
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Masters Science 

2013 

A New Simplified Federated Single Sign-on System A New Simplified Federated Single Sign-on System 

Chen Liang 
Technological University Dublin 

Follow this and additional works at: https://arrow.tudublin.ie/scienmas 

 Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, and the 

Hardware Systems Commons 

Recommended Citation Recommended Citation 
Liang, C.(2013) A new simplified federated single sign-on system. Masters Thesis. Technological 
University Dublin. 

This Theses, Masters is brought to you for free and open 
access by the Science at ARROW@TU Dublin. It has been 
accepted for inclusion in Masters by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scienmas
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/scienmas?utm_source=arrow.tudublin.ie%2Fscienmas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fscienmas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=arrow.tudublin.ie%2Fscienmas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=arrow.tudublin.ie%2Fscienmas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


A New Simplified Federated Single Sign-on
System

By

Chen Liang B.Sc.

Supervisor: Dr. Fredrick Mtenzi

Supervisor: Mr. Paul Doyle

Thesis submitted to the Office of Postgraduate Studies and Research at the Dublin

Institute of Technology in fulfilment of the requirements for the degree of Master of

Philosophy (M.Phil.)

School of Computing

Dublin Institute of Technology

Kevin Street, Dublin 8, Ireland



i

Abstract

Federated single sign-on (FSSO) provides single sign-on across multiple domains. The lit-

erature shows that current FSSO systems do not incorporate the authentication systems of

desktop systems, web-based services/applications and non-web based services/applications.

This is a challenge for the end-users because they need to be authenticated multiple times

(by multiple authentication systems) to access all three services.

The work presented in this MPhil thesis addresses this challenge by developing a

new simplified FSSO system that allows end-users to access desktop systems, web-based

services/applications and non-web based services/applications using one authentication

process. This new system achieves this using two major components: an “Authentication

Infrastructure Integration Program (AIIP)” and an “Integration of Desktop Authentica-

tion and Web-based Authentication (IDAWA).” The AIIP acquires Kerberos tickets (for

end-users who have been authenticated by a Kerberos single sign-on system in one net-

work domain) from Kerberos single sign-on systems in different network domains without

establishing trust between these Kerberos single sign-on systems. The IDAWA is an exten-

sion to the web-based authentication systems (i.e. the web portal), and it authenticates

end-users by verifying the end-users’ Kerberos tickets.

This research also developed new criteria to determine which FSSO system can

deliver true single sign-on to the end-users (i.e. allowing end-users to access desktop

systems, web-based services/applications and non-web based services/applications using

one authentication process). The evaluation shows that the new simplified FSSO system

(i.e. the combination of AIIP and IDAWA) can deliver true single sign-on to the end-

users. In addition, the evaluation shows the new simplified FSSO system has advantages

over existing FSSO systems as it does not require additional modifications to network

domains’ existing non-web based authentication infrastructures (i.e. Kerberos single sign-

on systems) and their firewall rules.
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Chapter 1

Introduction

It is currently not possible for end-users to access desktop systems, web-based services/app-

lications and non-web based services/applications in multiple domains using one authenti-

cation session. This means end-users need to go through multiple authentication processes

(i.e. entering their credentials at the authentication prompts), and they need to either

remember an excessive number of passwords or recycle small numbers of passwords. This

may cause end-users to enter their credentials at any authentication requests without

identifying the requesting party, which leaves them vulnerable to phishing attacks.

Federated single sign-on (FSSO) is an authentication model that allows end-users

to access computer services/applications from different network domains but the end-

users are only required to enter their credentials (i.e. to be authenticated) once (Suriadi

et al., 2009). This model requires the establishment of a federation (i.e. a circle of trust)

between network domains (Wason et al., 2003); network domains allow end-users that

have been authenticated by other network domains (in the same federation) to access

their computer resources without requiring re-authentications.

Although FSSO allows the end-users to access computer resources in different

network domains using one authentication session, it does not specify which authen-

tication systems are used in the network domains. Desktop systems, web-based ser-

vices/applications and non-web based services/applications use their own authentication

1
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systems, and end-users need to be authenticated by these authentication systems before

accessing the computer services/applications. For example, end-users needs to enter their

credentials (e.g. username and password) at the desktop login prompt (i.e. desktop au-

thentication) in order to access the desktop system, then the same end-users need to

enter their credentials again at the web-based login prompt in order to access web-based

services/applications. A FSSO system will not deliver single sign-on unless it incorpo-

rates the authentication systems of desktop systems, web-based services/applications and

non-web based services/applications (Figure 1.1).

Figure 1.1: Desktop, web-based services/applications and non-web based ser-
vices/applications have their own authentication systems

FSSO systems such as Project Moonshot (Howlett, 2011), Kerberos Secure Sharing

(KSS) (Gridwise Tech, 2010), SASL-SAML (Wierenga & Lear, 2012) (i.e. the combina-

tion Simple Authentication and Security Layer with SAML) and SAML-AAI/Kerberos

(Papez, 2009) (i.e. the combination of SAML’s authentication authorisation infrastruc-

ture with Kerberos single sign-on infrastructure) partially incorporate the authentication

systems. Project Moonshot only incorporates the authentication systems of non-web

based services/applications. KSS incorporates the authentication systems of desktop sys-

tems and non-web based services/applications (Figure 1.2). SASL-SAML and SAML-

AAI/Kerberos incorporates the authentication systems of both web-based and non-web

based services/applications (Figure 1.3). These FSSO systems do not incorporate the

authentication systems of desktop systems, web-based services/applications and non-web

based services; therefore, a single end-user currently needs to go through multiple au-

thentication processes to access desktop systems, web-based services/applications and

non-web based services/applications.
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Figure 1.2: KSS incorporates the authentication systems of desktop systems and non-web
based services/applications

Figure 1.3: SASL-SAML and SAML-AAI/Kerberos incorporates the authentication sys-
tems of both web-based and non-web based services/applications

This research attempts to address this challenge by developing a new simplified

federated single sign-on system that incorporates the authentication systems of desk-

top systems, web-based services/applications and non-web based services/applications

(Figure 1.4). The new system allows end-users to access desktop systems web-based ser-

vices/applications and non-web based services/applications (in different domains) using

one authentication process, and it includes the developments of two major components:

an “Authentication Infrastructure Integration Program (AIIP)” and an “Integration of

Desktop Authentication and Web-based Authentication (IDAWA).”

Authentication Infrastructure Integration Program (AIIP) draws from KSS be-

cause KSS is the only system that incorporates the authentication systems of desktop

systems and non-web based services/applications. Although both KSS and AIIP use Ker-

beros single sign-on systems (i.e. authentication systems) for providing FSSO, AIIP does

not directly connect the Kerberos single sign-on systems in different network domains.

The AIIPs (in different domains) seamlessly bridge the connections between end-users’

desktop systems in one domain and Kerberos single sign-on systems in the other domains.
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Figure 1.4: The new simplified FSSO system incorporates the authentication sys-
tems of desktop systems, web-based services/applications and non-web based ser-
vices/applications

They seamlessly acquire Kerberos tickets in different domains for the end-users that have

gained access to desktop systems, so that end-users can proceed to access non-web based

services/applications (in different domains) using these Kerberos tickets (instead of re-

quiring re-authentication). Unlike KSS, the AIIP does not expose the Kerberos single

sign-on systems to the outside world (i.e. the Internet).

The IDAWA is an extension to the authentication systems of web-based ser-

vices/applications. It allows end-users to use Kerberos tickets (which were acquired during

desktop authentication) as means for web-based authentications; end-users, who gained

access to desktop systems, don’t need to be re-authenticated in order to access web-based

services/applications.

The new simplified FSSO system combines AIIP and IDAWA to provide FSSO.

It allows end-users to access desktop systems, web-based services/applications and non-

web based services/applications using one authentication process. End-users who have

gained access to desktop systems can proceed to access both web-based and non-web

based services/applications (in different domains) without requiring re-authentication.



CHAPTER 1. INTRODUCTION 5

1.1 Research Background

1.1.1 Authentication Models

An authentication model consists of two elements: an identity provider and a service

provider (Jøsang et al., 2007; Vacca et al., 2010). An identity provider manages end-users’

identities, provides authentication and identity assertions for the authenticated end-users.

A service provider, which relies on the identity providers for providing authentications,

provides computer services to authenticated end-users.

There are three authentication models: the silo model, centralised identity man-

agement (CIM) and federated single sign-on (FSSO) (Wason et al., 2003; Jøsang & Pope,

2005; Jøsang et al., 2007; Mather et al., 2009; Vacca et al., 2010). Each model manages the

identity provider and service provider differently (as described below). The authentication

processes of each model are also different.

Silo Model

The silo model keeps the identity provider and service provider in the same space (Jøsang

& Pope, 2005; Jøsang et al., 2007; Vacca et al., 2010). Each network domain has an

identity provider and a service provider (Figure 1.5). A domain’s identity provider au-

thenticates end-users for that domain’s service provider. A service provider may provide

desktop systems, web-based services/applications or non-web based services/applications.

The silo model does not provide any cross domain authentication. End-users need to be

authenticated multiple times to access computer services/applications in multiple do-

mains, and they need to remember multiple sets of credentials.

Centralised Identity Management Model

Centralised Identity Management (CIM) uses centralised identity provider approach to

address the cross domain authentication challenge. It removes the identity providers in

all of the domains, and instead it uses a single centralised identity provider to manage all
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Figure 1.5: Silo model overview

the identities for every domain (Figure 1.6) (Jøsang et al., 2007). Although this approach

allows end-users to access computer services in multiple domains by authenticating to the

single identity provider using one set of credentials, this model has not been adopted by

network domains due to privacy problems (i.e. network domains do not trust a single

identity provider to manage all the identities in the world) (Chappell, 2006). Network

domains continue to use the silo model for managing authentications, and there is a need

for an authentication model that doesn’t cause privacy issues.

Figure 1.6: Centralised identity management overview
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Federated Single Sign-on Model

Federated single sign-on (FSSO) decentralises identity providers into individual network

domains (i.e. each domain manages its own identity provider) similar to the silo model,

and it builds a federation (i.e. a circle of trust) between domains (Figure 1.7). These trust

relationships are created using out-of-band business and legal agreements between the

federation participants (Buecker et al., 2008). These agreements must be in place before

a federation can begin to operate (e.g. a security policy specified that network domains can

provide computer services/applications to end-users without requesting authentication if

the end-users belong to network domains in the same federation). End-users can access

computer services/applications in network domains by claiming they are from one of the

domains within the circle of trust. For example, an identity provider (in one domain within

the federation) vouches for end-users when they require accesses to service providers (in

the other domains), and the service providers will accept the accesses from the end-user

due to the established federation.

