contrasted with the situational

context which is used to describe information that is available through the

environment in which the dialogue takes place. An important property of

contextual information in a dialogue is its sharedness. If a speaker intends

to formulate an utterance that presupposes a certain piece of background in-

formation in order to be understood, they need to be reasonably certain that

the addressee possesses all the background information necessary to correctly

understand the contribution.

The term common ground is used to describe information that is shared

between the participants. The process of entering information into the com-

mon ground is called grounding. In the following we are going to discuss

grounding in Section 2.4.1. We then are going the discuss misunderstandings

as a result of grounding problems in Section 2.4.2.

2.4.1 Grounding

The term grounding is used to describe the process that is used to en-

sure that a piece of information that one participant shared with another

participant in a dialogue is accepted by both participants, and that it is mu-

tually known to participants that the other participant knows that they have

accepted the information as shared.

Information can enter a grounded state in di↵erent ways. Dialogue re-
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search is primarily concerned with grounding that is achieved through dia-

logue. For example, Clark & Schaefer (1989) describe grounding in a dialogue

as a sequence of two phases. In the first phase, the presentation phase, the

speaker presents their contribution. In the second phase, the acceptance

phase, the addressee reacts to the contribution by displaying evidence of un-

derstanding or evidence of non-understanding. The speaker then may present

evidence that they accepted the addressee’s acceptance.

Apart from grounding through dialogue, grounded information can be de-

rived from other sources. For example, Clark (1996) discuss the communal

common ground – a set of information members of groups a priori assume

as shared. For example, people living in New Zealand are likely to have mu-

tually shared knowledge of local geography and politics, while rock musicians

are likely to have shared knowledge of music and bands. Importantly for the

work presented in this thesis, common ground can also have perceptual

basis. According to (Clark, 1996) an event becomes perceptually shared if

the participants both perceive it and attend to it. This demonstrates that if

objects are present in the context, and participants are likely to believe that

the other participant is attending to them, they enter a grounded state. If

this is not the case, and the other participants does not attend to the object

in question, or perceives it di↵erently from the first participant (e.g. due to

perception errors), this can lead to situations where the participants incor-

rectly assume to have a common ground. This can lead to misunderstandings

in the dialogue.
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2.4.2 Misunderstandings

The goal of the process of grounding is to make sure that both participants

of the dialogue mutually understand each other. Problems in this process

can lead to situations in which communication does not directly result in a

shared understanding. If participants act on a false assumption of shared

understanding problems can arise in the dialogue.

Paek (2003) discusses di↵erent types of communication errors and their

possible e↵ects on the communication. He proposes a classification of errors

based on the “joint action ladder” described by Clark (1996), and classifies

di↵erent communication problems presented by di↵erent authors in it. Some

of the problems are explicitly referred to as misunderstandings in the original

works, while others can be seen as misunderstandings in a wider sense. The

joint action ladder describes coordination between participants in performing

joint actions. While it refers to joint actions in general, which may comprise

complex actions such as ordering beverages or making a bet, in the context of

dialogue it can refer to actions as simple as suggesting a piece of information

to someone.

A communicative act is modelled as a process that requires coordina-

tion at 4 levels. Successful coordination at each level presupposes coordi-

nation at the next lower level. Conversely, evidence for coordination at one

level can be seen as evidence for coordination at all lower levels.

The lowest level is the channel level. Success at this level is achieved

if the sender (A) produces a behaviour and the addressee (B) attends to
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this behaviour. The behaviour can be any communicative behaviour such

as a hand gesture, a directed gaze or, in the case of dialogue, speech. If

coordination fails at this level B simply does not notice A’s actions as an

attempt to communicate.

The second level is the signal level. Success at this level is achieved if

B recognizes A’s behaviour as a signal. In the case of speech based commu-

nication this means that B recognizes the sounds A produces in speaking as

speech. If coordination fails at this level, a very fundamental type of com-

munication error occurs where B notices that A tried to communicate, but

was not able to extract a message. In this case B is clearly aware that A

tried to communicate, but that the attempt was unsuccessful.

The third level is the intention level. At this level B has to extract the

intention A tried to communicate. If B is unable to extract the intention

A attempted to communicate, B will either be unable to extract a sensible

intention or extract an intention that is sensible to B but di↵erent from the

one intended by A. In this case, B may be aware or unaware that the process

has failed.

The fourth level is the conversation level. Communicative success at

this level entails that B has recognized A’s proposal and is able to consider

it. Errors at this level generally involve problems involving mismatched un-

derstanding of concepts or inference over the contents of the discourse.

Errors during the interpretation of the intention and the consideration

of the proposal can lead to situations in which the listener achieves a di↵er-

ent understanding of the joint activity than the speaker (possibly without
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noticing).

We argue that an error that is based on false perception by B can be

understood as a breakdown at the intention level of the joint action ladder.

In the next section we motivate this position.

2.4.3 Misunderstandings and Perception

As stated previously, the environment presents a context and a possible

source of information for the dialogue. Misunderstandings pose a particular

problem in this context. While the process of grounding new information

in a dialogue is naturally included in normal conversation as a cooperative

action, the process of perceiving information from the environment is neces-

sarily separate for each participant.

We believe that an error that is based on false perception can be located

at the intention level. In particular we believe that these errors match the

descriptions of misunderstandings given by Hirst et al. (1994). The listener

believes that they have correctly understood the speaker’s intention. In fact

they actually have, but only as far as the speaker’s intention as it is contained

in the spoken utterance. However, since the participants, due to diverging

perception, have di↵erent perception of the situational context, they actually

may arrive at di↵erent interpretations of the proposed activity.
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2.5 Computer Vision

If a situated dialogue system is to be able to discuss the visual context of the

dialogue it first needs to be able to perceive and understand this context. The

area of research that is concerned with computer based visual perception is

called computer vision. In this section we will attempt to briefly highlight

which topics in computer vision are relevant for this work, why we believe

that errors in computer vision may be a problem worth addressing, and the

di↵erent types of visual contexts that are used in situated dialogue systems.

For this work we are interested in two major topics of computer vision:

1. The system detects if objects are present and then determines their

location (Object detection).

2. The system then needs to detect the properties of the objects (Object

classification).

We focus on two possible errors that may arise from the outcome of these

tasks:

1. The system fails to detect that an object is present.

2. The system correctly detects the object but does not recognize its prop-

erties correctly.

The first type of error may occur if the system does not perform the

object detection step correctly. For example, the system may be unable to

distinguish an object from the background, or it may be unable to correctly
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detect two objects as separate objects if they are placed adjacent to each

other. The second type of error may occur if the system experiences prob-

lems related to object classification. Other types of errors are possible. For

example, a system may erroneously detect an object where there actually is

none. However, in this work we focus on the two errors mentioned here.

Errors in computer vision can lead to problems in the reference resolution

process, which in turn can lead to problems in dialogue. If a speaker intends

to refer to an object that the system does not perceive due to a perception

error, the system will not be able to resolve the reference this may lead to a

problem in the dialogue where, e.g. the system will not be able to perform an

instruction involving the object, and it will not be able to answer questions

related to it. In fact, it is possible that it resolves the reference to an object

other than the one the speaker intended. In this case the system would not

even be aware that there is a problem, and complex misunderstandings can

arise.

Reference resolution algorithms typically involve comparing a set of at-

tributes that was used in a referring expressions to a set of attributes that

the computer vision system believes are valid to an object it perceives. If the

vision system classifies one or more of the attributes incorrectly, problems

can arise in the reference resolution process and subsequently in the dialogue.

In order to avoid problems of this type, a situated dialogue system re-

quires a vision system that minimizes object detection errors and property

classification errors.
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Computer vision has made good progress in the recent years, but is still

not perfect. In fact, Mitchell (2012) states “it basically does not work”

(unless restricted to specific domains).

To determine the state of the art, we looked at the results of a shared task

challenge for computer vision, namely the PASCAL Visual Object Challenge

(Everingham et al., 2015). In this challenge participants were encouraged

to compare their computer vision systems against each other by comparing

their performance on a given set of example images. Three tasks were of

interest for our work:

Classification: To determine whether or not an object of a given class

was contained in a given image

Detection: To determine the rough location of a given object in an

image via its bounding box

Segmentation: To determine the location of objects in the image on

a pixel basis

The up-to-date leaderboards for the currently most successful systems

are available online1. At the time of writing2, the most successful system in

the classification category achieved an average precision of 85.4% using the

default training data. The most successful system in the detection category

achieved an average precision of 42.2%, and the most successful system in

the segmentation category achieved an average precision of 47.5%.

1
http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php

215.09.2015
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Liu et al. (2012) investigate reference resolution in human-computer dia-

logues in a scenario that is not dissimilar to the one addressed in this thesis.

They use a computer vision system that misclassifies the type of an object in

84.7% of the cases and produces a segmentation error in 10.2% of the cases1.

Based on these figures, we believe it is reasonable to conclude that com-

puter vision is not necessarily perfect in all instances, and that errors in

perception may therefore occur in situated dialogue systems and lead to

problems in the interactions.

2.5.1 Visual Context in Dialogue Systems

Situated dialogue may take place in di↵erent kinds of environments, ranging

from actual physical spaces to purely virtual simulations. Depending on the

type of the environment, the visual context poses di↵erent sets of challenges

to the system.

If the visual context of the interaction is simulated by the dialogue system,

the system developer can assign fixed attributes to the objects that populate

the world (e.g. the developer can determine which objects may be referred

to as boxes, and which objects the system believes have the colour green).

We identify three levels of abstraction:

Symbolic world: The world is rendered by the system based on a symbolic

definition. The system’s understanding of the world is directly based

on this representation. An example for system is (Winograd, 1971).

1This is a very high number of misclassifications. It nevertheless shows that other
researchers have addressed dialogue in the context of very poor perception.
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Synthetic vision: The world is simulated, and some aspects of the vision

(e.g. visibility detection or visual salience) are based on a simulation

of actual vision using techniques such as false colouring or ray casting.

Other aspects, such as object recognition or the recognition of proper-

ties, are abstracted away ((Noser et al., 1995) (Kelleher, 2003, 2006)

(Ku↵ner & Latombe, 1999)) and the system is directly supplied with

information from the world definition.

Artificial vision: The world is perceived purely in a visual way (e.g. through

a camera), and the system has only access to what information it can

extract from the image ((Kruij↵ et al., 2006a; Sjöö, 2011)).

2.6 Spatial Attributes

Spatial descriptions are particularly important in situated dialogue. Liu &

Chai (2015) report that in an object naming task, spatial attributes were

the third most frequently used description strategy after the type and the

colour attributes of an object (443 expressions contained a spatial relation,

while 686 contained a type attribute and 747 contained a colour attribute).1

Summers-Stay et al. (2014) report that in their human-robot navigation ex-

periment “much of the discussion involved spatial language pertaining to

objects configurations”.

This indicates that participants do use spatial attributes in situated hu-

man computer dialogue. In order to be able to successfully participate in

1Unfortunately they do not state the proportion of referring expressions in the total
data set for each attribute type.
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situated dialogue, a dialogue system therefore has to be able to deal with

spatial attributes. In order to understand referring expressions with spa-

tial attributes used by the human speaker, and in order to be able to use

spatial descriptions in a felicitous way, the dialogue system must be able to

decide when a spatial relation holds. In the terminology used in the symbol

grounding area, the system needs a predicate grounding relation for spatial

attributes.

One major class of spatial attributes are spatial relations. They are

expressed in language as prepositions such as to the left, in front of, or

between, and they are used to describe the location of one object in relation

to another object. The object that serves as the point of reference is often

referred to as the landmark. A predicate grounding relation for spatial

relations can be implemented through spatial templates. Spatial templates

are geometric objects that are anchored to landmark objects and which then

project a set of fields that describe how well objects in each field are suitable

to describe the landmark with the given relation.

For example, Figure 2.3 shows a spatial template for the preposition above

(Kelleher & Costello, 2005). This template distinguishes three types of re-

gions:

Good: Objects in this region are likely to be perceived as above the

landmark.

Acceptable: Objects in this region may also be perceived as above

the landmark.
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Figure 2.3: A spatial template for the spatial relation above.

Bad: Objects in this region will probably not be considered above the

landmark.

There are also approaches that use templates that work with a continuous

notion of appropriateness rather than a discrete one (Costello & Kelleher,

2006; Logan & Sadler, 1996; Regier & Carlson, 2001).

One important aspect of relations and their associated template is the

frame of reference. The frame of reference describes from what perspective

the relation is to be interpreted, which determines in what way the spatial

template is attached to the landmark object. Following (Levelt, 1996) we

can distinguish three frames of reference:

Deictic: (or the viewer-centered perspective) The relation is in-

terpreted from the point of view of the observer.

Intrinsic: The relation is interpreted from the orientation of the land-

mark object. This perspective is relevant for objects that have an

intrinsic front and back such as chairs, cars or dogs, but less so for
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Figure 2.4: A chair and a ball.

objects that do not (such as balls or apples).

Absolute: The relation is interpreted in terms of some global frame

of reference that is independent of the perspective of the view or the

landmark. An example of this would be cardinal directions on a map.

Figure 2.4 contains an example image (adapted from (Levelt, 1996)) that

illustrates the three perspectives. From the deictic perspective the ball would

be to the right of the chair. From the intrinsic perspective, the ball would be

to the left of the chair (the chair is facing the viewer, the ball is therefore on

its left). A relation from an absolute frame of reference might specify that

the ball is to the east of the chair (as indicated by the compass in the upper

right corner).

A discussion of the use of spatial templates for relational expressions can

be found in (Kelleher & Costello, 2009).
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2.7 Perception Based Uncertainty in Dialogue

Uncertainty in dialogue has been addressed by other authors previously. For

example, the POMDP based approach to dialogue management discussed

earlier represents an approach towards integrating uncertainty about the

user’s intention into the dialogue management. We were not able to find

any instances of POMDPs being used to explicitly address the problem of

vision based uncertainty. It would appear consistent to model uncertainty

about the referent of an expression that may arise due to problems in robot

perception, as part of the uncertainty about the intention of the user. There

is also work on monitoring processes in videos using POMDPs (Hoey et al.,

2010) which seems applicable.

A number of authors have addressed uncertainty in dialogue that arises

from uncertainty in visual perception, in particular in relation to reference.

Liu and his colleagues performed a number of experiments about unreliable

computer vision in dialogue. In (Liu et al., 2012) they performed an exper-

iment where two participants perceived the same scene and where asked to

perform an object naming task. The second participant’s view of the scene

was filtered through an object recognition system and therefore inaccurate.

They performed a number of di↵erent analyses based on this data that mostly

involved some probabilistic matching between graphs representing the output

of a computer vision system and the contents of the dialogue. Particularly

Liu et al. (2013) is interesting because they investigate collaborative struc-

tures in the dialogues to enhance reference resolution. In (Liu & Chai, 2015)
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they discuss an experiment in which they used the same graph based ap-

proach to enable a robot to learn weights for a word grounding model in an

object naming task. After they manipulated the robot’s vision mechanisms

to produce errors, the robot learnt which concepts were reliable and which

were not.

Mast & Wolter (2013) present an architecture for grounded reference. In

addition to the discriminatory power of expressions, they model the notion

of acceptability that describes in a probabilistic manner whether or not

the human user would accept a description for an object. In (Mast et al.,

2014) they describe the probabilistic grounding of concepts in the context of

a dialogue system. The system observes the behaviour and uses clarification

questions to dynamically determine how the user interprets attributes in the

current context.

(Kruij↵ et al., 2006b) describe a system for human-augmented mapping (a

task where a robot creates a map of an environment and interacts with human

partner to add additional information to the map) that attempts to detect

problems in its geometric model of the world, and uses a dialogue interface

to ask a human partner clarification questions to resolve the problems.

2.8 This Work

As discussed in the previous sections, there has been some work on uncer-

tainty in dialogue and also on mismatched perception in dialogue. What we

are planning to address with this work, and what we believe has not been
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addressed by other researchers so far, is the question of how human partic-

ipants in a dialogue with a robot react when a perception based problem

exists, what strategies they employ to resolve these problems, and how these

resolution strategies are a↵ected by di↵erent types of information that is

available.

We believe that the findings of this work may be useful in the design

of dialogue systems in that they may inform ways a system may assist a

dialogue partner if it believes that perception errors have occurred and in

that it may inform strategies that may be employed by the system itself to

resolve problems at a later stage.

2.9 Summary

In this chapter we discussed topics related to dialogue and in particular

situated human-computer dialogue that relate to the issue investigated in

this work. We are particularly interested in how perception influences the

content of dialogue, and in errors in perception that lead to problems in the

dialogue. We will however not attempt to modify the robot’s understanding

of predicates, or the robot’s model of the world, but focus on investigating

how the users attempt to resolve the problems. We see this as an alternative

approach that may complement other methods.

We discussed situated dialogue systems because the main experiment dis-

cussed in this thesis centres around a situated dialogue system. We discuss

this system in Chapter 3.
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We discussed dialogue acts and dialogue structures. In Chapter 7 we

describe how we identify situations in which participants encounter a problem

that is due to perception errors in the dialogue, and describe the actions by

the participants at a dialogue act level, and attempt to describe dialogue

structures.

We discussed reference and referring expressions. In Chapter 8 we in-

vestigate the referring expressions that were used when participants resolved

perception based problems.

In Chapter 8 we investigate the referring expressions in unsuccessful ref-

erence at the beginning of problem resolution sub-dialogues and at their

successful conclusion.

60



Chapter 3
The Toy Block Experiment

In an earlier set of experiments (Schütte et al., 2012) we investigated the e↵ect

of diverging perception in a situated human-human dialogue. This experi-

ment was based on data from the Map Task corpus (Anderson et al., 1992).

In the Map Task experiment one participant, the instruction giver gave nav-

igation instructions to a second participant, the instruction follower. Both

participants were given separate maps of the same territory. The instruction

giver’s map contained a route, and their task was to instruct the follower to

recreate the route on their map. The maps contained a set of landmarks.

Crucially, there were di↵erences between the maps that were given to the in-

struction giver and the maps given to the instruction follower. For example,

landmarks present on one map were missing on the other map, or landmarks

were named di↵erently between the maps. We investigated how the follower

reacted to new landmarks the instruction giver introduced, and investigated
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how they managed to navigate landmarks that were not mutually visible.

We extracted the actions the instruction giver and follower performed after

such an introduction, and presented a model that could be used as a basis

to model such dialogues in a dialogue system.

However, we ultimately found that the Map Task data was of limited use

for our investigation because the number of relevant examples was smaller

than expected and the interactions did not transfer particularly well to the

current domain. We therefore set out to perform an experiment that was

more strongly focused on the issue of perception problems in dialogue —

the Toy Block experiment. In this chapter we describe the set-up of the

experiment. In Chapter 4 we describe the dialogue system that was used in

the experiment. In Chapter 5 we analyse the results of the experiment at

a high level. In Chapter 6, Chapter 7 and Chapter 8 we analyse di↵erent

aspects of the experiment in more detail.

3.1 The Experiment

The goal of the experiment was to observe how human users reacted to

problems in a dialogue between a human robot operator and a robot that

was prone to perception errors, and to observe if and how the users were able

to resolve the problems caused by these perception errors. We had three

main concerns while developing the scenario for the experiment:

The scenario needed to feature opportunities for the robot to interact

with objects in the environment.
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The scenario needed to be plausible, i.e. it needed to be clear to the

participants that they were interacting with a robot, and that it was

possible that the robot had problems with perception.

In addition to introducing problems the scenario should also include

options to resolve the problems.

We decided to use a scenario in which one participant instructs a robot to

rearrange a set of objects into a given configuration. Situated dialogue about

manipulating objects is a well-established domain. In a sense the scenario in

this experiment is similar to the classic SHRDLU system (Winograd, 1971).

Since then there have, of course, been many more recent approaches towards

dialogue based object manipulation. For example, Kelleher et al. (2005)

present an experiment in which participants interact with a dialogue system

to modify the properties of objects in a simulated world and Knoll et al.

(1997) present a system in which a human user instructs an actual robot to

assemble a toy airplane.

We prototyped the scenario using a set of toy blocks (Figure 3.1). We

then iteratively refined the task and implemented a simulation based exper-

iment system that uses a dialogue system for interaction. As an early step

in the implementation we compiled a corpus of instructions through an on-

line survey. Participants of the survey were presented with two images that

showed configurations of objects and were asked to produce instructions for

a robot to transform the first configuration into the second configuration.

The instructions collected in this corpus informed our implementation by
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Figure 3.1: The prototype experiment setup.

determining the scope of linguistic expressions the system had to cover and

by informing the types of spatial concepts the system would be likely to en-

counter. An example of one of the tasks from the online survey is shown in

Figure 3.2.

After the first version of the system had been implemented, we performed

a small and informal pilot study using close colleagues as participants. The

purpose of this study was to test for any bugs that had not been discovered

so far, and to collect suggestions for further improvements. The participants

were asked to take notes during the experiments and interviewed afterwards.

Based on the pilot study we integrated further spatial expressions into the

system and clarified the instructions that were given to the participants.

In final version of the experiment, the participants were presented with a

set of objects that were arranged on a surface in a simulation world (called the
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Figure 3.2: A task from the online survey.
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scene). The scene is presented through the simulation window (Figure

3.3b). The robot was described to the participants as a manipulator arm

that could move objects around the scene, but that was not visible in the

simulation.

The participants interacted with the robot through a text based natural

language interface, shown in Figure 3.3a. The upper part of the interface

contained a text based chat interface and a set of buttons. The lower part of

the interface showed an image of the target scene, i.e. the configuration of

objects the participants was asked to recreate in the scene. Participants sent

instructions to the robot by entering them in the chat interface. The robot

then responded through a text reply in the interface and an audible reply in

synthesized speech.

Participants were presented with a series of scenes. After a participant

had successfully transformed the scene into the target scene, the system

loaded the next scene. In order to investigate di↵erent possible approaches

to resolving the problems in the dialogue, the experiment was split up into

five di↵erent phases. In four of them, errors were introduced into the robot’s

perception. In three of these phases, the system o↵ered di↵erent ways to the

participant to access the robot’s understanding of the scene.

Overall the experiment was composed of 5 phases. In the first phase, the

No Error Phase, the robot works as intended and, unlike the later phases,

no errors are introduced into the robot’s perception of the scene. The purpose

of this phase was to establish a baseline for the di�culty of the task and to

record the behaviour of the participants in the absence of errors.
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(a) The interaction window. (b) The simulation window.

Figure 3.3: The user interface.

In the Error Phase the participants attempt the same set of scenes as in

the No Error Phase. This time however, errors are introduced into the robot’s

perception of the world. The purpose of this phase was to establish the e↵ect

of the errors on the di�culty of the task and to record the behaviour of the

participants when problems occurred due to the robot’s perception and the

strategies they use to try to mitigate the problems.

In the remaining phases the participants attempted the same scenes as

in the Error Phase with the same errors, but were provided with di↵erent

options that allowed them to access the robot’s understanding of the scene. In

the Description Phase, the participants can request a scene description.

The system then verbally describes how it believes the objects are arranged

in the scene. The Description Phase represents a uni-directional linguistic

approach towards helping the users to resolve the problems in the dialogue.
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Phase Condition Purpose

No Error Phase No errors Baseline

Error Phase Errors Impact of errors

Description Phase Errors + Description Verbal assistance

Markup Phase Errors + Markup Visual assistance

Querying Phase Errors + Querying Interactive language based assistance

Table 3.1: An overview of the phases.

In the Markup Phase the participants could ask the system to mark

up its understanding of the scene in the simulation view. The system then

highlights every object it is aware of and annotates what type and colour it

believes the object to be. The Markup Phase represents a visual approach

towards resolving the problems in the dialogue.

In the Querying Phase, the participants could ask the system questions

about its understanding of the scene. The Querying Phase therefore repre-

sents an interactive, dialogue-based approach. A summary of the di↵erent

phases is given in Table 3.1.

3.2 Scenes

In this section we describe the scenes that were used in the experiment, what

the design considerations were, and how we reached the set of scenes that was

used in the experiments. All phases in the experiment used the same set of

scenes. In total there were 20 scenes. 14 of the scenes contained errors in the

Error Phase, the Description Phase, the Markup Phase and the Querying

Phase. The scenes were each manually designed to elicit specific types of

referring expressions and to accommodate perception errors. Figure 3.4 to
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Figure 3.7 contain images of the start scenes and the corresponding target

scenes.
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3.2.1 Object Roles

Each scene contained a number of objects. Objects could be either boxes

or balls. They could either be red, green, blue or yellow. A third category

of objects, called places was used to mark locations. Some of these objects

needed to be re-arranged to create the target scene while others were likely

to be referenced to describe an object that has to be moved. We use the

following terms:

Critical object: An object that needs to be moved to successfully

complete a scene.

Non-critical object: An object that does not need to be moved to

successfully complete a scene.

Landmark object: An object that does not need to be moved itself

but that is in locations where they are likely to be used as a landmark

in a description of a critical object

3.2.2 Design of the Scenes

To successfully complete a scene the users had to instruct the robot to move

the objects that are present in the scene so that they matched the target

scene. To move an object the users had to complete 3 steps. They needed to

1. Specify which object to pick up.

2. Specify where to move the object.
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3. Tell the robot to set down the object.

In order to specify which object to pick up and where to move it, the

user has to produce a referring expression that uniquely describes the object

to pick up, and the location to which to move the object. We were specifi-

cally interested in these expressions because they represent the primary point

where the users’ perception and the system’s perception come into contact.

We tried to design scenes which would cause the users to produce specific

types of referring expressions. In general we were interested in

1. Basic referring expressions (i.e. referring expressions that use only basic

attributes)

The blue box.

2. Landmark based referring expressions

The blue box near the yellow ball.

3. Direction based referring expressions

The blue box on the left.

Figure 3.8 provides examples of scenes that were designed with specific

expressions in mind. The white arrows indicate which object needs to be

moved to which location to successfully complete the scene. Figure 3.8a

shows an example of a scene in which all objects can be identified with basic

referring expressions.
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Figure 3.8b shows an example of a scene that was designed to elicit land-

mark based referring expressions. The arrow in the image indicates that the

red ball in the upper right corner needs to be moved to Place 1 on the left

side. Since there are two red balls in the scene, the user needs to use a

referring expression more specific than “the red ball”. We placed a yellow

ball directly next to the red ball in question in order to encourage users to

use the yellow ball as the landmark in a landmark based referring expression

such as “the red ball near the yellow ball”.

Figure 3.8c shows an example of a scene that was designed to elicit a

direction based referring expression. The critical part is that the participants

need to find an expression that distinguishes the blue box on the left side from

the blue box on the right side. Since we did not introduce any distinguishing

landmark, we expect that users are going to use a directional expression to

identify the target object, such as “the blue box on the left”.

We also designed the scenes to be conducive to the introduction of per-

ception errors. We developed possible perception errors for each scene that

would lead to problems in the dialogue. We simulated situations in which the

robot failed to detect an object, recognized the type of an object incorrectly

or recognized the colour of an object incorrectly.

