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Abstract

One of the most important goals of pharmaceutical science is localizing the
pharmacological activity of the drug at the site of action. Drug delivery systems
-are_molecular tools which without undesired interaction at other sites target a
specific drug receptor. In this work a novel folate-cyclodextrin conjugate was
synthesised for potential use as a drug delivery system in cancer therapy. Folate
was directly covalently bound to an amino derivative of B-Cyclodextrin with a
view to decreasing the polydispersity of the carrier system. Ultimately the
cyclodextrin cavity will be used to transport drugs to the site of action.

This study also describes the structural characterisation of the novel folate-
cyclodextrin conjugate using a range of techniques including electronic,
vibrational, NMR, MALDI-MS and ESI-MS spectroscopies, all of which provided
evidence that the folate moiety was bound to the cyclodextrin through an amide
linkage.

HPLC analysis was employed to study the purity of the conjugate prepared and
provided evidence of the formation of o and y structural isomers. The
photostability of the conjugate was assessed using electronic spectroscopy and the
formation of particles was detected by light scattering. Preliminary biological
evaluation of the tumour targeting device was carried out using HeLa cells and no

evidences of cytotoxicity are recorded.
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Chapter 1 Introduction

1. 1, Discovery of Cyclodextrins

Cyclodextrins (CDs) are a family of cyclic oligosaccharides obtained from
starch by enzymatic degradation. They were discovered in 1891 by Villiers,' and
isolated in 1903 by Schardinger.? In the 1930s, Freudenberg et al. postulated the

h.* % % 8 Later,

_ cyclic structure of CDs from a crystalline fraction of degraded starc
in 1953, these researchers registered the first patent involving CDs which was related

to their use in drug formulations.”

1. 2. Chemical Structure
Cyclodextrins consist of a(l,4)-linked D(+)glucopyranose units. The most
common cyclodextrins are a-, - and y-CD having 6, 7 and 8 glucose units

respectively, as shown in figure 1. The Greek letter denotes the number of glucose

units.®
"HO
OH  HO. oy OH £XOH
o wo 0 /rg‘jS\ o ©
m{éﬁhomw R T I TN
HO
H o
0 HO -0 OH HO o D -0 oH DH
Ho -0 OH HO~, ACH ! - 0 d
(8] 'e) o5 HOX Loy HO5 X on
OH HO OH
HOX ~oH HO © o OH o
o on. 9 HOLo, - OH, o—"on
OH OH Ho L' OH H, OH
m&&&o of . 0 o iy OH
HO ™0 o. O .
OH g HO Or<oH \Scﬂ/
HO HOM"0H HO
1(u-CD} 2 (p-CD) 3(rCD)

Figure 1. Most common cyclodextrin structures,”

The topology can be represented as a toroid with the targer and the smaller

openings exposing secondary (OH-2 and OH-3) and primary (OH-6) hydroxy| groups



Chapter 1 : Introduction

respectively. The interior of the toroid is lined by H-3, H-5 and H-6 hydrogens and
glycosidic oxygens. The cavity is chiral and is considerably .less hydrophilic than an
aqueous environment and thus CDs are able to host hydrophobic molecules. The
exterior is sufﬁciently hydrophilic to impart to cyclodextrins water solubility. The

. toroidal geometry of cyclodextrins is shown in figure 2.'°

Primary Hydroxyl Face

Secondary Hydroxyl Face

Figure 2. Teroidal geometry of cps.'®

1. 3. Physico-Chemical Properties

. The physical properties of cyclodextrins are shown in Table 1.1. The increase in
diameter from o to y reflects the increase in the number of glucopyranose uﬁits. It can
be seen that the solubility of the cyclodextrins varies in an irregular manner."' The
relatively low solubitity of B-CD provided an early reason for its modification. Its
annulus is of a size particularly suitable for the inclusion of drug' molecules and a more

soluble modified form would yield drug complexes with a wide range of applications.
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Table 1. Physical Properties of a-CD, B-CD and y-CD.'" 2

Property ' a-CD B-CD v-CD
Number of glucopyranose units 6 7 8
Molecular weight (anhydrous) 972.85 1134.99 1297.14
Solubility in H,O (g per 100 cm®)  14.5 1.85 23.2
Annular diameter measured from 4,7 6.0 7.5

C5 hydrogens, A

Partial molar volumes, cm’mol! 611.4 703.8 ' 801.2
[a]p at 25°C +150.5 +162.5 +177.4
pK. at 25°C 12.33 12.20 12.08

1..4. Inclusion Compounds

Due to the structural features of CDs, they‘ are able to form host—guest
inclusion complexes with hydrophobic molecules possessing the appropriate size and
shape as shown in figure 3. Sirnice the inner surface of the cyclodextrin is more
hydrophobic, hydrated cyclodextrins represent a high-energy state that can readily
include hydrophobic guest molecules in their cavities, ]nclusion- compounds can be
formed with a wide range of inorganic and organic molecules and have found many
industrial applications. One application is in drug delivery whereby using inclusion
complexes it is possible to control the release rate of drugs.'” CDs have also been
used widely as stabilizing and solubilizing systems, enzyme models, catalysts,

14, 15, i6 -

stationary and mobile phase additives for chiral and isomeric separations, in

environmental processes for water purification, and so on.!”
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I- A s
P ey e B o B s B-modified CD
and a non-compladng ehecirophile _
l- reversed reactivy, sirong base {deprotonie) ‘
— rpr e » 2-modified CD
- voaction via complos formration ~ 2-,3- or 8 modified CD
use & complexing electrophie " of a mixture of the three
IV- oroted 2.00siion, any b
\ it din + 6-modified CD
any eacirephila
V- pratect 6-position, weak base . 2;m°dmed cp
any electophe 2 modified CD

Figure 4. Methods for the selective modification of cyclodextrins in a specific hydroxyl group.22

The term mono-substituted derivative usually refers to one substituent per
cyclodextrin ring whereas the term di or fri—substituted CD refers to two or three
substituents per glucopyranose unit. CDs with a given substituent present on a
particular position of all the glucopyranose units are generally known as per-
substituted CDs.

There are two common ways in which the CD hydroxyls groups can be
functionalized: .

1. monofunctionalization - functionalizing of only one hydrbxyl group.

2. per-functionalization — functionalizing of an entire set of hydroxyl groups.
Although di- and fri-functionalizations exist, they have not been well investigated
and are difficult to perform. Monofunctionalization of the CDs have, however, been
well studied in the functionalization of these starch derivatives. >* **

Substitution can be occur by directly through alkylation, acylation and sulfonation.

Alternatively, sulfonates, halides and related species may be prepared as
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intermediates for the subsequent introduction of other substituents through
nucleophilic displacement. Oxidation of the hydroxyl groups of the CDs produces

aldehydes and ketones while reactions with acid chlorides. %°

1. 6. Monosubstitution of Cyclodextrins
...... Monofunctlonahzatlons can be achieved by a reaction of the hydroxyl groups
with an electrophile. The large number of hydroxyl groups at the three different
positions of CDs makes modification at a single‘desired place. 'fhe differences in the
chemical properties and reactivity among these sites can be exploited to yield a
specific product.?®
Modification of the C6 primary hydroxyl groups on the CD is an easy way to
attach a chemical function to the sugar rings of the cyclodextrin. A widely used
starting material is mono-6-deoxy-6-tosyl-B-cyclodextrin (CDTs) as depicted in
figure 5. A common method for preparation of CDTs involves reaction of p-CD
with excess p-toluenesulphonyl chloride, with recrystallisation frpm water. 2" ?* Due
to the importance of these sulphonates acting as intermediates for the further
synthesis of other modified CDs, many other publications exist on their preparation.
Several nucleophiles can displace the tosyl group on the CD t;) yield the
corresponding modified CD. These include nucleophiles such as iodide, azide,

thioacetate, hydroxylamine, aryl or poly-alkylamine.2® 3% 3! 32

T5Cl e
N:cm OH
9]
HO o
HO

Figure 5. Reaction Scheme for the 6-0-mono-6-deoxy-6-tosyl-p-cyclodextrin synthesis. n
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[n this work CDTs is used to synthesise an amino Clj which is then used to form a
conjugate with folic acid as a potential drug delivery syétem.