Figure 1.7: Federated single sign-on overview

FSSO has the potential to become the predominate authentication model that

is used by network domains for managing cross domain single sign-on. By separating

the identities into individual network domains, network domains adopt FSSO by building

federation on top of their existing authentication models (i.e. the silo model). In addition,
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FSSO is an improvement over CIM since it doesn’t cause privacy issues.

The next section gives a in-depth review of the current FSSO systems: Project

Moonshot (Howlett, 2011), Kerberos Secure Sharing (KSS) (Gridwise Tech, 2010), SASL-

SAML (Wierenga & Lear, 2012) (i.e. the combination Simple Authentication and Secu-

rity Layer with SAML) and SAML-AAI/Kerberos (Papez, 2009) (i.e. the combination of

SAML’s authentication authorisation infrastructure with Kerberos single sign-on infras-

tructure).

1.1.2 Federated Single Sign-on

Federated single sign-on (FSSO) was initially applied in web space. FSSO standards such

as Security Assertion Markup Language (SAML) (OASIS, 2010; Madsen et al., 2005),

Liberty Identity Federation Framework (ID-FF) (Wason et al., 2003) and WS-Federated

(Microsoft, 2012b) are supported by web-based services/applications; end-users can ac-

cess web-based computer services/applications (in different domains within a federation)

after web-based authentication. These standards are not supported by non-web based ser-

vices/applications; therefore, end-users need to be authenticated separately (i.e. multiple

times) by different authentication systems when accessing desktop systems and non-web

based services/applications. For example, SAML based FSSO systems have been used by

major academic networks (e.g. HEAnet), universities/institutions (e.g. Dublin Institute

of Technology, Trinity College and University College Dublin) and online libraries (e.g.

IEEE Xplore Digital Library and ACM Digital Library). Students that were authenti-

cated by Dublin Institute of Technology’s web-based authentication system can access

online libraries such as IEEE Xplore Digital Library and ACM Digital Library (using

web browsers) without requiring re-authentication (HEAnet, 2008); however, the same

students need to be authenticated again by remote desktop authentication systems when

requesting access to remote desktop systems in Trinity college.

This research reviewed four projects that attempt to provide FSSO beyond web

space: Project Moonshot, Kerberos Secure Sharing (KSS), SASL-SAML and SAML-
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AAI/Kerberos. Project Moonshot aims to provide FSSO for accessing non-web based

services/applications, KSS aims to provides FSSO that incorporates the authentication

systems of desktop systems and non-web based services/applications, and SASL-SAML

and SAML-AAI/Kerberos aim to provide FSSO that incorporates the authentication sys-

tems of both web-based and non-web based services/applications.

Project Moonshot

Project Moonshot partially addresses the single sign-on challenge by supporting only

non-web based services/applications. Desktop authentication, web-based authentication

and non-web based authentication are separate authentication processes in this system.

End-users need to be authenticated multiple times to access desktop systems, web-based

services/applications and non-web based services/applications. For example, an end-user

needs to be authenticated three times in order to access a local desktop system in DIT,

IEEE Xplore Digital Library and a remote Linux desktop in Trinity college.

Kerberos Secure Sharing

Keberos Secure Sharing (KSS) incorporates the authentication systems of desktop systems

and non-web based services/applications, so that an end-user can access a desktop system

and non-web based services using one authentication process. It directly connects network

domains’ Kerberos single sign-on systems, so that Kerberos single sign-on systems can

support non-web based FSSO in addition to support local network single sign-on. The

end-users, who have gained access to desktop systems (i.e. who have been authenticated

by Kerberos single sign-on systems and acquired Kerberos tickets), can access non-web

based services/applications using Kerberos tickets.

KSS also partially addresses the single sign-on challenge. This system does not

incorporate web-based authentication systems; therefore, the end-users need to be au-

thenticated again (by web-based authentication systems) in order to access web-based

services/applications. For example, KSS allows students (who gained accesses to desktop
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systems in DIT) to remotely access Linux desktops in Trinity college and UCD without

requiring re-authentication. However, the same students need to be authenticated again

(by the web-based FSSO system) when accessing IEEE Xplore Digital Library.

SASL-SAML

SASL-SAML uses SASL to facilitate communications between non-web based services/app-

lications and SAML based FSSO system. This allows SAML based FSSO systems (i.e.

web-based FSSO systems) to manage single sign-on for both web-based and non-web

based services/applications, and end-users can access both web-based and non-web based

services after one authentication process.

SASL-SAML does not consider desktop authentication as part of its single sign-on

process (i.e. it does not incorporate the desktop authentication systems into its FSSO sys-

tem). This results in end-users needing to be authenticated multiple times to access desk-

top systems and (both web-based and non-web based) computer services/applications.

For example, the students need to be authenticated in order to access local desktop sys-

tems in DIT. The same students need to be authenticated again in order to access IEEE

Xplore Digital Library and remote Linux desktops in Trinity college.

SAML-AAI/Kerberos

SAML-AAI/Kerberos also uses SAML based FSSO system for managing single sign-on. It

requires web-based interfaces (accessible by web-browsers) to be implemented for non-web

based services/applications. It develops a web-based software that integrates web-based

FSSO sessions (in one domain) with non-web based single sign-on sessions (in the other

domains). The end-users (who obtained web-based FSSO sessions in one domain) can

access both web-based and non-web based computer services/applications (in the other

domains) without requiring re-authentication.

SAML-AAI/Kerberos also does not consider desktop authentication as part of its

single sign-on process. End-users need to be authenticated once by desktop authentica-
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tions systems to access desktop systems, then they need to be authenticated by web-based

authentication systems to access web-based services/applications. For example, the stu-

dents need to be authenticated in order to access local desktop systems in DIT. The same

students need to be authenticated again in order to access IEEE Xplore Digital Library

and the web-based interfaces of remote Linux desktops in Trinity college.

Research Gap

The reviews of Project Moonshot, Kerberos secure sharing, SASL-SAML and SAML-

AAI/Kerberos showed that each FSSO system partially incorporates the authentication

systems of desktop systems, web-based services/applications and non-web based ser-

vices/applications (Figure 1.8). There is a need for a FSSO system that incorporates

the authentication systems of all three types of services.

Figure 1.8: Existing FSSO systems overview

1.2 Research Aim

This research aims to develop a new simplified FSSO system in order to address the

research gap (i.e. the lacking of a FSSO system that allows end-users to access desktop

systems, web-based services/applications and non-web based services/applications using

one authentication process). The new simplified FSSO system attempts to incorporate

the authentication systems of desktop systems, web-based services/applications and non-



CHAPTER 1. INTRODUCTION 12

web based services/applications, so that end-users can access the above services using one

authentication process.

Although trust is an important part of the federated single sign-on model, it is not

the focus of this research. The new simplified FSSO system assumes that trust has been

established between network domains. The management of trust (e.g. establishment,

measurement, maintenance and revocation) is out of the scope of this research.

This research draws extensively from the approaches of Kerberos Secure Sharing

(KSS) and SAML-AAI/Kerberos. KSS uses Kerberos to provide single sign-on for end-

users to access desktop systems and non-web based services/applications, and SAML-

AAI/Kerberos can acquire Kerberos tickets (from Kerberos single sign-on systems) on

behalf of the end-users. The simplified FSSO system incorporates these elements into its

design.

The new simplified FSSO system assumes that the network domains employ their

own Kerberos single sign-on systems (i.e. non-web based authentication infrastructures)

similar to KSS and SAML-AAI/Kerberos. It also assumes that a federation (i.e. a circle

of trust) has been established between the network domains, and the network domains

use SAML based FSSO system (i.e. web-based FSSO system).

The proof-of-concept system is evaluated using simulations of real world environ-

ments. The evaluation shows that the proof-of-concept system allows end-users to access

desktop systems, web-based services/applications and non-web based services/applications

using one authentication process. In addition, the proof-of-concept system does not re-

quire modifications to the existing Kerberos single sign-on systems, and it doesn’t require

additional modifications to network domains’ firewall rules.

1.3 Research Methodology

This research found that currently the end-users need to be authentication multiple times

in order to access desktop systems, web-based services/applications and non-web based
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services/applications. For example, an end-users need to be authenticated multiple times

in order to access a desktop systems in DIT, IEEE Xplore Digital Library and remote

Linux desktop system in Trinity college.

In order to address this challenge, this research reviews relevant literature on au-

thentication models (the silo model, centralised identity management and federated single

sign-on), and it found that federated single sign-on (FSSO) has the potential to deliver

single sign-on across multiple network domains.

The review of FSSO systems (e.g. Project Moonshot, Kerberos secure shar-

ing, SASL-SAML and SAML-AAI/Kerberos) shows that the existing FSSO systems do

not support desktop systems, web-based services/applications and non-web based ser-

vices/applications. Although Kerberos secure sharing (KSS) is the only known FSSO sys-

tem that allows end-users to access desktop system and non-web based services/applications

using one authentication session, it does not support web-based services/applications. In

addition, it requires trust to be established between Kerboros single sign-on systems,

which means the Kerberos single sign-on systems (in different network domains) need to

be directly connected (i.e. exposed to the outside world). The review also shows that

although the SAML-AAI/Kerberos doesn’t provide single sign-on for end-users to access

desktop systems and both web-based and non-web based services, it has the components

to acquire Kerberos tickets on behalf of the end-users, and these components can be used

to improve KSS.

The results of the literature review are incorporated into the design of the new sim-

plified FSSO system. The new simplified FSSO system includes the designs of “Authenti-

cation Infrastructure Integration Program (AIIP)” and “Integration of Desktop Authen-

tication and Web-based Authentication (IDAWA).” The design of AIIP draws extensively

from KSS and SAML-AAI/Kerberos, and it acquires Kerberos tickets from Kerberos sin-

gle sign-on systems in different network domains without setting up trust between these

Kerberos single sign-on systems. The IDAWA is deigned to be an extension to web-based

authentication systems, and it uses Kerberos tickets as means for authentication. The

combination of AIIP and IDAWA allows end-users to access desktop systems, web-based
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services/applications and non-web based services/applications using one authentication

process.