3.3 Phases of the experiment

As discussed earlier, the experiment contained a series of sub-phases. Each

phase was designed to investigate a specific combination of errors and ways for
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(a) A situation which basic expressions are su�cient to identify the critical
objects.

(b) A situation which is designed to get the users to use a landmark based
description.

(c) A situation which is designed to get the users to use a direction based
description.

Figure 3.8: Example start scenes.
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the user to obtain information about the robot’s understanding of the world.

In the following we introduce and define the five phases of the experiment.

3.3.1 No Error Phase

No errors were introduced in the No Error Phase. This phase represents a

baseline version of the system that is free from perception errors, but also

does not provide any of the information request options that are o↵ered in

the other phases.

3.3.2 Error Phase

In the Error Phase errors were introduced. The errors were intended to model

typical errors that may occur in an artificial vision system. There were three

types of errors:

Missing object: The system failed to detect an object.

Wrong colour error: The system determined the colour of an object

incorrectly. For example, the system recognized a blue box as a green

box.

Wrong type error: The system determined the type of an object

incorrectly. For example, the system recognized a ball as a box.

The missing object error represents a situation in which the object

detection mechanism of the computer vision system failed to detect an object.

The wrong colour error and the wrong type error represent situations in
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which the object classification mechanism of the computer vision system

classified properties of a detected object incorrectly.

Each scene contained at most one error. The e↵ect of errors depends on

the role that the object that is being a↵ected by the error has in the task.

Generally speaking errors may a↵ect critical objects or non-critical objects.

If a critical object is a↵ected, the users are likely to experience problems

when they attempt to move the object. If a non-critical object is a↵ected,

the users are unlikely to notice the error unless they need to refer to the

object as a landmark to create a reference to a critical object. We therefore

applied errors to both critical objects and landmark objects. We distinguish

between three error situations:

Critical object error: The error a↵ects a critical object.

Landmark error 1: The error a↵ects a landmark object that is the

only available landmark for a critical object.

Landmark error 2: The error a↵ects an object that is one of multiple

possible landmarks for a critical object.

The missing object error required special consideration because if the

robot did not perceive an object, the robot was not able to interact with it.

For the experiment this meant that if an a critical object was a↵ected by

a missing object error, the users would not be able to complete the scene

successfully. On the one hand we were interested to observe how the par-

ticipants would react to such a situation, and what e↵ect this frustrating
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Missing Object Wrong Colour Wrong Type

Landmark Error 1 Scene 3 Scene 7 Scene 12

Landmark Error 2 Scene 4, 5 Scene 8 Scene 13

Critical Object Error Scene 6 Scene 9,10 Scene 11,14,15,16

Table 3.2: The combination of perception error type and error situation for
each scene.

problem would have on their behaviour. On the other hand, our main in-

terest was in observing how the participants actually solved problems. We

therefore decided to include only one scene in which a critical object was

a↵ected by a missing object error1.

Errors were introduced so that each type of error occurred at least once for

each possible error situation. An overview of the errors that were introduced

in each scene is given in Table A.1 in Appendix A. Table 3.2 shows which

scene contained which combination of perception error and error situation.

3.3.3 Description Phase

In the Description Phase the interaction window contained an additional

button labelled Description. If the user clicked on this button, the system

would generate a description of the scene. For example, for the scene shown

in Figure 3.9, the system generated the description:

S: There is a red ball on the top left. There is a green

box on the left. There is a blue ball on the bottom

left. There is a place named place 1 on the top right.

1The a↵ected scene is Scene 6 (Figure 3.5a).
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Figure 3.9: An example scene without a perception error.

This scene was not a↵ected by a perception error. The description there-

fore matches the scene. The scene shown in Figure 3.10 did contain a per-

ception error (the robot perceived the yellow ball as a yellow box). If the

participant requested a description, the following description would be gen-

erated:

S: There is a red ball to the left of a blue box on the

bottom right. There is a red ball to the left of a yellow

box on the top right. There is a place named place 1

on the left centre.

By comparing the description to their own view of the scene, the par-

ticipant could then determine how their view of the scene di↵ered from the

robot’s. We describe the algorithm used to generate the descriptions in

Section 4.3.5.2.

The intention underlying this approach is to provide the user with a

linguistic description of the system’s model of the world. The markup is

displayed only for the current view of the scene, i.e. if the robot performs an

action, the markup would become outdated and is removed.
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Figure 3.10: An example scene with a perception error.

Figure 3.11: A scene with activated markup.

3.3.4 Markup Phase

In the Markup Phase the interaction window contained an additional button

labelled Markup. If the user clicked on this button, the system would overlay

the view in the simulation window with visual markup that explained its

understanding of the scene. Figure 3.11 shows an example. The markup

shows that the system correctly identified the green box as a green box and

the red ball correctly as a red ball. The blue box in the back however was

incorrectly identified as a green box.

The intention underlying this approach is to provide the user with infor-

mation about the system’s understanding of the scene in a visual way.
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3.3.5 Querying Phase

In the Querying Phase the participants were informed that they could ask

the robot simple questions about whether or not it perceived a given object.

In the following we provide examples of questions and answers in relation to

the scene presented in Figure 3.10.

U: Do you see a blue box?

S: Yes, I see a blue box.
.

U: Do you see a green box?

S: Sorry, I don’t see any green boxes.
.

U: Do you see three red balls?

S: I only see 2 red balls.
.

U: Do you see a red ball on the left?

S: Sorry, I don’t see any red balls that fit your descrip-

tion.
.

U: Do you see a yellow ball?

S: Sorry, I don’t see any yellow balls.

The robot then answers the questions based on its understanding of the

scene. The system then attempts to generate for each possible situation an

informative reply. In particular, the system informs the user about whether

there are more objects in the scene than fit the given description, but that
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are not in the location specified in the question. We provide a more detailed

discussion of the responses in Section 4.4.

The intention underlying this approach is to allow the user to query

the system’s understanding of the scene through language based interaction.

This phase was intended to allow interaction similar to the interaction we

investigated in an earlier work (Schütte et al., 2012) in the Map Task corpus

(Anderson et al., 1992).

3.4 Experiment Execution

Participants were brought into a quiet room. In the first step the experi-

menter gave a description of the experiment at an abstract level and gave

the participants a brief demonstration of the experiment system. The partic-

ipants were then given an instruction sheet appropriate for the experiment

phase they participated in. The instructions sheets for all phases of the ex-

periment are included in Appendix B. After reading the instruction sheet,

the participants were shown a video that provided some general examples of

interaction with the system. After the video, the experimenter demonstrated

to the participants the aspects of the system that were related to the phase

of the experiment they were participating in (e.g. in the Description Phase

the experimenter activated the description button). After this the system

was restarted and the participants were allowed to work by themselves.

The experiment always started with the first two scenes (Scene 1 and

Scene 2 in Figure 3.4). They contained simple tasks and were intended
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to allow the participants to familiarize themselves with the system. The

remaining scenes were presented in random order.

Participants were asked to complete a post experiment questionnaire after

they had completed the final scene. The questionnaires for all phases of the

experiment are included in Appendix Section B.

3.4.1 Participants

Participants were recruited on a voluntary base. Before volunteering, each

participant was given an information sheet that outlined the experiment,

requirements of the participants and an estimate of the duration of the ex-

periment. It is included in Appendix Section B as Figure B.1. Potential

participants were contacted through a mixture of personal correspondence,

flyer distribution and email. As an incentive to participants, each participant

was o↵ered a chocolate bar or piece of fruit and a cup of tea or co↵ee while

participating in the experiment.

The participants were recruited in a college environment. In total there

were 55 participants. About half were computer science undergraduates, the

other half were postgraduate researchers in Computer Science or Physics and

Chemistry. A few were lecturers in Computer Science. The participants were

between 20 and 50 years old, and about 20 of the participants were female

(36.5%). All participants were either native English speakers or competent

(self-assessed) second language English speakers. All participants used com-

puters in their daily activities but were, except for two or three, not familiar

with computer dialogue systems or natural language processing. We believe
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that the participants were therefore well suited for this experiment because

they were able to naturally interact with the system. However, we believe

that the level of general computer experience is not essential for the higher

level outcomes of the experiment, since the experiment mostly involves natu-

ral language based interaction which we expect should be similar for all levels

of computer experience.

Five of the participants who had participated in the No Error Phase

agreed to participate in one of the later phases. This was not considered

problematic because there was a considerable amount of time between the

phases, and because the No Error Phase did not contain the errors that

were the chief source of problems in the later phases. Table 3.3 provides an

overview of the number of participants in each phase, the number of scenes

that were attempted and the total length of the interactions recorded.

Phase Number of participants Scenes attempted Total length

No Error Phase 10 200 04:16:08

Error Phase 17 338 09:03:36

Description Phase 11 220 08:08:03

Markup Phase 11 220 06:13:01

Querying Phase 11 220 06:12:38

Table 3.3: Overview of the recorded data.

3.4.2 Collected Data

While a participant was interacting with the system during the experiment,

all events that occurred were logged and stored. The system logged input by
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the participant and the response from the system. For each input-response

pair the system’s analysis of the user input, the results of the reference reso-

lution process and a description of the actions performed by the robot (if any

were performed) were stored as well. In addition to that, for each action the

resulting state of the simulated world was recorded. Apart from data directly

related to the interaction, the system also stored data related to the state of

the experiment system (such as events denoting the beginning or conclusion

of scenes) and actions related to the markup and description requests and

queries.

We also determine the following measures that are related to the suc-

cess and costs of the interactions as well as the quality of the system as

experienced by the users:

Abandon rate: The percentage of scenes that were abandoned. This

measure is related to the task success rate (any scene that was not

abandoned was successfully completed). It is calculated as the quotient

of the total number of scenes abandoned in a phase divided by the total

number of scenes attempted.

Reference problem rate: The percentage of user inputs that con-

tained a reference that the system found ambiguous or could not resolve

to any object at all. This is calculated as the number of instructions

that contained a reference problem divided by the total number of in-

structions.

Undo rate: The percentage of the actions by the system that the par-
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ticipants undid by using the undo-button. This measure is calculated

as the total number of uses of the undo button divided by the total

number of actions in a phase.

Number of actions per scene: The number of text inputs a partic-

ipant produced until they finished a scene.

Completion time: The time the participants spent on a scene before

they completed it or abandoned it (in seconds).

Number of information requests per scene: How often the partic-

ipants used the information request option that was available to them.

Speak time proportion: The percentage of the total completion time

that was filled with the robot speaking. This is calculated as the sum of

the amount of time it took the system to present all utterances by the

robot in a scene divided by the overall completion time for the scene.

These measures are typical of those generally recorded in experiments

involving dialogue systems. If we take the perspective from (Walker et al.,

1997), the Abandon rate is a measure of task success. The completion

time and number of actions represent e�ciency measures of the cost of the

dialogue. The Reference problem rate and the Undo rate correspond to cost

measures that capture qualitative aspects of the interaction. The number

of information requests and the Speak time proportion do not correspond to

any success or cost measures, we instead use them to interpret and to provide

context for other observations in the experiment.
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3.5 Summary

In this chapter we presented the Toy Block experiment. It is designed to

investigate interactions between a human participant and a robot that is af-

fected by perception problems. In the di↵erent phases of the experiment we

investigate di↵erent combinations of sensor errors and ways for the partici-

pant to access the robot’s understanding of what it perceives. We gave an

overview of how the experiment was performed and of the data recorded.

We implemented a dialogue system for the users to interact with during the

experiment. We describe this system, and the way it implements the di↵er-

ent conditions of the experiment in the next chapter and analyse the data

collected in the experiment from Chapter 5 onward.
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Chapter 4
The Experiment System

In the previous chapter we described the set-up and the goals of the Toy Block

experiment. In this chapter we describe the experiment system that was

built to perform the experiments. It contains two distinct sub-systems: the

interaction system and the world simulation system. The interaction

system handles the interaction with the user, i.e. it interprets input by the

user, formulates responses and plans the action the robot performs in order

to fulfil the user’s instructions. We describe the interaction system in Section

4.2. The world simulation system provides a visualisation of the world the

robot acts in and presents the robot’s actions to the user. We describe the

world simulation system in the next section.

The experiment was performed using an actual dialogue system. Alter-

natively, the experiment could have been performed using a Wizard-of-Oz

set-up (Kelley, 1984). In a Wizard-of-Oz based experiment, part of the verbal
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and non-verbal behaviour of the robot is provided by a human confederate

. Wizard-of-Oz set-ups are frequently employed in human-robot interaction

experiments to simulate functionality that the robot is not capable of per-

forming (Riek, 2012).

We decided not to use a Wizard-of-Oz setup in this experiment. The

main reason for this was that the main purpose of the experiments was to

investigate the behaviour of participants when faced with errors in the robot’s

perception, and the attempts of the participants to resolve the problems

that arose from these errors in the dialogues. Since the participants were

interacting with the system through a dialogue, the participants’ actions

depended strongly on the behaviour shown by the system. Therefore, in order

to produce useful results, the system had to act in a very consistent manner,

especially across the di↵erent problem conditions. We were concerned that

this would be di�cult to ensure in a Wizard-of-Oz scenario.

One problem with the set-up of the experiment system was that experi-

ments could only be performed in an o✏ine fashion, i.e. only one participant

could perform the experiment at a time, while physically using a computer

on which the experiment system was set up. A number of experiments con-

tributing towards human-computer and human-robot interaction have been

performed in online and crowd-sourcing scenarios (e.g. (Orkin, 2013)).

Using an online experiment would have made the process of recruiting par-

ticipants and having them perform the experiment much easier and enabled

us to collect a larger set of data. Unfortunately some of the core components

of the system made it impossible to deploy the system in an online set-up
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without major changes to the system. On the other hand, we found during

the pilot study that participants, if the experiments were not performed in a

controlled environment, tended to get distracted from the experiment, which

had a major negative impact on their performance in the experiment. By

performing the experiment in an o✏ine scenario, we were able to control the

environment, and minimize distractions.

4.1 The World Simulation System

We decided that it was not practical to use actual robot hardware in the

experiment because that would introduce a number of additional sources of

problems that would detract from this work’s focus on problems that arise

from errors in perception. We therefore decided to use a simulation based

alternative. The primary requirements for this simulation environment were

as follows:

It needed to be reasonably realistic looking, i.e. it needed to be able to

produce a scene that could be easily interpreted as a three dimensional

representation of a world that contained di↵erent objects.

It had to be possible to modify the world in real time to visualise actions

performed by the robot.

We decided to use the simulation environment provided by Microsoft

Robotics Studio 1 as the basis of the simulation system. It provided a rea-

sonably realistic looking simulation environment that allowed us to model

1
www.microsoft.com/robotics/
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a wide range of objects. It is also used for robot simulations and therefore

appeared as an appropriate tool. We additionally used the SPL1 software

package ((Kim, 2015)) that allowed us to specify and modify scenes contain-

ing geometric objects in a simple way to develop a server based simulation

programme that we could use to render and display the simulated world of

our system in real time.

We were faced with a number of decisions while we designed the simu-

lation world. First of all it was decided to choose a perspective that would

remain fixed during the course of experiment and always show the complete

scene. The perspective was chosen in a way to minimize the problem of ob-

struction. The presence of obstruction would have introduced a number of

problems. If an object is completely obstructed, it is not visible to the par-

ticipant at all, and they will not be able to account for it when they produce

references to the world. If an object is partially obstructed, it will be less

visually salient, which has an impact on reference resolution (Kelleher et al.,

2005), (Schütte et al., 2010). This creates the possibility that the partici-

pant does not notice the object (or judges it as irrelevant) and omits it from

their reference planning. Finally, even if the participant notices a partially

obstructed object, it is still possible that they identify some of it proper-

ties incorrectly. For example, an observer may be able to tell the colour of

a rectangle that is partially obstructed from view, but may not be able to

determine the actual shape of the object. This is illustrated in Figure 4.1.

1
Simple Programming Language
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Figure 4.1: A demonstration of the problem of obstruction. While both par-
ticipants see the same scene, the obstructed object is actually quite di↵erent.

Finding the right perspective involved a trade-o↵. A high camera per-

spective (Figure 4.2a) would approximate the perspective in the Map Task

experiment (Anderson et al., 1992). It would also make sure that no objects

could be obstructed by other objects. However, it had the drawback that

the elevation of objects became di�cult to perceive, which was critical when

objects were being lifted and held over the surface. A low perspective (Figure

4.2b) made it easy to recognize the elevation of objects, but introduced the

problem that objects could be obstructed by other objects. A low perspective

is used in (Kelleher, 2006). In their work obstruction is not a problem due

to the scenario and the design of the scenes.

In the end a medium-high perspective was decided upon, where the size of

the objects and the design of the scenes was chosen in a way to minimize the

possibility of obstruction (Figure 4.2c). It is similar to the perspective used

in (Gorniak & Roy, 2004). In their scenario a certain amount of obstruction

occurs but is not enough to cause problems in the task.
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(a) The high perspective.
(b) The low perspective.

(c) The final perspective.

Figure 4.2: The di↵erent perspectives.

The objects were arranged on a surface similar to a game board to give

the participants a clearer sense of the space the experiment took place in.

The game board was covered with a checker board style texture that clearly

communicated the board’s spatial orientation and assisted the participants

in determining the relative position of the objects on the board.

We did not intend the participants to use the board itself or the tiles of

the board as a means of describing the location of objects (e.g. by using

expressions such as “The ball on the left edge of the board”) or to define

movement targets (e.g. with instructions like “move the green ball three

tiles forward”). We therefore made the board large enough that the objects

were well clear of the edges of the board, and the tiles of the surface small
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enough to make it impractical to use them as reference.

The worlds contained geometric objects that were intended to represent

toy building blocks similar to the ones from the original physical prototype.

The world contained two types of objects: boxes and balls. alls, which were

sphere-shaped.

The objects within each scene were designed to be roughly the same size,

i.e. it was not intended that size be used a criterion to distinguish objects.

Each object was assigned a colour (green, red, blue or yellow). Each

colour was resolved to an RGB colour value1 during the rendering process,

which was then applied to the rendered object. The world was illuminated

by di↵use white light which provided slight shading on the objects but did

not alter the colour otherwise.

Each object was defined by its basic attributes, namely its type and

its colour. Each attribute had exactly one value. A green ball for example

would be described as the tuple:

htype : ball, colour : greeni.

There was a special type of object called place. It was specifically de-

signed to serve as a marker for locations on which objects could be placed.

Places are modelled as flat squares and are yellow. Places were labelled with

a number that allowed the participants to easily identify them and refer to

them. Places were the only kind of object that was expected to have other

objects placed on top of them.

1The colour values were: green: 0-1-0, red : 1-0-0, blue: 0-0-1 and yellow : 1-1-0.
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(a) A green box. (b) A red ball.
(c) “Place 1”

Figure 4.3: Some objects from the simulation.

4.2 The Interaction System

While the world simulation simulates the world the interaction takes place

in and the robot’s actions, the interaction system handles the actual interac-

tion with the user. The interaction system is a dialogue system for situated

language and is based on the general architecture for situated spoken dia-

logue systems discussed in Section 2.1.1. An overview of the architecture of

this system is provided in Figure 4.4. We segmented the modules slightly

di↵erently from this architecture and introduced new modules to account for

the introduction of perception errors. Additional modules were introduced

that handle the simulation of the environment and the actions of the robot

in the world, and the information request options for the later phases of the

experiment. Like the general architecture for spoken dialogue systems dis-

cussed in Section 2.1.1, this architecture can be divided into one part that

relates to vision, and one part that relates to language based interaction and

the reference part that establishes a link between the vision and the language

part. We discuss the vision system in the next section and the remainder of
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Figure 4.4: The architecture of the Toy Block system.

the architecture in Section 4.3.

4.2.1 The Vision System

The vision system simulates the perception of the robot. The system main-

tains a representation of the robot’s perception of the world in the Visual

Context module. It is regularly updated with input from the World Sim-

ulation that is mediated through the Sensor Module. The purpose of

the sensor module is to simulate the computer vision based perception of

the robot. In general it provides the system with an accurate representation

of the world. However, through the Sensor Error Specification interface

errors can be introduced into the robot’s perception. Errors are manually

specified. This is illustrated in Figure 4.5. The sensor model mediates the

robot’s perception of the scene and thereby the model of the world the robot

forms. In this example, the sensor model is specified to produce a sensor

error which causes the robot to not perceive a specific object in the scene. It

is consequently missing in the robot’s model of the world. This is an instance
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Figure 4.5: The sensor model mediates the robot’s perception of the world
and may be used to introduce errors through manual error specifications.

of a missing object error.

4.3 Language based interaction system

The interaction system forms the second half of the experiment system. In

the following sections we describe the system and its functionality. First we

describe how the systems processes the input by the user (Section 4.3.1). We

then describe how the system plans and performs actions requested by the

user (Section 4.3.3) and how it generates responses (Section 4.3.4). Finally we

give a description of the implementation of the di↵erent information request

options (Section 4.3.5).
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4.3.1 Language Understanding

The task of the language understanding component is to analyse the inputs

by the user and to extract a representation of the user’s intention that en-

ables the system to produce an appropriate reaction. In the first step the

language understanding component analyses the input text produced by the

user by parsing it. In this system we use the NLTK parser (Manning et al.,

2014). The parser takes the input text and identifies grammatical depen-

dency structures between pairs of words.

The interpretation module accepts the results of the parse and attempts

to construct a representation of the intention of the utterance. If the parser

is not able to find a parse of the input or the system is not able to derive a

useful interpretation of the input, the system simply responds with a response

asking the user to reformulate the input. The content of instructions are

represented as a set of frames that may contain representations of referring

expressions. In the following sections we describe the frames and the referring

expressions, and then discuss the process of producing frames based on the

output produced by the parser.

4.3.1.1 Frames

Each frame represents one of the possible actions the user may ask the sys-

tem to perform. We follow the terminology used in VerbNet1 and use the

term patient to refer to objects that are being a↵ected by an action and

1
https://verbs.colorado.edu/

~

mpalmer/projects/verbnet.html#thetaroles
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destination to describe the end point of motions. There are four frames in

our system which can be described as follows.

Action: Pick-up

Patient: A description of the object to pick up.

The pick-up frame represents an instruction to pick up an object. The

patient slot is filled with a representation of the referring expression used by

the speaker to describe the object they want the robot to pick up.

Action: Move

Patient: A description of the object to move.

Destination: A description of where to move the ob-

ject.

The move frame represents an instruction to move an object to a given

point. The destination slot contains a combination of a landmark and a

relation that specifies where to move the object in relation to the landmark

(e.g. in front of it, to the right of or on it).

Action: Put

Patient: A description of the object to put down.

Destination: A description of the location where the

object should be placed.
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The put frame represents an instruction to put an object down. Such

an instruction can either contain a location where to put the object (e.g.

“Put the ball on Place 1.”) or no location (e.g. “Put the ball down.”. The

destination slot in this frame is therefore optional. If it is not provided, the

frame represents an instruction to put the object down in the place where it

is currently being held.

Action: See

Patient: A description of the object(s) the user is

asking about.

The see frame is only used in the Querying Phase. In this phase the user

is able to ask the system whether or not it perceives an object (or multiple

objects) that match a given description. The patient and destination slots

in the frames are filled with representations of referring expressions used by

the participants.

Referring expressions are represented using a feature structure. In gen-

eral, a referring expression is modelled as a list of attribute-value pairs. We

distinguish between basic attributes (type and colour) that apply only to

the referent in isolation and spatial attributes that need to be interpreted

in relation to the context. We provide examples of referring expressions in

this system in the following section.
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4.3.1.2 Interpretation Process

The interpretation module selects and instantiates a frame based on the main

verb of the text. The following verbs were assigned to each action frame based

on our initial corpus analysis:

pick-up: pick, take, select, grab, grasp

move: move

put: put, drop, place, set

see: see

The interpretation module then fills the slots of the appropriate frame by

interpreting the grammatical relations identified in the utterance as semantic

relationships depending on the type of the verb. For the sentence “Pick up

the green ball near the blue box.” the parser produces the following output:

root(ROOT-0, pick-1),

prt(pick-1, up-2),

det(ball-5, the-3),

amod(ball-5, green-4),

dobj(pick-1, ball-5),

det(box-9, the-7),

amod(box-9, blue-8),

prep_near(ball-5, box-9)

The output consists of a list of binary relation predicates. The name of the

relation indicates the type of the grammatical relation, while the arguments

denote words in the input text.1 The output can also be presented in a

graphic format as shown in Figure 4.6.

1The meaning of the relations is defined in (de Marne↵e & Manning, 2008)
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Figure 4.6: The dependency graph produced for the sentence Pick up the
green box near the blue box.

In this example, the parser identifies the word pick as the root verb of the

input text. The interpretation process therefore instantiates a new pick-up

frame:

2

6664

action pick-up

patient (empty)

3

7775

It further finds that the word ball is the direct object (dobj ) of verb. The

direct object of a verb “functions as the patient or beneficiary upon which

the verb acts” (Trask & Stockwell, 2007). It therefore represents an object

that is being a↵ected by the root verb. The interpretation therefore begins

to fill the patient slot of the frame with the properties associated with this

object. In this example, there is an amod relationship between word ball and
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the word green. An amod relationship represents an adjectival modification,

and it indicates that green modifies the meaning of ball.

To enable to system to decide which attribute modifications represented

colour attributes, we created a list of colour terms1. Using this list, the

system classified green as a colour attribute.
2

6664

type ball

colour green

3

7775

Furthermore we find that the word ball is in a prepositional relationship

with the word box (indicated by the prep near relationship in the dependency

graph. This relationship is lexicalised with the word near, which the system

recognizes as a spatial relation term. We therefore extract the attributes of

box
2

6664

type box

colour blue

3

7775

and then add it as the value of a relational attribute to the attributes of the

representation of box. The type of the relation is represented with the reltype

attribute in the frame.
2

666666666666666664

type ball

colour green

rel

2

666666664

reltype near

relatum

2

6664

type box

colour blue

3

7775

3

777777775

3

777777777777777775

1
Red, blue, green and yellow
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This frame represents the referring expression that was used. In the next

step it is inserted into a frame for a pick-up action:

2

6664

action pick-up

patient (empty)

3

7775

The completed frame then looks as follows:

2

66666666666666666666664

action pick-up

patient

2

666666666666666664

type ball

colour green

rel

2

666666664

reltype near

relatum

2

6664

type box

colour blue

3

7775

3

777777775

3

777777777777777775

3

77777777777777777777775

If the interpretation module is not able to derive a complete interpretation

of the output produced by the parser, the system stops the interpretation

process and produces a reply that asks the user to reformulate their input:

S: Sorry, can you please reformulate this?

The output of the interpretation process is used to update the task con-

text. The task context is a representation of the most recent utterance

produced by the user, i.e. it contains a representation of the requested ac-

tion and the referring expressions used to describe the object involved in the

instruction. Together with the Object Salience Context it represents the

state of the dialogue. The Object Salience Context represents the salience
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of objects in the scene. Salience in this context refers to a notion of se-

mantic salience, where objects that have recently been interacted with are

more salient. It contains a list of the objects the system has directly in-

teracted with (i.e. objects it has moved, or in the Querying Phase spoken

about). However, in practical terms, only the object the robot most recently

interacted with is relevant.