Although very few 2-monosybstituted CDs derivatives are known, mono-2-tosyl p-
CD has been synthesized using several strategies. m-nitrophenyl tosylate reacts with

CD -in a'DMF/aqueous buffer at pH 10 in a low yield. This reaction proceeds via
comlp]ex formation to transfer the tosyl group to the 2-position. *

Monosubstitution at the 3-position is complicated by the fact that the hydroxyl
groups at this position. are most inaccessible and thus less reactive compared to the

highly accessible ones (C-2 and C-6 hydroxyl groups). Most modifications of the C-3

OHs proceeds via the synthesis of manno-mono-2,3-epoxy CD. ** *

1. 7. Drug Delivery Systems

One of the most important goals of pharmaceutical science is localizing the
pharmacological activity of the drug at the site of action. Drug delivery involves
diagnostic and therapeutic application. Drug delivery systems (DDS) are molecular
tools which without undesired interactions at other sites target a specific drug receptor.
Any aberrant toxicity would be avoided and only the desired therapeutic gain would be
produced.®® These molecular systems can also offer controlled drug rc?;lease.37
Advanced drug delivery systems include a targeting moiety and supplementary active
ingredients including the carrier and drug.”® DDS are made from a variety of organic
and inorganic compounds such as polymers, lipids (liposomés, nanoemulsions, and
solid-lipid nanoparticles), self-assembling amphiphilic molecules, dendrimers and

inorganic nanocrystals.”’ 0. 41 Delivery of the drug—carrier System to the target site
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does not however mean that an adequate amount of the free drug will be available at the
actual target due to the fact that there are many additional processes that need to take
place. These processeé include drug release, endocytosis, transport of the drug across
the cell membrane, drug-receptor binding, lysosome uptake, nuclear targeting, drug

release and drug elimination as shown in Figure 6. ** **

Drug and liposome
Drug release

Cell membrane

@) Release

Endosomes )

C

Elimination

Figure 6. Example of a drug—carrier conjugate or Iiposorﬁe reaching the target cell so the drug

reaches the surface of its target cell, *’

1. 8. Cyclodextrins as Drug Carriers

Many drugs form inclusion complexes with cyclodextrins, and the properties
of these complexes are usually markedly different from that of the pure drug or pure
cyclodextrin.’® CDs improve the solubilization and stabilization of drugs and they

can be potent drug carriers for immediate and delayed delivery. CDs and their
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derivatives, especially amphiphilic CDs, also increase drug permeability by direct
action on mucosal membranes and enhance drug absorption and/or bioavailabilityé.44 '
An equilibrium is established between the drug-CD inclusion complex and the free
drug which allows delivery of poorly soluble drugs. One of the mechanisms
proposed in literature is shown in figure 7 and shows that the drug can be absorbed
by the biological membrane directly from the inclusion complex or following

dissociation of the complex.*’

Figure 7. Mode of penetration enhancement by CDs in drug delivery to cell membrane.™

1. 9. Folic Acid as a Targeting Agent

Folic acid (FA) has been developed as a cancer targeting agent and is
recognized by tumour cells due to their folate receptors (FR).*® High expression of
FRs has been frequenﬂy observed in many types of human cancers such as ovarian,
endometrial, colorectal, breast, lung, renal cell carcinomas, brain metastases derived
from epithelial cancers and neurcendocrine carcinomas. Quantitative studies by Real

Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) confirm elevated

10
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levels of FR in choriocarcinomas, meningiomas, uterine sarcomas, osteosarcomas,
non-Hodgkin’s lymphomas and preomyelocytic leukemias,*® *7

Folic acid is a water soluble vitamin and is a' fundamental molecule for basic
metabolism. It is needed for the production and maintenance of cells and is required
for the synthesis of DNA bases which are in turn needed for DNA replication. /n vivo
follc -a'cid (pteroy-L-glutamic acid, By, vitamin) is reduced to 7,8-dihydrofolate
(DHF), which is subsequently reduced to 35,6,7,8-tetrahydrofolate (THF) by
dihydrofolate reductase. THF is converted to methylene-THF which is then reduced
to S-methyl-3,6,7,8-tetrahydrofolate (5-MTHF). ** The structures of some of these
metabolites are given in figure 8. Folate deficiency which is seen as an absence of

methylene-THF results in the inhibition of the generation of red blood cells and

therefore anemia.

)\I

H
7.8-Dihydrofalic acid (DHF)

. g I,q@_;‘@

(‘H':

) 34
5.6,7,8-Tetrahydrofolie acid (THF) 5-Methyt5,6,7 8-tetrahydrofolic acid (S~-MTHFE)

Figure 8. Overview of folic acid and its metabolic derivatives. **

On the other hand in cancer therapies inihibition of cell growth is favourable. Folate

antagonists such as aminopterine (AMP) and methotrexate (MTX) (figure 9) hamper

11
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normal cellular replication and DNA synthesis. It seems that this results came from
the inhibition of the enzyme dihydrofolate reductase. Indeed MTX has been in use

for more than 50 years to treat many cancers and autoimmune diseases.*’

NZ & NH—éH
Lo

2
AMP  (R=H) ‘-EOOH
MTX (R=CH,)

Figure 9. Competitive antagonists of folic acid where AMP is aminopterine and MTX is

methotrexate.

Therefore folate, its metabolites or its antagonists may be suitable agents for anti-
cancer therapies. In this work folate conjugated to CD is proposed as an agent to

target tumour cells over expressing folate receptors.

1. 10. Folic Acid Conjugates

Folic acid receptors can be direct targets, involving antagonist drugs, or
indirect targeting tools for delivery involving competitive drugs. This explains the
several strategies used for folate conjugation. The conjugation of folic acid to
therapeutic agents including alkylating agents, taxols, platinum compounds, and
fluorouracil has been investigated. *>* 4
Folic acid has also been conjugated to polyethyleneglycol (PEG) to successfully
deliver a wide variety of compounds including chemotherapeutic agents,
oligonucleotides, photosensitizers, polymers and dendrimers. > #3031 32,33

A p-Cyclodextrin-polyethyleneglycol-folic acid conjugate (CD-PEG-FA) has been

produced from the reaction between CD-PEG-NH; and FA. CD-PEG-NH; was

12
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obtained through the intermediate CDTs and CD-PEG.** The conjugafe with folic-
acid was proposed as an active tumour targeting molecule.>> °* >’ Another conjugate
folate-PEG—folate-graft-polyethyleneimine (FPF-g-PEI) has 'als,o been reported and
is described in the literature as a potential gene carrier.”® Recently synthetic
procedures for the production of nanoparticles of FA conjugates have been

reported. *?

1. 11. Aims and Objectives of This Work

The aim of this work is the development of new vehicles as drug delivery
systems for cancer therapy applications.*® The synthetic strategy followed is based
on the production of a new cyclodextrin-folate conjugate (CDEn-FA) which involves
reaction between an ethylenediamine modified CD and folic acid. Similar molecules
have been reported by Caliceti at al. using a polymer spacer (PEG) between the f-
cyclodextrin and the folate® However in the work presented here FA will be
directly bound to CDEn in an attempt to eliminate the polydispersity observed in
CDs modified with macromolecular species such as PEG. In this way we will design
a moleculaf system with a controlled number of binding sites (1.e. targeting moiety,
CD cavity, metal coordination sites) and with properties of recognition towards
receptor proteins. CDEn-FA can then be exploited for the intracellular delivery of
organic and inorganic drugs or for the delivery of photosensitizers or metal
nanoparticles for use in Photodynamic Therapy (PDT) of tumours.

The objectives of this work are thus to:

o Synthesise CDEn-FA.

13



Chapter 1 Introduction

o Characterise all products and reagents using a range of techniques including
electronic, vibrational, NMR, MALDI-MS and ESI-MS spectroscopies.
¢ Investigate the photostability of CDEn-FA.

e Evaluate the biological properties of CDEn-FA.