This research uses Linux based Operating System (e.g. Ubuntu Server 10.04.4

LTS), Python programming language, eXtensible Markup Language (XML) and PHP

programming language to implement the evaluation environment and the proof-of-concept

system. It also uses virtual machine technology (e.g. Xen server) to divide hardware

machines (e.g. Sun Ultra 40M2 Workstation) into multiple virtual machines in order

to host the evaluation environment and the proof-of-concept system. All of the virtual

machines are on the same local network in order for them to communicate with each

other, and Bind9 is used to divide virtual machines into different domains.

1.4 Contributions

Contribution 1. The development of a new simplified FSSO system represents an im-

portant contribution to the research of federated single sign-on. This work is a novel

attempt to provide single sign-on for end-users to access desktop systems, web-based ser-

vices/applications and non-web based services/applications. The new simplified FSSO

system includes two major components: The Authentication Infrastructure Integration

Program (AIIP) and the Integration of Desktop Authentication and Web-based Authen-

tication (IDAWA).

• The Authentication Infrastructure Integration Program (AIIP) acquires Kerberos

tickets (for end-users who have been authenticated by a Kerberos single sign-on

system in one domain) from Kerberos single sign-on systems in different network

domains without establishing trust between these Kerberos single sign-on systems.

• The Integration of Desktop Authentication and Web-based Authentication (IDAWA)

is an extension to the web-based authentication systems (i.e. the web portal), and

it authenticates end-users by verifying end-users’ Kerberos tickets.
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Contribution 2. The development of three new criteria for evaluating FSSO systems.

They are used to evaluate the system that is presented in this research. The first cri-

terion determines which FSSO system can deliver true single sign-on (i.e. allowing end-

users to access desktop systems, web-based services/applications and non-web based ser-

vices/applications using one authentication process). The second criterion determines

which FSSO system requires the least amount of modification to network domains’ non-

web based authentication infrastructure (i.e. requesting the least active support and

commitment from network domains). The third criterion determines which FSSO system

doesn’t exposes the network domains’ non-web based authentication infrastructures to

the outside world (i.e. lower risk to be compromised by attackers from the Internet).

1.5 Thesis Structure

The remaining sections of this document are organised as follows:

Chapter 2, Basic Concepts, focuses on the authentication functionality of iden-

tity management. The chapter starts from the introduction of identity management and

its core functionalities (e.g. authentication, authorisation and auditing), then it focuses

on reviewing the existing authentication models (e.g. silo, centralised identity manage-

ment and FSSO) and determines that FSSO has the potential to be the predominant

authentication models for cross domains single sign-on.

Chapter 3, Federated Single Sign-on (FSSO) Systems, focuses on reviewing FSSO

systems. This chapter reviews the existing approaches and presents the strengths and

weaknesses of these approaches. The limitations with existing approaches are identified

and the need for a new simplified FSSO system is discussed.

Chapter 4, The Design of a New Simplified FSSO System, describes the design of

the new simplified FSSO system. This chapter presents the technical specifications of the

simulations of Kerberos single sign-on, SAML based single sign-on, Secure shell protocol,

Unix/Linux desktop and a web-service. It then presents the design of a new simplified
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FSSO system (including AIIP and IDAWA).

Chapter 5, Proof of Concept Implementation, describes the implementation of the

new simplified FSSO system. This chapter presents the set-ups of hardware and software,

the flowchart of the systems, the lessons learned during the proof of concept development.

Chapter 6, Research Evaluation, presents the evaluation of the new simplified

FSSO system. This chapter presents five evaluation criteria (3 new criteria and 2 existing

criteria). These criteria are used to compare the new simplified FSSO system with Project

Moonshot, Kerberos Secure Sharing, SASL-SAML, SAML-AAI/Kerberos. This chapter

also discusses the results of the evaluations.

Chapter 7, Discussion and Conclusion, concludes the thesis. This chapter sum-

marises the main findings, presents the critical review and suggests further work.



Chapter 2

Authentication Systems

2.1 Introduction

Computer security maintains the confidentiality, integrity and availability (CIA) of com-

puter systems (Bishop, 2003). It prevents potential security violations such as unautho-

rised information access (i.e. an unauthorised end-user is able to read and take advantage

of information stored in the computer), unauthorised information modification (i.e. an

unauthorised end-user is able to make changes in stored information) and unauthorised

denial of use (i.e. an unauthorised end-user is able to prevent an authorised end-user from

referring to or modifying information even though the intruder may not be able to refer

to or modify the information) (Anderson, 1973; Saltzer & Schroeder, 1975).

Identity management has an important role in maintaining computer security. It

provides the confidentiality, integrity and availability of computer systems via manag-

ing the end-users’ identity information (e.g. personally identifiable information and per-

mission). It has three core functionalities: Authentication, Authorisation and Auditing

(AAA). Authentication is the process of verifying claims about holding specific identi-

ties (Benantar, 2005; Pfleeger & Pfleeger, 2006; Vacca et al., 2010). Authorisation is the

process of empowering someone to perform an operation or to have access to restricted

resources (Salomon, 2005). Auditing is the process of collecting and analysing information

17
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in order to ensure a proper level of security, as well as compliance with the policies of an

organisation (Salomon, 2005).

Figure 2.1: Authentication in Identity Management

This chapter focuses on the authentication aspect of identity management (Figure

2.1). Section 2.2 gives a brief overview of identity management and its core functionalities

(e.g. Authentication, Authorisation and Auditing). Section 2.3 presents the background

information on authentication systems (authentication mechanisms and authentication

models). Section 2.4 summaries this chapter.

2.2 Identity Management

Digital identity represents an entity in a specific context (Miyata et al., 2006; El Maliki

& Seigneur, 2007). It consists of traits, attributes, and preferences upon which one may

receive personalised services (Project, 2003). It does not have to represent an entity’s real

life identity (e.g. name, birthday) (Seigneur, 2005).

Identity management (in computing) can be defined as “the processes of creating,

managing and decommissioning of end-users’ digital identities (Halperin & Backhouse,

2008; Lee et al., 2009; Thomas & Meinel, 2009; Balasubramaniam et al., 2009).” It faces

challenges, for example, how to ensure the privacy of the digital identities (i.e. digital

identity available only to the right individuals or services at the right time and place),

how to avoid the abuse of digital identities, and how to make these provisions possible

in a scalable, usable, and cost effective manner (Glasser & Vajihollahi, 2008; Bertino &

Takahashi, 2010). It has an important role in maintaining computer security. It is a key

research theme for the coming decades (Dunleavy et al., 2006; Halperin & Backhouse,
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2008). It has three core functionalities: Authentication, Authorisation and Auditing

(AAA) (Mont et al., 2003).

Authentication

Benantar (2005); Pfleeger & Pfleeger (2006); Vacca et al. (2010) describe authentication

as the process of verifying claims about holding specific identities. The process consists

of obtaining the authentication information from an entity, analysing the data, and de-

termine if it is associated with that entity (Pfleeger & Pfleeger, 2006). Failure to identify

a legitimate end-user will deny the end-user’s access to the system. Failure to identify an

illegitimate end-user will threaten the security of the entire system.

Authorisation

Authorisation is the process of empowering someone to perform an operation or to have

access to restricted resources (Salomon, 2005). It manages the level of access of a digital

identity. It’s the next step after authentication in the identity management functionalities.

Authorisation identifies the level of access of an end-user’s digital identity after the end-

user was authenticated.

Auditing

Auditing is the process of collecting and analysing information in order to ensure a proper

level of security, as well as compliance with the policies of an organisation (Salomon,

2005). It manages (create, modify, and delete) the security policies that are followed by

authentication and authorisation. It also manages the provisioning and de-provisioning

of the end-users’ digital identities.
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2.3 Authentication Systems

An authentication system contains five elements: the end-user, the distinguishing charac-

teristic of the end-user, the proprietor who is responsible for the system, the authentication

mechanism and the access control mechanism (Smith, 2001). The distinguishing charac-

teristics were assigned to end-users by the proprietor. The authentication mechanism

authenticates the end-users. The access control mechanism ensures the level of access

that the end-users have.

There are four types of authentication mechanisms: Username and Password,

Challenge and Response, Digital Certificates and Biometrics (Smith, 2001; Bishop, 2005;

Pfleeger & Pfleeger, 2006). Section 2.3.1 presents the strengths and weaknesses of these

authentication mechanisms. There are three authentication models: Silo Model, Cen-

tralised Identity Management Model and Federated Single Sign-on Model (Wason et al.,

2003; Jøsang & Pope, 2005; Jøsang et al., 2007; Mather et al., 2009; Vacca et al., 2010).

Section 2.3.2 reviews these authentication models.

2.3.1 Authentication Mechanisms

Authentication mechanisms (e.g. Username and Password, One-time Password, Digital

Certificates and Biometrics) use any of the following qualities to confirm an end-user’s

identity (Pfleeger & Pfleeger, 2006; Bishop, 2005):

• Something you know: password, PIN.

• Something you have: one-time-password.

• Something you are: voice, face, fingerprint.

• Where you are: “Location” as another important quality.

• Any combination of the four previous qualities.

The following section discusses the qualities that are used by each authentication mecha-

nisms. It also reviews the strengths and weaknesses of these authentication mechanisms.
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Username and Password

The Username and Password uses passwords as the sole authentication mechanism. Pass-

words are code words (Ahituv et al., 1987; Pfleeger & Pfleeger, 2006). They are known

only to the end-user and the system. The passwords are either chosen by end-users or

assigned by the system. The length and format of the password vary from one system to

another.

The Username and Password mechanism is widely used; however, it suffers from

password guessing, lost or forgotten password, redundant password, theft of password and

revocation of password (Smith, 2001; Pfleeger & Pfleeger, 2006).

Password Guessing. The strength of the password relies on its complexity. A

complex password is difficult to guess, but it’s hard to remember or create. If a password

is too simple, it’s vulnerable to guessing or brute force attack.

Lost or forgotten password. Operators or system administrators often cannot

determine the contents of the passwords. If end-users lose their passwords, new ones must

be assigned.

Redundant passwords. Supplying multiple passwords for different accesses can

be inconvenient and time consuming. It is also difficult for end-users to manage multiple

passwords. It usually results the loss of passwords.

Theft of password. A password is vulnerable to password file theft, keystroke

sniffing and network sniffing attacks.

Revocation of password. If a password was shared between multiple end-users

to access a common file, revocation of one end-user’s password needs notification.