4.3.2 Acting

Once the input has been successfully interpreted into a task frame, the action

module then attempts to perform the desired action. This is done in three

steps:

1. In the first step, the action module attempts to ground all references

in the object salience context by resolving the referring expressions

in the utterance (we discuss the resolution of referring expressions sep-

arately in Section 4.3.6).

2. If the first step succeeds, the action module then constructs a plan by

specifying an action or a sequence of actions for the robot to perform.

We describe the action planning process in Section 4.3.3.

3. If a plan could successfully be constructed, the plan is then performed,

and a response message to the user is generated.

This process is illustrated in Figure 4.7. Problems may occur during

reference resolution and during planning. The robot can only perform pick-

up, move and put actions if it can identify unique patients and destinations. If
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it finds that a referring expression is unresolvable or ambiguous, it responds

with a reply that communicates this fact and that indicates the referring

expression that is causing the problem:

U: Pick up the green box.

(The robot does not see a green box.)

S: Sorry, I don’t see any green boxes.

U: Pick up the red ball.

(The robot sees multiple red balls.)

S: Sorry, there is more than one red ball and I can’t figure

out which one you mean.

To increase the informativeness of the replies, they are slightly modified

if an unresolvable referring expression contained a spatial description. We

distinguish between two cases:

1. No referent that matched the basic attributes was found anywhere in

the scene.

2. A referent was found that matched the basic attributes, but not the

spatial attributes (i.e. a matching referent was found but not at the

location specified in the expression).

In the first case, the system simply states that it does not see any object

that expression described:
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S: Sorry, I don’t see any green boxes.

However, this would not be an appropriate reply for the second case. The

system instead replies with a reply that states that it did not find any objects

that fit the given description:

U: Pick up the red ball near the blue box.

(The robot does not find any objects that match the

description.)

S: Sorry, I don’t see any red balls that fit your descrip-

tion.
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Figure 4.7: Reacting to an instruction. We only show the process for pick-up
instructions. The process for the other cases is similar, but involves resolving
the expression for the destination and additional reactions if this fails.
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4.3.3 Action Planning

The simulated robot is capable of performing three types of actions:

Pick-up: The robot picks up an object. As a precondition, the robot

must not be already holding an object.

Move: The robot moves an object to a specified location. This repre-

sents a horizontal movement of the robot arm. As a precondition, the

robot must be holding an object.

Put-down: The robot sets down an object it is holding. As a precon-

dition, the robot must be holding an object.

To enable a more flexible interpretation of instructions, the system was

able to plan actions to fulfil the preconditions of other actions. For example,

if the user gave the instruction “Move the green ball to Place 1.” while the

robot was not actually holding an object, the system would make a plan

to identify and pick up an object that fit the description “the green ball”

first. Since the domain was rather limited, the system did not perform full

planning but used a small library of pre-formulated plans.

If the planning process fails, the system produces a response that com-

municates the problem. For example, if the user instructs the robot to pick

up an object while it is already holding an object, the system will produce

the following response:

S: Sorry, I’m already holding an object.
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The robot is also limited in that it cannot stack objects on top of other

objects. If a user issues an instruction that would result in the robot stacking

one object on top of another object, the planning process is abandoned and

the following response is produced:

S: Sorry, I can’t put objects on top of other objects.

Every time the robot successfully completes an action, the object salience

context is updated by making the object that was last interacted with the

most salient object.

4.3.4 Response Generation

Utterances by the system are based on pre-formulated templates for each

possible reply that, where necessary, are combined with automatically gen-

erated referring expressions for the objects under discussion. The responses

are displayed in the interaction window. They are also presented as spoken

language that is produced using the Mary Text-to-Speech system (Schröder

& Trouvain, 2003). The robot therefore both speaks and also replies in writ-

ten text. Action plans are passed on to the world simulation, where they are

put into action.

4.3.5 Information Request Modules

The information request options in the Description Phase and the Markup

Phase of the experiment are implemented in the Markup Generation module
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and the Description Generation module. The Description Generation

module is active in the Description Phase of the experiment. Its purpose is

to access the Visual Context and to produce a description of the scene as it is

perceived by the robot. The Markup Generation module is active in the

Markup Phase of the experiment. Its purpose is to provide the user with a

visual indication of the robot’s understanding of the scene. In the Querying

Phase the participants were able to ask the system simple questions. We

discuss the generation of responses to these questions in Section 4.4.

4.3.5.1 Markup Generation

The Markup Generation Module accesses the Visual Context module. It

retrieves the location of each object the robot perceives and the value of the

colour and type attribute. Based on this, it produces a specification of a

set of labels that are passed on to the Markup Generation module. The

Markup Generation module then specifies a set of markup labels that are

overlayed over the view of the scene presented to the user. For each object

one markup label is generated that consists of the following:

A rectangular frame that encompasses the object, the purpose of which

is to highlight the object to show that it is perceived by the robot.

A text label showing the type attribute value that is perceived for the

object (e.g. box ) and the colour value that is perceived for the object

(e.g. green). The position of the text label relative to the object (e.g.

above or to the right) is specified during the design of the scene to
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Figure 4.8: An object with a label.

avoid problems with a label that might become hard to read because

it overlaps with an object).

Figure 4.8 shows an example. The left side represents the information

that the robot has for an example object (in this case a yellow ball). The

right side shows the markup label that would be generated based on this

information (overlayed over the object in question).

After the markup button has been activated, the markup is produced and

overlayed over the scene. If the markup button is pressed a second time, the

markup is removed. If an object in the scene is moved, the markup is also

removed.

4.3.5.2 Description Generation

In the Description Phase of the experiment the interaction window contained

an additional button labelled Description. If the user clicked on this button,

the system would generate a description of the scene. The system generates

descriptions by clustering objects that are located close to each other into

groups, and then describing each group in terms of spatial configuration, and

the group’s overall location in the scene. The process comprises the following
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Figure 4.9: An example scene containing three groups of objects.

steps:

1. It clusters objects that are close to each other into groups.

2. It selects a relation that describes the objects in each group in relation

to each other. Each relation is associated with a text template that

describes the objects and the relation between them. The type of the

relation is chosen based on the number of objects in the group:

For groups of three1 objects, the between relation was chosen. It

describes the object that was most central in the group in relation

to the other objects. Group (a) in Figure 4.9 is an example of

such a group.

For groups of two objects, the left of relation is used to describe

one of the objects in relation to the other object. Group (b) in

Figure 4.9 is an example of this (in this example we decide to

describe the green ball as being to the right of the yellow box).

1Scenes were designed such that at most three objects would form a group.
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No relation was needed for groups containing a single object (for

example Group (c) in Figure 4.9

3. A directional attribute that describes the location of the group in a

global frame of reference is added to the group. For this purpose we

divided the scene into nine regions as shown in Figure 4.10, and asso-

ciated each region with an attribute value. For example, Group (a) is

assigned the attribute back left, Group (b) is assigned the attribute top

right, and Group (c) is assigned the attribute bottom centre.

4. For each group a sentence is generated. This is done by instantiating

the templates that are associated with the group relations and filling

them out with descriptions of the objects involved in the groups and

adding a lexicalisation of the directional attribute. In our example the

following sentences are generated:

Group (a): There is a red box between a blue ball and a blue box

on the top left.

Group (b): There is a green ball to the right of a yellow box on

the top right.

Group (c): There is a red ball on the bottom centre.

The sentences are then simply concatenated and presented to the user.

Overall, the system would present the following description:

117



Figure 4.10: The spatial regions that are used for description generation.

S: There is a red box between a blue ball and a blue box

on the top left. There is a green ball to the right of

a yellow box on the top right. There is a red ball on

the front centre.

This approach to generating descriptions is not intended as a general so-

lution. Some scenes were specifically designed to guarantee that the system

chooses groupings that are plausible to a human user. The intention un-

derlying the Description Generation approach is to provide the user with a

linguistic description of the system’s model of the world, and to examine how

users resolve perception based problems using the descriptions. We however

do not claim that the approach used here is a general solution for scene

descriptions.
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4.3.6 Reference Resolution

The system can resolve references to objects in the visual context, or to

objects that have recently been discussed or interacted with. The process of

reference resolution is influenced by the role of the referring expression in the

task and the state of the robot.

If the referring expression is used in the patient slot for an action that pre-

supposes that an object is being held (for example in amove-instruction), and

the robot is actually holding an object, the process attempts an anaphoric

interpretation by checking whether the object that is being held is compat-

ible with the given expression. If this is the case, the expression is resolved

to the object that is being held.

If the referring expression is a pronoun, the system also attempts an

anaphoric resolution based on salience. If an object is currently being held,

the expression is resolved to this object because we assume that this object

is always the most salient. In the following example, the robot correctly

resolves the pronoun it in the third utterance to the object that is currently

being held:

U: Pick up the green box.

(The robot picks up the box.)

S: Ok.

U: Move it to Place 1.

S: Ok.

(Robot moves the box to Place 1.)
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If no object is being held, the object salience context is queried for the

most salient object. In general, this is the most recent object the robot has

interacted with. In the following example, the system resolves the pronoun

it in the third utterance the object it has just put down in the previous step:

(Robot is holding a box.)

U: Put the box down.

S: Ok.

U: Pick it up.

S: Ok.

(The robot picks up the box it just put down.)

In the Querying Phase, an object that has been discussed through a query

can also become salient:

U: Do you see a green box?

(The robot sees exactly one green box.)

S: Yes, I see a green box.

U: Pick it up.

S: Ok.

(The robot picks up the box.)

In this example, the system is asked whether it sees a green box. It

confirms that it sees one green box. The box in question thereby becomes

the most salient object. The system subsequently resolves the pronoun it to

it.
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If no pronoun is used, the process attempts an exophoric interpretation

by finding a matching object in the visual context. The visual context is

a representation of the state of the world that is being maintained in the

system. It is updated after every action based on the sensor model (as

discussed earlier). The resolution process proceeds as follows:

1. In the first step, the system filters all visible objects based on the

basic properties provided in the expression. The result forms the set of

candidate referents.

2. If the referring expression contained no spatial attributes, the set of

candidates is returned as the result.

3. Otherwise the set of candidates is filtered based on the spatial at-

tributes.

In the following section we describe the evaluation of basic attributes and

the di↵erent types of spatial attributes.

4.3.7 Basic Attributes

A basic attribute provided in a referring expression matches the attribute

of an object if the attributes values are identical or synonymous. We an-

notated for each possible attribute value a set of synonyms. For example,

the objects of the type ball can be referred to as spheres and circles and

balls. The sets of synonyms were determined based on our corpus analysis

as described in Section 3.1.
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We also introduced the type expressions thing and object. They are in-

terpreted as hypernyms for ball and box. For example, a green ball and a

green box can both be referred to as a green object (whether the expression

is distinguishing depends on the context of the scene).

4.3.8 Spatial Attributes

If the expression contained a spatial attribute, the candidates are again fil-

tered based on the spatial attribute. We distinguish between two types of

spatial attributes: directional attributes and relational attributes.

4.3.8.1 Directional Attributes

Directional attributes describe the position of an object in terms of the global

frame of reference by specifying a location in the scene. They are expressed as

prepositional phrases (e.g. “the green box on the left”) or as adjectives (e.g.

the bottom right green box”). We segmented the scene into three horizontal

regions (front, back and center) and three vertical regions (left, right and

center), and associated them with the corresponding directional attribute

values.

If an expression contained a directional attribute (e.g. “the box on the

left”), the reference resolution was restricted to the region specified by the

attribute. By combining a vertical and a horizontal directional attribute,

the target region could be restricted to the intersection of the two regions

(e.g. “the box on the bottom left”). The regions are illustrated in Figure

4.11. The set of regions used for reference resolution is di↵erent from the set
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Figure 4.11: The spatial regions that are used for referring expression reso-
lution.

of regions used in the generation of descriptions (presented in Figure 4.10)

in that during interpretation general expressions such as on the left or in

the front were acceptable, while for the descriptions always the most specific

region was used (e.g. an object located anywhere on the left side of the world

was either described as being in the top left region, the left center region or

the bottom left region.

Direction attributes such as near, far or furthest form a special case of

directional attributes. They denote an object that is in an extreme position

along a direction. For example, the expression “the nearest box” is generally

intended to refer to a box that is has the smallest distance to the speaker.

The expressions “the leftmost box” is generally understood to refer to the

box that has no other box to the left of it. To interpret an attribute of this

type, all objects in the visual context are filtered by the basic attributes in the

expression and then ordered by their position along the x-axis (for rightmost

and leftmost), or the y axis (for far and near). The object that has the most

extreme position is then chosen as the referent. This is illustrated in Figure

4.12.
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Figure 4.12: Interpretation of directional attributes that describe objects in
extreme positions.

4.3.8.2 Relational Attributes

Relational attributes describe the position of an object in relation to a land-

mark object. They are expressed as prepositional phrases, for example “the

green box near the blue ball” or “the box between the green balls”. The

following prepositions are covered by the system:

to the right of

to the left of

behind

in front of

above

next to

near
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Figure 4.13: The coordinate system underlying the scene.

between

They represent projective relations and in our system are interpreted

using spatial templates. A relational attribute applies if the system is able to

identify an object inside the template that matches the referring expression

given for the landmark. The template for the preposition to the right is

presented in Figure 4.14. The template defines a rectangular region that

stretches away from the landmark. It has a length of 2 times the width of

the bounding box of an object and the height of one width (the bounding

box of all objects is the same size). The type of the relation determines in

what direction the template is projected from the landmark:

to the right of: The template stretches horizontally from the land-

mark in the positive direction of the x-axis.

to the left of: The template stretches horizontally from the landmark

in the negative direction of the x-axis.
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Figure 4.14: The template for the relation right of the landmark.

behind: The template stretches vertically from the landmark in the

positive direction of the y-axis.

in front of: The template stretches vertically from the landmark in

the negative direction of the y-axis.

above: This is interpreted as a synonym of behind.1

next to: This relation holds if any of the previously mentioned rela-

tions hold.

near: This is treated as a synonym of next to.

The between relation describes a relation between the target object and

a group of landmark objects. This group can either be described as a list

of objects (“the ball between the yellow box and the blue box”) or a set

of objects (“the ball between the boxes”). To evaluate this relation, the

system identifies a group of objects that are close together (two objects are

considered close if they are no further apart than the width of two bounding

1While this interpretation may appear counterintuitive, we found that users did use
this relation to refer to objects that were behind other objects. We believe that this is be-
cause users interpreted the image of the world in the simulation view as a two dimensional
surface when they used this reference where the further object appeared to be above the
nearer object.
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boxes) and satisfies the description of the landmark group. The relation then

holds for any candidate objects that are in the space between the landmark

objects. This is illustrated in Figure 4.15.

Figure 4.15: An illustration of the interpretation of between.

4.4 Querying

In the Querying Phase of the experiment, the users were able to ask the robot

simple questions about whether or not the robot perceived an object, such

as:

U: Do you see a green box?

U: Do you see a green box on the right?

U: Do you see a green box near a blue ball?

In addition to this, the user could also ask about the number of objects

the robot perceived that matched a given description:

U: Do you see two green boxes?

U: Do you see three balls?
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The users were instructed to only ask questions that could be answered

by a yes or no answer. The responses always contained a reformulation

of the description the speaker used in the original query. The purpose of

this to emphasize to the speaker that the system had correctly interpreted

the query (and to allow the speaker to detect if the system had incorrectly

interpreted an expression). The answering process is an extension of the

reference resolution process where the chief di↵erences are that the users

could ask about arbitrary numbers of objects, while the reference resolution

for the normal instructions was focused on identifying unique referents. In

addition to that we aimed to maximize the amount of information contained

in the responses by the system.

If the user did not specify an explicit number of objects in the question

(e.g. “Do you see a green ball?”), the response is straightforward. If an object

that matches the expression is found, the systems replies with a positive reply:

S: Yes, I see a green ball

If the expression contained a spatial attribute, the system responds with

a positive response that acknowledges that the expression contained a spatial

attribute:

S: Yes, I see a green ball that fits your description.

If no fitting objects are found, the system gives a negative response:

S: Sorry, I don’t see any green balls.
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If the expression contained a spatial attribute and no candidates were

found, the system responds with a response that acknowledges the spatial

attribute:

S: Sorry, I don’t see any green balls that fit your descrip-

tion.

The replies become more involved if the user asks about a specific number

of objects. For example, a user may ask “Do you see three boxes?”. If

the user asks about a specific number of objects in a specific location, the

system answers the question based on the number of object that fit the

description, but also mentions other objects, that fit the basic attributes of

the description, but are in a di↵erent location. We refer to the number of

objects the user asks about (in this example three) as the queried number

in the following. We di↵erentiate the reply based on the following features:

1. Did the number of objects that matched the description match the

queried number?

2. Did the expression contain a spatial attribute?

3. Were there candidate referents that matched the basic attributes of the

expression, but not the spatial attributes (i.e. were there objects that

had matching type and colour, but that were not where the participant

described them)?

Table 4.1 shows all possible combinations of these factors. After excluding

cases that were logically impossible (e.g. if no spatial attribute was used in
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Number of
candidates matches
queries number

Was a spatial
attribute used?

More candidates
elsewhere?

Case

Yes No No 1

Yes Yes No 2

Yes Yes Yes 3

No Yes Yes 4

No No Yes -

No No No 5

Yes No Yes -

No Yes No 6

Table 4.1: Possible outcomes of number based queries.

the expression, it was not necessary to investigate whether there were objects

“elsewhere” in the scene since no location was specified in the first place),

we were left with six possible outcomes. We formulated a specific response

for each of these outcomes as follows:

Case 1: The user asked about a specific number of objects without using a

spatial attribute, andthat number of objects was found.

U: Do you see three green balls?

S: Yes, I see three green balls.

Case 2: The user asked about a specific number of objects with a description

that contained a spatial attribute. A matching number of objects was

found, and no object that matched the basic description was found

elsewhere in the scene.
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U: Do you see 2 green balls on the left?

S: Yes, I see 2 green balls that fit your description.

Case 3: The user asked about a specific number of objects with a description

that contained a spatial attribute. A matching number of objects was

found, but there are more objects in the scene that match the basic

description.

U: Do you see 2 green balls on the left?

S: Yes, I see 2 green balls that fit your description, and

1 green ball somewhere else.

Case 4: The user asked about a specific number of objects with a description

that contained a spatial attribute. The system did find some objects

that matched the description, but not the number queried. Objects

that matched the basic expression were found somewhere else in the

scene.

U: Do you see 2 green balls on the left?

S: I only see 1 green ball that fits your description and I

see 1 green ball somewhere else.

Case 5: The user asked about a specific number of objects without using a

spatial attribute, and the number of matching objects did not match

the queried number.
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U: Do you see 2 green balls?

S: I 1 green ball.

Case 6: The user asked about a specific number of objects with a description

that contained a spatial attribute. A number of objects were found that

matched the expression, but not the queried number. No objects that

matched the basic description were found elsewhere in the scene.

U: Do you see 2 green balls on the left?

S: I see one green ball that matches your descriptions.

If the user asked a question, the system resolved the expression used

exophorically in the scene. It then determined the case based on the

features discussed earlier, and chose the template associated with the

case to formulate the reply.

4.5 Summary

In Chapter 3 we described the Toy Block experiment. In this chapter we

described the dialogue system that was used to perform the experiment.

We described the components of the system and how the system interprets

commands and performs actions. Furthermore we described how errors are

introduced into the system’s perception, and we described the information

request options.

In the following Chapter we analyse the data collected during the ex-

periments. In Chapter 5 we analyse how well the participants were able to
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solve the tasks in the experiment, how big the impact of the perception errors

was, and whether the information request options were useful in resolving the

problems arising from perception errors. In Chapter 6 we investigate how

participants used information requests. In Chapter 7 and Chapter 8 we in-

vestigate how participants reacted when the robot encountered a perception

error, and how they resolved the problems arising from this.
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Chapter 5
E↵ect of Perception Errors on

Task Performance and User

Experience

In this chapter we examine the headline results of the Toy Block experiment.

In the experiment, the participants interacted with a simulated robot to

complete a series of tasks. During four of the five phases of the experiment the

robot experienced artificially induced perception problems. In three of these

phases, the users were o↵ered di↵erent ways to request information about

the robot’s perception. In this chapter we investigate how the participants

experienced the task at a subjective level and investigate the objective success

and cost measures that were recorded during the experiment to provide a

quantitative description of the di�culties encountered in each phase. We
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do not investigate the content of the interactions in the experiment in much

detail in this chapter, but aim to provide a general overview of the relative

characteristics of the phases of the experiment. We focus on the structure

and content of problem resolution dialogues in the following chapters.

5.1 Research Questions

In this chapter we address the following research questions:

Research Question 5.1: How did the participants experience the task

and the problems in the dialogues? – For this question we focus on how the

participants experienced the experiment by evaluating answers provided on

the post-experiment questionnaire.

Research Question 5.2: Do perception errors as experienced by the

robot have an impact on the di�culty of the task? – We investigate whether

introducing perception errors had an impact on the measurable aspects of

the task di�culty such as the participant’s likelihood to successfully com-

plete scenes, their likelihood to encounter reference problems and the e↵ort

necessary to complete scenes.

Research Question 5.3: If participants are o↵ered the option to request

information about the robot’s understanding of the scene, do they use it? –

We investigate whether or not the participants used the description option,

the markup option and the querying option when they were available.

Research Question 5.4: Does the ability to request information about

the robot’s understanding of the scene have an impact on the participants’
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ability to solve the task? – For this question we investigate whether the

ability to request information from the robot decreased the measurable task

di�culty as discussed in Research Question 5.2.

Research Question 5.5: How do the information request options com-

pare to each other in terms of e↵ectiveness? – For this question we investi-

gate whether one of the ways to request information is superior to the other

alternatives in general, and whether one of them is particularly suitable to

optimizing certain aspects of task di�culty, e.g. whether one of the options

reduces the Abandon Rate particularly strongly.

In the remaining sections of this chapter we address each one of these

research questions.

5.2 RQ 5.1: The Participants’ Experience

How did the participants experience the task and the problems in the

dialogues?

The participants were asked to complete an questionnaire after the ex-

periment. The questionnaires contained three questions that referred to all

phases of the experiment. The questionnaires for the later phases also con-

tained additional questions that referred to the specific phase. The three

general questions were:

Question 1: “How well would you say the robot understood you?

(1 = very poor, 5 = very good”)

Possible responses: 1,2,3,4,5
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Question 2: “Interacting with the system was frequently frustrat-

ing.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree

Question 3: “When the robot misunderstood something, I was of-

ten able to figure out what its problem consisted in.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree

Question 1 to Question 3 were included in the questionnaires for all

phases. In the Error Phase, the Markup Phase and the Querying Phase

two additional questions were introduced:

Question 4: “I found it easy to accomplish the tasks.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree

Question 5 (De-

scription Phase):

“I found the descriptions o↵ered by the system help-

ful.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree

Question 5

(Markup Phase):

“I found the markup-option o↵ered by the system

helpful.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree
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Question 5 (Query-

ing Phase):

“I found it helpful that I was able to ask the system

questions.”

Possible responses: Strongly disagree, Disagree, Neutral,Agree,Strongly

agree

While at the surface Question 1 only refers to language based commu-

nication we hope to determine whether this impression is a↵ected by the

presence of perception errors. The intention behind Question 2 was to de-

termine whether the participants’ felt more frustrated with the task when

perception errors were present. In Question 3 the participants were asked to

describe how well they were able to resolve problems they encountered in the

dialogue. This is aimed at the problems that arise due to perception errors.

The purpose of Question 4 was to determine how di�cult the participants

found it to complete the task. It somewhat overlaps with Question 1, but is

not focused on the robot but only the task. With Question 5 we attempt to

determine how helpful the participants found the di↵erent ways of accessing

the robot’s understanding of the world.

5.2.1 Responses

An overview of the distribution of the responses to the questions is given

in Table 5.1 (Question 1), Table 5.2 (Question 2), Table 5.3 (Question 3),

Table 5.4 (Question 4) and Table 5.5 (Question 5). They are presented as

bar charts in Figure 5.1 and Figure 5.2. The graphs in this figure are are

arranged so that all graphs in one column refer to the same question and all
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graphs in one row refer to the same phase of the experiment.

Response No Error Phase Error Phase Description Phase Markup Phase Querying Phase

1 0.00% 0.00% 0.00% 0.00% 0.00%

2 0.00% 5.88% 0.00% 0.00% 0.00%

3 20.00% 52.94% 18.18% 45.45% 36.36%

4 30.00% 23.53% 54.55% 36.36% 45.45%

5 50.00% 17.65% 27.27% 18.18% 18.18%

Table 5.1: The responses for Question 1 (“How well would you say the robot
understood you?”, where 1 represented “Very poor” and 5 represented “Very
good’ ).

Response No Error Phase Error Phase Description Phase Markup Phase Querying Phase

Strongly disagree 30.00% 5.88% 27.27% 18.18% 0.00%

Disagree 20.00% 23.53% 36.36% 54.55% 36.36%

Neutral 20.00% 29.41% 18.18% 0.00% 18.18%

Agree 30.00% 35.29% 18.18% 18.18% 36.36%

Strongly agree 0.00% 5.88% 0.00% 9.09% 9.09%

Table 5.2: The responses for Question 2 (“Interacting with the system was
frequently frustrating.”).

Response No Error Phase Error Phase Description Phase Markup Phase Querying Phase

Strongly disagree 10.00% 0.00% 0.00% 9.09% 0.00%

Disagree 0.00% 5.88% 0.00% 0.00% 0.00%

Neutral 40.00% 17.65% 9.09% 27.27% 0.00%

Agree 20.00% 64.71% 63.64% 27.27% 54.55%

Strongly agree 30.00% 11.76% 27.27% 36.36% 45.45%

Table 5.3: The responses for Question 3 (“When the robot misunderstood
something, I was often able to figure out what its problem consisted in.”).

The responses to Question 1 suggest that the participants were generally

satisfied with the robot’s communicative capabilities. The responses for the

Error Phase tend to be lower than for the other phases. This indicates that

the perception errors had a negative e↵ect on the participants’ impression of
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(a) No Error Phase, Question 1. (b) No Error Phase, Question 2. (c) No Error Phase, Question 3.

(d) Error Phase, Question 1. (e) Error Phase, Question 2. (f) Error Phase, Question 3.

(g) Description Phase, Question 1 (h) Description Phase, Question 2. (i) Description Phase, Question 3.

(j) Markup Phase, Question 1. (k) Markup Phase, Question 2. (l) Markup Phase, Question 3.

(m) Querying Phase, Question 1. (n) Querying Phase, Question 2. (o) Querying Phase, Question 3.