14
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Chapter 2 Synthesis and Characterisation of Cyclodextrin Derivatives

2. 1. Introduction

As mentioned in Chapter 1 the syntheses of CD derivatives carried out in this
work are based on well known reactions of B-CD. **

6-O-(p-Tosyl)-p-Cyclodexrin (CDTs) is a common and extensively
~ investigated precursor of many cyclodextrin derivatives made from the reaction
between p-Tosyl Chlor_ide and B-CD in aqueous NaOH. '"" 61 62:93.80 The reaction is
carried out at 4°C with stirring overnight with a preliminary filtration step to remove
the excess of unreacted chemicals.** Reverse phase chromatography can be used to
purify the material. %

6-(2-Aminoethyl)amino-6-deoxy-B-Cyclodextrin (CDEn) can be obtained
from the CDTs on reaction with an excess of ethylendiamine. % 67 88 69. 70, 71, 72,73
After reflux at 75°C for 4 hours, the cooled product can be precipitated from acetone
and recrystallised from a water-methanol mixture. "

There are no rf:ports in the literature of methods for the preparation of a
derivative with folate directly connected to CD. Caliceti ef al. reported a method for
the preparation of a FA-PEG-CD product. The procedure involved the synthesis of
CD-PEG-NH; by reaction of monotosyl-p-cyclodextrin with excess of 700 Da
diamino-PEG. The second step involved the synthesis of CD-PEG-FA by reaction of
CD-PEG-NH, with folic acid. However the polyethyleneglycol linkage gave
polydispersity to the matérial. ** A similar synthetic route was presented in the
preparation of the folate-poly(ethylene glycol)-poly(L-lysine) cénjugate (FOL-PEG-
PLL). It is a derivative for gene delivery applications, and its preparation involved a

peptide bond between the carboxyl function of the folic acid and the terminal amine

group. *°
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The most important technique used to investigate CDs and their derivatives is
Nuclear Magpetic Resonance (NMR) spectroscopy. Fluorescence, .UV-vis
spectroscopy, calorime.try, etc. can play a role in measuring coﬁplexation energetics
with CDs, but usually provide only very indirect and qualititative information about
inclusion modes and geometries. NMR spectroscopy has become the most important
method for structural elucidation of CD, for controlling the intricate synthetic
modifications of the CDs by modern preparative methods. ?

The NMR experiment exploits the magnetic properties of nuclei to provide
information on molecular structure. Only atoms with spin nuclear quantum numbers
different than zero can show magnetic properties. Common magnetic nuclei are 'H,
Be, PN, “F, ¥Si and 3P, When a strong magnetic field of stre-ngth By is turned on
along a direction designated as the z axis, the energies of the nuclei are affected so
that there is a group of nuclei aligned in the +z (Bgy) direction and another group
aligned in the opposite direction -z ie the energy levels split. The difference in
energy of this representation is AE = y h By / 2rn, where v 1s the gyromagnetic ratio
and h is Planck’s constant. Therefore the frequency v = (y / 2m) Bo.” The signal of
resonance for each atom depends on the local environment. So, for example, a
hydrogen of the methyl group will give a different response than a hydrogen of the
hydroxy! group from the same molecule. The NMR scale is set up by reference to the
tetramethylsilane (TMS) peak at zero Hz. The chemical shift 6 (ppm) is the common
unit used in NMR spectroscopy and is the difference between the frequency of the
referen;:e line divided by the reference frequency: & = 108" (V-Vre)/ Vref. 76

Light can be described in terms of photons or as an electromagnetic wave.

The Beer-Lambert law is used to describe the absorption of the light such that A =

17
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ecl, where A is the absorbance, ¢ is the concentration of sample in units of molarity, I
1s the pathlength in centimeters and € is the molar extinction coefﬁcien£ (mol™ dm’
c¢m’). On tfle absorption of light there is a change in the system from the ground state
to the excited state. This transition depends on the wavelength of light used and so
electronic transitions occur in the UV-VIS range, whereas vibrational transitions
occur in the infrared range.

The infrared region (IR or MIR) extends from 4000 em™ (2.5 pm) to 400 cm™
(25 pm). IR spectroscopy is a rapid, sensitive, easy to handle technique providing
many different sampling methods for gases, liquids and solids and it is possible to
obtain both qualitative and quantitative information. The standard format of an IR
spectrum- is transmittance [%T] versus wavenumber [cm’'], where transmittance is
the ratio of the intensity of transmitted light to the intensity of the incident light.
With organic compounds, characteristic vibrations of the various functional groups
occur usually between 4000 and 1500 em V77

Electronic transitions occur in the UV-VIS range and so adsorption of
radiation in this range excites an electron from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMOj. The visible region
corresponds to 400-800 nm whereas the ultraviolet region is beyond the visible in the
200-400 nm range. The spectra are often described as bands rather than peaks and the
wavelength at an absorption maxtmum is referred to as the Amax of the band. From
this information it is possible to estimate the molar extinction coefficient of a

material according to the Beer-Lambert law. ™ In this work electronic spectroscopy

is used to study the stability of folic acid and its derivative.

18
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Mass spectral analyses involve the formation of gaseous ions from an analyte
and subsequent measurement of the mass-to-charge ratio (m/z) of these ions. '_fhe
mass spectrometer separates the ions generated upon ionization according to their
mass-to-charge ratio (or a related property) to give a graph of ion abundance versus
___m/z. When Electrospray lonization Mass Spectroscopy (ESI-MS) is used, a strong
electric field is applied to the_: capillary carrying the analyte solution and the spray is
produced at atmospheric pressure. Spraying under these conditions produces highly
charged droplets whose charge is determined by the polarity of the field applied to
the capillary. Desolvation of the drﬁplets is aided by a counter-current flow of wérm
nitrogen gas.

Matrix-Assisted Laser Desorption/lonisation-Time Of Flight Mass
Spectrometry (MALDI-TOF MS) is a techniqué in which a co-precipitate of an UV-
light absorbing matrix and a molecule is inédiated by a nanosecond laser pulse. Most
of the laser energy is absorbed by the matrix, which prevents unwanted
fragmentation of the molecule. The ionized molecules are accelerated in an electric
field and enter the flight tube. During the flight in this tube, different molecules are
separated according to their mass-to-charge ratio and reach the detector at different
times. In this way eaéh molecule yields a distinct signal.® The matrix consists of
crystalline materials such as 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid),
a-cyano-4-hydroxycinnamic acid (alpha-cyano or alpha-matrix) and 2,5-
dihydroxybenzoic acid (DHB). A solution of one of these is prepared often in a
mixture of water and an organic solvent such as acetonitrile (ACN) or ethanol.

Triflucroacetic acid (TFA) may also be added.®'
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The method is used for detection and characterization of molecules with molecular
masses between 400 and 350,000 Da. It is a very sensitive method, which allows the
detection of low quantities of sample with an accuracy of 0.1 - 0.01 %. 3 3 ESI is
best suited for analysis of monodispersed molecules because of complications arising
__from the formation of multiply charged ions. Alternatively, MALDI-TOF MS i1s

ideq]ly suited for characterizing polydispersed oligomers. **

2. 2. Imstrumentation

All reactions were monitored by thin layer chromatography (TLC) carried out
on precoated silica-gel 60F 254 plate;s. (E. Merck, ref. # 5554). UV detection was
used employing a CN-6T Vllber Lourmiat UV lamp at 365 nm (6 W) and 254 nm (6
w).

Melting points were measured using the Stuart meiting point SM P3
apparatus.

NMR spectra were recorded with an AM 300 Brucker spectrometer and a
Varian Mercury 300 Spectrometer. 'H NMR spectra were recorded at 300 MHz and
BC NMR spectra at 75.5 MHz. A Bruker Avance spectrometer was used for high
resolution spectra, operating at the 700 MHz 'H resonance frequency and 175 MHz
BC resonance frequency. Samples were dissolved in D;0 or DMSO. The 'H NMR
. reference peaks were the water peak, which gave a signal at 4.76 ppm, and the
DMSO peak at 2.50 ppm. The *C NMR reference was 1,4-Dioxane as an internal
standard, which gave a signal at 67.19 ppm. Solutions were typically from 1 to 12

mmol dm™. All spectra were recorded at room temperature.
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Infrared spectra were recorded with the Perkin-Elmer Spectrum BX FT-IR
spectrometer. The Spectrum BX can operate in ratio, single-beam or interferogram
modes. The optical system gives data coliection over a total range of 7800 to 100
cm’!, with a maximum resolution of 1 em™. Several mid infrared detectors are
available. DTGS (Deuterated Triglycine Sulphate) or LiTaO; (lithium tantalite)
detectors are standard and there is also the option of using MCT (Mercury Cadmium
Telluride) or PAS (photoacoustic) detectors. The electronics system is based on the
Motorola 68340 Integrated Processor. The instrument is connected to a PC and
controlled using the Spectrum. Spectra were recorded of solid samples as KBr discs
or Nujol mulls over the range of 4000-400 cm’' with background correction.