Although Username and Password faces the above problems, it remains a widely

used authentication mechanism. This is due to Username and Password being easy to

manage. End-users or system administrators can easily change or reset the password

when facing the listed problems.
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Challenge and Response

Challenge and Response uses the one-time password scheme to address the password theft

problem. An one-time password is a type of password that changes every time it is used

(Haller & Metz, 1996). The system assigns a static mathematical function to an end-user

(instead of a static password). The system provides an argument to the function, and the

end-user computes and returns the function value. Such systems are also called challenge-

response systems because the system presents a challenge to the end-user and judges the

authenticity of the end-user by the end-user’s response (Pfleeger & Pfleeger, 2006).

This authentication mechanism requires end-users to carry a (physical or elec-

tronic) token to compute new passwords. This token-based authentication is more secure

than Username and Password. It relies on unique physical objects for authentication.

End-users can tell if their tokens have been stolen. It is also difficult for end-users to

share their tokens with the others and still be able to access the computer system.

Although Challenge and Response is more secure than Username and Password,

it remains less popular than Username and Password. This is because Challenge and

Response is hard to manage than Username and Password. Instead of remembering

passwords, end-users must keep the tokens with them at all time. If a token was lost, the

owner of that token will not be able to access the computer systems. If an unauthorised

end-user uses the token, he/she can attempt to impersonate the owner of that token. In

addition, all of the trouble shooting (e.g. reset password) must be manually done by

system administrators, which increases their work load.

Digital Certificates

A digital certificate (or public key certificate) uses public key infrastructure for authen-

tication. It is frequently quoted as the solution that is critical to authentication of the

network. It binds a public-key value to a set of information that identifies the entity

(such as a person, an organisation, an account, or a site) associated with use of the corre-

sponding private key (this entity is known as the “subject” of the certificate) (Chokhani
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& Ford, 1999). The advantage of a digital certificate is that only the public key is dis-

tributed through the network. We can take the security advantage of digital certificates

as long as the private key of a digital certificate is protected safely (Pfleeger & Pfleeger,

2006).

A digital certificate is harder to create and manage than passwords. They need to

be unique and contain the correct attributes of the end-users. End-users need to fill a list

of questions to generate a single certificate. Digital certificates are stored as a digital file.

End-users are in charge of maintaining them on their computers. End-users’ private keys

are at risk if their computers are not secure (Ellison & Schneier, 2000). End-users also are

too willing to accept invalid certificates, which makes them vulnerable to spoofing (i.e.

End-users assume they are accepting the correct certificates; however, they are accepting

certificates generated by unauthorised parties) (Schneier, 1998).

Biometrics

Biometrics deal with the identification of individuals based on their biological or be-

havioural characteristics (Jain et al., 1999). Biometric authentication devices can recog-

nise the following biometrics: fingerprints, hand geometry (shape and size of fingers),

retina and iris (i.e. parts of the eye), voice, handwriting, blood vessels in the finger, and

face (Pfleeger & Pfleeger, 2006). Biometrics are less likely to be forged, lost, borrowed or

stolen than passwords. It can not be forgotten and it is always available. It’s considered

as a more secure authentication solution than “Username and Password” authentication

mechanism.

Although biometrics has potential to replace passwords, it also presents new prob-

lems: inaccurate reading, single point of failure and forgeries. In addition, a compromised

biometric is a huge problem for end-users and system administrators since end-users can

not replace their biometric data (e.g. eye ball, fingers) (Jain et al., 1999; Smith, 2001;

Schuman, 2006; Pfleeger & Pfleeger, 2006). Biometrics will not completely replace pass-

word unless these problems are addressed.
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2.3.2 Authentication Models

An authentication model consists of two parties, an identity provider (IdP) and a service

provider (SP). The identity provider manages end-users’ identities; it authenticates end-

users and provides identity assertions for authenticated end-users. The service provider

only provides computer services; it relies on the identity provider to provide authentica-

tion. There are three authentication models available: the silo model, centralised identity

management model (CIM) and federated single sign-on model (FSSO).

The Silo Model

The silo model (or Isolated User Identity Model) is the most common authentication

model currently deployed on the Internet (Jøsang & Pope, 2005; Jøsang et al., 2007;

Vacca et al., 2010). It combines the identity provider (IdP) and service provider (SP)

together in one network domain; however, it is not mandatory for them to reside in a

single computer system (Figure 2.2).

Figure 2.2: The silo model

The silo model is the easiest authentication model to implement and manage. The

credentials of end-users are stored and managed in a single space. End-users can access

computer services in a network domain with one set of credentials. For example, Microsoft

Active Directory Domain Services (i.e. identity provider) manages end-users’ credentials
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for a network domain. It provides authentication for Microsoft services (e.g. Microsoft

Windows XP Desktop Operating System). End-users need to be authenticated by Active

Directory Domain Service before accessing Microsoft Windows XP Desktop Operating

Systems (Figure 2.3). The process includes: (1) An end-user requests access to a Window

desktop, (2) Windows desktop requests the end-user to be authenticated, (3) the end-user

sends its credential to the Windows desktop, (4) Windows desktop sends the credential

to the Active Directory for verification, (5) Active Directory verifies the credential and

replies the result back to the Windows desktop, and (6) Windows desktop accepts or

rejects end-user’s request based on the authentication result.

Figure 2.3: Silo Model Authentication Process

The silo model faces challenges when applying to a multi-domain environment (e.g.

Internet). End-users need to create and remember a set of credentials for each network

domain, which results in end-users are overloaded with identifiers and credentials (Figure

2.4). End-users are often required to memorise passwords, which unavoidably leads to

users forgetting passwords. End-users usually use the same password combinations for

every computer service, which means a compromised password effects every computer

service. For example, end-users of Zappos.com use the same password for Zappos.com

and other services (e.g. email service, computer desktop). The latest security breach of

Zappos.com resulted in 24 million customer accounts being compromised (Rashid, 2012).

Zappos.com reset these customers’ passwords; however, customers’ other services were still

at risk. Customers needed to reset their password for all computer services to prevent
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further security compromises.

Figure 2.4: An end-user must store credential in every domain

Centralised Identity Management (CIM)

Centralised Identity Management aims to address the problem of redundant credentials

(in the multi-domain environment). It separates the identity providers from the service

providers and merges them into a single central identity provider. The singular identity

provider provides identity and authentication for every end-user in the world (Figure 2.5).

The primary example of CIM is Microsoft’s Passport. It aims to provide a single

and convenient method for identifying end-users across different websites (Jøsang et al.,

2007). Microsoft will act as the central identity provider and hold end-users’ personal

information (e.g. credit card numbers) and make it available to all service providers (e.g.

Google email, Amazon web store, Apple web store) whenever needed. The processes

are: (1) an end-user requests email service from Google.com, (2) Google.com requests

the end-user to be authenticated, (3) the end-user sends its credential to Google.com, (4)

Google.com sends the end-user’s credential to the identity provider (i.e. Microsoft.com),

(5) Microsoft.com verifies the credential and replies the result back to Google.com, (6)

Google.com accepts or rejects the end-user’s request based on the authentication result.
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End-users can have access to all service providers using the same set of identifiers and

credentials (Bhargav-Spantzel et al., 2007).

Figure 2.5: Centralised Identity Management

The main weakness of centralised identity management is privacy. A singular

identity provider means all the credentials in the world are stored in a single space. It

is not ideal for enterprises to store all of their credentials in one place. For example,

Microsoft will be in charge of all the end-users’ personal information in the world. It

will have significant power to abuse these information, which is a violation of end-users’

privacy. In the end, Microsoft acknowledged that “... no single organisation, not even one

as big as Microsoft, could act as the sole identity provider for everything on the Internet

(Chappell, 2006).”

Another weakness of CIM is single point of failure. The centralised identity man-

agement system contains credentials of every end-user in the world. It is a huge target for

malicious attacks. Every service provider in the world will be affected when the identity

provider experienced technical failures or been compromised.

Centralised Single Sign-on

There may be many computer service providers in a single network domain; each service

provider supports a unique computing task. The identity provider must identify legitimate

end-users from all the service requests. End-users need to be authenticated for each

computer service, which increases the number of authentication processes for a single

end-user.
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Centralised Identity Management (CIM) also proposed a centralised single sign-

on model (i.e. one identity provider manages single sign-on sessions for multiple service

provider). It addresses the redundant authentication processes by building a mutual

trust between computer services providers and the central identity provider. It allows

computer service providers to trust the authentication processes of the other computer

service providers, and these computer service providers can grant accesses to the end-users

without re-promoting the authentication challenge. It allows an end-user to access com-

puter services using one authentication session. For example, an authentication session

was created when an end-user was authenticated and gained access to an electronic mail

service. The end-user can (continue to) access other computer services such as a printer

service without requiring re-authentication.

Centralised single sign-on (or single sign-on) model has the same privacy problem

in multi-domain environments as centralised identity management. For example, com-

puter services provider (e.g. Google.com, Amazon.com and Apple.com) can not trust a

single identity provider (e.g. Microsoft) to manage all of the authentication processes.

This model can only be used in a single domain environment. For example, Google.com

manages its end-users’ credentials. It allows its end-users to access Google email services

(i.e. mail.google.com), Google web calendar service (i.e. calendar.google.com) and Google

document services (i.e. docs.google.com) using one authentication session.

Federated Single Sign-on

Federated Single Sign-on model (FSSO) aims to deliver single sign-on across multiple

domains without compromising the privacy of the identities (Patterson et al., 2004). It

achieved it by de-centralising the identity providers to individual network domains (Table

2.1). It allows network domains to implement and manage their own identity providers

(and credentials) unlike centralised identity management model.

Federated single sign-on model (Figure 2.6) relies on the establishment of a feder-

ation (i.e. a circle of trust) between network domains (Wason et al., 2003; Sullivan, 2005;
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Management
Types

Silo Model/Isolated
User Identity Model

Centralised Identity
Management Model

Federated Single Sign-
on Model

Ownership
of identity
provider

Every domain manages its
own identity providers.

An single identity
provider is shared be-
tween domains.

Every domain manages its
own identity providers.

Ownership
and man-
agement of
identities

Identities are owned and
managed by their asso-
ciate domains’ identity
providers.

Identities are owned by
their associate domains
but managed by a single
identity provider.

Identities are owned and
managed by their asso-
ciate domains’ identity
providers.

Location of
identities

One domain’s identities
are isolated from the other
domains’ identities.

Identities reside in a single
space.

One domain’s identities
are isolated from the other
domains’ identities; how-
ever, identities’ attributes
can be shared between do-
mains.