Figure 5.1: The responses to Question 1, Question 2 and Question 3.
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(a) Description Phase, Question 4. (b) Description Phase, Question 5.

(c) Markup Phase, Question 4. (d) Markup Phase, Question 5.

(e) Querying Phase, Question 4. (f) Querying Phase, Question 5.

Figure 5.2: The responses to Question 4 and Question 5.
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Response Description Phase Markup Phase Querying Phase

Strongly disagree 0.00% 0.00% 0.00%

Disagree 0.00% 0.00% 0.00%

Neutral 27.27% 27.27% 18.18%

Agree 54.55% 54.55% 81.82%

Strongly agree 18.18% 18.18% 0.00%

Table 5.4: The responses for Question 4 (“I found it easy to accomplish the
task.”).

Response Description Phase Markup Phase Querying Phase

Strongly disagree 0.00% 0.00% 0.00%

Disagree 0.00% 0.00% 9.09%

Neutral 9.09% 0.00% 0.00%

Agree 36.36% 27.27% 27.27%

Strongly agree 54.55% 72.73% 63.64%

Table 5.5: The responses to Question 5 (“I found the markup-option o↵ered
by the system helpful.”, “I found the descriptions o↵ered by the system help-
ful.”, “I found it helpful that I was able to ask the system questions.”).

the robot. However, it should be noted that the replies for the Error Phase are

still mostly neutral. We believe that this may be due to the formulation of the

question. It is possible that participants did not attribute all of the problems

arising from perception errors to the robot’s capability to understand them,

but may have perceived them as a separate issue, and therefore have been

less inclined to issue a negative response for this question.

The responses to Question 2 are surprisingly evenly distributed for the No

Error Phase. However, the majority of the responses disagree or are neutral

with respect to the statement (“Interacting with the system was frequently

frustrating.”). This indicates that the participants were not overly frustrated.

For the Error Phase a tendency towards neutral and agreeing responses ap-
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pears to exist, indicating that participants found the interaction with the

robot more frustrating if errors were present. It is confounding though that

at least a few participants did not find that the task was frequently frustrat-

ing. In personal discussions with participants we found that at least some

participants perceived the problems in the dialogues not so much as a source

of frustration, but more as an interesting game or puzzle, and that they felt

challenged rather than frustrated. It is possible that the positive responses

were due to this phenomenon.

In the Description Phase and the Markup Phase a majority of the par-

ticipants did not find the task frustrating. The distribution of the responses

for the Querying Phase is almost as strongly positive as it is negative. This

indicates that in while some participants in the Querying Phase had a posi-

tive experience, another group had a negative experience. A possible reason

for this may be that the querying option set up expectations in some par-

ticipants it could not fulfil. While the participants could ask any question

they could think of, the system could only interpret and answer simple yes-

or-no questions. It is plausible that one group of participants found it easier

than others to accept the limitations of the querying option, and work within

them, while others found it di�cult and kept experiencing disappointment

when the system was not able to handle more complicated questions.

Another problem that had an impact on the responses could be that

the statement in Question 2 was formulated in a somewhat biased manner

(“Interacting with the system was frequently frustrating.”). It is possible

that responses were skewed towards neutral and negative responses because
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of this.

As stated earlier, Question 3 was aimed at discovering how well partici-

pants felt they were able to resolve problems that arose in the dialogue due to

perception errors. In the No Error Phase, no errors had been introduced, and

participants gave mostly neutral and agreeing responses. This may appear

somewhat confounding since the question presupposes that perception errors

do occur. On the other hand, participants were not aware of the fact that

in later phases errors would be introduced, and they probably interpreted

the question as referring to other problems encountered by the system such

as parser errors or mismatches about the interpretation of spatial attributes.

We therefore do not attribute much importance to these responses. In the

Error Phase the participants gave mostly agreeing responses, indicating that

they were able to resolve the problems they encountered. In the Descrip-

tion Phase, the Markup Phase and Querying Phase the responses are also

agreeing, but with a stronger tendency towards “Strongly agree” rather than

just “Agree”. This indicates that, while participants felt that they were able

to resolve the problems without being able to explicitly request information

from the system, they were more confident when they had access to addi-

tional information. Similar to Question 2, the statement in Question 3 was

formulated in a slightly positive manner (“When the robot misunderstood

something, I was often able to figure out what its problem consisted in.”).

This may have skewed the responses slightly negatively.

The responses to Question 4 show that in general most participants found

it easy to solve the tasks. In addition to this, the responses to Question 5
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show that almost all participants found the information options they were

o↵ered useful. Overall, the markup option appears to have the most positive

response, while the other options have (very few) neutral and disagreeing

responses mixed in.

5.2.2 Summary

The introduction of perception errors gives the participants the impression

that the robot understands them less well. This shows that problems in

perception are registered by the participants as problems in the robot’s com-

munication. If participants can access the robot’s understanding of the scene,

their impression of the robot’s understanding capabilities improves.

The introduction of errors leads to increasing frustration, and giving par-

ticipants the ability to request information from the robot decreases frus-

tration. We believe that this is because the additional information about

the robot’s understanding of the scene allows the participants to construct

a mental model of the robot’s perception which allows them to construct a

model the robot’s understanding and identify the underlying problem. This

observation is consistent with the participants’ impression that they were

able to identify and resolve problems in the dialogue.

Conclusions:

1. The introduction of errors decreased the participants’ impression of the

robot’s communicative capabilities and increased frustration.

2. The participants were more confident that they could resolve problems
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the robot had if they could access information about the robot’s un-

derstanding of the scene.

While the overall responses are plausible, we were still surprised that

the responses for the Error Phase were not more clearly negative. As we

stated earlier, a possible explanation for this may be found in the fact that

some participants perceived the experiment as an interesting and challenging

game rather than a frustrating task. It is unlikely that users in a real world

scenario, who may have to use a robot as part of their job, or under time

constraints, would be as tolerant. It is also possible that the participants of

the experiment were, due to the relatively low age, familiar with computer

puzzle games, and therefore related the task to one of those games rather

than to a work-related task. A di↵erent group might therefore have shown

more frustration.

5.3 Task Success and Dialogue Cost Measures

In the first part of this chapter we evaluated the subjective experience of

the participants during the experiment. In the remainder of this chapter,

we are going to investigate the dialogues and in particular the di�culties

the participants experienced in completing the tasks in terms of the recorded

task success and the costs of the dialogues that were measured. We presented

a list of the recorded measures earlier in Chapter 5. We will reiterate them

here and discuss how they relate to the di�culty of the task.

We take the Abandon Rate as a high-level indicator of the di�culty of
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the task. The instructions given to the participants1 stated that they were

free to abandon scenes if they thought they would not be able to complete

them. For this measure we assume that a higher value indicates that the

task was more di�cult.

We see the Reference Problem Rate as a second indicator of the dif-

ficulty of the task that is directly related to the presence or absence of per-

ception errors. It indicates how often the system was not able to resolve a

reference a participant used in an instruction to a unique referent. If the

system could not find a unique resolution to a reference in an instruction, it

was not able to perform the instruction and had to ask the participant for

clarification. While a certain baseline amount of reference problems must be

attributed to general deficiencies in the system’s understanding capabilities

or mismatches between the participant’s interpretation of spatial expressions

and the system’s, reference resolution problems are also a likely symptom of

divergences between the participants’ and the robot’s understanding of the

scene (the results from the No Error Phase provide a baseline for the per-

formance of the system without perception errors). For this measure higher

values indicate that the participants encountered more problems, and that

the task was therefore more di�cult.

The Undo Rate gives an impression of the relation between the number

of instructions the participants entered and the number of times participants

decided to undo an action performed by the system. There are a number of

possible reasons why a participant might decide to undo a system action. For

1The instruction sheets for each phase are provided in Appendix B
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example, a participant might notice that after an action has been completed,

that they had actually misinterpreted the goals of the task (e.g. they might

have moved a box not to Place 1 as shown in the target image, but to Place

2), and then decide to undo the action, and perform it di↵erently. However,

and critically for this experiment, another reason why a participant might

have to undo an action would be that the system interpreted an instruction

in an unexpected way due to perception errors. For example, participants

might give the instructions “Pick up the green box”. In this situation the

system might, due to a colour perception error, resolve the expression to a

red box, and pick it up, and thereby perform an unintended action. In this

situation the user would be likely to use the undo-button to undo this action.

In this category a higher value indicates that the task was more di�cult.1

The Number of Actions describes how many instructions the partici-

pants sent to the system to complete a scene. For this measure we counted

every instruction that was sent to the system by the participant. It does not

account for actions that were performed outside of the dialogue proper such

as activating the undo-button or actions related to requesting information.

It can be understood as a representation of the amount of work the partic-

ipants spent on a scene. We propose that the presence of perception errors

increases the number of actions necessary to solve a scene for the following

reasons:

1However, we do not believe that this measure is a particularly strong indicator since,
rather than use the undo button to revert an action, the participants could also give
instructions to the robot that reverted the e↵ects of the previous action. For example,
if the robot picked up an object that the participants did not expect it to pick up, they
could just tell the robot to “Put it down.”.
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1. Participants gave instructions that the system misunderstood so that

the participants had to reformulate the instructions, thereby producing

more instructions.

2. Participants had to try a strategy other than the direct one to solve the

task. We assume that these strategies would involve more instructions.

The Completion Time indicates how much time participants on aver-

age spent on a scene until they had either finished it or until they abandoned

it. Like the number of actions, it relates to the amount of work the par-

ticipants had to invest to solve the scenes. However, the two measures are

not directly interchangeable. While the number of actions counts only the

instructions that a participant sent to the system, the completion time is also

a↵ected by other factors, such as the typing speed of the participants. It is

also influenced by the amount of time which the participants spent planning

their approach, as well as time that was spent using and interpreting the

information provided by the robot. Therefore the value of this measurement

is somewhat more di�cult to interpret than the previous ones. Intuitively,

faster completion times indicate a lower di�culty than slower completion

times. On the other hand, the fact that participants were able to abandon

scenes means that shorter completion times can also indicate that partici-

pants got frustrated frequently and abandoned scenes early. The value of this

measurement therefore has to be interpreted in the context of the Abandon

Rate and information about the use of information requests.

The Number of Information Requests describes how often the par-
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ticipants requested information (i.e. how many times they requested a scene

description or markup and how many queries they asked). Unlike the other

measures, we do not think that there is a direct relation between this measure

and the di�culty of the task. On the one hand, we expect that participants

request information more frequently if they find the task di�cult. On the

other hand, we expect that the use of the information requests would make

the task easier, and therefore result in a reduction of the measurable task

di�culty.

5.3.1 Irregular Outcomes

During the evaluation we discovered a problem in the recordings. Due to an

oversight in the formulation of the target conditions, participants were able

to complete some of the scenes with configurations that did not match the

actual target scenes.

An example of a scene in which an irregular outcome was possible is Scene

12. The start configuration of this scene is shown in Figure 5.3a. The target

scene that was shown to the participants is shown in Figure 5.3b. To complete

the scene, the participants had to instruct the system to pick up the red ball

that is labelled as ’A’ put it on Place 1. The second red ball (labelled ’C’) was

introduced to provide a distractor object so that the participants had to use a

referring expression other than “the red ball” in order to pick up the intended

ball. The scene was designed so that participants were likely to use the yellow

ball that is to the right of the red ball (labelled ’B’) as a landmark, e.g. in

an instruction like “pick up the red ball near the yellow ball”. The yellow
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ball however was a↵ected by a perception error and appeared to the robot

as a yellow box. Therefore, if a participants attempted to use a referring

expression that involved a description of the yellow ball as a yellow ball, the

robot would be unable to resolve the reference. We had intended that the

participants would resolve the problem by finding an alternative way to refer

to the red ball. They could, for example, figure out how the robot perceived

the landmark by using the information request options, or use a direction

based description that avoided the landmark.

Unfortunately the system accepted scenes such as the one in Figure 5.3c

as valid solutions. In this scene, the participant had not moved the intended

object (’A’) but the distractor object (’C’) to Place 1. This was much easier

because the landmark next to the object (’D’) was not a↵ected by a percep-

tion error. The reason for this was that the target conditions that were used

to specify whether or not a scene was completed only checked if there was

any red ball on Place 1, but did not check whether the distractor object was

still in place.

It is not completely obvious how to account for these examples in the

measures. On the one hand the participants did not actually complete the

scene successfully. It would therefore not be fair to count them as a successful

completion. On the other hand, they also did not abandon the scene. We

therefore excluded the a↵ected scenes from the calculation of the Abandon

Rate. We assume that the other measures would not be influenced by the

outcome in a meaningful way and therefore used the a↵ected scenes in their

calculation. In total 24 out of 1198 recorded scenes (about 2%) were a↵ected.
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(a) The start scene.
(b) The target scene that was shown
to the participants.

(c) A scene that was erroneously ac-
cepted as a valid target configura-
tion.
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5.3.2 Research Questions and the Measures

To address Research Question 5.2 (Do perception errors as experienced by

the robot have an impact on the di�culty of the task? ), we look primarily at

the Abandon Rate and see how it compares between the No Error Phase and

the Error Phase. We also look at the Reference Problem Rate and the Undo

Rate to determine whether more or fewer problems occurred. As a secondary

measure we also attempt to interpret the number of actions and the comple-

tion time. To address Research Question 5.3 (If participants are o↵ered the

option to request information about the robot’s understanding of the scene, do

they use it? ), we look at the number of information requests. We will inves-

tigate the use and the e↵ect of information requests in Chapter 6. To address

Research Question 5.4 (Does the ability to use request information about the

robot’s understanding of the scene have an impact on the participants’ ability

to solve the task? ), we compare the Error Phase and the Description Phase,

Markup Phase and Querying Phase based on the measures used in our in-

vestigation of Research Question 5.2. If the measures show a decrease in

di�culty this would indicate that the information requests have a positive

impact. To address Research Question 5.5 (How do the information request

options compare to each other in terms of e↵ectiveness? ), we compare the

results from the Description Phase, Markup Phase and Querying Phase in

more detail and determine whether one of the phases stands out from the

other ones. Table 5.6 contains a summary of this discussion.
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Figure 5.4: Distribution of the rate of abandoned scenes per user in each
phase.

Figure 5.5: Distribution of the rate of reference problems per user in each
phase.

Figure 5.6: Distribution of the rate of actions that were reverted with the
undo-function per user in each phase.
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(a) No Error Phase.

(b) Error Phase.(c) Description Phase. (d) Markup Phase. (e) Querying Phase.

Figure 5.7: Histograms of the percentage of actions that were reverted with
the undo function.

Figure 5.8: Distribution of the number of actions per scene for each phase.

Figure 5.9: Distribution of the time per scene for each phase.
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Research Question Phases Measures

RQ 5.2: Impact of per-
ception errors

No Error Phase vs Error
Phase

Abandon Rate, Com-
pletion Time, Reference
Problem Rate

RQ 5.3: Information re-
quests

Error Phase, Markup
Phase, Querying Phase

Number of Information
Requests

RQ 5.4: E↵ect of infor-
mation requests

Error Phase vs Descrip-
tion Phase, Markup
Phase and Querying
Phase

Abandon Rate, Com-
pletion Time, Reference
Problem Rate

RQ 5.5: Relative e↵ec-
tiveness of information
request options

Description Phase vs
Markup Phase vs Query-
ing Phase

Abandon Rate, Ref-
erence Problem Rate,
Undo Rate, Number
of Actions, Completion
Time

Table 5.6: Research questions and the relevant phases and measures for their
evaluation.

Phase Abandon
rate

Reference
problem

rate

Undo
rate

Average
number

of
actions

SD

Average
comple-
tion

time (s)

SD

Average
number
of assis-
tance
re-

quests

SD

No Error Phase 5.05% 7.82% 0.58% 5.18 2.83 108.64 94.12 0.00 0.00

Error Phase 19.16% 29.23% 1.80% 7.57 5.74 140.28 146.89 0.00 0.00

Description Phase 12.08% 18.86% 0.93% 7.30 5.08 201.47 256.41 0.75 0.83

Markup Phase 9.13% 16.37% 1.70% 6.69 4.33 149.39 164.83 1.05 1.02

Querying Phase 9.72% 15.55% 0.88% 6.20 3.69 150.14 133.10 1.53 2.56

Table 5.7: Measure values for the di↵erent phases.
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Figure 5.10: Distribution of the number of information requests per scene
for each phase.

158



5.4 RQ 5.2: Impact of Perception Errors

Do perception errors as experienced by the robot have an impact on the

di�culty of the task?

Table 5.7 contains a summary of the measures recorded during five phases

of the experiment.

The Abandon Rate shows the percentage of the scenes that was aban-

doned in a phase (scenes that had an irregular outcome as described in

Section 5.3.1 were excluded from the calculation of this value). Figure

5.4 provides a boxplot for the distribution of the percentage of scenes

each participants abandoned in each. The figure in the table refers to

the total percentage i.e. the number of abandoned scene by the par-

ticipants divided by the number of all scenes attempted. The boxplot

shows the distribution of the percentage of abandoned scenes for each

participant.

The Reference Problem Rate shows the percentage of instructions that

contained a problematic reference. Figure 5.5 shows the distribution of

the percentage of instructions by a participant that contained a prob-

lematic reference in each phase.

The Undo Rate shows the percentage of the instructions that were

reverted with the undo function. The boxplot in Figure 5.6 shows the

distribution over all participants. Since the boxplot appears not very

informative, we also present the data as histograms in Figure 5.7.
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The Average Number of Actions shows the average number of actions

a participant performed in a scene. Figure 5.8 provides a boxplot for

the corresponding distribution.

The Average time shows the average number of seconds per scene, and

Figure 5.9 shows the corresponding distribution.

The Average Number of Information Requests shows how often the

participants requested information from the robot per scene on average.

Figure 5.10 shows the corresponding distribution.

If we compare the values and the box plots for the No Error Phase and

the Error Phase we find that participants on average abandoned more scenes

in the Error Phase. They also produced more reference errors on average,

reverted more actions with the undo button and spent more actions and more

time on scenes. While the di↵erences are clear from the overall averages and

distribution visualizations, we also compared the distributions with a Welch

Two-Sample t-test (the results are presented in Table 5.8)1. We found that

the di↵erences were, in fact, all statistically significant at the 95% confidence

level except for the Undo Rate and the Average Completion Time.2 If we

compare the values and the box plots for the No Error Phase and the Error

Phase we find that participants on average abandoned more scenes in the

1More precisely, we compared the distribution of the Abandon Rate for each user, the
distribution of the Reference Problem Rate, the Undo Rate and the distribution of the
average number of actions and average completion time for each user.

2The values for the means of Abandon Rate, the Reference Problem Rate and the
Undo Rate in the t-tests are not the same as the values provided in Table 5.7. The
values in Table 5.7 refer to global percentages over all scenes that were attempted by all
participants, while the values in the t-tests refer to means over the percentage for each
individual participant.
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No Error Phase Error Phase

Measure Mean SD Mean SD df t-value p-value

Abandon Rate 0.05 0.07 0.19 0.15 24.51 -3.34 < 0.01

Reference Problem Rate 0.08 0.04 0.28 0.10 22.16 -7.31 < 0.01

Undo Rate 0.01 0.01 0.02 0.03 20.09 -1.79 0.09

Average Number of Actions 103.60 25.25 150.53 45.90 24.96 -3.43 < 0.01

Average Completion Time 2172.80 954.98 2789.18 1144.55 21.86 -1.50 0.15

Table 5.8: Data for Welch Two-Sample t-tests between the measures for the
No Error Phase and Error Phase.

Error Phase. They also produced more reference errors on average, reverted

more actions with the undo button and spent more actions and more time

on scenes. While the di↵erences are clear from the overall averages and

distribution visualizations, we also compared the distributions with a Welch

Two-Sample t-test (the results are presented in Table 5.8)1. We found that

the di↵erences were, in fact, all statistically significant at the 95% confidence

level except for the Undo Rate and the Average Completion Time.2

Conclusion:

1. The introduction of perception errors makes the task more di�cult.

Aside from the measures related to performance, we also recorded the

number of times the system was not able to parse or interpret an instruction

1More precisely, we compared the distribution of the Abandon Rate for each user, the
distribution of the Reference Problem Rate, the Undo Rate and the distribution of the
average number of actions and average completion time for each user.

2The values for the means of Abandon Rate, the Reference Problem Rate and the
Undo Rate in the t-tests are not the same as the values provided in Table 5.7. The
values in Table 5.7 refer to global percentages over all scenes that were attempted by all
participants, while the values in the t-tests refer to means over the percentage for each
individual participant.
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by the user. Overall we found that across all phases, 6.07% of the instruc-

tions could not be interpreted. In the No Error Phase, 8.01% could not be

interpreted, in the Error Phase 7.39%, in the Description Phase 4.98%, in

the Markup Phase 6.71% and in the Querying Phase 6.07%. Overall the dif-

ferences were not statistically significant except the di↵erent between the No

Error Phase and the Querying Phase. We do therefore not believe that the

number of parser errors was related to the presence or absence of perception

errors and the information request options. In order to investigate the e↵ect

of adaptation to the system, we ordered the scenes each user attempted by

the order in which they were presented, and added up the number of parser

errors for each scene with the same index (i.e. the first data point repre-

sents the number of errors the participants encountered in the first scene

they attempted, the second data point represents the number of errors in the

second scene and so on). The results are shown as a scatter plot in Figure

5.11. The index of the scene and the number of errors have a weak negative

correlation of about -0.21. This indicates that the number of parser errors

the participants encountered slightly decreased the longer they worked on

the experiment. This is likely due to the participants learning which inputs

the system was able to interpret, and them successfully adapting to them.
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Figure 5.11: A scatter plot of the index of the scenes and the number of
parser errors.

5.5 RQ 5.3: Information Request Use

If the participants are o↵ered the option to request information about the

robot’s understanding of the scene, do they use them?

The average number of information requests per scene shows that the

participants tended to request information approximately once per scene (we

investigate the distribution in more detail in Chapter 6). The Description

Phase has overall the lowest average number of uses while the Querying Phase

has the highest average number of uses.

The descriptions and the markup provided a complete description of the

robot’s understanding of the scene. They also always produced the same

output for a given configuration. Participants could therefore not gain addi-

tional information by requesting information multiple times in a row. The

query information requests on the other hand only provided one piece of

information per request. The participants could therefore gain additional in-

formation by posing multiple queries about di↵erent aspects of the scene. It

is therefore quite plausible that participants in the querying condition had to
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Error Phase Description Phase

Measures Mean SD Mean SD df t-value p-value

Abandon Rate 0.19 0.15 0.12 0.12 24.40 1.45 0.16

Reference Problem Rate 0.28 0.10 0.19 0.06 25.40 2.84 0.01

Undo Rate 0.02 0.03 0.01 0.01 21.46 1.40 0.18

Average Number of Actions 150.53 45.90 146.09 50.75 19.90 0.23 0.82

Average Completion Time 2789.18 1144.55 4029.36 3215.11 11.66 -1.23 0.24

Table 5.9: Data for Welch Two-Sample t-tests between the measures for the
Error Phase and Description Phase.

ask multiple queries to achieve the same level of information the participants

in the Description Phase and the Markup Phase achieved with one request.

Table 5.7 shows that the description option was used fewer times than the

markup option. The evaluation of the questionnaires responses in Section 5.2

showed that the participants – while still overall satisfied with the description

option – were more likely to state that they found the markup option useful.

It is possible that these two observations are related and that participants

used the description options less because they did not find them as useful.

Conclusions:

1. The participants did use the options available to request information.

2. Participants requested markup more often than descriptions.

3. Participants posed queries more often than they requested markup or

descriptions (this is probably related to the fact that queries provide

only limited information).
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Error Phase Markup Phase

Measure Mean SD Mean SD df t-value p-value

Abandon Rate 0.19 0.15 0.09 0.05 20.58 2.63 0.02

Reference Problem Rate 0.28 0.10 0.17 0.05 25.12 3.80 < 0.01

Undo Rate 0.02 0.03 0.02 0.02 25.75 0.58 0.57

Average Number of Actions 150.53 45.90 133.82 39.84 23.65 1.02 0.32

Average Completion Time 2789.18 1144.55 2987.82 1584.75 16.70 -0.36 0.72

Table 5.10: Data for Welch Two-Sample t-tests between the measures for the
Error Phase and Markup Phase.

Error Phase Querying Phase

Measure Mean SD Mean SD df t-value p-value

Abandon Rate 0.19 0.15 0.10 0.07 24.78 2.26 0.03

Reference Problem Rate 0.28 0.10 0.16 0.04 21.31 4.50 < 0.01

Undo Rate 0.02 0.03 0.01 0.03 24.49 0.69 0.49

Average Number of Actions 150.53 45.90 123.91 34.58 25.27 1.75 0.09

Average Completion Time 2789.18 1144.55 3002.82 869.11 25.20 -0.56 0.58

Table 5.11: Data for Welch Two-Sample t-tests between the measures for the
Error Phase and Querying Phase.
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5.6 RQ 5.4: E↵ect of Information Requests

Does the ability to request information about the robot’s understanding of

the scene have an impact on the participants’ ability to solve the task?

To determine what e↵ect the information request options had on the

task performance, we compare the values presented in Table 5.7. We also

performed a t-test to compare the distribution of the values. The results are

presented in Table 5.9 (the Error Phase and the Description Phase), Table

5.10 (the Error Phase and the Markup Phase) and the Table 5.11 (the Error

Phase and the Querying Phase).

We notice in Table 5.7 that the overall Abandon Rate is higher in the Er-

ror Phase than in the Description Phase, the Markup Phase and the Querying

Phase (i.e. all the phases in which information request options were avail-

able).

As shown in Table the di↵erence is statistically significant at the 95% con-

fidence level for the Markup Phase and the Querying Phase. The p-value for

the Description Phase is about 0.16 and falls below the 95% confidence level.

The Reference Problem Rate is lower in the Description Phase, the Markup

Phase and the Querying Phase than in the Error Phase. The di↵erence be-

tween the distributions is statistically significant at the 95% confidence level

for all phases.

Similarly, the Undo Rate is also lower in the Description Phase, the

Markup Phase and the Querying Phase than in the Error Phase. However,
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the di↵erence is not statistically significant at the 95%. As we stated earlier,

we do not believe that the Undo Rate is a particularly good indicator of

di�culties in the task since participants could also manually revert actions

without using the undo function (as discussed in Section 5.3).

The average number of actions required to complete a scene is lower in

the Description Phase, the Markup Phase and the Querying Phase than in

the Error Phase. The di↵erences are not statistically significant at the 95%

level however.

Contrary to the average number of actions, the average completion time

is overall longer in the phases where information requests are available. How-

ever, the di↵erences are not statistically significant.

Conclusion:

1. Participants tend to be more successful at the task if they are able to

request information, they encounter fewer problems, and need fewer

actions to complete scenes.