Electronic spectra were measured using a Hewlett Packard 8453 UV-VIS
spectrophotometer. The HP 8453 spectrophotometer is a single beam,
microprocessor-cont'rolled UV-Visible spectrophotometer with collimating optics.
The detector is a diode-array (1024 photodiodes), with a spectral range from 190 to
1100 nm, a resolution of 2 nm and a slit width of 1 nm. The light source for the UV
region is a deuterium lamp with a shine-through aperture. The lamp emits over the
190 nm to approximatelty 800 nm wavelength range. The light scurce for the visible
and short wave near-infrared (SWNIR) wavelength range is a low-noise tungsten
lamp. This lamp emits light over the 370 nm to 1100 nm wavelength range. There is
a temperature control unit also available with peltier technology. The instrument is
connected to a PC with HP UV-Visible software. QLiartz cells of 1 em and 4 mm
were employed for the measurements. All spectra were recorded at room temperature

with solutions of 10 mol dm,
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Electrospray ionisation mass spectrometry (ESI-MS) was used for the
characterisation and purity.determination of the samples. The instrument used was a
Thermo LXQ linear trap, with potential full scan at nuzzle of 4.5 kV, flow 5 uL/min
and sheath gas nitrogen at 20 a.u. (arbitrary unit). The system can be used to

. determine molecular masses in the range 50 - 100000 Da, with an accuracy of 20
ppm. The samples were imntroduced into the mass spectrometer in solution and
ionised at atmospheric pressure. Solutions of 10 mol dm™ were used.

MALDI-TOF analyses were performed on a Perseptive (Framingham, MA)
Voyager STR instrument equipped with delayed extraction technology. lons were
formed by a pulsed UV laser beam (nitrogen laser, 337 nm) and accelerated through
24 kV. Samples were diluted in CHCl; and mixed 1:1 v/v with the matrix solution
obtained by dissolving 2,5-dihydroxybenzoic acid (DHB) in CH;OH/0.1%
trifluoroacetic acid/CH;CN (1:1:1 by volume) at a concentration of 30 mg/mL.
Exactly 1 pL of this mixture was deposited onto a stainless steel 100 sample MALDI
plate and allowed to dry at room temperature before running the spectra in the

positive polarity.

2. 3. Synthesis

2. 3. L. Synthesis of 6-0-Monotosyl-6-Deoxy-B-Cyclodextrin (CDTs)
B-cyclodextrin (10.01 g, 7.61 mmol) was dissolved in NaOH (100 e¢m’, 0.4

M) at 0°- 4°C to which was added p-toluenesulphonyl chloride (3.00 g, 15.79

mmol}. The mixture was vigorously stirred for 4 — 5 hours at constant temperature.

The mixture was filtered to remove the excess p-toluenesulphonyl chloride and the

pH was reduced t0.6.5 by addition of 1M HCI. A precipitate formed in the solution
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which was then left at 4°C for 24 hours. The product was recovered by filtration,

washed with acetone and recrystallised from water. The material was dried under

vacuum at 60°C for at least 4 hours. ‘16162 63,60, 64
QTS
i
-4°
+ HgCO—S—CI —__..0 ¢ + Hd!
y) 0.4 M NaOH
TsCl CDTs

Figure 10. Synthesis of 6-0-Monotosyl-6-Deoxy-B-cyclodextrin (CDTs).

Yield: 1.86 g, 18% (literature value 17%). 64

m.p.: 179°C with slow decomposition (literature value 179°C with slow decomp.).**
TLC: Ry CDTs = 0.7, solvent system 7:5:5:4 ethylacetate:ethanol:water:ammonium
sulphate; detection by dipping in 5% sulphuric e’lcid/ethanol and heating. Analysis of
the product showed no parent CD present at an Ryof 0.1-0.5.

R, CDTs = 0.49, solvent system 7:5:5:1 ethylacetate:ethanol:water:ammonia 30%;
detection by dipping in 5% sulphuric acid/ethanol and heating. Analysis of the
product showed no parent CD present at an Rrof 0.38.

'H-NMR (DMSO) & (ppm): 7.74 (d), 7.42 (d), 5.77 (br), 5.71 (br), 4.83 (m,), 4.49

(br), 3.63 (br), 3.56 (br), 3.49 (br), 3.45 (br), 3.30 (br), 2.42 (s).

Bc NMR (DMSO) § (ppm):144.86, 132.68, 129.93, 127.62, 101.96, 81.52, 73.09,

72.75,72.45, 68.02, 60.04, 21.27.

FT-IR (Nujol) v (cm™): 2943 (5), 2902 (s), 2848 (5), 2727 (W), 2360 (w), 1653 (m),
1463 (5), 1377 (5), 1158 (m), 1028 (m), 837 (W), 721 (W), 668 (m), 579 (), 442 (s).

Detailed spectra are reported in the Appendix Section.
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2. 3. 2. Synthesis of 6-Deoxy-6-[1-(2~Amino)-Ethylamino]-B-Cyclodextrin
(CDEn) |

CDTs (9.64 g, §.73 mmol) was dissolved in 1,2-diaminoethane (50 cm’, 0.75
mol) and refluxed with vigorous stirring under nitrogen for 24. hours at 70°C. The
mixture, was then concentrated under vacuum and gave a light yellow viscous oil.
The oil was dissolved in a minimum volume of water-methanol 3:1 (100 cm®). The
solution was added to acetone at -15°C obtained by mixing with liquid nitrogen. A
white precipitate formed. The product was recovered by filtration and purified over a

porous ceramic plate overnight. It was recrystallised from water and dried at 60°C

66, 67, 68, 69,70, 71,72, 73, 74

for 4 hours.

oT1s

L+
+  NHy(CH,),NH, nc

Figure 11. Preparation of 6-Deoxy-6-[1-(2-Amino)-Ethylamino)-B-Cyclodextrin (CDEn).

Yield: 6.25 g, 68% (literature value 65%). 7

m.p.: 230°C with slow .decomposition (value is not present in literature).

TLC: Ry CDEn = 0.65; solvent system 5:3:4:1 methanol : chloroform : water :
ammonia; detection by dipping in 5% sulphuric acid/ethanol and heating. Analysis

of the product showed no parent CDTs present at an Ry of 0.92 or En at an Ryof 0.53.
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R CDEn =0.19 solvent system 7:7:5:4 ethyl acetate : 2-propanol : concentrated
ammonium hydroxide : water; detection by dipping in 5% sulphuric acid/ethanol and
heating.

'H NMR (D,0) & (ppm): 4.93 (br), 3.76 (br), 3.71 (br), 3.50 (br), 3.47 (br), 3.41 (br),
2.65 (br), 2.54 (br), 2.06 (br).

13C NMR (D,0) & (ppm): 105.10, 104.08, 86.62, 84.40, 75.59, 74.55, 74.27, 73.85,

68.34,62.76, 52.30,48.02, 42.03.

" FTIR (Nujol) v (cm™): 3735 (w), 2918 (s), 2852 (s), 2360 (W), 1653 (m), 1559 (w),

1456 (s), 1377 (s), 1156 (m), 1032 (m), 501 (w).

UV-VIS, Anax (nm): 210,

ESI Mass Spectra: m/z = 1177.6 (M+H")".

Detailed spectra are reported in the Appendix Section.