Table 2.1: Differences Between Silo Model, Centralised Identity Management Model and
Federated Single Sign-on Model

Mather et al., 2009). These trust relationships are created using out-of-band business and

legal agreements between the federation participants (Buecker et al., 2008). The federa-

tion manages the trust relationships established beyond the internal network boundaries

or administrative domain boundaries among network domains (Mather et al., 2009; Ahn

& Ko, 2007). It is expressed in the form of security policies. The policies indicates the

level of access of end-users (from different domains) to the computer resources. Although

trust is an important part of federated single sign-on model, the management of trust is

out of the scope of this research.

Figure 2.6: Federated single sign-on overview
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The identity providers (in the FSSO) provide identity assertions for authenticated

end-users. The identity assertions claim that the end-user belongs to network domains

within the federation. The service providers allow end-users (who acquired identity as-

sertions in one domain) to access computer services in the other domains (within the fed-

eration) through trust (without requiring re-authentication) (Ying, 2010; Takaaki et al.,

2011; Sato & Nishimura, 2011; SWITCHaai, 2012; Google Inc., 2012). For example, a

federation has been established between Dublin Institute of Technology (DIT) and Asso-

ciation for Computing Machinery (acm.org). The federation policies allow students (and

staff) from DIT to access the online library of ACM.org (ACM Digital Library). End-

users who obtained identity assertion (provided by identity provider in DIT) will be able

to access the ACM Digital Library without requiring re-authentication (Figure 2.7). The

federated single sign-on process consists of the following:

1. An end-user requests access to the ACM Digital Library (i.e. service provider).

2. ACM Digital Library asks which domain does the end-user belong to.

3. The end-user selects the domain (i.e. DIT).

4. ACM Digital Library re-directs the end-user to DIT’s web portal (i.e. identity

provider).

5. The end-user authenticates using its credential.

6. DIT will create an identity assertion for the end-user if the authentication was

successful. The assertion is sent to the end-users, and it indicates that the end-user

is a student (or staff) in DIT.

7. The end-user presents the identity assertion to the ACM Digital Library.

8. ACM Digital Library accepts the end-user’s request and direct the end-user to its

online contents.

Federated single sign-on model has advantages over centralised identity manage-

ment (CIM) and the silo model: it does not present the privacy problems since each
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Figure 2.7: Federated Single Sign-on Process

network domain manages their own identity, and it can provide single sign-on across mul-

tiple domains using the federation established between the network domains. FSSO has

the potential to become the predominate authentication model that is used by network

domains to deliver cross domains single sign-on.

2.4 Summary

Authentication is a core functionality of identity management. It is the process of verify-

ing the claims about holding specific identities. This chapter listed authentication mecha-

nisms (e.g.“username and password”, “challenge and responses”, “digital certificates” and

“Biometrics”) that are used by end-users for authentication. Although each authentica-

tion process may involve one or more authentication mechanisms, this research focuses

on accessing computer services/applications using one authentication process. Therefore,

evaluating the authentication mechanisms is out of the scope of this research.

This chapter focuses on reviewing the authentication models: the silo model, cen-
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tralised identity management and federated single sign-on (FSSO). It found that FSSO

model has the potential to deliver single sign-on (in a multi-domain environment) with-

out causing privacy problem; therefore, FSSO has the potential to be the predominate

authentication model (that is used by network domains) to deliver cross domain single

sign-on. Chapter 3 reviews the strengths and weaknesses of the current federated single

sign-on systems.



Chapter 3

Federated Single Sign-on (FSSO)

Systems

3.1 Introduction

Federated single sign-on model (Figure 3.1) uses a claim based authentication model

to address the cross domain single sign-on problems. It allows end-users, who have

been successfully authenticated by domains within a federation, to access computer ser-

vices/applications in different network domains (within the federation) without requiring

re-authentication (Suriadi et al., 2009).

Federated single sign-on (FSSO) model de-centralised end-users’ identities to their

respective domains unlike centralised identity management model (CIM). End-users’ iden-

tities are not stored and managed by a single party in this model; therefore, FSSO are

not affected by single point of failure, and it does not present trust problems.

Figure 3.1: Federated Single Sign-on Model in Authentication Model

33
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FSSO model requires a federation (i.e. a circle of trust) to be established between

network domains (Wason et al., 2003; Sullivan, 2005; Mather et al., 2009). A federation

(i.e. a circle of trust) allows network domains to exchange information about their end-

users and computer resources, and it enables collaborations and transactions (Sullivan,

2005; Ahn & Ko, 2007). It manages the trust relationship established beyond the internal

network boundaries or administrative domain boundaries among distinct organisations

(Mather et al., 2009).

A federation is expressed in the form of security policies. These policies ensure the

end-users have the correct level of accesses to network domains’ computer resources. For

example, a corporation named Medi Corp (medico.com) has an access control policy that

states, in English: Any end-user with an e-mail name in the “medico.com” namespace is

allowed to perform any action on any resources (Godik & Moses, 2003). The policies may

be changed to machine readable language, so they can be managed by computer systems.

Beside the traditional “authority-centric” federated single sign-on system that was

described, there is a “user-centric” federated single sign-on system(UFed SSO). The UFed

SSO allows end-users to have an effective control over the use and management of their

private identification information (Table 3.1). It adopts the user-centric identity man-

agement (UCIM), and it designs from the end-user’s perspective (Jøsang & Pope, 2005;

Suriadi et al., 2009). End-users manage their own private identification information in

UFed SSO (Suriadi et al., 2009).

Management Type Authority-centric FSSO User-centric FSSO
Identity claim The end-user was verified as

who he/she claim to be (strong
claim).

The end-user has an identity
(weak claim).

Management of identity infor-
mation

Identity information is man-
aged by the identity providers.

Identity information is man-
aged by the end-users.

Ownership of identity informa-
tion

Identity information is owned
by identity providers.

Identity information is owned
by end-users.

Table 3.1: Authority-centric and User-centric Federated Single Sign-on

The UFed SSO does not provide strong identity assertions. Service providers are

not obliged to trust any claims of any end-users without corroboration by a trusted third
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party (Maler & Reed, 2008). The “Authority-centric” federated single sign-on is still

favoured by business enterprises, governments and education faculties such as JANET

(2012) and HEAnet (2012).

The focus of this research is “authority-centric” federated single sign-on. Section

3.2 gives a brief overview on federated single sign-on standards in web space. Section

3.3 identifies the strengths and weaknesses of existing approaches that aim to extend

federated single sign-on beyond web space. Section 3.4 summaries this chapter.

3.2 Federated Single Sign-on Solutions in Web Space

Federation technologies first appeared with the aim of offering web-based single sign-on

across network domains (Paul & Madsen, 2004; Don & Smith, 2008). Federated identity

and web services were both complement and dependent on each other (Paul & Mad-

sen, 2004). Federated identity standards such as Security Assertion Markup Language

(SAML), Liberty Identity Federation Framework (ID-FF) and WS-Federation took ad-

vantages of the web services standards stack. They were seen as built on top of web

services.

Security Assertion Markup Language (SAML) is an XML-based framework for

exchanging security information (e.g. end-user’s authentication, entitlement and attribute

information) (Maler et al., 2003). It was developed by the Security Services Technical

Committee of the Organisation for the Advancement of Structured Information Standards

(OASIS). It’s main objective is to deliver a single sign-on experience for end-users to

access web-based services/applications. It allows an end-user that was authenticated in

one domain to use web-based services/applications in the other domains without requiring

re-authenticating. SAML based solution such as Shibboleth R© system provides single sign-

on capabilities and allows sites to make informed authorisation decisions for individual

access of protected online resources in a privacy-preserving manner (Internet2, 2012).

The Liberty Alliance project aimed to develop open standards for federated net-
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work identity management and identity-based services (Sun Microsystems, 2004). It was

formed in September 2001. Its goals were to ensure interoperability, support privacy, and

promote adoption of its specications, guidelines, and best practices.

Liberty Identity Federation Framework (ID-FF) was developed by Liberty Alliance.

It was built on top of existing XML-based standards. ID-FF enables identity federation

and management through single sign-on, end-user account linking, and simple session

management (Shim et al., 2005).

SAML 1.0/1.1, Shibboleth Project and Liberty Alliance combined their work to

create SAML 2.0 (Figure 3.2) (Mather et al., 2009; Jason & Goode, 2012). SAML 2.0

emerged as the de-facto federated single sign-on standard for web-based applications. It

has been broadly implemented by all major web access management vendors (Ragouzis

et al., 2008). It is supported by major application server products (e.g. IEEE Xplore Dig-

ital Library and ACM Digital Library). It can be found among web services management

and security vendors (e.g. Ping Identity, Shibboleth and OpenAthens).

Figure 3.2: SAML 2.0 incorporates three existing federation technologies and standards:
SAML 1.1, ID-FF 1.2 and Shibboleth (Jason & Goode, 2012)

WS-Federation is another federated identity standard. It was developed by Mi-

crosoft, IBM, RSA Security, VeriSign, and BEA. It relies on a security token service

(STS) to broker trust of identities, attributes, and authentication between participating
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web services. WS-Federation v1.2 has been approved by OASIS to become a federated sin-

gle sign-on standard for web-based services/applications McRae (2009). WS-Federation

based products (e.g. WS Federation Authentication Module) have been integrated into

Microsoft’s software. WS Federation Authentication Module can be used by network

domains that use Microsoft products (Microsoft, 2012b).

Federated single sign-on standard such as SAML, ID-FF and WS-Federation par-

tially address the single sign-on problem. They allow end-users to access web-based

services in a single sign-on fashion. They do not allow end-users to access both web-based

and non-web based computer services/applications in a single sign-on fashion.

This research proposes to integrate web-based FSSO standards with FSSO solu-

tions that support non-web based services/applications. Although these standards can

not address the single sign-on problem on their own, they can be used in conjunction

with FSSO solutions that support non-web based services/applications. The integration

can provide an single sign-on session for end-users to access both web-based and non-web

based services.

3.3 Federated Single Sign-on Solutions Beyond Web

Space

The need of federated single sign-on beyond web-based services/applications has been

emphasised by Papez (2009); Wierenga & Lear (2012); Howlett (2011). This research

reviewed four projects that aim to extend federated single sign-on beyond web space:

Project Moonshot, Kerberos Secure Sharing (KSS), SASL-SAML (i.e. the combination

Simple Authentication and Security Layer with Security Assertion Markup Language)

and SAML-AAI/Kerberos (i.e. the combination of Security Assertion Markup Language’s

authentication authorisation infrastructure with Kerberos single sign-on infrastructure).