The results for the completion time are somewhat surprising because

the completion time for the Description Phase, the Markup Phase and the

Querying Phase is overall higher on average than the completion time for the

Error Phase. We would expect that access to information would make the

task easier and enable the participants to solve the tasks more quickly. On

the other hand, the average number of actions per scene does not mirror the

increase in completion times. In the Markup Phase, for example, the average

completion time is higher than in the Error Phase, but the average number
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of actions is lower. We will investigate this in the next section in more detail.

5.7 RQ 5.5: Relative E↵ectiveness of Infor-

mation Request Options

How do the information request options compare to each other in terms of

e↵ectiveness?

In the Description Phase of the experiment, the participants were able to

ask the system to generate a verbal description of the scene. In the Markup

Phase the participants were able to ask the system to visually present its

understanding of the scene by marking up objects with their properties in

the simulation view. In the Querying Phase, the participants were able to

ask the system simple questions about whether or not the robot perceived an

object of their description. We were interested in finding out whether one of

the options was generally superior to the other ones. A second aspect would

be to find out whether one of the options was superior to the other ones in

specific aspects of the task.

When we compare the values for the Abandon Rate, the Reference Prob-

lem Rate and the Undo Rate in Table 5.7, we find that Description Phase,

the Markup Phase and the Querying Phase are close to each other. The

Markup Phase and the Querying Phase appear to do slightly better in the

Abandon Rate and Reference Problem Rate measures than the Description

Phase. In addition to that, the Description Phase has the longest average
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Completed Abandoned

Phase Average time (s) (SD) Average time (s) (SD)

No Error Phase 94.95 71.75 333.30 126.68

Error Phase 113.23 107.33 257.88 219.26

Description Phase 158.69 149.43 540.08 523.65

Markup Phase 130.44 133.61 318.16 259.68

Querying Phase 130.11 105.2 333.24 194.21

Table 5.12: The average completion times for scenes that were successfully
completed and scenes that were abandoned.

completion time with the highest standard deviation.

Conclusions:

1. The description option appears to be the least e↵ective information

option.

2. The markup option and the querying option are of similar e↵ectiveness.

In the previous section we noted that the phases in which the partici-

pants were able to request information from the robot had longer average

scene completion times. Our first hypothesis was that this might be due the

fact that the participants abandoned more scenes in the Error Phase than

in the other phases. If participants abandoned scenes early on, this might

decrease the overall average time spent on scenes. We calculated the average

completion times for scenes that were successfully completed and scenes that

were abandoned separately for each phase. The results are presented in Fig-

ure 5.12. It appears that the participants did in fact abandon scenes earlier

in the Error Phase. This, combined with the higher abandon rate probably
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contributed to the longer average completion times in the phases in which

the participants could request information.

Apart from the di↵erence between the Error Phase and the later phases,

there is a noticeable di↵erence between the completion times for the De-

scription Phase and the Markup Phase and the Querying Phase. It appears

that the participants took longer when they used the descriptions. We were

interested to find out if this di↵erence in completion time can actually be

attributed to the information request options and in particular whether the

longer completion times in the Description Phase can be attributed to the

fact that the system had to read out the descriptions — especially as some

of the descriptions can become somewhat lengthy.1 We therefore extracted

from the logs for each utterance produced by the system the time it took for

the system to read the message out. In Table 5.13 we present for each phase

The total completion time for each phase (over all participants and all

scenes).

The sum of the length of all utterances produced by the system.

The average completion time per scene.

The average of the sum of the length of the system utterances per scene.

The percentage of the total completion time that was filled with the

robot speaking.

1We discuss the process of how the descriptions were generated in Section 4.3.5.2 and
provide examples of long descriptions there.
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Phase Completion
time (s)

Sum
of

time
spo-
ken
(s)

Average
comple-
tion

time (s)

(SD)

Average
time

spoken
(s)

(SD)

Average
number
of infor-
mation
requests

(SD)

Speak
time
pro-
por-
tion

No Error Phase 21,728.00 1,835.28 108.64 94.12 9.18 5.89 0.00 0 8.45%

Error Phase 47,416.00 5,296.47 140.28 146.89 15.67 13.53 0.00 0 11.17%

Description Phase 44,323.00 5,005.74 201.47 256.41 22.75 19.30 0.75 0.83 11.29%

Markup Phase 32,861.00 2,781.51 149.37 164.83 12.64 9.94 1.05 1.02 8.46%

Querying Phase 33,038.00 3,173.54 150.17 133.10 14.43 10.13 1.53 2.56 9.61%

Table 5.13: Data related to time filled with system speech.

The data shows that in fact, of all the phases, the Description Phase has

the longest total time spoken. The contrast is particularly clear in comparison

to the Markup Phase. The di↵erence is maintained in the average speech

duration per scene. The final column shows what percentage of the total

time spent on the task was filled with the system speaking. Again, the

Description Phase has the highest value. The value for the Markup Phase

on the other hand is roughly equal for the value for the No Error Phase.

It is therefore possible, that the amount of time that was taken up by the

descriptions contributed to the longer completion times in the Description

Phase. Another possible explanation could be that the descriptions were

more di�cult to use than the other options. The participants needed to

listen to the descriptions, relate them to their perception of the scene, and

then act upon this. It is plausible that this contributed to the completion

times as well.

Conclusion:

1. The longer completion times in the Description Phase may be due to
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the fact that the system spent more time presenting the descriptions.

5.8 Summary

In this chapter we investigated the reported experience of the participants

in the experiment analysed the performance measures recorded during the

experiment. Through analysis of both the subjective reported experience of

participants and the objective measures recorded during the experiment we

found that both in the experiences and in the measures the introduction of

perception errors made it more di�cult for the participants to complete the

tasks. In particular we found that the errors introduced into the robot’s

perception of the world were registered by the participants as problems in

the robot’s communicative capabilities. The option to request information

from the robot about its perception of the world helped to ameliorate the

e↵ect of the perception errors. We also found that there were di↵erences

between the e↵ectiveness of the di↵erent information request options. The

Markup option and the Querying option appear mostly similarly e↵ective

and popular, but the Description Generation option appears to be the least

favourite option as well as the least e↵ective one.

One general issue we encountered was that the participants appeared to

be less frustrated by the problems in the dialogues than we had expected.

As stated earlier, we found that some participants reported that they expe-

rienced the problems that arose in the dialogues not so much as frustrating

but rather as a challenge or puzzle. This means that the e↵ect of the errors
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and the information requestion options on the user experience is not as clear

as expected. The objective measures nevertheless show that the participants

had more di�culties completing the tasks and encountered more problems

in general — even if this is not directly reflected in the user experience.
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Chapter 6
Information Request Use

In the previous chapter we investigated how perceptions errors a↵ected the

experience of the participants in the Toy Block experiment and their ability

to complete the tasks. We also investigated whether participants used the

information request options that were available in the later phases of the

experiment and found that they were indeed used and appeared to increase

the participants’ satisfaction as well as their ability to complete the tasks.

In the Description Phase they were able to ask the robot to generate

a verbal description of its perception of the scene. In the Markup Phase,

they could ask the robot to mark up its understanding of the scene on the

display in the simulation view. In the Querying Phase they could ask the

robot simple questions about whether or not it perceived an object of a given

description. In this chapter we investigate how and when the participants

made use of these options to request information.
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6.1 Research Questions

In this chapter we focus on the following research questions:

Research Question 6.l: How often did the participants request infor-

mation? We investigate how often the participants requested information

in each scene, and in the experiment overall. We also compare the num-

ber of uses between the di↵erent phases to determine whether some of the

information request options were used more frequently than the others.

Research Question 6.2: Did the way the participants requested infor-

mation evolve during the course of the experiment? For this question we in-

vestigate whether the participants requested information uniformly through-

out the experiment, or whether they requested information more or less often

in the later scenes of the experiment as compared to the early scenes.

Research Question 6.3: Under what circumstances did the participants

request information? In particular we identify what happened in the dialogue

before the participants requested information.

Research Question 6.4: What were the e↵ects of sequences of queries?

We found that in the Querying Phase participants tended to ask multiple

queries one after another. We investigate whether the success of instruc-

tions that followed after multiple queries was related to the number of the

preceding queries.
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6.2 RQ 6.1: Frequency of Information Re-

quests

How often did the participants request information?

We investigated how often the participants used the information request

options in each phase. There were two aspects to this question:

1. How often each participant requested information during the course of

an experiment.

2. How often each participant requested information per scene.

6.2.1 Data

We counted the number of times each participant requested a description

in the Description Phase, turned on the markup in the Markup Phase and

posed a query in the Querying Phase. The results are presented in Table 6.1.

The first column contains the mean and median number of times participants

requested information during the course of one complete experiment (i.e. the

full set of 20 scenes). The second column shows the mean, standard deviation

and median number of information requests per individual scene. The third

column shows the same information per individual scene, where only scenes

are taken into account where the participant requested information at least

once are taken into account.

Figure 6.1 contains three boxplots that represent the distribution of the
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Per experiment Per scene Per scene (� 0)

Phase Mean SD Median Mean SD Median Mean SD Median

Description Phase 14.91 8.04 13 0.75 0.83 1 1.26 0.72 1

Markup Phase 20.91 10.28 16 1.05 1.02 1 1.55 0.88 1

Querying Phase 30.64 20.54 30 1.53 2.56 0 3.21 2.89 2

Table 6.1: The mean and median number of information requests per scene
and per experiment.

total number of times the participants requested information across the full

experiment. The plots show that the median number of uses in the Descrip-

tion Phase is close to the median number of uses in the Markup Phase, but

slightly higher there. The higher upper quartile also indicates that the par-

ticipants tended to request more assistance in the Markup Phase. The plot

for the Querying Phase indicates that the participants asked queries more

often than they requested assistance in the other phases.

Of course it is di�cult to compare the number of queries with the number

of description and markup requests. The descriptions and the markup pro-

vided a complete description of the systems understanding of the scene, while

the querying option answered one specific question. It is therefore plausible

that participants had to ask multiple queries to obtain the same amount of

information they could obtain through one description request or one query.

A second aspect of the frequency of use of the information options is the

question of how often the participants used them in each scene, e.g. whether

they tended to use them once in each scene to get an overview, or whether

they used them more often. Figure 6.3 show histograms of the distribution
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Figure 6.1: Distribution of the total number of information requests in the
Description Phase, the Markup Phase and the Querying Phase.

(a) Description Phase (b) Markup Phase (c) Querying Phase

Figure 6.2: Data from Figure 6.1 as histograms.

of the number of uses in each scene.

The plots show that participants tended to request information about

1 time in the Description Phase and the Markup Phase and less often 2

or more times. In the Querying Phase on the other hand, they either did

not ask queries or, if they did, they tended to ask multiple queries in one

scene. This suggests that there was a higher barrier associated with asking

a query. While the description option and the markup option only required

the participants to activate a button and then evaluate the output of the

information request option, the querying option required them to formulate

a targeted question, which arguably required more e↵ort. It is possible that
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(a) Description Phase.

(b) Markup Phase.

(c) Querying Phase.

Figure 6.3: Histograms of the number of information requests per scene.
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participants therefore were likely to shy away from formulating a query if

they did not have a specific problem. However, once they asked a query,

they were then likely to ask further queries to work out the problem.

6.2.2 Summary

We investigated the number of times participants requested information ei-

ther in a single scene or across the entire experiment. We found that the

markup option was used more frequently than the description option, and

the querying option more frequently than the markup option. Interestingly,

the participants tended to ask queries in sequences of multiple queries, while

the other options were mostly used only one time in a scene.

It is plausible that the markup option was used more often than the

description option because it was faster. The higher variation in the use of the

markup option might be also be explained by this. While in the description

condition the participants only activated it when necessary because they did

not want to sit through the description too often, in the markup condition

they could activate it as often as they wanted without any real negative

e↵ects. The fact that participants asked multiple queries in a row suggests

that participants needed multiple queries to compile enough information to

be confident about formulating another instruction.

Conclusions:

1. The participants requested markup more often than descriptions.

2. They asked more queries than they requested markup or descriptions.
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3. The participants generally tended to use the markup option and the

description option about one time per scene.

4. Participants tended to either not use queries in a scene, or if they did,

pose more than one query.

6.3 RQ 6.2: Evolution of the Use of Informa-

tion Requests

Did the way the participants requested information evolve during the course

of the experiment?

For Research Question 6.2 we investigated how often the participants

requested information in one scene or in the experiment in total. Another

aspect of the frequency of information requests was the question of whether

the participants tended to use more information requests in the later scenes

of experiments or fewer than in earlier scenes. If they increased the use,

this could indicate that they found the information request option useful

and chose to use it more frequently. The opposite development could imply

that participants, after an initial phase where they tried out the information

request option, preferred to not use it later on.

Figure 6.4 shows a plot of the total number of times the participants

used the respective information request option in each phase up to a given

scene. The x-axis refers to the order in which the scenes were presented,

i.e. the point in the plot for the x-axis position 5 describes how often the
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Figure 6.4: Total number of information requests over the course of the
experiment. For each phase a regression line is fitted in.

participants had requested information up to (and including) the 5th scene

that was presented to them. The order in which the scenes were presented

was randomized for each participant (except for the two introduction scenes

which were always presented first). Small variations in the graph are therefore

not related to the di�culty of individual scenes. Separate series are included

for each phase in the experiment. A line representing a linear model that

was based on the points is fitted into the graph.

Overall the curves are more or less linear. This suggests that the par-

ticipants on average did not change their propensity to use the information

request options over the course of the experiment much, but requested infor-

mation uniformly throughout the scenes.

Conclusion:

1. The participants request information uniformly throughout the course

of the experiment.
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6.4 RQ 6.3: Circumstances of Information

Requests

Under what circumstances did the participants request information?

We were interested to find out when and why participants requested in-

formation. If we identify points in the interaction at which participants are

particularly likely to request information, this could provide clues as to what

situations are particularly di�cult for the participants. These points could

then serve as opportunities at which the robot could pre-emptively o↵er assis-

tance. On the other hand, it would also be interesting to determine whether

there are di↵erences between the circumstances under which the participants

request information between the di↵erent information options. This could

indicate that participants find some types of information particularly helpful

in specific situations, while other types of information are more appropriate

for other circumstances.

To investigate this issue, we constructed the immediate context of each

information request. We extracted for each instance of an information re-

quest the interaction event that immediately preceded it (its predecessor).

We consider as events the most recent action performed by the user and the

robot (e.g. an instruction and whether the robot was able to perform the

instruction), and other events related to the experiment (e.g. the beginning

of a scene). We compare the distribution of the events that preceded infor-

mation requests with the distribution of events in the data set in general. We
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also calculate the conditional probability for each event that the following

event would be a information request.

6.4.1 Data

We retrieved for each information request (i.e. each description request,

markup request and query) the event that immediately preceded it. We call

the set of events that preceded the information requests the predecessor

set. We distinguish 12 event categories.

Resolution problem: The information request was preceded by an instruc-

tion which the system could not complete because the instruction con-

tained a reference that was either ambiguous or that the system could

not resolve to an object.

Successful instruction: The information request was preceded by an in-

struction the system was able to interpret and that did not result in

an interpretation error.

Beginning: The information request was preceded by the start of the scene

(i.e. the information request was the first action in the scene).

No parse: The information request was preceded by an instruction that the

system was not able to parse.

Undo: The previous action was undone by the user through the undo-

button.

Markup on: The participant turned the markup-assistance on.

185



Markup o↵: The participant turned the markup-assistance o↵.

Description: The participant requested a scene description.

Query: The participant asked the system a query

Pause: The participant activated a pause using the pause button.

Abandon: The participant abandoned the scene.

We then calculated for each event category its proportion in the total set.

We created one predecessor set for each information request option. As a

comparison baseline we determined for each event category how often it was

observed in the total data set (i.e. for the “Resolution problem” category we

counted how often a reference was made that the robot could not successfully

resolve). We call this set of events the general set. Table 6.2 shows the

distribution of the events in the predecessor set for the Description Phase,

the Markup Phase and the Querying Phase. It also contains the distribution

of the general set across all three phases.

We provide a separate summary for each set in Figure 6.5 (for the De-

scription Phase), Figure 6.6 (for the Markup Phase) and Figure 6.7 (for the

Querying Phase). We present the most frequent events in the predecessor set

ordered by their frequency along with the probability that an information

request would be the next action after each type of event.

If we assume that the participants’ use of the information requests was

independent of preceding events in the dialogue, we would expect to observe

a distribution of the events over the categories in the predecessor set that is
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Predecessor General

Category Proportion Count Proportion Count p(request|event)

Resolution problem 59.76% 98 15.04% 303 32.34%

Beginning 18.90% 31 10.92% 220 14.09%

Successful instruction 14.63% 24 62.76% 1264 1.90%

No parse 4.27% 7 2.28% 46 15.22%

Description request 1.22% 2 8.14% 164 1.22%

Pause 0.61% 1 0.10% 2 50.00%

Undo 0.61% 1 0.74% 15 6.67%

Figure 6.5: Overview of the Predecessor set and the General set for the
Description Phase.
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Predecessor General

Category Proportion Count Proportion Count p(request|event)

Resolution problem 38.70% 89 12.09% 241 36.93%

Beginning 31.74% 73 11.04% 220 33.18%

Successful instruction 22.17% 51 59.56% 1187 4.30%

Markup o↵ 4.35% 10 2.06% 41 24.39%

No parse 2.17% 5 2.36% 47 10.64%

Pause 0.43% 1 0.10% 2 50.00%

Undo 0.43% 1 1.29% 25 4.00%

Figure 6.6: Overview of the Predecessor set and the General set for the
Markup Phase.
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Predecessor General

Category Proportion Count Proportion Count p(request|event)

Query 56.97% 192 17.38% 337 56.97%

Resolution problem 22.55% 76 10.93% 212 35.85%

Successful instruction 8.01% 27 57.14% 1108 2.44%

Beginning 7.72% 26 11.35% 220 11.82%

No parse 4.45% 15 2.48% 48 31.25%

Undo 0.30% 1 0.62% 12 8.33%

Pause 0.00% 0 0.10% 2 0.00%

Figure 6.7: Overview of the Predecessor set and the General set for the
Querying Phase.
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equivalent to the distribution over the categories in the general set. We would

expect the values for each category to more or less match up. If the values for

the predecessor set are higher than the ones for the general set, this would

indicate that participants tended to request information more often after

this type of event. The opposite case, if the values for the predecessor set are

lower than the values in the general series, would indicate that participants

request information less often after events of the category.

Based on the data from the general set and the predecessor set, we cal-

culated for each event the conditional probability that the next event would

be an information request. The results are presented in Table 6.3. The final

row contains the prior probability of an information request in each phase

(highlighted in bold in the table).

6.4.2 Analysis

We investigate the distribution of the predecessor set in each phase and com-

pare it to the distribution of the general set. We also investigate the condi-

tional probability for information requests following the events in question.

6.4.2.1 Description Phase

Almost 60% of the events preceding a description request were instructions

that resulted in a resolution problem. In the general set, this type of event

amounted to only about 15%. This means that resolution problems occurred

more frequently before description requests than in general. Table 6.3 shows

that in the Description Phase a description request followed resolution prob-
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Preceding event Description request Markup request Query

Beginning 14.09% 33.18% 11.82%

Description request 1.22% 0.00% 0.00%

Markup on 0.00% 0.00% 0.00%

Markup o↵ 0.00% 24.39% 0.00%

No parse 15.22% 10.64% 31.25%

Pause 50.00% 50.00% 0.00%

Query 0.00% 0.00% 56.97%

Resolution problem 32.34% 36.93% 35.85%

Successful instruction 1.90% 4.30% 2.44%

Undo 6.67% 4.00% 8.33%

Baseline 8.14% 11.54% 17.38%

Table 6.3: The conditional probability that each event would be followed by
an information request.

lems in 32.34% of the cases. Description requests only made up 8.14% of the

observed events. This indicates that participants were more likely to request

a description after a resolution problem.

Successful instructions made up more than 60% of the events in the gen-

eral set, but they only made up about 15% of the events that preceded

description requests. Only in 1.90% of the cases participants requested a de-

scription after a successful instruction. This indicates that participants were

less likely to request a description after a successful instruction.

For the beginning category we observe that it was more likely to precede

description requests than expected from the general distribution, and con-

versely that description requests more frequently followed the beginning of
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scenes than other actions (14.09% vs 8.14%).

One value stands particularly out in Table 6.3. Participants requested a

description after they activated the pause button in half the cases. While it

is quite plausible that some participants requested a pause when they were

faced with a confounding problem in the task and subsequently requested

a description to address the problem, pauses were requested only 2 times

during this phase of the experiment. We should therefore not attribute too

much importance to this observation.

6.4.2.2 Markup Phase

The distribution of the predecessor set in the Markup Phase is overall similar

to the distribution in the Description Phase. The three most frequent events

in the predecessor set are in the same order. Again, resolution problems

are frequent before markup requests. Also, successful instructions are less

frequent before markup requests than we would expect based on the general

set.

There is an interesting di↵erence for the beginning category between the

Description Phase and the Markup Phase. While it occurs more frequently

before information requests than we would expect in the Description Phase

(18.90% vs 10.92%), the di↵erence is more marked in the Markup Phase

(31.74% vs 11.04%). We also find that the probability that a markup was

requested at the beginning of a scene is higher than the probability that a

description is requested at the beginning of scene (33.18% vs 14.90%). This

might indicate that participants were willing to briefly activate markup at
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the beginning of scenes, to check for problems before they commenced to

work, while they preferred to use the description when they were actually

faced with a problem.

Overall we find that the circumstances in which the participants requested

information are similar in the Description Phase and the Markup Phase.

6.4.2.3 Querying Phase

The distribution of the predecessor set in the Querying Phase is similar to

the distributions in the Description Phase and the Markup Phase in that

resolution problems precede queries more often than we would expect from

the general set, and less frequent after successful instructions. However, a

major interesting di↵erence is that the most frequent event before a query

was another query. This is supported by the fact that the probability that

participants asked a query after they had already asked a query was 56.97%.

This indicates that participants often requested multiple queries after

another. This is markedly di↵erent from the other phases. The probability

that participants requested a description after another description was only

1.22%.

6.4.3 Summary

We find in general that participants tend to request information after the

robot could not perform an instruction due to a resolution problem and at

the beginning of scenes. After a successful instruction they are less likely to

request information. Both observations are intuitively plausible. When the
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robot encountered a resolution problem, the participants were faced with the

possibility that their view of the world was di↵erent from the robot’s view

of the world. They therefore had a reason to request information about how

the robot perceived the scene. The beginning of scenes generally appears as

a useful point in the task to request information before taking any actions.

One particular observation was that participants tended to ask multiple

queries after another in the Querying Phase. We will investigate sequences

of queries in the next section.

Conclusions:

1. Participants tended to request information after a resolution problem

and at the beginning of scenes.

2. Participants tended not to request information after an instruction had

been successfully completed.

3. Participants often pose multiple queries in a row.

6.5 RQ 6.4: Query Sequences

What were the e↵ects of sequences of queries?

As discussed in the previous section, we found that participants in the

querying condition were particularly likely to ask multiple queries one after

another. This is in contrast with the other phases. For example, partic-

ipants rarely requested another scene description after they had requested

a description in the Description Phase. We therefore investigate instances
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where participants asked a sequence of queries. The fact that the partici-

pants asked multiple queries indicates that they were faced with situations

in which they believed there to be a divergence between their understanding

of the scene and the robot’s, and that they requested information in order

to be able to formulate a successful instruction. We therefore investigate the

instruction that follows after a query sequence and examine whether or not

it was a successful instruction.

6.5.1 Data

We extracted query sequences from the corpus in the following way:

1. Each query action formed a query sequence of length 1.

2. If multiple queries were contiguous we combined them into a query

sequence with a length equal to the number of sequences that were

combined.

In total there were 337 queries in the data set for the Querying Phase. The

queries formed 145 sequences. The sequences had an average length of 2.3

and a median length of 2. Figure 6.8 shows the distribution of the length of

the detected sequences.

We select the first instruction the participants issued after a query se-

quence and investigate whether the robot was able to perform the action

requested in the action. We distinguish four possible outcome situations:

OK: The participant was able to formulate a valid instruction (This does not

necessarily imply that the system performed the action perfectly the
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Length Proportion Count

1 43.45% 63

2 24.83% 36

3 12.41% 18

4 6.21% 9

5 6.21% 9

6 4.83% 7

7 0.69% 1

8 0.00% 0

9 1.38% 2

Total 145

Figure 6.8: Length of query sequences.

way it was intended by the participant). This also includes instructions

that were valid, but could not be performed due to reasons outside of

reference resolution (e.g. in one case the robot rejected a valid pick-up

instruction because it was already holding an object).

Resolution problem: The participant formulated an instruction, but the

system was not able to perform the requested action, e.g. because the

instruction contained an ambiguous or unresolvable expression.

Abandon: The participant abandoned the scene after the query sequence.

This should not necessarily be interpreted as an indication that the

information request options did not provide su�cient information. In-

stead it can actually be the case that the participants decided based
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on the information provided that they would not be able to complete

the scene and moved on.

No parse: The system was not able to derive an interpretation for the input.

Table 6.4 shows the distribution of the outcomes for query sequences of

length 1, 2, 3 and 4. For comparison, Table 6.5 contains the equivalent

information for the Description Phase and Markup Phase (i.e. the outcome

of the action following either description requests or markup requests). The

participants very rarely requested two or more descriptions in a row (or

turned the markup on again after they had turned it o↵ just before). We

therefore report only the outcomes after sequences of length 1.

We state for each sequence length the number of times each outcome

was observed. Based on this we calculated the proportion of successful in-

structions and instructions that could not be performed due to resolution

problems.

Querying Phase

Length 1 Length 2 Length 3 Length 4

Outcome Count Proportion Count Proportion Count Proportion Count Proportion

OK 43 68.25% 44 61.11% 39 72.22% 28 77.78%

Resolution problem 13 20.63% 6 8.33% 3 5.56% 0 0.00%

Abandon 4 6.35% 6 8.33% 6 11.11% 4 11.11%

No parse 3 4.76% 16 22.22% 6 11.11% 4 11.11%

Total 63 100% 72 100% 54 100% 36 100%

Table 6.4: Outcomes of instructions after queries.
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Description Phase Markup Phase

Length 1 Length 1

Outcome Count Proportion Count Proportion

OK 109 68.13% 133 57.83%

Resolution problem 36 22.50% 36 15.65%

Abandon 4 2.50% 4 1.74%

No parse 11 6.88% 57 24.78%

Total 160 100% 230 100%

Table 6.5: Outcomes of instructions after one information request in the
Description Phase and the Markup Phase.

6.5.2 Analysis

Overall we find that the likelihood that participants formulated a successful

instruction appears to increase as the length of the query sequences increases.

As we discussed in Chapter 5, the Reference problem rate for the Querying

Phase was 15.55%. This means that if a participant gave an instruction

to the system, and the system was able to parse the instruction, the robot

encountered a resolution problem in 15.55% of the cases (or, inversely, was

able to perform the requested action in 84.45% of the cases). If we compare

this value to the proportion of successful instructions after query sequences,

we find that after sequences of length 1, the participants appear slightly less

successful1. However, the success rate is at a level that is comparable to

the success rate after one description requests or after the markup has been

turned on.