2. 3. 3. Synthesis of CDEn-FA Qonjugate

CDEn (0.2000 g, 0.15 mmol) was dissolved in a minimum volume of
pyridine (15 c¢m’). Folic acid (0.0330 g, 0.07 mﬁo]) and N-hydroxysuccinimide
(0.0350 g, 0.31 mmol) were dissolved in DMSO (10 cm3) and added to the CDEn
solution. Dicyclohexylcarbodiimide (0.0630 g, 0.31 mmol) was added. The solution
was stirred in the dark overnight under nitrogen at 20°C. The solution was then
warmed to 45°C for two hours and was added to acetone (50 cm’) at -20°C. The
-precipitate which forméd was left to stand overnight. jAbout 0.1 g of crude product
(maximum vield 0.24 g) was recovered by filtration and washed with acetone,

acetonitrile and diethylether.
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Figure 12. Preparation of CDEn-FA conjugate.

Purification of the material was carrted out by column chromatography (15 x 150
mm) to remove any unreacted starting materials and undesired products using CM
Sephadex C25 40-125p (Sigma) with gradient elution by 0+0.2M NH;HCO; (total
volume 300 cm®). Over 80 fractions.of 1.5 cm’® were collected and followed by TLC.
The fractions with Ry values for CDEn and folic acid were discarded. All other
fractions were combined and a solid material recovergd by rotary evaporation. This
material was further purified by column chromatography (20 x 300 mm) on
Sephadex G-25 20-80p to remove high molecular weight by-products. The eluent
was deionized water (150 cm’) and fractions of 0.5 cm’® were collected. A material
was recovered for further investigation from fractions with an Ry value as given

below.

Yield: 0.0070 g, 3%.

m.p.: 200°C (slow decomposition).

TLC: Ry CDEn-FA = 0.53, solvent system 5:1:3:2 propanol : et_hyl acetate : water :
ammonia; detection by dipping in 5% sulphuric acid/ethanol and heating and UV

lamp.
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R,CDEn-FA = 0.58 solvent system 5:3:1 propanol : water : ammonia; detection by
dipping in 5% sulphuric acid/ethanol and heating and UV lamp.

''H NMR (D,0) 8 (ppm): 8.65 (s), 7.70 (d), 6.67 (d), 4.97 (br), 4.54 (m), 3.94 (s),

3.77 (br), 3.70 (br), 3. 60 (br), 3.53 (br), 3.45 (br), 2.65 (br), 2.23 (br), 2.08 (br), 1.87

- (br).

BC NMR (D,0) 3 (ppm): 181.46, 178.07, 167.94, 163.04, 150.92, 146.96, 144.98,

129.13, 115.26, 112.70, 101.98, 83.33, 81.00, 75.87, 73.31, 71.79, 68.30, 60.02,
55.71, 49.19, 45.81, 35.67, 33.80, 28.11.

FTIR (Nujol) v (cm’): 3851 (w), 3735 (w), 3687 (w), 3583 (m), 2920 (s), 2853 (s),

2726 (m), 2360 (W), 1652 (m), 1462 (s), 1377 (s), 1155 (m), 1031 (m), 721 (s), 470

(s).
UV-VIS, Ao (nm): 194, 281, 354,

ESI Mass spectra: m/z = 1600.7.

MALDI z/m: 1602.6 (M+2H")".

Detailed spectra are reported in the Appendix Section.

2. 4. Discussion
In this section NMR shifts are assigned following the numbering system

reported in Figure 13 and Figure 14.
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Figure 14. Numbering of substituents on the CD derivatives: a) CDTs; b) CDEn; ¢) CDEnFA.
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A data summary of 'H-NMR measurements is reported on the following Table 2 and an
overview of the *C-NMR analysis is reported on

Table 3 and 4.
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The 'H-NMR spectrum obtained for B-CD in DMSO in this study showed the
anomeric hydrogen Hlp, as a doublet at 4.82 ppm, with signals for the H2, H3, H4,
HS and H6 protons at 3.28, 3.61, 3.35, 3.55 and 3.62 ppm respectively. The results
obtained for B-CD show agreement with the pattern of values published by Schneider
__et al, who reported Hl ), H2, H3, H4, HS and H6 at 4.82, 3.29, 3.64, 3.34, 3.59 and
3.64 ppm respectively. ° The same author reports chemical shift values for OH
groﬁps 5.52 (OH2), 5.48 (OH3) and 4.26 (OH6) ppm. Again there is good agreement
with the results found in this study for OH2, OH3 and OH6 at 5.73, 5.68 and 4.46
ppm respectively. Protons involved in hydrogen bonding are much more deshielded

than free protons and therefore appear in different regions of the 'H-NMR spectrum.

Primary hydroxyl
group

Secondary hydroxyl
groups

Figure 15. Structure illustrating details of the hydroxyl groups (OH-2 and OH-3) which

participate in the formation of intramolecular bonds.’

The resonances of OH2 and OH3 were found to appear ]ov;/'est field due to the
formation of intramolecular bonds (Figure 15). |

The 'H-NMR spectrum of CDTs showed in the aromatic region the
characteristic pattern of a tosyl system (two sets of doublets at 7.74 ppm and 7.42

ppm). Both doublet groups integrated for 2 protons which is equivalent to the total
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number of protons (four) available in the aromatic ring of the tosyl group. The same
values are reported in the literature. * A singlet found at 2.42 ppm was ascribed to
the three methyl protons of the tosyl group. .The 6-hydroxyl substitution was also
confirmed by the decrease in the integration of the peaks at 4.49-4.52 ppm from 7.74
. to, 7.42. These results also compare favourably with the literature.®® The '"H-NMR
spectrum of CDEn does not show any tosyl group signals |which suggests successful
amination. of CDTs through nucleophih:c substitution by the diaminoethane group.
The anomeric proton has a chemical shift of 4.93 ppm and signals at 2.65 and 2.54
ppm show the presence of methylene hydrongens (H8, H9) from the diaminoethane
group. The signal for H1 has been reported at 4.90 or 5.10 ppm and the signal for H8
has been reported in the range 2.70-2.90 ppm. * 7 3> The resuits found in this work
show good agreement with the literature.

The conjugate CDEn-FA gives a spectrum as shown in Figure 16.
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Figure 16. "H-NMR (700 Mhz) of CDEn-FA in D;O.

There are no reports in the literature of the synthesis of CDEn-FA and therefore there
are no spectroscopic data available. Bonechi ef al.® published a paper on an NMR
investigation of folic acid and reported chemical shift values for the aromatic protons
H25, H19, H20 at 8.75, 7.75 and 6.74 ppm respectively. *” ® The 'H-NMR
spectrum of CDEn-FA reported here does show signals in the region 8.7-6.5 ppm
which can be assigned to these aromatic protons. However there are three signals for
each aromatic proton. This suggested that the folic acid moiety is present in three
different configurations and that FA is probably bonded to CDEn through both
carboxylic functions generating y and o conjugates and there may also be some

impurity of free FA.
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This is further supported by looking at the signal for the anomeric hydrogen HI at

~5 ppm which integrates for 14 protons and suggests the presence of two CD

molecules. Integration of the peaks in the region 4 — 3 ppm assigned to the protons

HS5, H3, H4, H2 and H6 of CD also suggest two CD units.

.. Further evidence for the presence of ¢ and y conjugates was found using ROESY
spectroscopy and Figure 17 shows the .spectra obtained. It was possible to assign
respectively H19a, H19y and H20a, H20y by correlation of the signals belonging to
the same carboxylic acid groups of both conjugates. It was also possible to show that

* the phenyl group of the folate moiety can interact with the CD cavity by correlation
of the peaks assigned to H19 and H20 of FA (6.59 and 7.51 ppm respectively) and
the peaks assigned to the hydrogens of the CD cavity. However deep inclusion of
the FA group within the cavity can be excluded since no cross-peak between the
proton of pterine ring (H25 at 8.65 ppm) and the CD cavity was detected. It may be -
possible that formation of a supramolecular adduct between CDEn-FA and unbound

FA (free) has formed.
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The spectrum of B-cyclodextrin shows a signal for the highly deshiclded anomeric
C1 at 102.20 ppm and a signal for the highly shielded C6 atom at 60.36 ppm. Signals
for the atoms C2 and C3 as well as C5 are located in the region 72 ppm to 73 ppm.
The signal assigned to C4 is clearly separated from other signals and is found at
81.70 ppm. Schneider et al’, reported the chemical shifts of C1 and C6 at 102.58
ppm ;nd 61.17 ppm respectively which agrees reasonably well witin results reported
here. For the atoms C2, C3, C4 and C5, Schneider et al® recorded values of 72.67,
73.89, 81.94, 72.89 ppm respectively, From this study chemical shifts\ at 72.75,
72.45, 81.52 and 73.09, can be similarly assigned.