This section reviews the strengths and weaknesses of these approaches.
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3.3.1 Project Moonshot

Project Moonshot is a federated single sign-on project initiated by JANET(UK) (Howlett,

2011). It attempts to address a number of problems that were not addressed by SAML

based federated single sign-on systems. They include: SAML based federated single sign-

on do not support non-web based applications; it is difficult for end-users (who belong to

multiple domains) to be authenticated by the correct identity provider (and obtain the

correct identity assertion); it is difficult to select a identity provider from a large list (i.e.

a list that contains more than 100 identity providers).

Project moonshot proposes a new federated single sign-on system that supports

non-web based applications. It combines Extensible Authentication Protocol (EAP) and

Generic Security Services Application Programming Interface (GSS-API) to create a so-

lution for federated authentication (Howlett, 2010). EAP provide federation and authen-

tication mechanisms; it verifies the authentication, authorisation and auditing (AAA)

information. GSS-API integrates non-web based services/applications with the new fed-

erated single sign-on system, so that these services/applications can support EAP. The

authentication process (Figure 3.3) includes: (1) an end-user’s user agent sends the end-

user’s credentials to the service provider via GSS-API; (2) the service provider sends the

credentials to the identity provider via AAA transport protocol; (3) the identity provider

verifies the credentials using EAP, and replies the result via AAA transport protocol; (4)

the service provider accepts or rejects end-user’s requests based on the authentication

result.

Figure 3.3: Project Moonshot Model (Howlett, 2011)

Project Moonshot makes several important assumptions about the environment



CHAPTER 3. FEDERATED SINGLE SIGN-ON (FSSO) SYSTEMS 39

of the end-users (Painless Security, 2010). It assumes end-users have EAP supplicant

software installed and configured. It assumes end-users have configured their supplicant

with some information about the sets of identities they use. It also assumes end-users may

be required to take some steps to enable support for Project Moonshot in their applications

(e.g. replacing existing applications with ones that support project Moonshot).

It is clear that Project Moonshot is suitable for network domains that have the

ability to configure the machines of all their affiliates. It is also suitable for experienced

end-users who are able to follow directions and who see sufficient benefit in federated

single sign-on. It is not suitable for end-users who use machines that they do not control

or that have not been configured to meet the needs of their organisations.

Although Project Moonshot can deliver federated single sign-on for non-web based

services/applications, it does not interoperate with web-based federated single sign-on

technologies. This results in end-users need to be authenticated twice to access both

web-based and non-web based services. In addition, Project Moonshot does not inter-

operate with network domains’ existing non-web based authentication infrastructures,

which means federated authenticated (by Project Moonshot) and desktop authentication

are two separate authentication processes. End-users need to be authenticated at least

three times to access desktop system, web-based services/applications and non-web based

services/applications.

3.3.2 Kerberos Secure Sharing

Kerberos Secure Sharing (Gridwise Tech, 2010) allows end-users to access desktop sys-

tems and non-web based applications using one authentication process (Figure 3.4). It

proposes an architecture that implements federated single sign-on using LDAP, Kerberos

and GridwiseTech’s AdHoc. LDAP manages authorisation (i.e. end-users’ access rights).

Kerberos manages authentication and single sign-on. GridwiseTechs AdHoc is responsible

for managing access policies to resources.

Kerberos enables network applications to securely identify their peers (Miller et al.,
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Figure 3.4: Kerberos Secure Sharing (Gridwise Tech, 2010)

1988). Kerberos has the following major components: Key Distribution Centre (KDC)

and Ticket Granting Service (TGS). KDC is trusted to hold secret keys known by each

client and server on the network (their secret keys are established out-of-band or through

an encrypted channel). It also has access to the database that stores end-users’ credentials

(Needham & Schroeder, 1978). Ticket granting server (TGS) is logically distinct from

KDC which provides the initial ticket granting ticket service. TGS runs on the same host

and has access to the same database of clients and keys used by the KDC (Kohl et al.,

1991; El-Hadidi et al., 1997).

Kerberos Secure Sharing (KSS) established federation by directly connecting net-

work domains’ Kerberos single sign-on systems (e.g. KDCs and TGSs). It requires each

network domain’s KDC to have records of the other KDCs. It does not deploy new

federated single sign-on systems into network domains.

KSS has advantages over Project Moonshot: it allows end-users to log in their

desktop (using Kerberos authentication) and access non-web based services/applications

(which support Kerberos) without requiring re-authentication; it does not require new

federated single sign-on systems to be deployed into network domains. However, KSS
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is only suitable for network domains that trust each other and willing to expose their

Kerberos servers. For example, KSS is suitable for domains such as youtube.com and

google.com since they belong to the same owner (i.e. google.com). It is not suitable

for network domains that are unwilling to expose their Kerberos servers. For example,

google.com and apple.com are competing companies, they will not expose their internal

authentication infrastructures to each other.

KSS also partially addresses the single sign-on problem (similar to Project Moon-

shot). This approach only focus on supporting desktop systems and non-web based ap-

plications. It does not allow end-users to access both web-based and non-web based

services/applications without requiring re-authentication.

3.3.3 SASL-SAML

SASL-SAML attempts to provide federated single sign-on for both web-base and non-web

based services/applications. It uses SAML based federated single sign-on systems to man-

age federated single sign-on for both web-based and non-web based services/applications

(Wierenga & Lear, 2012). It does not use the existing authentication infrastructures (e.g.

Kerberos). It integrates the existing SAML based federated single sign-on system (e.g.

Shibboleth) with non-web based services/applications using Simple Authentication and

Security Layer (SASL).

Simple Authentication and Security Layer (SASL) is a generalised mechanism for

identifying and authenticating an end-user. It is also used for optionally negotiating a

security layer for subsequent protocol interactions (Melnikov & Zeilenga, 2006). The

effect is to make modular authentication, so that newer authentication mechanisms can

be added as needed.

SASL-SAML relies on the exchange of SAML based messages (e.g. identity as-

sertions and credentials) through SASL channels to achieve federated single sign on

for non-web based applications (Figure 3.5). Non-web based services/applications (and

their receptive user agents) are modified to support SASL. The modifications allow them
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to exchange SAML based messages with the SAML based federated single sign-on sys-

tems; therefore, they can use SAML based federated single sign-on systems for federated

single sign-on. This approach allows end-users who were authenticated (using SAML

based federated single sign-on system) to access both web-based and non-web based ser-

vices/applications without requiring re-authentication.

Figure 3.5: SASL-SAML Model (Wierenga & Lear, 2012)

Although SASL-SAML provides federated single sign-on sessions for end-users to

access both web-based and non-web based services, it does not integrate federated single

sign-on sessions with end-users’ desktop authentication sessions. Therefore, the end-users

need to be authenticated (by network domains’ non-web based authentication infrastruc-

tures) to access desktop systems, then they need to be authenticated again (by SASL-

SAML) to access both web-based and non-web based services/applications.

This approach requires active support and commitment from applications providers

and network domains. It requires existing non-web based service/applications to be mod-

ified to support SASL. If applications providers and network domains are unwilling to

modify their existing services/applications, this model will fail.
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3.3.4 SAML-AAI/Kerberos

SAML-AAI/Kerberos (Papez, 2009) allows end-users to access non-web based services as

web-based services, so that SAML based federated single sign-on systems can be used

to manage federated single sign-on for all services/applications. It contains two major

components: web-based software that integrates SAML based federated single sign-on

systems with network domains’ Kerberos single sign-on systems (Figure 3.6) and web-

based interfaces for non-web based services/applications. The combination of the web-

based software and web-based interfaces allow end-users to access both web-based and

non-web based services/applications without requiring re-authentication.

The web-based software integrates end-users’ web-based single sign-on sessions

(created by SAML based federated single sign-on systems) with non-web based single sign-

on sessions (created by Kerberos single sign-on systems). It requires end-users to be au-

thenticated by SAML based federated single sign-on systems. It uses Kerberos extensions

– “Services For User to Self (S4USelf)” and “Services for User to Proxy (S4U2Proxy)” –

to acquire Kerberos tickets (i.e. ticket granting ticket and service ticket) on behalf of the

authenticated end-users (Papez, 2009; Microsoft, 2012a). It seamlessly extends end-users’

federated single sign-on sessions (created by SAML based federated single sign-on) into

the other domains.

SAML-AAI/Kerberos requires application providers and network domains to de-

velop web-based interfaces for non-web based applications. End-users can access non-web

based services/applications via their web-based interfaces; therefore, end-users can access

both web-based and non-web based services/applications using web browsers.

Although SAML-AAI/Kerberos partially leveraged network domains’ authentica-

tion infrastructure, it also does not integrate federated single sign-on sessions with desktop

authentication sessions (similar to SASL-SAML). This approach requires at least two au-

thentication processes for an end-user to access a desktop system and (both web-based

and non-web based) computer services/applications. For example, end-users need to be

authenticated once to access their desktop, then they need to be authenticated again to
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Figure 3.6: Interoperating SAML-AAI and Kerberos (Papez, 2009)

access web-based services/applications.

This approach also requires active support and commitment from applications

providers and network domains similar to SASL-SAML. It requires them to create/deploy

new web-based interfaces for their non-web based applications, so that end-users can

access non-web based services/applications as they are web-based services/applications.

This approach will fail if applications providers and network domains are unwilling to

create new web-based interfaces for their non-web based services/applications.

3.4 Summary

The chapter found that there is a lack of federated single sign-on system that incor-

porates the authentication systems of desktop systems, web-based services/applications

and non-web based services/applications. Project Moonshot supports non-web based

services/applications, Kerberos secure sharing supports desktop systems and non-web

based services/applications, and SASL-SAML and SAML-AAI/Kerberos support both
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web-based and non-web based services/applications. These systems can not allow end-

users to access desktop systems, web-based services/applications and non-web based ser-

vices/applications using one authentication process. Chapter 4 proposes a new simplified

federated single sign-on system that attempts to address this problem.



Chapter 4

The Design of a New Simplified

FSSO System

4.1 Introduction

This chapter presents the design of the new simplified federated single sign-on (FSSO) sys-

tem. The research found that both Kerberos secure sharing (KSS) and SAML-AAI/Kerberos

leverage network domains’ existing authentication infrastructures. KSS provides federated

single sign-on by directly connecting network domains’ Kerberos servers (i.e. non-web

based authentication infrastructures). SAML-AAI/Kerberos provides federated single

sign-on by connecting SAML-based federated single sign-on systems and service providers’

Kerberos servers.