1It may appear counter-intuitive that instructions after one query should be less suc-
cessful than instructions in general. However, this becomes clear if we take into account
that queries were particularly often used after instructions that resulted in resolution er-
rors, which are an indication of the presence of a perception error. Instructions after
queries were therefore likely to also be a↵ected by perception errors
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As the sequence length increases however, the success rate increases as

well, until it approaches the general rate. This suggests that participants

accumulated information over multiple queries and used the combined infor-

mation to formulate successful instructions.1

6.5.3 Summary

We investigated sequences of queries in the Querying Phase. We found that as

the length of query sequences increased, the success of instructions following

the sequences increased as well.

Conclusions:

1. Participants were more successful after posing multiple queries.

6.6 Summary

In this chapter we investigated how participants used the information request

options. We found that the participants tended to use the markup option

more often than the description option. The participants tended to ask

queries even more often than they requested markup.

We then found that participants tended to use information requests uni-

formly throughout the experiment, i.e. we observed no tendency that the

participants increased or decreased the use of information requests in the

later stages of the experiment.

1If we exclude the Abandon and No parse outcome from the calculation, the 76.79%
of the references are successful after one query, 88.00% after a sequence of two queries,
92.86% after three queries and 100% after four.
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When we investigated the circumstances under which the participants

requested information, it was noticeable that participants tended to request

information after the robot encountered a resolution problem. They also

often asked multiple queries in sequence. We investigated these sequences of

queries and found that the length of a query sequence appears to contribute

towards the success of an instruction following the sequence. This suggests

that participants used the querying option to accumulate information about

the robot’s perception of the world and gradually build a model of the robot’s

understanding of the scene, and that the more complete the model is, the

more likely participants are to be able to formulate a successful instruction.

In the previous chapter we investigated the e↵ect of errors in perception

and the information request option on user satisfaction and task success.

We elaborated this investigation in this chapter by investigating how often

and under what circumstances the participants used the information request

options.

In the following chapters we are going the investigate in more detail how

participants acted when they encountered problems that were due to percep-

tion errors. In the first step we are going to investigate in Chapter 7 what

actions participants performed after they encountered a problem.
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Chapter 7
Dialogue Structures in Problem

Resolution Sequences

In this section we examine data from the Toy Block experiment that was

discussed in the previous chapters at a structural level to investigate how the

participants reacted to perception based problems in the dialogue, and how

they resolved the problems. We were particularly interested to observe how

participants reacted when they encountered situations in which the robot

experienced resolution problems. In the context of the dialogue system used

in the experiment, a resolution failure could present itself as either an am-

biguous reference (i.e. the robot could not resolve a referring expression in

an instruction to a unique reference) or an unresolvable reference (i.e. the

robot could not find any objects that fit the given referring expression).

To gain a better understanding of how the participants react to these
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problems, and to understand how they attempted to resolve them, we analyse

the actions the participants performed after they encounter a problem in the

dialogue that is due to a a reference resolution problem caused by one of

the perception errors that we deliberately introduced into the system. We

extract sequences of actions that occur after a perception error occurred and

analyse whether they resulted in a resolution of the problem, i.e. whether

the user was able to fulfil their original intent eventually despite the problem.

We subsequently attempt to identify recurring structures in the actions the

participants used in their resolution attempts.

7.1 Research Questions

In this section we address the following research questions:

Research Question 7.1: How successful were the outcomes of the res-

olution attempts? – With this question we attempt to discover whether the

resolution attempts were more or less successful depending on the method

in which the participants could request information from the robot. This

question will inform us about the e↵ectiveness of the di↵erent information

options.

Research Question 7.2: How long did the resolution attempts take?

– With this question we attempt to discover whether there were di↵erences

between the phases of the experiment in terms of the length of the resolution

sequences. This is another aspect of the e↵ectiveness of the information

options.
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(a) The scene as it is pre-
sented to the user.

(b) The scene as it is per-
ceived by the system.

(c) The target scene.

Figure 7.1: The user and system view of a scene ((c) shows the target scene).

Research Question 7.3: What structures can be observed in the res-

olution attempts? – With this question we attempt to discover structures

that are frequent or shared between the observed resolution attempts. These

structures would form common approaches or strategies towards solving the

types of problems the participants encountered in the dialogues.

7.2 Resolution Sequences

In this part of the analysis we focus on problems in the dialogue that arise

from perception errors we introduced. Since we deliberately designed the

errors we can anticipate the conditions under which they can lead to problems

in the dialogue, and we can detect whether or not the participant was able

to resolve the problem and achieve their original intention. To do this, we

undertake the following steps:

1. We detect utterances in which a participant attempted to refer to an

object a↵ected by a perception error in a way which resulted in a prob-

lem when the robot attempted to resolve the reference.
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2. We then attempt to identify in the subsequent interaction the utter-

ance through which the participant managed to achieve their initial

intention, indicating that the reference resolution problem had been

resolved.

3. We collect all actions (i.e. utterances by the user and information

requests) that take place between the first occurrence of the problem

and its resolution and evaluate them.

We call the sequence of actions between the occurrence of a problem

and its resolution a resolution sequence. We call the reference used in

the action that started the sequence the initial reference. If the sequence

was ended successfully, we call the reference in the final action the final

reference.

To further illustrate this we present an example of the process of ex-

tracting resolution sequences. Figure 7.1 shows an example scene from the

experiment. Figure 7.1a shows the scene as it was presented to the user

at the beginning of the experiment. Figure 7.1b shows the scene as it was

perceived by the system after the introduction of an error. In this example

the robot makes a perception error by perceiving the yellow ball in the top

right-hand corner as a yellow box. The target scene that was shown to the

user is presented in Figure 7.1c. To successfully complete the scene the user

had to instruct the system to pick up the red ball that is next to the yellow

ball in the user scene (and next to the yellow box in the robot’s perception

of the scene), and then to put it on Place 1. Since there were two red balls
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present in the scene, the user would not be able to uniquely specify the ball

using an instruction with a referring expression that included only basic at-

tributes such as “Pick up the red ball”. If they did attempt this, the system

would respond that it found the instruction ambiguous:

U: Pick up the red ball

S: Sorry, there is more than one red ball, and I’m not

sure which one you mean.

To uniquely identify the ball, the user would have to use other attributes

(namely spatial attributes such as relative attributes or directional attributes)

to describe the ball. We designed the scene so that the most obvious approach

would be to use the yellow ball right next to the target red ball as a landmark

in an expression, for example: “Pick up the red ball near the yellow ball”.

The yellow ball however was a↵ected by a perception error and perceived

as a yellow box by the system. Attempts to use the ball as a landmark would

therefore have to fail:

U: Pick up the red ball near the yellow ball

S: Sorry, I can’t find any red balls that fit your descrip-

tion.

A resolution sequence then consisted of all actions the user performed

after they encountered the problem until they either resolved it or abandoned

the scene. For example, a participant could use the spatial location of the

object in the scene to describe it:

207



U: Pick up the red ball near the yellow box.

S: Sorry, I can’t find any red balls that fit your descrip-

tion.

U: Pick up the red ball in the back

S: Okay, I will pick it up

A participant with access to an information request option could also

request information from the robot, and base their resolution attempt upon

this information:

U: Pick up the red ball near the yellow box

S: Sorry, I can’t find any red balls that fit your descrip-

tion.

(User requests a description.)

S: There is a red ball to the left of a blue box on the

bottom right. There is a red ball to the left of a yellow

box on the top right. There is a place named place 1

on the left centre.

U: pick up the red ball near the yellow box.

S: Okay, I will pick it up.

We interpret each successful resolution sequence as an example of a user

discovering and resolving a perception based problem in the dialogue.
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7.2.1 Resolution Sequence Extraction

In the first step towards extracting resolution sequences we needed to deter-

mine the beginning of the resolution sequences. To do this, we needed to be

able to identify instances in the dialogues where a participant attempted to

refer to an object that was a↵ected by a perception error in such a way that

the robot would encounter a reference resolution problem.

For each object that was a↵ected by a perception error we created a list

of referring expressions that a participant who is not aware of the robot’s

perception problems would use to describe the object and that also includes

the attributes of the object that are a↵ected by the perception error.

For each of these expressions we then created an expression template.

The templates specified the properties that were used in the original expres-

sion and could be matched against the expressions that were recorded in the

participant’s utterances during the experiment. Figure A.5 and Figure A.6

in Appendix A contain the expression templates that were used.

To detect the successful end of a resolution sequence we needed to deter-

mine when the robot picked up the object intended in the instruction that

started the sequence. In order to do that we associated with each expression

the id of the referent object in order to identify it in the following interaction.

To find the resolution of the problem we therefore searched instruction-action

pairs in which the system’s action plan contained a pickup-action that af-

fected the object with the id associated with the expression. In the following

we provide an example for the scene that was used in the example in the
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previous section (shown in Figure 7.1).

To complete the scene, the participants were required to pick up the red

ball next to the yellow ball and then put it on Place 1. The scene was designed

in such a way as to induce the participants to describe the red ball with a

referring expression that contained the yellow ball as a landmark (e.g. “Pick

up the red ball left of the yellow ball” or “Pick up the red ball near the yellow

ball”). We introduced a perception error that made the yellow ball appear as

a yellow box to the robot. To detect the beginning of resolution sequences,

we therefore had to look for instances where the participants attempted to

pick up the ball using an expression that contained the yellow ball as a

landmark. We therefore set up an expression template that matched any

referring expression that contained a landmark reference that involved the

yellow ball. Presented as a feature structure in the same format we use for

referring expressions (Section 2.3) they appear as follows:

2

666666666666666664

type typeT

colour colourT

rel

2

666666664

reltype relation

relatum

2

6664

type typeLM

colour colourLM

3

7775

3

777777775

3

777777777777777775

The attribute values represent the following:

typeT: The type of the target object of the expression.

colourT: The colour of the target object of the expression.
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useLM: Whether or not a landmark is used.

relation: The relation to the landmark (if one is used)

typeLM: The type of the landmark object (if one is used).

colourLM: The colour of the landmark object (if one is used).

objID: The ID of the target object.

An expression template is compared to an observed referring expression

by matching the entry in each slot to the corresponding slot in the referring

expression. A slot matches if the observed value is compatible with the value

specified in the slot. A template matches if all slots match. Any of the

slots can be filled with a wild card character (*). It represents a value that

matches all possible values in the expression. For the example scene we set

up the following expression template:

2

66666666666666666666664

expression

2

666666666666666664

type *

Colour *

rel

2

666666664

reltype *

relatum

2

6664

type ball

colour yellow

3

7775

3

777777775

3

777777777777777775

target-id ball1

3

77777777777777777777775

In the compact notation it appears as follows:

h⇤, ⇤i Rel: * hball, yellowi,true,ball1
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7.3 RQ 7.1: Resolution Sequence Outcomes

How successful were the outcomes of the resolution attempts?

7.3.1 Data

We used our set of expression templates to detect beginnings of resolution

sequences. In total 128 instances of expressions that were a↵ected by a

perception error were found in the Error Phase; 87 instances were found in

the Description Phase; 58 were in found in the Markup Phase; 74 were in

found in the Querying Phase.1

We subsequently determined for each sequence how it was resolved. We

collected the actions following the problem until one of the following occurred:

1. The robot picked up the object that was the original target. We denote

this outcome as success.

2. The user abandoned the scene. We denote this outcome as abandon.

3. The user managed to fulfil the success conditions of the scene without

actually moving the target object. We denote this outcome as other.

The other outcome refers to scenes where the system erroneously ac-

cepted configurations as complete scenes that did not actually match the

target scene (we discuss this in Section 5.3.1). As discussed previously, we did

not count these cases as successfully completed scenes or abandoned scenes

1In the No Error Phase no perception errors had been introduced therefore no resolu-
tion sequences occurred.
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Success Abandon Other Total

Phase Prop. Count Prop. Count Prop. Count Count

Error Phase 64.1% 82 29.7% 38 6.3% 8 128

Description Phase 80.5% 70 13.8% 12 5.7% 5 87

Markup Phase 69% 40 15.5% 9 15.5% 9 58

Querying Phase 74.3% 55 20.3% 15 5.4% 4 74

Table 7.1: The number of resolution sequences found in each phase and the
percentage of their outcomes.

but as a third outcome that did not belong into either category. Table 7.1

provides a summary of the number of sequences found and their outcomes.

7.3.2 Summary

The results show that there were more successful resolution sequences in the

Description Phase and the Querying Phase than in the Error Phase. This

is consistent with the observations from Chapter 5 where we showed that

interactions were generally more successful in the Markup Phase and the

Querying Phase. In that section we showed that the introduction of infor-

mation request options increases task success and reduces the e↵ort that was

necessary to complete a scene. The results in the current section suggest that

one of the reasons that interactions were more successful in the Description

Phase, the Markup Phase and the Querying Phase was that if the partici-

pants encountered problems, they were more likely to be able to resolve them

if information request options were available.

It is noticeable that the Markup Phase has a lower success rate than
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the Description Phase and the Querying Phase. This can be explained by

the higher rate of Other outcomes, because the Abandon rate is not much

higher. It is hard to determine what the reason for this higher rate of irregular

outcomes is. We speculate that is might be related to how the markup option

presented the information.

It showed all objects equally, including the objects that some participants

used to complete scenes instead of the intended objects (as discussed in

Section 5.3.1. It is possible that they therefore appeared more available

than in other conditions.

Conclusion:

1. Dialogue problems arising from perception problems are more easily

resolved in the conditions where the participants could request infor-

mation about the robot’s perception of the scene.

7.4 RQ 7.2: Resolution Sequence Length

How long did the resolution attempts take?

The results in the previous section show that being able to request infor-

mation from the robot increases the participants’ ability to resolve perception

based problems. In this section we investigate whether they also decrease the

amount of e↵ort necessary to resolve the problems by measuring the length

of each resolution sequence.
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Phase Success (SD) Abandon (SD) Other (SD) All (SD)

Error Phase 4.52 3.31 8.13 7.99 6.13 3.14 5.70 5.41

Description Phase 3.10 1.65 5.75 7.53 3.60 0.80 3.49 3.30

Markup Phase 2.63 1.35 3.89 2.60 6.44 7.57 3.41 3.62

Querying Phase 3.71 2.51 5.27 2.79 6.25 4.02 4.16 2.79

Table 7.2: Average lengths and standard deviations of the resolution se-
quences.

7.4.1 Data

We counted for each sequence the number of user instructions it included.

We only counted instructions in which actions were requested. Information

requests or actions like clicking the undo-button were not included. The

length of each sequence therefore represents how much e↵ort the participants

had to spend before they reached the sequence’s conclusion. For example,

for a success sequence, it shows how much work the participants spent to

successfully create the target configuration. For an abandon sequence on

the other hand it indicates how much e↵ort the participants spent on the

problem until they decided that they would not be able to solve it. Table 7.2

presents the average length of each the resolution sequences for each outcome.

Figure 7.2 contains box plots showing the distribution of the lengths for each

phase and outcome.

7.4.2 Summary

The results in Table 7.2 and Figure 7.2 show that successful resolution se-

quences were the longest in the Error Phase on average. The Error Phase
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(a) Error Phase (b) Description Phase

(c) Markup Phase (d) Querying Phase

Figure 7.2: The distribution of the lengths of the resolution sequences.

216



also has the highest standard deviation. The average lengths are shorter if

any kind of information option is available. Among the phases where partic-

ipants were able to request information, the Querying Phase has the longest

average resolutions sequences as well as the highest standard deviation. The

results appear plausible. We performed ANOVA tests for each outcome, and

found that only for the successful sequences statistically significant di↵er-

ences exist with an F value of 6.78 and a p value below 0.01. A post-hoc

Tukey test showed that there were statistically significant di↵erences between

the sequences from the Error Phase and the Description Phase and the Error

Phase and the Markup Phase p values below 0.01 in both cases. This in-

dicates that if participants could request markup or descriptions, they were

able to resolve problems quicker at a statistically significant level.

In the Error Phase the only way to resolve a problem was to use a trial-

and-error approach. In the other phases the participants could request in-

formation and attempt more informed approaches. In the Description Phase

and the Markup Phase the descriptions and the markup provided all the in-

formation that was available in one action. In the Querying Phase however,

the queries only provided information that was explicitly requested. It is

therefore plausible, that participants had to ask multiple queries to form a

su�cient idea of the robot’s understanding of the scene. This would explain

why Querying Phase has longer successful resolution sequences as well as a

higher standard deviation.

Conclusion:

217



1. Resolution sequences tend to be shorter if participants can request in-

formation about the robot’s perception options are available.

7.5 Dialogue Act Sequences

Each resolution sequence describes the actions one participant took to resolve

one particular problem. We investigate the sequences under two perspectives:

1. From a structural perspective we investigate the sequences as sequences

of actions and identify common structures.

2. From a content perspective we investigate the referring expressions the

participants chose in their attempts to resolve the problem, and how

they modified the expressions when they encountered problems.

In this section we perform a structural analysis of the sequences. The

content based analysis will be performed in the following chapter.

We form an abstraction over the dialogues by abstracting them into di-

alogue acts. We define the set of dialogue acts as follows:

pickup: The participant successfully instructs the system to pick up an ob-

ject.

move: The participant instructs the system to move an object the robot is

holding to a given location.

put: The participant instructs the system to put down an object the robot

is holding.
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description: The participant requests a description of the scene (this was

only possible in the Description Phase).

markupon: The participant turns the markup information on (this was only

possible in the Markup Phase).

markupo↵: The participant turns the markup o↵ (this was also only pos-

sible in the Markup Phase).

query: The participant makes a query (this was only possibly in the Query-

ing Phase).

pause: The user clicks on the pause button.

Apart from these dialogue acts, we define three further elements that

represent the beginning and end of resolution sequences:

init: This refers to the action that initializes the resolution sequence (i.e.

an attempt to pick up an object that is a↵ected by a perception error,

that fails due to reference resolution problem).

SUCCESS: This denotes a pickup instruction that successfully completes

the resolution sequence.

ABANDON: The participant abandoned the scene.

OTHER: The participant finished the scene with an invalid solution (as

defined in Section 5.3.1).

As discussed in Section 4.3.3 the system was capable of planning se-

quences of actions to fulfil instructions. For example, if the user instructed
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the system to move an object to a given location while the robot was not

actually holding an object, the system would create a plan to pick up an

object that fit the instruction given by the user. While the instruction on a

surface level is a move instruction, it is therefore interpreted by the system

as a combination of an implicit pickup instruction and a move instruction.

In order to make it possible to understand in this analysis which actions the

system actually performed, we decided to represent actions of this kind as

complex instructions.

pickup move put: An instruction in which requested that the robot pick

up an object, move it to a given location, and put if down there.

move put: An instruction to move an object to a given place and put it

down there.

pickup move: An instruction to pick up an object and move it to a given

place.

In this analysis we focus only on the actions by the participants. The

reactions by the system will therefore not be explicitly included as separate

dialogue acts. Since it is important whether the robot was able to perform

an instruction, we represent the system’s response by adding the following

su�xes to action tags that represent instructions:

ok: The system successfully performed the instruction.

not ok: The system was not able to successfully complete the instruc-

tion.
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For example pickup ok represents a pickup instruction the system was able

to perform, while pickup not ok represents a pickup instruction the system

was not able to perform.

7.5.1 RQ 7.3: Dialogue Structure

What structures can be observed in the resolution attempts?

To visualize the structure of the collected sequences we construct a series

of graphs. The first set of graphs, the full sequence graphs provide an

overview over all the sequences of actions that were observed in each phase.

Since they are very large, we then present a second set of graphs, theMarkov

graphs. They provide a more abstract view and show for each action the

probability of other possible actions being performed after it. The third set

of graphs, the most frequent sequences graphs provide an overview of

the most frequently observed sequences in each phase.

7.5.2 Full Sequence Graphs

We created a graph for each phase of the experiment that contains all the

resolution sequences that were observed in that phase. To do this, we created

a list of all resolution sequences. We then created a graph in which all nodes

with the same name were merged and all edges that ran between nodes of

the same name were merged as well. Each edge is labelled with a figure

that represents the number of times the edge was found in the sequence set.

To highlight the importance of each connection, the thickness of each edge
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is determined by its relative frequency. The graph for the Error Phase is

presented in Figure 7.3. The graphs for the Description Phase, the Markup

Phase and the Querying Phase are presented in Figure 7.5, Figure 7.7 and

Figure 7.9.

Since the graphs contain all observed sequences, they naturally are quite

large and not particularly legible given the restricted size of the page. They

are particularly stretched out by a few branches of the graph that are unusu-

ally long but not particularly frequent. Figure 7.4, 7.6, 7.8 and 7.10 focus on

the upper parts of the graphs that contain the more frequent events. How-

ever, these graphs still contain a high number of nodes, making it di�cult to

interpret them.

This highlights the need to focus in on particularly frequent resolution

sequences. The investigation of the length of resolution sequences in Section

7.4 showed that in all phases resolution sequences with successful outcomes

tend to be shorter than sequences that ended when the participant aban-

doned the scene. The graphs appear to be consistent with this observation

in that the paths leading to the ABANDON nodes appear longer and more

convoluted than the ones leading to the SUCCESS nodes. If we focus on

individual edges, it appears that there are a few paths that appear much

stronger than the remaining paths. This is encouraging because it suggests

that structures exist that are particularly frequent. However, this is only

based on a first visual impression.

Before we focus on individual sequences we take an alternative look at

the data and construct and analyse a Markov graph for each set of resolution
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Figure 7.3: The sequence graph for all sequences from Error Phase.
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Figure 7.5: The sequence graph for all sequences from Description Phase.
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Figure 7.7: The sequence graph for all sequences from Markup Phase.
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Figure 7.9: The sequence graph for all sequences from Querying Phase.
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sequences.

7.5.3 Markov Graphs

In the graphs presented in Figure 7.11 to Figure 7.14 we present the events in

the resolution sequences as Markov chains. A Markov chain consists of a

set of states and a set of transitions between the states, where each transition

has a transition probability that only is determined by the originating state

only. In the graphs presented here, the states represent the types of actions

participants could perform. The transition probabilities are calculated based

on the observed sequences of actions (e.g. the transition probability between

event pickup ok and event move ok is calculated as the number of times

event move ok followed event pickup ok divided by the number of times event

pickup ok occured.). Edges are visually weighted based on their probability.

The graph for Error Phase is shown in Figure 7.11. Particularly inter-

esting is the connection from the pickup not ok -node back to itself. It has a

probability of 0.56 and is the arc with the highest probability exiting from

this node. This indicates that participants often had to make multiple un-

successful attempts to pick up an objects one after another. This suggests

that participants followed a trial-and-error strategy where they repeatedly

attempted to pick up the target object by guessing how the robot might

perceive the object.

Figure 7.12 shows the graph for the Description Phase. Particularly in-

teresting here is that there is a strong transition from the init-node to the

description-node. This indicates that participants frequently requested a
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description as their first action after they encountered a problem (as repre-

sented by the init-node, which represents a pick-up action that failed due to

a perception error. The strongest transition from the description-node leads

to the SUCCESS -node. This indicates that participants were often able to

resolve the problem after they requested a description.

Figure 7.13 shows the graph for the Markup Phase. The observations

here are similar to the ones for the previous graph. There is a strong tran-

sition from the init-node to markupon-node, again indicating that partici-

pants tended to request information as their first action after encountering

a problem. The strongest transition from the markupon-node leads to the

SUCCESS -node, again indicating that participants were often able to resolve

problems after they requested information.

Figure 7.14 shows the graph for the Querying Phase. As in the previous

graphs, the transition from the the init-node to the query-node, which repre-

sents the information request in this phase, is strong. The strongest transition

from the query-node however is a transition back to the query-node. This

indicates that, rather than solving the the problem with one information re-

quest as in the Description Phase and the Markup Phase, participants had

to ask multiple queries before they could resolve the problem.

The Markov graphs illustrate that information requests were an important

part of the resolution attempts by the participants. In the following section

we investigate individual sequences and the structures formed by unifying

these sequences.
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7.5.4 Most Frequent Sequences Graphs

In the first step we determined the dialogue action sequence for each resolu-

tion sequence and then counted how many resolution sequences were covered

by each observed dialogue action sequence. Table 7.3 provides an overview of

the 10 most frequently observed sequences. In Figure 7.15 to Figure 7.24 we

present the five most frequent sequences for each phase as well as an example

of the text of one resolution sequence from the data that was covered by the

sequence (we chose to discuss only the five most frequent sequences to avoid

discussing sequences that were only observed very few times).

As in the previous graphs, the init node represents the beginning of the

sequence, where the participant unsuccessfully attempted to pick up an ob-

ject that was a↵ected by a perception error. The SUCCESS node represents

the action in which the participant successfully picked up the object they

meant to pick up in the initiating action. The ABANDON node represents

the action in which the participant abandoned the scene, and the OTHER

node represents cases where the participant finished the scene with an irreg-

ular outcome (as discussed in Section 5.3.1).

Overall we observe that the distributions are markedly di↵erent between

the phases. In the Description Phase and the Markup Phase the highest

ranked sequence makes up over 30% of the observed sequences. The two

highest ranked sequences taken together make up over 40% of the observed

data. In the Error Phase the two highest ranked sequences together make up

only about 25%. In the Querying Phase the 3 highest ranked sequences make
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Error Phase Description Phase Markup Phase Querying Phase

Rank Prop. Count Figure Prop. Count Figure Prop. Count Figure Prop. Count Figure

1 17.97% 23 7.15 33.33% 29 7.19 39.66% 23 7.19 10.81% 8 7.20

2 7.03% 9 7.16 14.94% 13 7.19 6.90% 4 7.19 10.81% 8 7.21

3 4.69% 6 7.17 3.45% 3 7.19 6.90% 4 7.19 4.05% 3 7.22

4 4.69% 6 7.18 3.45% 3 7.19 3.45% 2 7.19 2.70% 2 7.23

5 3.13% 4 7.19 2.30% 2 7.19 3.45% 2 7.19 2.70% 2 7.24

6 2.34% - 3 - 2.30% 2 - 1.72% 1 - 2.70% 2 -

7 1.56% - 2 - 2.30% 2 - 1.72% 1 - 2.70% 2 -

8 1.56% - 2 - 2.30% 2 - 1.72% 1 - 1.35% 1 -

9 1.56% - 2 - 2.30% 2 - 1.72% 1 - 1.35% 1 -

10 1.56% - 2 - 1.15% 1 - 1.72% 1 - 1.35% 1 -

Table 7.3: The proportion of the most frequent sequences for each phase.

up about 25%. This suggests that the Description Phase and the Markup

Phase had strategies that were generally well suited to resolve the problems

and often used, while the Error Phase and the Querying Phase were not as

straight-forward.