The spectrum of CDTs shows a signal for the Cl atom at 101.96 ppm. Chemical
shifts for C6 and C6” can be observed at 60.04 and 68.02 ppm respectively. For the
atoms C2, C3, C4 and C5, literature * data are 71.1, 73.1, 82.4 and 74.1 ppm
respectively. For the atoms C2 and C3, Petter er al,** reported- signals-in the range
from 73.3 to 71.4 ppI‘I'l. In this study signals for the atoms C2, C3, C4 and C5 are
74.55, 73.85, 84.40 and 75.59 ppm respectively are observed and they fit the
literature data trend. Signals for the aromatic carbon atoms of the tosyl group can be
seen in the range 127 to 145 ppm. The peak for the methyl substituent C11 is at
21.24 ppm. Schneider ef al.’ found peaks at 101.08 ppm assigned to C1, 81.00 ppm
assigned to C4, 72.30 ppm assigned to C5 and.68.60 ppm assigned to C6’ all of
which are in agreement with the experimental data recorded here.

The spectrum of CDEn shows chemical shifts values for the C1 atom at 105.10 and
at 104.08 ppm for the C1’ atom. The resonance of the substituted carbon atom (Cé’)
which appears at 68.02 ppm in the spectrum of CDTs was greatly shifted to 48.02

ppm. The C6’ carbon atom bonded to the tosyl group in CDTs is much rﬁore
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deshielded than when this atom is bonded to the amine group in the CDEn. This fact
constituted evidence that the successful replacement of the tosyl group by the amine
group occurred. The carbon atoms C2, C3, C4 and CS5 gave in the spectrum of CDEn
signals in similar position to those observed in the spectrum of CDTs. Additional
_signals were detected at 52.30 ppm and 42.03 ppm, which were assigned to C8 and

C9 of the diaminoethane group respectively. These results are in good agreement

! 89 IISS_

with those reported by Potter ef al.*® and Fernandez et a
The “C-NMR spectrum of CDEn-FA has not been reported previously and
assignments are based on data reported for folic acid. % It is evident that there is a
change of chemical shift for the C1 atom from 105 ppm in CDEn to 102 ppm in
CDEn-FA. For the atoms C2, C3, C4, C5 and C6 the observed values are similar to
those of CDEn.

Ass:ignment of peaks in the region 120 — 180 ppm was not possible due to weak
signals and therefore a poor signal to noise ratio. Peaks at 49.19 and 35.67 ppm can
be assigned to C8 and C9 respectively. The decrease in frequency can be explained
in terms of a new charge distribution caused by formation of a peptide bond. ‘The
CH,- groups Cl12, C13 and C23 are detected at 33.80, 28.11 and 45.81 ppm
respectively. Chemical shifts are detected at 30.4, 26.1 and 45.9 ppm respectively.
The aromatic carbons C18, C19, C20 and C21 gave signals at 115.26, 129.13, 112.70
and 150.92 can be assigned to atoms of folic acid. For folic acid, Bonechi et al.*
reporte;i signals at 121.3, 129.0, 111.2 and 150.8 ppm, which are in good agreement
with results obtained for CDEn-FA. Atoms of the petirinic group C25, C26, C27 and
C28 gave signals at 146.96, 144,98, 150.92 and 167.94 ppm respectively. Folic acid

8 gives chemical shift values for these atoms at 148.6, 153.8, 156.2 and 161.3 ppm.

39



Chapter 2 Synthesis and Characterisation of Cyclodextrin Derivatives

Table 5 shows the IR frequencies obtained for §-CD and all derivatives with

assignments.”®

Table 5. FTIR Absorption Frequencies (em™) B-CD and its Derivatives.

2918 2920 “CH,- asymmetric stretch
2726 -OH stretcﬁ

2847 2848 2852 2853 -CH,- symmetric stretch
1653 1653 1653 1653 OH- benaing '

1559 N-H bending vibrations
1463 1463 1456 1462 -CH;- scissor mode
1377 1377 1377 1377 -CH,- symmetric bend
1156 1158 1156 1 155 Secondary and tertiary alcohol modes
1028 1028 1032 1031  C-O stretching (cyclic alcohols)

| 837 ' Para-Disubstituted Benzene mode

721 721 721 Rocking

The spectrum of CDTs shows a peak at 837 cm’! which can be assigned to
vibrations of the paradisubstituted benzene ring of the tosyl group.
The spectrum of CDEn shows a signal at 1559 ¢cm™ assigned to the N-H bending

vibration.
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These results suggest successful synthesis of CDTs and CDEn.
The spectrum of CDEn-FA does not show peaks assigned to previous intermediates.

Electronic spectroscopy was used for spectroscopic comparison of CDEn and
CDEn-FA. The spectrum of CDEn shows Amax at 210 nm. The spectrum of the
‘conjugate shows new bands at 194, 281 and 354 nm. Off et al’' reported absorption
peaks for the folic acid at 280 and 350 nm which agrees reasonably well with the
bands recorded here and suggests the presence of a folic acid moiety in the
conjugate.

The mass spectrum (ESI-MS) of CDEn gave confirmation of the molecular
weight from the peak [M+H']" at 1177.6 m/z. The spectrum shows an additional
base peak at 1219.6 m/z [M+H'] possibly caused by the presence of a diamine
derivative such as CDEn,. |
MALDI and ESI-MS spectra of the conjugate CDEn-FA are given in appendix G.

These spectra confirm the formation of the conjugated product with signals assigned

to CDEnFA+H" and CDEnFA+2H" observed at m/z 1600.7 and 1602.6 respectively.
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3. 1. Photostability of Folic Acid
Previous studies on folic acid have shown that on heating for 10 hours at pH
4-12 the stability decreased with decreasing pH.*? Photodegra;dation of folic acid
(FA) by ultraviolet radiation is a well-docufnented photochemical reaction. FA is a
photosensitive compound that undergoes photolysis by UV. The photodegradation of
-F}_\ 1s divided into three phases leading to the formation of specific photoproducts
such a‘s p-aminobenzoyl-L-glutamic acid, 6-formylpterin and pterin-6-carboxylic
acid. *> * Off et al. reported that when FA is exposed to UV radiation, its absorption
spectrum changes as sﬁown in Figure 18.°' As can be seen there is a decrease in the
intensity of the peak at 280 nm and an increase in intensity Of, the peak at 350 nm

together with a shift in wavelength.

" A

L

1T L eI =
w0 a8 03 - 450
o Wavelength [nm] -

Figure 18. Absorption spectra of 10° M folic acid after 0, 20, 40 and 60 min of UVA exposure at

pH7. o

Folic acid is a polyprotic system with three major equilibrivm constants (pKa; =2.38;
pK.2=3.38; pKq;= 4.83) with a dissociation sequence NH" (C28”), a-COOH (C15)

and y-COOH (C11), respectively. *7 The spectrum of a folate solution changes
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significantly with irradiation time in the presencc; of O, at different pH values. In
acid media spectra are almost indistinguishable while in alkaline media spectra are
very different. When the irradiated solutions of folate (pH 10 + 11) are stored in the
dark, further changes can also be observed. %

3.2, Ci;romatographic and Spectroscopic Study

The —.CDEn-FA conjugate was evaluated by High:performance liquid
chromatography (or high pressure. liquid chromatography) (HPLC) and UV-VIS
analyses to gain an understanding of the stability and the purity df the product.

HPLC is a column chromatography used frequently in biochemistry imd
analytical chemistry -to separate, identify, and quantify compounds.®® Thé mixture to
be separated is transferred to a column with a solvent or a solvent mixture
(elgent/mobile phése). The column is a tube, in. most cases of stainless steel, filled
with the stationary phase. The separation occurs on the column. Under optimal
conditions the components to be separated pass through the stationary phase at
different rates and leave the column after different times. The components (the
solutfas) are registered by a detector. This information is passed on to the data
gvaluation unit and the output is a chromatogram. The number of péaks is equal to
the number of separated componenis in the sample, and the area is proportional to the
amount. HPLC equipment coﬁsists at least of an eluent delivery system (pump), an

injector, a column, a detector and a data evaluation system.”’
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Figure 19. Schematic diagram of HPLC system.”