The proposed system aims to allow end-users to access desktop systems (in the

same domain as the end-users), web-based services/applications and non-web based ser-

vices/applications (in multiple domains) using one authentication process. It’s designed

to incorporate network domains’ existing authentication infrastructures without exposing

them to the outside world.

The design of the new simplified federated single sign-on system includes two main

components: the design of a novel “Authentication Infrastructure Integration Program”

46
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(AIIP) and the design of the “Integration of Desktop Authentication and Web-based

Authentication” (IDAWA). AIIP is designed to facilitate federated single sign-on for end-

users who have gained access to desktop systems (i.e. who have been authenticated by

network domains’ Kerberos single sign-on systems). IDAWA is designed to integrate end-

users’ desktop authentication sessions with web-based federated single sign-on sessions.

AIIP draws from Kerberos secure sharing and SAML-AAI/Kerberos. It also uses

network domains’ Kerberos single sign-on systems for desktop authentications and local

network single sign-on; however, it does not directly connect Kerberos single sign-on

systems in different domains. AIIPs in different domains facilitate federated single sign-

on by seamlessly bridging connections between end-users’ desktop systems in one domain

and Kerberos single sign-on systems in the other network domains. AIIP in one domain

acquires Kerberos tickets from Kerberos single sign-on (in the same domain) and sends

the tickets to the end-users (in another domain). AIIPs allows end-users to use these

Kerberos tickets to access non-web based services/applications (in different domain) in a

single sign-on fashion.

IDAWA is an extension of SAML based federated single sign-on systems. It modi-

fies web-based authentication systems (i.e. identity provider end of SAML based federated

single sign-on systems) to support Kerberos tickets. It allows end-users who have acquired

Kerberos tickets (i.e. who have been authenticated by Kerberos single sign-on systems)

to access web-based services/applications without requiring re-authentication.

The new simplified federated single sign-on system assumes the following: a feder-

ation has been established between network domains; network domains employ their own

Kerberos single sign-on systems (i.e. authentication infrastructures); they support SAML

based federated single sign-on systems (i.e. web-based federated single sign-on systems);

network messages are encrypted during transfer.

The assumptions are realised in the design environment. The design environment

consists of simulations of the following: Kerberos single sign-on systems, SAML based

federated single sign-on systems, Linux desktop systems and Secure Shell protocol. The
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simulations were implemented with a goal to demonstrate the new simplified federated

single sign-on system. They are the striped down versions of the real world systems.

Section 4.2 presents the design environment. It discusses the use of simulations in

the design environment. Section 4.3 presents the technical details of the the simulations

(including Kerberos servers, SAML based federated single sign-on systems, Linux desktops

and Secure Shell protocol). Section 4.4 presents the design of the new simplified federated

single sign-on system. It includes the design of two major components: “Authentication

Infrastructure Integration Program” (AIIP) in section 4.4.1, and the “Integration of Desk-

top Authentication and Web-based Authentication” (IDAWA) in section 4.4.2. It then

presents the life-cycles of the proposed system in section 4.4.3. Section 4.5 summaries

this chapter.

4.2 Design Environment

4.2.1 Simulation of Real World Applications

Real world systems are production environments. They are managed by software pro-

grammers or system administrators. They can be modified by them. For example, ad-

ministrators can change the IP addresses of servers. If the research uses these servers,

it must change its design variables and re-implement its systems to support the new

changes. New evaluations need to be conducted as well, which results in lost time. It is

not advisable to conduct research in these environments.

This research uses simulations of real world systems: Kerberos single sign-on sys-

tems, SAML based federated single sign-on systems, Linux desktop systems and Secure

Shell protocol. The simulations provide the necessary functionalities for designing the

proposed system. They partially imitates the real world systems. Their goals are to

present the life-cycle of a real world authentication processes in a clean manner.

The benefits of using simulations are the simulations are small in size, they utilise

a small amount of computer resources, all processes (e.g. communication processes and



CHAPTER 4. THE DESIGN OF A NEW SIMPLIFIED FSSO SYSTEM 49

authentication processes) can be monitored and all communication messages and stored

files (e.g. Kerberos tickets and databases) are created in human readable language. They

are more manageable than real world systems.

The Simulation of Kerberos Single Sign-on System

The simulation of Kerberos single sign-on system has the following core functionalities:

authenticating end-users, creating/verifying ticket granting ticket, creating service ticket.

These functionalities are implemented based on the real world systems. They are necessary

to provide desktop authentication and local network single sign-on, and they provide the

design environment for designing AIIP.

The simulation does not provide any encryption functionalities; it assumes the tick-

ets are encrypted during transfer and storage. It also does not provide any administration

functionalities. System configurations (e.g. create, modify or remove credentials in the

end-user database) need to be done by directly editing the source code or the text files.

Although these functionalities will be in the production system, they are not necessary

for demonstrating the proof of concept implementation. Therefore, they are not included

in the simulation (figure 4.1).

Figure 4.1: High level comparison of Kerberos simulation and real world system

The real world Kerberos system’s communication protocol and Kerberos tickets

can only be used by Kerberos tools. To have better management over the design environ-

ment, the simulation of Kerberos single sign-on system uses its own set of communication
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protocols. In addition, the simulation’s Kerberos tickets can be created, modified and

removed by any text editors.

The Simulation of SAML based Federated Single Sign-on System

The simulation of SAML based federated single sign-on system focuses on providing func-

tionalities that are necessary for designing IDAWA (Figure 4.2). These functionalities

include verifying end-users’ credentials, creating identity assertions, storing identity as-

sertions in web-browsers’ cookies and verifying identity assertions. These functionalities

are implemented based on real world systems.

Figure 4.2: High level comparison of SAML based FSSO system simulation and real world
system

The simulation will present the result of authentication (e.g. successful or unsuc-

cessful). It does not provide any real world web-based services/applications. The identity

message (used by the simulation) is a strip down version of the real world SAML based

assertion message. It focuses on elements that are necessary for federated single sign-

on processes. These elements include username, role, domain name and authentication

result.

The Simulations of Linux Desktop System and Secure Shell Protocol

The simulation of Linux desktop system is based on Ubuntu desktop. Ubuntu desktop is

a free and open source Linux desktop system. It supports Kerberos single sign-on system,

and it can use Kerberos as primary desktop authentication system. The end-user can use
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it with or without a graphical user interface.

In order to demonstrate authentication and single sign-on, it is important to select

functionalities (from real world systems) that relate to authentication and single sign-

on. The simulation of Ubuntu desktop provides functionalities such as verifying end-

users’ credentials, storing the simulations of Kerberos tickets, sending the simulations of

Kerberos ticket, the simulation of secure shell client and the simulations of secure shell

server (Figure 4.3). The simulation of secure shell protocol provides functionalities such

as verifying the simulation of Kerberos tickets and creating a connection between a client

and server (Figure 4.4).

Figure 4.3: High level comparison of Ubuntu desktop simulation and real world system

These simulations uses the simulations of Kerberos single sign-on system for au-

thentication and single sign-on. They support the communication protocols of the sim-

ulation of Kerberos single sign-on systems, and they do not interoperate with the real

world system. The simulation of Ubuntu desktop does not provide any non-web based

services/applications. The simulation of secure shell protocol assumes network communi-

cations are encrypted.
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Figure 4.4: High level comparison of SSH protocol simulation and real world system

4.2.2 Environment Specification

Three Sample Network Domains

The design environment specifies three sample network domains. They are named do-

main Alpha, domain Beta and domain Gamma (Table 4.1). Domain Alpha is assigned

the domain name: “home.virtual.vm”, domain Beta is assigned the domain name: “for-

eign.virtual.vm” and domain Gamma is assigned the domain name: “third.virtual.vm”.

Domain Attributes Domain Alpha Domain Beta Domain Gamma
Domain Name home.virtual.vm foreign.virtual.vm third.virtual.vm
Provide computer Ser-
vices/Applications

Yes Yes Yes

Provide end-users’
identities

Yes Yes Yes

Table 4.1: Network Domain Names

The number of network domains will not effect the out come of the research. Each

federated single sign-on process requires two parties: an identity provider and a service

provider. A network domain can be an identity provider, a service provider or both at

the same time. There can be more than three domains; however, every federated single

sign-on process only involves an identity provider (in one domain) and a service provider

(in another domain).

Although a new federated single sign-on process is created for accessing a new

service/application, end-users only need to be authenticated for the first federated single
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sign-on process. The rest of the federated single sign-on processes are seamless to the

end-users; therefore, end-users view multiple federated single sign-on processes as one

federated single sign-on process.

Domain Setups

All three sample domains have the same setup. They have the simulations of the following

systems: Kerberos single sign-on systems, SAML based federated single sign-on systems,

Ubuntu desktop systems and secure shell protocol (SSH). The simulations of Kerberos

single sign-on systems manage single sign-on inside local network domains, and they

provide authentications for the simulations of both Ubuntu desktops and SSH protocol.

The simulations of SAML based federated single sign-on systems facilitate federated single

sign-on for web-based services/applications.

The goal of “Authentication Infrastructure Integration Program” (AIIP) is fa-

cilitating federated single sign-on by bridging communications between Kerberos single

sign-on systems in different domains. The simulations of Kerberos single sign-on sys-

tems are essential for designing the AIIP. The Kerberos system simulations (in different

domains) do not communicate or have any knowledge of each other.

The simulations of SAML based federated single sign-on system facilitate feder-

ated single sign-on between two ends: simulation of web-based authentication system

(i.e. identity provider) and simulations of web-based services/applications (i.e. service

provider). The simulation of web-based authentication system provides identity assertions

for authenticated end-users. The simulation of web-based service/application displays the

results of successful federated single sign-on.

The “Integration of Desktop Authentication and Web-based Authentication” (IDAWA)

is an extension to the SAML based federated single sign-on sysetm. It aims to allow the

web-based authentication systems to use Kerberos tickets as mean of authentication. The

simulation of SAML based federated single sign-on system is essential for designing the

IDAWA.
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Federated Single Sign-on Policy Specifications

Federated single sign-on requires the establishment of a federation (or a circle of trust)

between network domains. The federation is expressed in the form of security policies.

This design establishes the following sample policies:

1. End-users from any domain can access any services/applications in the other do-

mains.

2. The role “student” in domain Alpha has the role “guest” in domain Beta and domain

Gamma. The role “guest” can use services/applications and save end-user contents

on them. It does not have the permission to administrate the services/applications

(i.e. create, modify and delete services/applications).