7.5.4.1 Individual Sequences

In this section we discuss, in detail, the most frequent sequences seen within

each phase. We start with the Error Phase. The sequence presented in

Figure 7.15 represents a structure observed in the Error Phase where the

participants, after an initial unsuccessful reference, managed to produce a

successful reference directly afterwards. This sequence also occurs in all of

the other phases (presented in Figure 7.19, Figure 7.19 and Figure 7.21), but

not as frequently. In the examples presented here, the participants achieved

this by including a spatial direction attribute.

The sequences in Figure 7.16 and Figure 7.17 represent sequences where
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the participants (repeatedly) tried di↵erent referring expressions and even-

tually succeeded (or, as in the sequence in Figure 7.19 decided to abandon

the scene).

The sequence in Figure 7.18 presents an exception. Here the participants

successfully picked up an object that is not the one they originally intended,

put it back down, and then picked up the intended object. In personal

discussion with participants, some participants reported doing this in order

to understand how the system would interpret a given expression. This

case therefore represents a situation in which the participants used a pickup

instruction to gain information about the robot’s understanding of the scene

and then produced a successful reference based on that.

(a) The sequence.

U: pick up the red ball near the yel-
low ball

S: Sorry, I can’t find any red balls
that fit your description.

U: pick up the right most red ball
S: Okay, I will pick it up

(b) Error Phase, Rank 1.

Figure 7.15: An example of a resolution sequence.
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(a) The sequence.

U: pick the ball next the blue box
S: Sorry, I can’t find any balls that

fit your description.
U: pick the ball in front the blue

box
S: Sorry, I can’t find any balls that

fit your description.
U: pick the left ball
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.16: Error Phase, Rank 2.

(a) The sequence.

U: pick up the red ball near the yel-
low ball

S: Sorry, I can’t find any red balls
that fit your description.

U: pick up the ball near the yellow
ball

S: Sorry, I can’t find any balls that
fit your description.

U: pick up the red ball
S: Sorry, there is more than one red

ball and I can’t figure out which
one you mean.

U: pick up the top red ball
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.17: Error Phase, Rank 3.
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(a) The sequence.

U: pick the green box
S: Sorry, I don’t see any green

boxes.
U: pick the box
S: Okay, I will pick it up
U: put it down
S: Okay, I will put it down
U: pick the green object
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.18: Error Phase, Rank 4.

(a) The sequence.

U: pick up the red ball next to the
green ball

S: Sorry, I can’t find any red balls
that fit your description.

U: pick up the upper most red ball
S: Sorry, I can’t find any red balls

that fit your description.
U: pick up the ball next to the

green ball
S: Sorry, I can’t find any balls that

fit your description.
(User abandons the scene.)

(b) A corresponding example sequence.

Figure 7.19: Error Phase, Rank 5.
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The sequences from the Description Phase and the Markup Phase mostly

centre around information requests. Figure 7.19 and Figure 7.19 represent

cases where the participants encountered a problem in the initial action,

requested information (either a description or markup) and then solved the

problem based on that information. Figure 7.19 and Figure 7.19 present

cases where the participants unsuccessfully attempted to guess how to refer

to the object, then requested information, and finally managed to pick up the

intended object. Figure 7.19 presents a sequence in which the participants

requested information, and afterwards made a unsuccessful attempt to pick

up the intended object, but succeeded afterwards.
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(c) The sequence.

U: pick up the blue ball
S: Sorry, I don’t see any blue balls.

(User requests a description.)
S: There is a red box on a place

named place 1 on the top right.
There is a red ball on the left.
There is a green ball on the bot-
tom left. There is a place named
place 2 on the right. There is a
place named place 3 on the bot-
tom right.

U: pick up the red ball
S: Okay, I will pick it up

(d) A corresponding example sequence.

Figure 7.19: Description Phase, Rank 1.

(e) The sequence.

U: pick up red ball to the left of a
yellow box

S: Sorry, I can’t find any red balls
that fit your description.

U: Pick up ball in top right
S: Okay, I will pick it up

(f) A corresponding example sequence.

Figure 7.19: Description Phase, Rank 2.

(g) The sequence.

U: pick up the red ball near the yel-
low ball

S: Sorry, I can’t find any red balls
that fit your description.

U: pick up the red ball in front of
green box

S: Okay, I will pick it up
U: put it to place 1
S: Okay, I will put it there

(h) A corresponding example sequence.

Figure 7.19: Description Phase, Rank 3. The sequence ends with an irregular
outcome when the participant places the object that is being held.
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(i) The sequence.

U: pick up the green box
S: Sorry, I don’t see any green

boxes.
U: pick up the box on the left
S: Sorry, I can’t find any boxes that

fit your description.
(User requests a description.)

S: There is a blue box on a place
named place 2 on the right.
There is a red ball on a place
named place 1 on the top right.
There is a green ball on the bot-
tom left. There is a place named
place 3 on the bottom right.

U: pick up the green ball
S: Okay, I will pick it up

(j) A corresponding example sequence.

Figure 7.19: Description Phase, Rank 4.
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(k) The sequence.

U: pick up the green box
S: Sorry, I don’t see any green

boxes.
U: pick up the blue box
S: Okay, I will pick it up
U: move it to place 2
S: Okay, I will move it there
U: put it down
S: Okay, I will put it down

(User requests a description.)
S: There is a blue box on a place

named place 2 on the right.
There is a red ball on a place
named place 1 on the top right.
There is a green ball on the bot-
tom left. There is a place named
place 3 on the bottom right.

U: pick up the green ball
S: Okay, I will pick it up

Figure 7.19: Description Phase, Rank 5.

(l) The sequence.

U: pick the blue ball
S: Sorry, I don’t see any blue balls.

(User activates markup.)
U: pick up the red ball put it to the

place 3
S: Okay, I will pick it up

(m) A corresponding example sequence.

Figure 7.19: Markup Phase, Rank 1.
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(n) The sequence.

U: put the green box on place 3
S: Sorry, I don’t see any green

boxes.
(User activates markup.)

U: put the green ball on place 3
S: Okay, I will put it there

(o) A corresponding example sequence.

Figure 7.19: Markup Phase, Rank 2.

(p) The sequence.

U: pick up the blue ball
S: Sorry, I don’t see any blue balls.
U: pick up the ball on the left
S: Okay, I will pick it up

(q) A corresponding example sequence.

Figure 7.19: Markup Phase, Rank 3.

(r) The sequence.

U: pick up the red ball beside the
yellow box

S: Sorry, I can’t find any red balls
that fit your description.
(User activate markup.)

U: pick up the red ball behind the
blue box

S: Sorry, I can’t find any red balls
that fit your description.

U: pick up the red ball behind the
red ball

S: Okay, I will pick it up

(s) A corresponding example sequence.

Figure 7.19: Markup Phase, Rank 4.
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(t) The sequence.

U: pick up the blue ball
S: Sorry, I don’t see any blue balls.
U: pick up the blue box
S: Sorry, I don’t see any blue boxes.

(User activates markup.)
U: pick up the red ball
S: Okay, I will pick it up

(u) A corresponding example sequence.

Figure 7.19: Markup Phase, Rank 5.
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In the Querying Phase a similar approach to this structure where an in-

formation request precedes a successful conclusion of the resolution sequence

can be observed. Figure 7.20, Figure 7.22 and Figure 7.23 present sequences

in which the participants asked one, two or four queries before they picked

up the intended object.

Figure 7.19 and Figure 7.19 present sequences with theOTHER-outcome,

i.e. the participant created a configuration that was accepted by the system

as a valid target scene, but was not actually the correct target scene. Apart

from the fact that they result in the OTHER-outcome, they fit in struc-

turally with the sequences with successful outcomes. From the perspective

of a participant, the sequence in Figure 7.19 is not distinguishable from the

from one in Figure 7.19, and the one in Figure 7.19 is equivalent to the one in

Figure 7.19 because in both instances they (presumably) believed they were

fulfilling the target conditions of the scene.

The sequences in Figure 7.19 and Figure 7.24 have not been discussed

yet. They both represent sequences in which the participants, after the initial

problem, left the originally targeted object alone and moved a di↵erent object

to a target location, but then returned and successfully picked up the targeted

object. In personal discussions, a few participants described that sometimes,

when they could not pick up an object, they would first address other parts

of the scene, and try to modify the context of the original object in order to

allow it be identified with a simpler expression. In fact, it is plausible that

the example for the sequence in Figure 7.24 is an example of this.
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(a) The sequence.

U: pick up the green box
S: Sorry, I don’t see any green

boxes.
U: do you see a green ball
S: Yes, I see a green ball.
U: pick it up
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.20: Querying Phase, Rank 1.

(a) The sequence.

U: place the blue ball on place 3
S: Sorry, I don’t see any blue balls.
U: pick up the far left ball
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.21: Querying Phase, Rank 2.

(a) The sequence.

U: pick up the red ball in front of
the blue box

S: Sorry, I can’t find any red balls
that fit your description.

U: do u see a box
S: Yes, I see a box.
U: do u see a ball in front of the box
S: Yes, I see a ball that fits your

description.
U: pick it up
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.22: Querying Phase, Rank 3.
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(a) The sequence.

U: pick up the red ball near the yel-
low ball

S: Sorry, I can’t find any red balls
that fit your description.

U: do you see two red balls
S: Yes, I see 2 red balls.
U: do you see a yellow ball
S: Sorry, I don’t see any yellow

balls.
U: do you see a yellox box
S: I see 2 boxes.
U: do you see a yellow box
S: Yes, I see a yellow box.
U: pick up the red ball near the yel-

low box
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.23: Querying Phase, Rank 4.
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(a) The sequence.

U: pick up the green box
S: Sorry, I don’t see any green

boxes.
U: pick up the red ball
S: Okay, I will pick it up
U: move it to place 1
S: Okay, I will move it there
U: put it down
S: Okay, I will put it down
U: pick up the most left object
S: Okay, I will pick it up

(b) A corresponding example sequence.

Figure 7.24: Querying Phase, Rank 5.

7.5.4.2 Composed Most Frequent Sequences Graphs

To put the individual most frequent graphs into context with each other,

we created for each phase a graph that contains only the five most frequent

sequences that were discussed in the previous section. As in the other graphs

we presented, the edges are labelled with the number of times this particular

edge occurred in an observed sequence. Again, the thickness of each edge is

determined by the relative frequency of the edge.

The graph for the Error Phase is shown in Figure 7.25. It shows that

participants often had to attempt (multiple) unsuccessful attempts before

they resolved the problem.

The graph for the Description Phase in Figure 7.26 highlights the domi-
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Figure 7.25: The sequence graph for the five most frequent sequences he in
the Error Phase.

nance of the resolution sequence in which a description was requested, leading

to a successful conclusion. The graph for the Markup Phase in Figure 7.27

shows a similar structure where the markupon node takes the place of the

description node.

Similar to the graphs for the Description Phase and the Markup Phase,

the graph for the Querying Phase in Figure 7.28 show strong arcs for branches

that involve (multiple) queries.
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Figure 7.26: The sequence graph for the five most frequent sequences in the
Description Phase.

Figure 7.27: The sequence graph for the five most frequent sequences in the
Markup Phase.
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Figure 7.28: The sequence graph for the five most frequent sequences in the
Querying Phase.

7.5.5 Summary

There is a considerable variation in how the participants reacted to percep-

tion based problems in the dialogue, and in how they resolved problems.

By analysing the bigram graphs and the most frequent sequences, we found

that there are structures that are distinct for each condition. One important

aspect across all phases was the retrieval of information. The participants

were not able to directly request information in the Error Phase, and there-

fore had to try to guess a successful way of referring to the intended object,

if necessary by exhausting the di↵erent possibilities. An alternative option

was used by a few participants who attempted to gain an understanding of
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the robot’s understanding of the world by trying out di↵erent expressions to

see which object the robot would resolve them to.

In the Description Phase and the Markup Phase, the participants could

request information by the system through the description option and the

markup option. Successful sequences therefore tend to involve direct infor-

mation requests. In the Querying Phase, the participants were able to ask

queries of the system. While in the two previous phases one information

request always provided all the information the robot could provide at any

given time, the information provided by queries depended on the content of

the query. Consequently, the participants sometimes had to pose multiple

queries in a row in order to be able to formulate a successful instruction.

Conclusions:

1. Information retrieval of di↵erent types depending on the information

option available forms a central part of all successful strategies.

2. Information is either retrieved through explicit information requests or

trial-and-error.

3. Participants tend to request information after they encounter a prob-

lem.

4. After they request information, participants are often able to directly

solve the problem.
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7.6 Summary

We began this chapter by defining the term resolution sequence and explain-

ing how we extracted resolution sequences from the data. We then analysed

the outcome and length of the resolution sequences and found that resolution

dialogues were both shorter and more successful if the participants were able

to request information from the robot. We then investigated the structure

of resolution sequences at a dialogue act level. We found that in all phases

participants performed actions to gather information in order to be able to

successfully resolve the problem. Depending on the phase di↵erent strategies

were used for this, and if explicit information request options were available,

they were used. If they were not available, the participants tended to use a

trial-and-error strategy.

In the following chapter we investigate resolution sequences from a content

perspective by examining the expressions the participants used.
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Chapter 8
Referring Strategies in Problem

Resolution Sequences

In the previous chapter we introduced the concept of resolution sequences.

Resolution sequences are the actions a participant performs (in co-operation

with the robot) to resolve a problem that arose in the dialogue due to a

perception error. We described how we identified and extracted resolution

sequences in the Toy Block experiment. We then analysed the resolution

sequences on a structural level. In this chapter we analyse them on a content

based level by investigating the referring expressions the participants used.

We are particularly interested in identifying the di↵erences between the

expressions the participants used in the references that started the resolution

sequences (i.e. the expressions that the robot could not resolve) and the

expressions that terminated the resolution sequence (i.e. the successful final
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reference). We call the decisions the participants made about the choice of

attributes referring strategies.

8.1 Research Questions

In this chapter the focus of the analysis is on how participants reformulated

referring expressions in order to solve communication failures caused by di-

vergent perceptual information between the robot and the participant. This

analysis is structured around the following research questions:

Research Question 8.1: What attributes did the participants include in

their initial and final reference? – This question refers to the participant’s

choice of whether or not to include a possible attribute into the description.

Research Question 8.2: How did the participants modify their expres-

sions between the initial and the final reference? – To formulate a successful

reference the participants had to formulate a new referring expression that

is di↵erent from the initial one. With this question we investigate in what

way the expressions di↵er, and analyse the strategies that may underlie these

changes.

Research Question 8.3: What e↵ect did information requests have on

how the participants modified the references? – In the di↵erent phases of

the experiment the participants were able to request information from the

robot in di↵erent ways. With this question we investigate whether or not

the di↵erent information sources had an impact on the choice of expressions

by the participants and what the di↵erences in the strategies they produced
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were.

8.2 RQ 8.1: Attribute Selection in the Reso-

lution Sequences

What attributes did the participants include in their initial and final

reference?

In this section we analyse the strategies participants used to resolve the

problems in the dialogue that occur due to perception errors by comparing

the attributes used in the initial references of resolution sequences to the

attributes used to make the final successful reference.

8.2.1 Data

The investigation is based on the set of resolution sequences we presented

in Section 7.2. A resolution sequence represents the sequence of actions a

participant performed after they encountered a perception based problem

in the dialogue by attempting to pick up an object that was a↵ected by a

perception error. Each sequence end when the participant was able to resolve

the problem by successfully picking up the object they had originally intended

to pick up when they or abandoned the scene. The term initial reference (as

defined in our discussion of the resolution sequences in Section 7.2) denotes

the referring expression used in the instruction that initiated the sequence

(i.e. it was a referring expression the system could not (uniquely) resolve to
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a referent due to a perception error). The term final reference denotes the

expression that was used in the instruction that successfully concluded the

resolution sequence (i.e. it was an expression that was suitable to identify

the object despite the perception error 1. We determine which attributes

participants used in their initial references and then compare the results to

the attributes used in the final references. We distinguish between four types

of attributes:

Type: The participant used an expression that described the specific type

of the object (e.g. “ball’ in “the green ball” or “box” in “the box”). If

the participant used a expression that did not describe the specific type

of the object (e.g. by describing the target an “object” or “thing”, as

in “the green thing” or “the red object”), we annotated the expression

as not containing a type attribute.

Colour: The participant specified the colour of the object (e.g. “the green

box” or “the red one”). Examples for expressions that did not contain

a colour attribute are “the box” or “the ball on the left”.

Landmark reference: The participant described the object in relation to

another object (e.g. “the ball near the red box” or “the box between

the two green balls”). This corresponds to the relational attributes

discussed in Section 4.3.8.2.

Directional expression: The participant used a spatial direction to de-

scribe the object (e.g. “the ball on the left”, “the box in the back”).

1(TODO: re-read )
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This corresponds to the directional attributes discussed in Section

4.3.8.1.

We selected all successful resolution sequences from the dataset and then

determined automatically which attributes the initial and the final reference

contained in each sequence. The results are presented in Table 8.1. For

comparison, Table 8.2 contains an overview of the attributes that were used

in pick-up instructions in general.

8.2.2 Summary

It appears that almost all initial references included the type attribute.

Most of the final references also contained the type attribute. Only in the

Error Phase did the participants tend to use not use specific type expressions

more often than in the other phases. Removing the type attribute could be

interpreted as an attempt to avoid an attribute the participants found to be

unreliable. 1

Most of the initial expressions included the colour attribute. In the

final expressions, the colour attribute was used less often across all condi-

tions. Again, this can be interpreted as an attempt to avoid an unreliable

attribute. This hypothesis is supported by the observation that for the Error

Phase and the Querying Phase the reduction in the number of colour at-

tributes is particularly high. In these phases the participants were not given

a complete description of the system’s perception of the world, but had to

elicit information step by step either through querying in the Querying Phase

1(TODO: check discussion - type attributes, neutral types etc. )
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Initial reference Final reference

Type Colour LM Dir Type Colour LM dir

Phase % Count % Count % Count % Count % Count % Count % Count % Count

Error Phase 96.34 79 86.59 71 45.12 37 0 0 84.15 69 58.54 48 30.49 25 17.07 14

Description Phase 98.57 69 87.14 61 51.43 36 0 0 98.57 69 77.14 54 34.29 24 34.29 24

Markup Phase 100 40 92.5 37 45 18 0 0 95 38 95 38 37.5 15 17.5 7

Querying Phase 100 55 94.55 52 49.09 27 0 0 94.55 52 65.45 36 32.73 18 25.45 14

Table 8.1: Attributes that were included in initial and final references (LM
= landmark reference, Dir = directional expression)

All attributes Type Colour LM Direction Any spatial attribute

Phase Count % Count % Count % Count % Count % Count

No Error Phase 420 100.00% 420 91.43% 384 6.67% 28 39.52% 166 46.19% 194

Error Phase 1447 84.24% 1219 65.65% 950 4.98% 72 33.66% 487 38.63% 559

Description Phase 1417 97.11% 1376 86.10% 1220 16.02% 227 35.07% 497 51.09% 724

Markup Phase 631 96.99% 612 76.23% 481 10.46% 66 26.78% 169 37.24% 235

All phases 3915 92.64% 3627 77.52% 3035 10.04% 393 33.69% 1319 43.73% 1712

Table 8.2: Attributes contained in pick-up instructions

or through trial-and-error in the Error Phase. Consequently, relative to the

other phases in the experiment, the participants were less likely to have an

understanding of how the system perceived an object, and therefore more

likely to avoid attributes that, in their experience, the system had problems

perceiving.

Landmark references were included in some of the initial references

and also in some of the final references. Overall the number of expressions

that included landmark references was smaller in the final expressions than

in the initial expressions across all phases. This suggests that participants in

some cases avoided landmarks after they found them to be unreliable.

The directional expression attribute is particularly interesting. In

none of the observed cases was it included in an initial reference, but in

some of the final references.1 It is furthermore interesting that the num-

ber of directional descriptions was the highest in the Description Phase. In
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this phase, the participants were able to request a verbal description of the

scene. As described in Section 4.3.5.2, the descriptions contained both land-

mark references and directional descriptions. One possible explanation for

the higher number of directional descriptions would therefore be that the

participants used the directional descriptions the system used and aligned to

the descriptions given by the system.

Conclusions:

1. Overall, there is a di↵erence between what attributes were used in the

initial references and in the final references.

2. There are also di↵erences that appear to be related to the information

request option that was used.

3. There appears to be a tendency where participants substitute basic

attributes with directional attributes.

8.3 RQ 8.2: Expression Modifications

How did the participants modify their expressions between the initial and

the final reference?

In the first section we investigated at a high level which attributes the

participants chose to include in their referring expressions. We found that

the participants included other attributes in the final expressions than in the

1The fact that no directional attributes were included in the in the initial expressions
may be a bit deceptive. We should keep in mind that resolution sequences were only
initiated if a reference failed. This therefore probably reflects the fact that directional
attributes were robust against perception errors.
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initial expressions. We therefore set out to investigate how the expressions

changed between the initial reference and the final reference in more detail,

and in particular, whether the participants modified the values they used in

the attributes. We compare the initial and the final reference and extract

modification events that describe how the second expression di↵ers from

the first expression.

8.3.1 Data

We extracted the following modification events:

[addColour] The participant did not use a colour in the initial reference

but did use a colour in the final reference. For example:

U: Pick up the ball.

U: Pick up the green ball.

[addType] The participant used a generic type expression in the first initial

reference and then used a more specific type in the final reference. For

example:

U: Pick up the green thing.

U: Pick up the green ball.

[addLM] The participant’s initial reference did not contain a landmark

reference, but the final reference did:
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U: Pick up the ball.

U: Pick up the ball near the yellow box.

[addDir] The participant’s initial reference did not contain a directional

attribute, but the final reference did:

U: Pick up the ball.

U: Pick up the ball on the left.

[dropColour] The initial reference contained a colour attribute but the

final reference did not.

U: Pick up the green ball.

U: Pick up the ball.

[dropType] The initial reference contained a type attribute with a specific

type value, in the final reference it had a generic type value.

U: Pick up the green ball.

U: Pick up the green object.

[dropLM] The initial reference contained a landmark reference, but the

final reference did not.

U: Pick up the green ball near the blue box.

U: Pick up the green ball.
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[dropDir] The initial reference contained a directional attribute, but the

final reference did not.

U: Pick up the green ball in the back.

U: Pick up the green ball.

[changeColour] Both the initial reference and the final reference contain

a colour attribute but with di↵erent values.

U: Pick up the green ball.

U: Pick up the red ball.

[changeType] Both the initial reference and the final reference contain a

type attribute but with the di↵erent values.

U: Pick up the green box.

U: Pick up the green ball.

[changeLM] The initial reference and the final reference contain a land-

mark reference, but the references were not identical.

U: Pick up the green ball near the blue box.

U: Pick up the green ball behind the green ball.

[changeDir] The initial reference and the final reference contain a direction

attribute, but they are not identical.
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U: Pick up the green ball in the back.

U: Pick up the green ball on the left.

Multiple events can occur between two references. For example, for the

following two utterances

U: Pick up the green ball near the blue box.

U: Pick up the box on the left.

The following modification events would be extracted:

[dropColour] because no colour was used to the describe the target

object in the final expression while “green” was used in the initial

expression.

[changeType] because the term “ball” was used for the target object

in the initial expression and “box” in the final expression.

[dropLM] because in the initial expression the target object was de-

scribed in relation to a landmark, but not in the final expression.

[addDir] because in the final expression a directional expression was

used but not in the initial expression.

The modification event for this sequence would therefore be denoted as

[addDir] [dropColour] [dropLM] [changeType].

We compared the initial reference and final reference of each successful

resolution sequence from the Error Phase, the Description Phase, the Markup
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Phase and the Querying Phase and determined the modification events for

each pair. In total we 30 distinct modification events were observed. The full

set of modification events is listed in Table 8.3, along with each modification

event’s proportion in the total set of events and the number of times the

modification event was observed.

8.3.2 Summary

Table 8.3 contains an overview of all events that were observed across all

phases of the experiment, ordered by their frequency. The most frequent

modification event is [changeLM]. It represents situations in which par-

ticipants attempted to describe an object using a landmark in the initial

reference. After the reference failed because the landmark was a↵ected by a

perception error, they used an alternative landmark to describe the object

(e.g. “the box behind the green ball” instead of “the box in front the blue

box”), chose a di↵erent description for the same landmark (e.g. “the green

thing” instead of the “the green box”), or modified the landmark reference

by including more or fewer objects into it (e.g. by “the ball near the yellow

box” instead of “the ball between the yellow box and the blue box”).

The second most frequent event is [addDir] [dropLM]. It represents

an alternative solution to the same problem. The participants attempted to

describe an object in relation to a landmark. However, after the reference

failed they did not choose an alternative landmark, but instead abandoned

the landmark based description and used a direction based description in-

stead (e.g. “the ball on the bottom left” instead of “the ball near the yellow
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Rank Event Proportion Count

1 [changeLM] 22.52% 100

2 [addDir][dropLM] 15.09% 67

3 [changeType] 13.74% 61

4 [addDir][dropColour] 11.26% 50

5 [changeColour] 6.08% 27

6 [addDir][dropColour][dropType] 4.50% 20

7 [addColour][changeLM] 3.38% 15

8 [addDir][changeColour] 3.15% 14

9 [addDir][dropColour][changeType] 2.25% 10

10 [addDir][dropColour][dropLM] 2.25% 10

11 [addLM][changeColour] 2.25% 10

12 [addLM][dropColour] 2.03% 9

13 [dropType] 1.80% 8

14 [addDir] 1.35% 6

15 [addColour][addDir][dropLM] 0.90% 4

16 [addColour][addDir][dropType][dropLM] 0.90% 4

17 [addLM] 0.90% 4

18 [dropColour][changeType] 0.90% 4

19 [addColour][addDir][dropLM][dropNumber] 0.45% 2

20 [addDir][dropColour][dropDir][changeType] 0.45% 2

21 [addDir][dropColour][dropNumber][changeType] 0.45% 2

22 [addDir][dropLM][changeColour] 0.45% 2

23 [addLM][dropColour][dropType] 0.45% 2

24 [addType][changeColour] 0.45% 2

25 [dropColour] 0.45% 2

26 [dropColour][changeLM] 0.45% 2

27 [dropColour][dropLM][changeType] 0.45% 2

28 [addColour][addType][changeLM] 0.23% 1

29 [addDir][changeColour][changeType] 0.23% 1

30 [addDir][changeType] 0.23% 1

Table 8.3: The total set of actions observed across all conditions.
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box”).

[changeType] and [changeColour] are the third and fifth most fre-

quently observed events. They represent instances where the participant

changed the value of a single basic attribute between the initial and the final

reference (e.g. instead of “the green box” they used the expression “the blue

box” or “the green ball”). These modification events are remarkable because

they represent a situation in which the participants abandoned a description

which was valid from their understanding of the scene and adopted a descrip-

tion which was from their perspective was not necessarily valid from their

perspective, but su�cient to accomplish their goal in the interaction. This

can be interpreted as the participants aligning to the robot’s understanding

of the world, which they learnt either by requesting information about it

(through descriptions, markup or queries) or by testing di↵erent descriptions

through trial-and-error.