3. 3. Experimental

A Shimadzu HPLC system was used equipped with an SCL-10A VP

controller system, a Shimadzu LC-10 AD VP solvent delivery module, a SPD-MI10A

VP UV/Vis photodiode array detector (PDA) and controlled by EZSTART v7.2 SP1

Chromatography Software. A Rheodyne 8125 injector with a 20 uL loop was used.

The stationary phase was a Supelco colummn RP C-18 (4.6 x 25 mm) with a mobile

phase of phosphate buffer solution (PBS) (10 mM, pH 2.27): acetonitrile (ACN) 8:92

v/v. Measurements were carried out with a flow rate 0.5 mL/min at room temperature

(25°C). HPLC analysis was carried out repetitively in order to optimise the

conditions, until chromatographic reproducibility was detected.
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As previously mentioned the detection system was a PDA unit (Figure 20) which is
equipped with a deuterium (D) lamp and a tungsten halogen (W) lamp. The light
from the two lamps is mixed by a half mirror, reflected onto a concave mirror, and
introduced into a flow cell. A shutter or a filter before the cell is automatically
inserted into the light path at each measurement of the dark signal (dark current), and
at the-:— automatic wavelength calibration and automatic wavelength check. The light
which has passed through the flow cell is gathered on a slit by another mirror and
introduced to the spectrophotometer. The light resolved into its spectral compositions
by a holographic grating in the spectrophotometer forms a spectral image on a
photodicde array. 512 photodiode clements are lined up on the surfape of the
photodiode array. One element is assigned every 1.2 nm of the spectra in the range of

190 to 800 nm.

L Cry }*—i_ D&p HMQ cgrwe\'sion[
| L

f:éésﬁsi procussing shoul i

==

Dy tamgy

Tungsten halogen

ia
itiie) W% Ha¥ mirrgr

Gmmve roirror

Figw celi

Concave miror |

Figure 20. Schematic diagram of 2 Photodiode Array Detector.

The UV-VIS analysis was carried out on a Hewlett Packard 8453 UV-VIS

spectrophotometer. The details of the UV-VIS system have been previously been
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described in Chapter 2. CDEn-FA was studied to evaluate its stability after
irradiation by a UV/VIS light source at physiological pH. Sampies of folic acid (500
uM in PBS 10 mM, pH=7.00) and the conjugate (160 uM in Millipore purified
water) were irradiated with a halogen lamp (15 W) at room temperature for 5 hours
with stirring. The irradiating beam was filtered through a 1 cm glass cell filled with
watel: 17:c‘)7remove the IR and UV component. During the investigation UV-VIS spectra

were recorded to monitor any change of electronic spectra due to irradiation.

3. 4. Results and Discussion on HPLC.

A HPLC study of folic acid as reference was not carried.out since the elution
conditions which must be used for successful resolution of the CDEn-FA conjugate
cannot be applied to solutions of folic acid. In the literature, many researchers

studied folic acid by ion-pairing HPLC in very polar solvent systems. 99, 100, 101, 102,

103, 104, 105, 106, 107, 198 1 )ates have also been investigated by HPLC using a prevalent
ratio of organic solvent systems or a gradient elution method at different pH values.
109, 10, 11, 12, 13 The results obtained in this study for CDEn-FA are shown in

Figure 21.
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Figure 21. Chromategram of the CDEn-FA - mobile PBS : ACN 8:92 v/v; flow 0.5 mL/min.

The chromatogram shows two main peaks at 2.78 (peak 1} and 3.22 (peak 2) minutes
and a minor peak at*3.80 (peak 3) minutes. Two overlapping peaks were detected at
438 (peak 4) and 4.96 (peak 5) minutes. These results are summarised in Table 6

below.

Table 6. HPLC results for CDEn-Fa at two different flow rates with an injection volume of 10

pL and detection at 285 nm, ,

Sample Flow Peak 1 | Peak2 | Peak3 | Peak4 | Peak 5
[mL/min] | tg [min] | tg [min] | tg [min] | tg [min] | tg [min]
CDEn-FA 0,700 2,74 3,21 3,81 4,40 5,00
CDEn-FA 0,300 4,40 5,00 5,52 5,87 6,83

The HPLC study of CDEn-FA gave satisfactory reproducibility in terms of
retention time. The first peak was well resolved with a tg at 2.7 minutes. A second
well resolved peak was located at 3.2 minutes. Peak number 3 is very low in terms of
intensity (tg= 3.8 minutes). Peak number 4 (tzg=4.3 rﬁinutes) is easily detected and

there is also a broad peak (number 5) with tg= 5.0 minutes. However the presence of
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five peaks in the chromatogram suggests that the material is impure or it may have
degraded. |
In an attempt to identify each component obtained on separation of CDEn
UV-Vis spectra were obtained of each product exiting the HPLC column and results
are given in Figure 22 to Figure 26. Spectra were also obtained of FA, CDEn and

CDEn-FA and are shown in Figure 27 below and results are summarised in Table 7.
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Figure 22. UV-VIS spectrum of first compound from HLPC showing maximum absorbance at

275 nm.
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Figure 27. UV-VIS spectra of Folic Acid, CDEn and CDEn-FA in PBS solution.
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The electronic spectrum of CbEn—F A shows bands centered at 262 and 365

nm respectively and it should be very similar to the spectrum of FA because the

CDEn can not shows a UV-Vis spectra for the absence of chromophor groups.

The bands can be assigned to the electronic transitions in the pteridine moiety and

the phenyl ring respectively. '**

Table 7. Peak assignment of the CDEn-Fa chromatogram.

CDEn FA Peak 1 Peak2 | Peak3 | Peak d Peak 5
des [AM) 210 196 | off scale 198 197 | off scale 198
Amas [nm] 220 215 220
Anax [nm] 281 275 285 285 275 285
p—l | 352 365 365 365 365
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From the results obtained it is very difficult to reach any conclusive
assignments. Both CDEn and FA absorb in the 200 to 220 nm region and therefore it
is not possible to determine which peak in the chromatogram corresponds to CDEn
or FA or the conjugate CDEn-FA. Also, in this region could be happen some solvent
absorption effects like peak 1 and 4, where there are off scale absorption phenomena.
-HoweQ‘er peak 5 can be tentatively assigned to the conjugate. The spectrum shows
clearly absorption features of both CDEn and FA. In particular the absorption at 198
nm consistent with the presence of FA should be noted. Of all five spectra recorded
only those associated with peaks 3 and 5 in the chromatogram show this absorption
but the intensity is too weak for the spectrum of peak 3.

Peak 1 in the chromatogram can possibly be assigned to some metabolite of
FA since there is no absorption in the region above 300 nm which would be expected
for FA itself. This peak can also not be assigned to CDEn since the cyclodextrin
derivative does not absorb in this region.

It 1s difficult to determine the origin of peaks 2, 3 and 4 in the chromatogram
since all three show absorption features of both FA and CDEn. Further analysis is
required eg via LC-MS experiments to determine the structure of the compounds

giving rise to these peaks in the chromatogram.

3. 5. Results and Discussion on Photodegradation Test.
Photodegradation tests were carried out on samples by recording UV-VIS spectra
every hour. Figure 28 and Figure 29 show the specira obtained over the UV-VIS

range of 200 — 700 nm.

53



Chapter 3 Photostability Studies
2,00
.
1,75 - ——— 0h Om
| 1h Om
1,50 4 v 20 OM
--—-=3h Om
—~ 1,25 -~ 5h Om
3 3
..... 8 ..
v 1.00 4
m
<
0,75
0,50
0,25 -
0.00 T
200 450 500 550 600 650 700

nm

Figure 28. UV-Vis spectra Photostability of FA (160 pM in Phosphate Buffer Solution, 10 mM,

pH= 7.40) over a 5 hour period. The arrows show isosbestic point.
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Figure 29. UV-Vis spectra of CDEn-FA (500 pM in Phesphate Buffer Solution, 10 mM, pH=

7.40) over a S hour period. The arrows show weak isosbestic points,

In this study the electronic spectrum of FA shows significant changes after exposure
to a visible light source over a 5 hour period. There are increases in intensity of the
band centred at 281 nm. There is also an increase in intensity together with a slight
decrease in wavelength of the band centered at 352 nm. This may seem at first
glance to contradict the work of Off ez al. °' who reported a decrease in the intensity
of the peak at 280 nm. However these workers exposed FA to UV radiation and in
our work no UV component was used.

The spectrum of CDEn-FA does not show significant changes, in terms of
absorbance and wavelength shifts, after irradiation experiments using the visible light
source. As shown in Figure 29, the band at 265 nm undergoes only a very small

increase in intensity after 1 h of irradiation. No change was registered for the band
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centered at 360 nm. These results suggest that FA 1s photodegradable. However
stability has been very much improved in the conjugate material CDEn-FA which

may be important if the material is to be used as a drug delivery agent.
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Chapter 4 Biological Evaluation

4. 1. Introduction

The biological study was required in order to evaluate the performance of
the new folate conjugate “in vitro”. The design of this conjugate is based on a
potential application in drug delivery for cancer pathology and therefore the
biocompatibility beconﬁes a predominant factor.

o "I;/Iany researchers reported studies on cytotoxicity and uptake of drug
delivery systems based on folate receptors. ' 8 117 118 119 14 ynderstand the
cytotoxic effect of the CDEn-FA product in a human cancer cell line HeLa cells were
used. HeLa cells are an immortal cell line derived from uterine cervical cancer cells
and are used in medical research. '* These cells are models of a human cancer cell
with high transfection capacity and have a reliable and constant over-expression of
the folate receptor. '*' They contain a membrane folate-binding protein (FBP) which

is involved in the uptake of free folate. '*

HeLa cells have also been used to study
inorganic nanostructured-folates.'?

Cytology evaluation is the analysis of cells under a microscope. Cellular
changes are used for the diagnosis of disease, to study the cellular anatomy, function
and chemistry.'?* Trypan blue is a standard assay used in the measurement of the
viability of cells. It is a reliable and fast test. Trypan blue, a diazo dye shown in
Figure 30, is a vital stain used to selectively colour dead tissues or cells biue. Living
cells or tissues with intact cell membranes are not coloured. Since cells are very
selective in the compoﬁnds that pass through the membrane, in a viable cell Trypan
blue 1s not absorbed. However, it traverses the membrane in a déad cell. Hence, dead

cells are shown as a distinctive blue colour under a microscope. '?’
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125

Figure 30. Trypan blue molecule.

HOEST 33342 is useful for monitoring cell death by apoptosis.'* Apoptosis and
necrosis are two major processes. by which cells die. Apoptosis is an active,
genetically regulated disassembly of the cell from within. Disassembly creates
changes in the phospholipid content of the cytoplasmic membrane outer layer.

Necrosis normally results from a severe cellular disruption.'*’

4. 2. Experimental

HelLa cells were obtained from the American-Type Culture (ATC) collection
and propagated at 1:6 ratio using Dulbecco’s modification of Eagle’s minimal
essential medium supplemented with 10% new born calf serum, 100 p/mL of
penicillin and 100 pg/mL of streptomycin, at 37 °C, in 5% CO; atmosphere. The
cells were incubated for 24 hours. |
The percentage of cell death was evaluated by microscopy in a Burker chamber,
using the trypan blue exclusion standard assay. In a 24-well piate the cell solution
was transferred with a density of 1.5 x 10° cells/well.
The procedure used for was as follows:

1. 0.5 ml of a suitable cell suspension (dilute cells in complete medium
without serum to an approximate concentration of 1 x 10° to 2 x 10° cells per

ml) were placed in a screw cap test tube.
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2. 0.1 m! of 0.4% Trypan Blue Stain was added and mixed thoroughly.

3. The solution was allowed to stand for 5 min at 30°C,

4. The hemocytometer was filled for cell counting.

5. The cells were studied under a microscope, to observe if the non-viable cells
were stained and the viable cells excluded the stain.'?

HeLa _c-ells were treated for 3 hours with CDEn-FA (10'4 M) and FA (10" M in ratios

of 2:10 and 3:10 and Iafterwards they were collected and layered on poly lysinated

slides. After 10 min, the cells were stained with HOECHST 33342 fluorescent DNA-

binding dye at 50 mM/mL (Sigma) and analyzed (objectives 40x) by using a

rhodamine filter (red emission) and a DAPI filter (blue emission) on a Biomed

fluorescence microscope (Leitz, Wetzlar, Germany).

4. 3. Results and Discussion
The following visuals (Figure 31 to Figure 34) were obtained from the
microscopy analysis of CDEnFA and FA as control at different ratios using Rhodamine

filter (A), DAPI filter (B) and a combination of images is shown in C.
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During preliminary bi(;logical testing, HeLa cells were not affected when they were
treated with CDEn-FA. The images produced when using the Rhodamine filter (A)
for CDEn-FA and FA at all ratios studied showed a diffuse background confirming
that bath compounds were not located specifically in a cellular region. This was also
supported by combining the images (C) and no red spots were detected. The
cor‘ljug-a-te seams have a better performance on the folate receptor recognition than
free folic acid.

When using the DAPI filter (B) for CDEn-FA and FA at all ratios studied no damage
to the nucleic cell or‘no change in the morphology was obspwed. These results
suggest a very low cytotoxicity for CDEn-FA.  This encourages further

experimentation on cell systems to develop CDEn-FA as a drug delivery system.
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5. 1. Final Overview of Results

A new material CDEn-FA was synthesized and characterized using NMR, IR
and Mass Spectroscopy.
From the results obtained it is clear that two structural isomers (a- and y-) of CDEn-
FA were synthesized. Another adduct between conjugate and free FA was detected
and -w-a—s- not removed after the purification process.

HPLC studieé 'gave further support to the spectroscopy results and also
suggest the presence of CDEn-FA and a further adduct.
Exposure of the new material to visible radiation showed that it is substantially more
photostable than free FA at physiological pH values.
A preliminary biologicﬁl evaluation of the cyclodextrin-folate conjugate was carried
out to understand its effect on HeLa cell lines. No evidence of toxicity are observed.
At this stage there are no evidence that the material can cross the cell wall.
The photostability tests and the biological evaluation results encourage -further
studies on this material for applications in drug delivery systems for cancer therapy

or diagnosis.

5. 2. Future Work

The first goal 0f any future work is the separation of the two isomeric forms
of CDEn-FA possibly by a preparative HPLC method. In this way trace products
may be removed and the o and vy isomers of CDEn-FA sepa.rated.. Investigation of the
material by NMR diffusion and Light Scattering experiments will give further

information on its aggregation propertics by competitive complexation with

64



Chapter § Conclusion and Future Work

adamantanol.'® Further biological tests and drug solubility properties will also be

. . : . . . 130
considered in future investigations.

Protonation and metal complexation equilibria can be investigated by Capillary

Electrophoresis and potentiometric titration studies. *'" '*2

The coordination properties of the conjugate towards different transition metal ions,

and platinum will be studied. *® '¥7 Folic acid has

such as ruthenium '3% '3 13

been shown to form a coordination complex with nickel, the structure of which is

shown below, '8

Figure 35. Detail of the folic acid aromatic unit coordination to Ni2_+. 138

In this work it was shown that CDEn-FA could not cross the cell membrane cell. It
was localized at cell wall. Therefore there is a need to study different functionalised
CDs with more affinity for biological membranes which may help delivery into the

28, 139, 190, 14 Amphiphilic molecules incorporating other CD

cytoplasm region.
derivatives and porphyrin systems will be studied with a view to developing a system
which can successfully delivery drugs into the cells. Such versatility of the CDEn-FA

can then be exploited for intracellular delivery of photosensitisers in photodynamic
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therapy of tumours, organic and inorganic drugs used in conventional anticancer

therapy, metal nanoparticles.
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B. C-NMR spectra
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Figure 40. *C-NMR spectrum of p-Cyclodextrin in DMSO.
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C. COSY Spectra
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Figure 44. COSY spectrum of Folate Conjugate (CDEn-FA) in D,0.
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G. Mass Spectra
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