This observation is consistent with the results by Schneider & Luz (2011),

who found that participants in a machine translation mediated dialogue sce-

nario tended to adopt terms presented by the system, rather than attempting

a repair dialogue, even if those terms were highly odd.

The fourth and the sixth most frequent events are [addDir] [drop-

Colour] and [addDir] [dropColour] [dropType]. They represent cases

where the participants removed a basic attribute (colour, or both colour and

type) from their initial expression and instead added a directional attribute

(e.g. they used the expression “the box on the right” instead of “the green

box”). This approach is interesting, because it represents a substitution of
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information. The participants removed one piece of information (the basic

attribute) that was potentially a↵ected by perception errors, and instead

added a di↵erent attribute (the spatial description) that was not a↵ected by

perception errors.

Overall we find that the participants changed the expressions in a number

of ways by using di↵erent attributes and by changing the values of attributes.

In some of the events multiple changes were made, e.g. one attribute was

removed, while another was added. In some instances it appears that par-

ticipants substituted attributes that were potentially a↵ected by perception

errors with attributes that were resistant to perception errors.

Conclusions:

1. A large range of di↵erent modification events was observed.

2. Some modifications suggest a strategy where participants substituted

unreliable attributes for reliable ones, while other modifications suggest

that the participants attempted to understand and align to the robot’s

model of the world.

8.4 RQ 8.3: The E↵ects of Information Re-

quests

What e↵ect did information requests have on how the participants modified

the references?

271



(a) The uninformed set.

(b) The description set.

(c) The markup set.

(d) The querying set.

Figure 8.1: The distribution of the events.
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In the previous section we investigated the di↵erences between initial ref-

erences and final references. We identified a number of modification events

and considered what strategies might underlie these di↵erent events. In

this section we investigate whether these di↵erent strategies are related to

whether or not the participants were able to request information and to the

type of information that was available. In the first step we are going to anal-

yse the sets at a high level and attempt to describe and quantify the similarity

between the sets. Based on this we are going to describe and motivate the

di↵erences and similarities between the sets.

8.4.1 Data

To achieve a clearer understanding of the e↵ect of information request op-

tions, we split the events into separate condition sets depending on whether

the participant requested information after the initial reference that triggered

the problem had been made, and before the problem had been resolved. This

resulted in four condition sets:

The uninformed set contains all events from all the phases (including

the Error Phase) in which no information requests or queries were used.

This set includes 128 events.

The description set contains all events from the Description Phase in

which the participant requested a scene description. In total this set

contains 50 events.

The markup set contains all events from the Markup Phase in which
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the participant requested markup. In total this set contains 33 events.

The query set contains all events from the Querying Phase in which

the participant posed a query. In total this set contains 36 events.

We present the modification events from the uninformed set in Table 8.4,

for the description set in Table 8.5, for the markup set in Table 8.6 and for

the query set in Table 8.7. Table 8.8 contains an overview of the number of

modification events in each condition set and the number of distinct events.

We also modelled each condition set as a probability distribution over the

full set of observed events and calculated the entropy of each distribution.

For easier comparison we normalized each entropy value by dividing it by

the maximum entropy for the set of events.

The results show that the uninformed set is the largest and most evenly

distributed, while the sets in the other conditions are smaller and more un-

evenly distributed.

This suggests that if the participants were able to request information

about the robot’s understanding of the scene, they tended to use fewer dif-

ferent strategies, while they used a wider range of strategies if no information

was available. A reason for this observation could be that the information

requests allowed the participants to employ particularly useful strategies that

relied on the information they received from the robot. In the uninformed

condition, the participants did not have this information and therefore used

a wider range of less e�cient strategies.
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Rank Event Proportion Count

1 [addDir][dropLM] 17.19% 22

2 [changeLM] 15.63% 20

3 [addDir][dropColour] 15.63% 20

4 [changeType] 7.81% 10

5 [addDir][dropColour][dropType] 7.03% 9

6 [addLM][changeColour] 3.91% 5

7 [addDir][dropColour][dropLM] 3.91% 5

8 [addColour][changeLM] 3.13% 4

9 [changeColour] 3.13% 4

10 [dropType] 3.13% 4

11 [addLM][dropColour] 3.13% 4

12 [addDir][dropColour][changeType] 3.13% 4

13 [addDir][changeColour] 2.34% 3

14 [addDir] 2.34% 3

15 [addColour][addDir][dropType][dropLM] 1.56% 2

16 [addColour][addDir][dropLM] 1.56% 2

17 [addLM][dropColour][dropType] 0.78% 1

18 [addDir][dropColour][dropDir][changeType] 0.78% 1

19 [addDir][dropColour][dropNumber][changeType] 0.78% 1

20 [dropColour][changeLM] 0.78% 1

21 [addLM] 0.78% 1

22 [addColour][addDir][dropLM][dropNumber] 0.78% 1

23 [addType][changeColour] 0.78% 1

Table 8.4: The modification events in the uninformed set.
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Rank Event Proportion Count

1 [changeLM] 32.00% 16

2 [changeType] 22.00% 11

3 [addDir][dropLM] 14.00% 7

4 [changeColour] 14.00% 7

5 [addDir][changeColour] 4.00% 2

6 [addDir][dropColour] 4.00% 2

7 [addColour][changeLM] 2.00% 1

8 [addDir][changeColour][changeType] 2.00% 1

9 [addColour][addType][changeLM] 2.00% 1

10 [addLM][dropColour] 2.00% 1

11 [addDir][changeType] 2.00% 1

Table 8.5: The modification events in the description set.

Rank Event Proportion Count

1 [changeLM] 27.27% 9

2 [changeType] 27.27% 9

3 [changeColour] 18.18% 6

4 [addDir][dropLM] 9.09% 3

5 [addColour][changeLM] 9.09% 3

6 [addDir][changeColour] 6.06% 2

7 [addLM] 3.03% 1

Table 8.6: The modification events in the markup set.
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Rank Event Proportion Count

1 [changeLM] 36.11% 13

2 [changeType] 16.67% 6

3 [addDir][dropLM] 13.89% 5

4 [addDir][dropColour] 11.11% 4

5 [dropColour][changeType] 5.56% 2

6 [addDir][changeColour] 2.78% 1

7 [dropColour] 2.78% 1

8 [dropColour][dropLM][changeType] 2.78% 1

9 [addDir][dropLM][changeColour] 2.78% 1

10 [addDir][dropColour][dropType] 2.78% 1

11 [addDir][dropColour][changeType] 2.78% 1

Table 8.7: The modification events in the query set.

Set Number of instances Number of distinct instances Entropy Entropy normalized

Uninformed 128 23 2.64 0.77

Description 50 11 1.90 0.56

Markup 33 7 1.73 0.51

Query 36 11 1.94 0.57

Table 8.8: Information about the condition sets.
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8.4.2 Di↵erences Between the Condition Sets

In order to determine what the specific e↵ects of the di↵erent sources of

information were, we investigated the di↵erences between the four condition

sets. Table 8.9 shows for each event how often it was observed in each

condition set, and its proportion of the total set of events in the condition set.

We visualise the contents of this table in Figure 8.1. It contains a bar plot for

each condition set that visualises the proportion of each event in the set. The

bar plots show particularly clearly the di↵erences in the distributions between

the uninformed set and the other sets. In the uninformed set (Figure 8.1a) a

large number of events are represented, but often only in very small numbers.

In the other condition sets, fewer modification events were observed, but a

small number of events are particularly frequent across all three sets.

In Figure 8.2 to Figure 8.7 we present slope graphs1 that compare the

ranks of the events in each set to the ranks of the events in other sets. Each

side of the graph represents the events in one condition set ranked by their

frequency. The lines connecting both axes indicate whether an event from

the set represented by the axis on the left side was ranked higher or lower in

the set represented by the right side. We primarily notice two things about

the graphs. The graph comparing the description set and the markup set

(Figure 8.5) shows that the events are mostly ranked similarly in both sets.

The graphs that compare the uninformed set to the description set and, the

markup set and the querying set show that the events are ranked noticeably

1As discussed by (Tufte, ND, 1986)
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Uninformed set Description set Markup set Querying set

Event set Proportion Count Proportion Count Proportion Count Proportion Count

[addColour][addDir][dropLM] 1.56% 2 0.00% 0 0.00% 0 0.00% 0

[addColour][addDir][dropLM][dropNumber] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[addColour][addDir][dropType][dropLM] 1.56% 2 0.00% 0 0.00% 0 0.00% 0

[addColour][addType][changeLM] 0.00% 0 2.00% 1 0.00% 0 0.00% 0

[addColour][changeLM] 3.13% 4 2.00% 1 9.09% 3 0.00% 0

[addDir] 2.34% 3 0.00% 0 0.00% 0 0.00% 0

[addDir][changeColour] 2.34% 3 4.00% 2 6.06% 2 2.78% 1

[addDir][changeColour][changeType] 0.00% 0 2.00% 1 0.00% 0 0.00% 0

[addDir][changeType] 0.00% 0 2.00% 1 0.00% 0 0.00% 0

[addDir][dropColour] 15.63% 20 4.00% 2 0.00% 0 11.11% 4

[addDir][dropColour][changeType] 3.13% 4 0.00% 0 0.00% 0 2.78% 1

[addDir][dropColour][dropDir][changeType] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[addDir][dropColour][dropLM] 3.91% 5 0.00% 0 0.00% 0 0.00% 0

[addDir][dropColour][dropNumber][changeType] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[addDir][dropColour][dropType] 7.03% 9 0.00% 0 0.00% 0 2.78% 1

[addDir][dropLM] 17.19% 22 14.00% 7 9.09% 3 13.89% 5

[addDir][dropLM][changeColour] 0.00% 0 0.00% 0 0.00% 0 2.78% 1

[addLM] 0.78% 1 0.00% 0 3.03% 1 0.00% 0

[addLM][changeColour] 3.91% 5 0.00% 0 0.00% 0 0.00% 0

[addLM][dropColour] 3.13% 4 2.00% 1 0.00% 0 0.00% 0

[addLM][dropColour][dropType] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[addType][changeColour] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[changeColour] 3.13% 4 14.00% 7 18.18% 6 0.00% 0

[changeLM] 15.63% 20 32.00% 16 27.27% 9 36.11% 13

[changeType] 7.81% 10 22.00% 11 27.27% 9 16.67% 6

[dropColour] 0.00% 0 0.00% 0 0.00% 0 2.78% 1

[dropColour][changeLM] 0.78% 1 0.00% 0 0.00% 0 0.00% 0

[dropColour][changeType] 0.00% 0 0.00% 0 0.00% 0 5.56% 2

[dropColour][dropLM][changeType] 0.00% 0 0.00% 0 0.00% 0 2.78% 1

[dropType] 3.13% 4 0.00% 0 0.00% 0 0.00% 0

Table 8.9: Distribution of events across all the conditions.
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di↵erently. This observation is mostly based on visual impression, but it

corresponds with our observations about the bar plots.

We attempt to quantify the similarity between the di↵erent condition sets

by calculating the cosine similarity between them. To do this, we represent

each condition set as a vector (where each element in the vector is filled with

the proportion of an event in the set) and calculate the cosine between them.

The results are presented in Table 8.10. Overall we notice that the markup

Uninformed Description Markup Query

Uninformed - 0.747 0.632 0.815

Description 0.747 - 0.953 0.903

Markup 0.632 0.953 - 0.790

Query 0.815 0.903 0.790 -

Table 8.10: The cosine similarity between the di↵erent condition sets.

and the description set have the highest similarity to each other while each

has a larger distance to the uninformed set. The closest similarity between

the uninformed set and any of the other sets is to the query set.

8.4.3 Strategies and the Di↵erent Condition Sets

In this section we investigate and discuss the di↵erences between the condi-

tion sets. We base this discussion on the order of the most frequents events

in the overall data set presented in Table 8.3. In Section 8.3.2 we discussed

the most frequent events in the overall set and provided explanations for the

strategies underlying the events.

The most frequent event was [changeLM]. It is also the most frequent
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event in the description set, the markup set and the query set. In the un-

informed set it is the second most frequent event. The most frequent event

in the query set is [addDir] [dropLM], which is the second most frequent

event overall. It is only the third most frequent event in the query set and

the description set and the fourth most frequent event in the markup set.

This suggests that this event was particularly relevant when the participants

could not request information from the robot. This is plausible because, as

discussed earlier, it represents an action where the participants discarded an

unreliable attribute and replaced it with a more reliable one. The third most

frequent event overall is [changeType]. It is the second most frequent event

in the description set, the markup set and the query set. It is only at Rank 4

in the uninformed data set. This suggests that this event is more likely to oc-

cur if the participants are able to request information from the robot, and less

likely if they are not able to. This is consistent with our earlier observation

that this event represents an action where the participants adopt the robot’s

model of the world even if it contradicts their own perception. It is plausible

that participants are more willing to do so if they are able to gain direct

information about the robot’s understanding. In the description condition,

they can do this by requesting a description from the robot. In the markup

condition they do this through the markup provided by the system. In the

querying condition they can use queries to indirectly form an understand-

ing of the robot’s understanding of the scene. In the uninformed condition

however, they are not able to request information directly, and therefore the

strategy becomes less attractive. A similar observation can be made for the
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[changeColour] event. It is the fifth most frequent event overall, the third

most frequent event in the markup set and the fourth most frequent event in

the description set. In both the uninformed set and the query set it is ranked

much lower (in the uninformed set it ties for Rank 8 and in the query set it

was not observed). The low rank in the uninformed set appears consistent

with our earlier observation for the [changeType] event, namely that par-

ticipants are less able and likely to adapt to the system’s perception error if

they are not able to request information about the robot’s perception. The

fourth most frequent event ([addDir] [dropColour]) is at Rank 3 (ties for

Rank 2) in the uninformed set, at Rank 6 in the description set (ties for Rank

5) and at Rank 4 in the query set. It was not observed in the markup set.

This event is similar to the event at Rank 2 ([addDir] [dropLM]) in that it

represents an event in which a directional attribute was added to replace an

attribute that could be a↵ected by perception errors. The distribution of the

ranks is also similar in the sense that its highest rank is in the uninformed

set.

Overall we find that events are ranked di↵erently between the conditions.

The rankings in the Description Phase and the Markup Phase appear to be

somewhat similar, and dissimilar from the other phases. This suggests that

participants used similar strategies if they could request information through

description or markup.
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8.4.4 Summary

We find that there are di↵erences between the sets of events observed in

the di↵erent conditions. We furthermore find that the di↵erences can be

explained by the type of information that was available in each condition. If

the participants were able to request information about the robot’s under-

standing of the world, they tended to produce events in which they adapted

their expressions to the robot’s perception. Such events involve the change of

the value of a basic attribute, such as [changeType] and [changeColour].

If the participants did not request information from the robot, they had

no e�cient way to adapt to the robot’s understanding of the scene. As a

consequence they were less likely to produce adapted expressions, and more

likely to pursue approaches that were independent of the problematic parts of

the robot’s perception (the colour classification and the type classification).

Instead they produced expressions that relied on spatial attributes that were

robust against the robot’s perception problems.

Conclusions:

1. If information request options were available, the participants used

them to formulate expressions that were adjusted to the robot’s un-

derstanding of the scene.

2. If no information was available, the participants tended to remove at-

tributes that could be a↵ected by perception errors. To ensure that the

expressions were still distinguishing, they tended to include direction
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based descriptions instead.

8.5 Summary

In this chapter we investigated the attribute selection in resolution sequences

and the di↵erences between the initial and the final, successful references. We

found that, depending on the information request options used, the partici-

pants were more likely to use di↵erent reformulation strategies. If the partic-

ipants were able to elicit information about the robot’s understanding of the

world they adapted their expressions to the robot’s model of the world, even

if it meant that they used expressions that were not appropriate for their

actual perception. If they were not able to request information, they tended

to use strategies in which they avoided attributes that could be a↵ected by

perception errors, and instead used attributes that robust against perception

errors.
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Chapter 9
Conclusion

9.1 Summary

In this thesis we investigated dialogues between a human user and a robot

that is a↵ected by perception errors. We investigated how participants re-

solved problems in the dialogue that were caused by the perception errors,

and di↵erent methods of allowing the participants to request information

about the robot’s understanding of the world. In order to investigate this

phenomenon, we performed the Toy Block experiment. In this experiment,

a human user interacted with a simulated robot through a text based dia-

logue interface. The user instructed the robot to complete a series of object

manipulation tasks.

In the first phase we performed a baseline version of the experiment where

the robot was not a↵ected by perception errors. In the second step we intro-
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duced errors into the robot’s perception and analysed the e↵ect of the errors

on the participants’ experience during the experiment and the participants’

ability to solve the tasks. In the next three phases we introduced di↵erent op-

tions for the participants to request information about the robot’s perception

of the scene and investigated the e↵ect these options had on the task success

and the user experience. Information could be requested as verbal descrip-

tions in the Description Phase and as visual markup in the Markup Phase. In

the Querying Phase the participants could ask the system simple questions.

Using these information request options, the participants were able to infer

how the robot perceived the world, and they were able to determine where

the robot’s perception diverged from their own.

Overall we found that introducing errors into the robot’s perception

makes the task more di�cult and increases the participants’ frustration. On

the other hand, after we introduced the information request options, the

tasks became easier and the participants became more satisfied.

Based on this we conclude that in a situated human-robot dialogue, prob-

lems may arise if the robot is a↵ected by perception errors. If we give the

participants access to information about what the robot perceives, they are

able to use it to compensate for the problems and they become less frus-

trated. This lower level of frustration may simply be due to the fact that

they are more successful in the task. However, it may also be due to the

fact that if participants are able to understand the robot’s perception of the

world, the errors the robot makes become more understandable.

We compared the success of the di↵erent information request options. We
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found that the visual markup option and the option to request information

through dialogue from the Querying Phase were similarly e↵ective and more

e↵ective than the description option. Also, even though participants posed

queries more often on average than they used the markup option, there was

almost no di↵erence in the average completion times between the markup

phase and the querying phase. This suggests that the markup option and

the querying option are equivalent in terms of the potential to help the par-

ticipants. It might be worth noting that the querying option only uses the

spoken language modality in which the interaction already takes place, while

the visual markup option uses visual output to present information. This

does not present a problem in the application scenario investigated in this

thesis since the user shares the robot’s perspective through a video connec-

tion. In other scenarios however (e.g. a scenario where the user and the

robot are present in the same space and no video connection is used or a

scenario where the user has to visually attend to something else in parallel)

it might be preferable to use a purely dialogue based option.

We investigated the strategies the participants used to resolve problems

that were caused by perception errors. In the first step we analysed the ac-

tions the participants took between the action in which a problem arose and

the action in which the problem was resolved. We found that retrieving and

accumulating information was an important step of all successful strategies.

Depending on the information available, the participants could either request

a scene description, visual markup or ask questions about the robot’s per-

ception of the scene. If these options were not available, they could only use
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a trial-and-error method to test out the robot’s understanding.

If no information request options were available, the participants used a

trial-and-error strategy to resolve problems. Interestingly, we observed that

some participants attempted to “query” the robot’s understanding of the

world in an indirect way. They asked the robot to pick up objects they

did not actually need to move to complete the task to find out how the

robot would interpret the instruction. This highlights the facts that the

participants attempted to test out the robot’s model of the world.

In the second step we analysed the referring expressions that were used

in the problem resolutions. We compared the initial expressions that were

used in the actions in which the problems arose to the expressions that were

used in the actions in which the problems were successfully resolved. Overall

we identified two major strategies that were also connected to the type of

information that was available. If participants were able to gain explicit

complete information about the robot’s understanding of the scene, such as

in the Description Phase and the Markup Phase, they tended to use the

information about the robot’s understanding to formulate expressions that

were appropriate for the robot. The participants thereby aligned their model

to the robot’s model of the world.

If they were not able to request explicit complete information, such as in

the Error Phase where no assistance was available, or in the Querying Phase,

where every piece of information had to be individually requested through

questions, they tended towards a di↵erent approach. We found that after a

resolution problem occurred, the participants tended to avoid attributes that
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could be a↵ected by errors and instead replaced them with attributes that

were robust to errors.

9.2 Reflections

With this work we have shown that if a robot, that is engaged in a dialogue

with a human user, is a↵ected by perception errors, problems can occur in

the dialogue. We have further shown that participants are, to a certain

extent, able to resolve these problems. If participants are given an option to

understand how the robot perceives the world, they are able to form a model

of the robot’s problems and compensate for them.

Overall, we believe that the results of the experiment are clear enough

draw our conclusions. However, as we noted earlier, the experiment was per-

haps lacking an element of pressure. This was reflected in the surprisingly

low frustration ratings by the participants for the Error Phase. We never-

theless believe that the observed reactions and strategies are valuable. We

suppose that participants might be more inclined to abandon di�cult scenes

if an element of time pressure is present, but we still believe that success-

ful resolution strategies would be overall the same, whether participants are

frustrated or not.

From this we would suggest for the design of future human-robot dialogue

systems, that the systems should be designed with the possibility of errors

in mind. While one option would be to modify the systems perceptual ca-

pabilities to accommodate divergences between the user’s understanding of
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the scene and the robot’s understanding, we suggest that another, perhaps

in many situations simpler, approach would be to enable the user to under-

stand the robot’s perception, and thereby allow them to adjust to the robot’s

problems. In this sense we suggest to make the robot’s model of the world

understandable, similar to the way (Kruse et al., 2010) suggest to make robot

movement behaviour legible to humans.

There are however, some outstanding questions we were not able to an-

swer in this work. For example, we were unfortunately not able to develop a

proper model of the relationship between the sequences of actions in problem

resolutions (discussed in Chapter 7) and our findings related to the choice of

attributes in referring expressions in the same sequences (discussed in Chap-

ter 8), which would have provided a more complete description of the events

during problems resolutions.

While we investigated in this thesis how human users react to perception

based problems in dialogue and how users can be enabled to resolve them,

we unfortunately were not able to investigate the opposite direction, i.e.

options to allow the robot to detect and resolve problems in the dialogue.

We particularly believe that it would be interesting to investigate whether

it is possible for the robot to infer what the perception error consists in,

based on the type of the problem in the dialogue and its perception of the

scene. It may be possible to address this in part with data generated in the

experiments discussed in the thesis.

While the investigation in this thesis focused on problems arising from

problems and mismatches in visual perception, we believe that the find-
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ings may be generalized to human-computer interaction in general. Human-

computer interaction often involves di↵erent sources of background informa-

tion or knowledge, such as databases or maps. A mismatch between what

the background information contains and what a user presupposes as gen-

eral knowledge, may lead to mismatches between the user’s understanding

and the system’s understanding, similar to the way problems in perception

may lead to mismatches. For example, map data for navigation may become

outdated or may not contain points of interest that are relevant to a spe-

cific user’s interest. Weather reports may diverge from the actual weather

at a specific location. We therefore suggest to enable systems to explicitly

account for such problems and to provide ways to discuss them with the user.

9.3 Future work

During the experiment we encountered a number of interesting problems that

would be interesting topics of research, but that we had to exclude from the

scope of this work. In particular we find the following topics could be of

interest:

Alignment: It would interesting to investigate in how far the expressions

used by the participants align with the expression used by the system,

e.g. during the scene descriptions.

More realistic error models: The errors that were introduced into the

robot’s perception were manually designed in order to enable us to

directly compare the di↵erent phases of the experiment to one another,
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and to clearly identify the points in the dialogues where they caused

problems. It would be interesting to perform this experiment using

an actual vision system (similar to the approach by Liu et al. (2012)).

In particular it would also be important to test how well the e↵ect of

the di↵erent information request options scales with the extent of the

perception errors.

More flexible queries: We found in the evaluation that the querying op-

tion was well accepted and e↵ective, even though it only allowed a

limited range of questions. One possible future direction would be to

use a more flexible querying option that allows more complex questions

and delivers partial descriptions of the scene.

More realistic application situations: We found during the evaluation

that participant were less frustrated with the problems in the dialogue

than we had anticipated (and than we would expect them be in a

real-life robot interaction scenario). One possibility to address this

issue would be to introduce an element of pressure into the tasks, for

example by introducing a time limit, or a reward that is determined

based on the performance of the participant.

Robot side adapatation: Using the data from the experiment it would be

interesting to investigate whether a machine learning system can learn

to predict what the perception errors consist in based on the problem

and the content of the scene.
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Appendix A
Scenes and Errors

This appendix contains information related to the scenes that were used in

the experiment and the errors that were introduced into the robot’s percep-

tion.

Figure A.1 to Figure A.4 contain images of the start scenes and the

corresponding target scenes.

Table A.1 contains descriptions of the errors that were introduced into

the scenes during the Error Phase, the Description Phase, the Markup

Phase and the Querying Phase.

The referring expression templates that were used to capture references

to objects that were a↵ected by perception errors are presented in Fig-

ure A.5 and Figure A.6.
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Scene Error Error type Error situation

Scene 1 No error

Scene 2 No error

Scene 3 The yellow box next to the upper red ball is missing. Missing object error Landmark error 1

Scene 4 The yellow box next to the green ball is missing, but the green
box remains.

Missing object error Landmark error 2

Scene 5 The yellow box next to the green ball is missing, but the green
box remains.

Missing object error Landmark error 2.

Scene 6 A critical object is missing (i.e. this scene can not be com-
pleted successfully).

Missing object error Critical object error

Scene 7 The blue box is perceived as a green box Wrong colour error Landmark error 1.

Scene 8 The yellow ball next to the red ball that has to be moved
is missing, is perceived as green, but the blue ball next to it
remains.

Wrong colour error Landmark error 2

Scene 9 The blue box is perceived as green. It is therefore confusable
with the actual green box in the scene.

Wrong colour error Critical object error

Scene 10 The blue ball is perceived as a red ball. Wrong colour error Critical object error

Scene 11 The blue box on the right is perceived as a ball Wrong type error Critical object error

Scene 12 The yellow ball next to the red ball is perceived as a box Wrong type error Landmark error 1

Scene 13 The red ball next to the upper green ball is perceived as a
box, but the yellow ball remains as a landmark.

Wrong type error Landmark error 2

Scene 14 The green box is perceived as a green ball. Wrong type error Critical object error

Scene 15 The green box is perceived as a ball. Wrong type error Critical object error

Scene 16 The blue box on the right is perceived as a green box. Wrong type error Critical object error

Scene 17 No error

Scene 18 No error

Scene 19 No error

Scene 20 No error

Table A.1: The error conditions for each scene.
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Figure A.5: The referring expression templates for references that initiated
clarification sequences (Part 1).
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Figure A.6: The referring expression templates for references that initiated
clarification sequences (Part 2).
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Appendix B
Experiment materials

This appendix contains material that was handed out to the participants in

the context of the experiment:

The information sheet that was given to participants before they agreed

to participate in the experiment (Figure B.1).

The instruction sheets that were given to the participants before they

began the experiment (Figure B.2 to Figure B.16).

The questionnaires the participants were asked to complete after they

had finished the experiment (Figure B.17 to Figure B.20).
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