3. The role “lecture” in domain Alpha has the role “power” in domain Beta and domain

Gamma. The role “power” can use, create, modify and delete services/applications.

4. The role “guest” in domain Beta and domain Gamma has the role “student” in

domain Alpha. The role “student” can use services/applications and save end-

user contents on them. It does not have the permission to administrate the ser-

vices/applications (i.e. create, modify and delete services/applications).

5. The role “power” in domain Beta and domain Gamma has the role “lecture” in do-

main Alpha. The role “lecture” can use, create, modify and delete services/applications.

The first policy is the basic policy for federated single sign-on. The identity

provider in one domain provides identity assertions for authenticated end-users. The

identity assertions indicate that the end-users have been authenticated by one domain

within the federation. The policy allows the service providers in the other domains to ac-

cept the end-users’ service requests. This policy is applicable to all three sample domains.

Although authorisation is not the focus of this research, the second and third

policies were required to support the authentication systems, and to demonstrate the

changes of identities in different domains. They define the changes of roles from domain
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Alpha to domain Beta/Gamma. They are applicable to domain Beta and domain Gamma.

They are expressed in the form of XML document (Figure 4.5).

<?xml version="1.0" encoding="iso-8859-1"?>

<policy>

<student>

<role>guest</role>

</student>

<lecture>

<role>power</role>

</lecture>

</policy>

Figure 4.5: Second and Third Federation Policies Written in XML

The fourth and fifth policies define the changes of roles from domain Beta/Gamma

to domain Alpha. They are applicable to domain Alpha. They are expressed in figure

4.6.

<?xml version="1.0" encoding="iso-8859-1"?>

<policy>

<guest>

<role>student</role>

</guest>

<power>

<role>lecture</role>

</power>

</policy>

Figure 4.6: Fourth and Fifth Federation Policies Written in XML

The goals of these policies are to set up trust between network domains. The

first policy is the most important one because it defines the basic trust between network

domains, and it is used by the new simplified federated single sign-on system to facilitate

federated single sign-on. The next four policies are used to demonstrate the changes of

role when end-users access different services/applications in different domains, and they

will not effect the out come of this research.

Application Specification

Simulations of Kerberos single sign-on systems need to be executed on operating systems.

This research requires operating systems (e.g. GNU/Linux) to be installed on three

separate machines. Each machine represents a domain (Alpha, Beta or Gamma). Each

machine hosts a simulation of the Kerberos system.
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The simulation of SAML based federated single sign-on system operates on top of

web server software. It requires web server software (e.g. Apache HTTP server) to be

installed on the operating systems. Each domain (i.e. each machine) needs to install a

copy of the web server software.

4.3 Simulation Details

This section presents the technical specifications of end-user databases, Kerbero single

sign-on simulation, SAML based federated single sign-on simulation, Ubuntu desktop

simulation and secure shell protocol simulation. All three domains have the same setups;

therefore, the technical specifications will use domain Alpha as the sample domain.

4.3.1 End-user Database

The end-user database aims to store information that support the authentication systems.

It is used by the federated single sign-on systems and Kerberos single sign-on systems.

Federated single sign-on systems and Kerberos single sign-on systems require four basic

types of information: username, password, role and domain name.

• Username, it is the unique identifier of the end-user. It represents an individual

end-user. There should not be any repeating usernames in the database.

• Password, it is a combination of characters and numbers. It is the distinguish-

ing characteristic that differentiates that particular end-user or group from others

(Smith, 2001).

• Role, in this research, it represents an end-user’s character, place and status in the

network domain.

• Domain name, it is the name of the domain where the end-users reside in.

Each network domain will have an end-user database. These databases are inde-

pendent from each other. The credentials in a network domain’s end-user database are
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provisioned to the other domains when a federation was established between these do-

mains. For example, credentials in domain Alpha (Dα) are provisioned into domain Beta

(Dβ) and domain Gamma (Dγ). The same applies to domain Beta and domain Gamma.

Subsection 4.3.1 presents the variables in the database, provisioning of credentials, and

the technology used to construct the databases.

Credential Provisioning

SAML-AAI/Kerberos provisions separate end-user databases in different domains. It

proposed an identity mapping model that maps the identities in one domain into identities

in the other domains. End-users seamlessly use different credentials to access computer

services/applications in different domains.

This research manually provisions the credentials. It adopts the approach of

SAML-AAI/Kerberos; end-users have different credentials in domain Alpha, domain Beta

and domain Gamma. The credentials in these domains have the same username; however,

they have different passwords, roles and domain names. The identities were mapped the

identities from one domain into the other domains using SAML-AAI/Kerberos’ mapping

model. This research demonstrates federated single sign-on for three end-users. Their

usernames are “chen”, “fred”, and “paul” (Table 4.2). These three credentials were provi-

sioned from domain Alpha to domain Beta and domain Gamma. The end-users’ passwords

are different in different domains. For example, “chen” has the password “alpha123” in

domain Alpha. The provisioned credentials “chen” has the password “beta123” in domain

Beta .

Role represents an end-user’s character, place and status in the network domain.

For example, “chen” has the role of “student” in domain Alpha, and “chen” has the role

of “guest” in domain Beta and domain Gamma. “chen” can use service applications in

domain Beta/Gamma, but he can not create, modify or delete the service applications.

“fred” and “paul” have the role of “lecture” in domain Alpha; therefore, they have the

role “power” in domain Beta and domain Gamma. They can use, create, modify and
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delete the service applications in domain Beta/Gamma.

The Kerberos single sign-on servers only authenticate end-users in their respec-

tive domains. For example, the Kerberos single sign-on server in domain Beta only

authenticates end-users who belong to domain Beta (i.e. who have the domain name:

“foreign.virtual.vm”). End-users’ credentials in domain Alpha need to be changed from

“home.virtual.vm” to “foreign.virtual.vm” in domain Beta and to “third.virtual.vm” in

domain Gamma.

Attributes Domain Alpha Domain Beta Domain Gamma
Username chen chen chen
Password alpha123 beta123 gamma123
Role Student Guest Guest
Domain Name home.virtual.vm foreign.virtual.vm third.virtual.vm

Username fred fred fred
Password alpha123 beta123 gamma123
Role Lecture Power Power
Domain Name home.virtual.vm foreign.virtual.vm third.virtual.vm

Username paul paul paul
Password alpha123 beta123 gamma123
Role Lecture Power Power
Domain Name home.virtual.vm foreign.virtual.vm third.virtual.vm

Table 4.2: Domain Variables

Database Technology

The Extensible Markup Language (XML) has become the de facto standard for repre-

senting, storing, and exchanging electronic data (Bray et al., 2008; Zhang et al., 2011).

It is used to construct the simulation of end-users’ databases.

The end-users’ credentials are stored in the database using XML. The end-user

databases are stored as text files. They can only be read and modified locally (as a

text file). They do not support network connection, and they do not provide database

administration functions.

A database has three entries (i.e. one for each end-user’s credentials). This research

creates a XML tag <user> to mark each credential (Figure 4.7). The credentials contain

four elements: username, password, role and domain name. Four XML tags were created
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<username>, <password>, <role> and <domain> to mark these four elements. The

XML tag <users> is used to mark the name of the database.

<?xml version="1.0" encoding="iso-8859-1"?>

<users>

<user>

<username>chen</username>

<password>alpha123</password>

<role>student</role>

<authenticated>true</authenticated>

<domain>home.virtual.vm</domain>

</user>

<user>

<username>fred</username>

<password>alpha123</password>

<role>lecture</role>

<authenticated>true</authenticated>

<domain>home.virtual.vm</domain>

</user>

<user>

<username>paul</username>

<password>alpha123</password>

<role>lecture</role>

<authenticated>true</authenticated>

<domain>home.virtual.vm</domain>

</user>

</users>

Figure 4.7: Sample End-user Database Written in XML

4.3.2 Kerberos Single Sign-on Simulation

This research assumes each network domain employs their own Kerberos single sign-on

system. The simulation of Kerberos single sign-on system is based on the designs that were

presented in Kohl et al. (1991); Neuman & Ts’o (1994); Walla (2000). They present the

detailed descriptions of Kerberos single sign-on system’s functions (e.g. creating/verifying

tickets) and life-cycles.

A Kerberos system contains a key distribution centre (KDC) and ticket granting

server (TGS). According to Kohl et al. (1991), KDC and TGS reside in the same physical

server. They have access to the same end-user database. The differences between KDC

and TGS are their functions. KDC authenticates the end-users’ credentials and issues

ticket granting tickets (TGT). KGS verifies the TGT and issues service tickets (ST).

The simulation includes the functions of KDC and TGS. Since the differences

between KDC and TGS are logical, they are merged into a single component (in the

simulation). The Kerberos system simulations are implemented based on the real world
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system. They have the following core functionalities:

• Verifying end-user’s credentials.

• Creating ticket granting ticket.

• Creating shared key between service applications and Kerberos servers.

• Verifying ticket granting ticket.

• Creating service ticket.

• Creating and maintain single sign-on session.

Kerberos Simulation Daemon

Kerberos system simulation authenticates the end-users, and it issues ticket granting

tickets and service tickets. They also issue shared keys to services/applications. They

require static IP addresses and a specific network port for accepting incoming requests.

The real world Kerberos single sign-on systems use port 88 by default; the simulation

uses port 88 as well.

Kerberos system simulations use network sockets for network communication. Net-

work sockets allow applications to communicate using standard mechanisms built into

network hardware and operating systems. They were created using the identified IP ad-

dresses and network ports. This research uses Transmission Control Protocol (TCP) as

the socket protocol similar to real world systems. TCP employees error detection and

provides reliable network communications.

Database Functions

Extracting the credential data from the database is one of the tasks of the Kerberos

system simulations. It allows Kerberos system simulations to authenticate the end-users

by comparing the credential information in the database and the credential information
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of the end-users. The end-user database was constructed with XML language (Section

4.7); therefore, the database functions include the following:

• Reading the entire content of the XML file.

• Searching through the content to find the credential data.

The contents of a database are organised in a tree format (Figure 4.8). The

searching function starts from the root element of the tree (i.e. <users>) and travels

to child element (i.e. <user>) and sub child elements (i.e. <username>, <password>,

<role> and <domain name>).

Figure 4.8: Database Tree Relation in Colour

Authentication Function

Authentication is one of the core functionalities of Kerberos system simulation. It ensures

that the end-users are who they claim to be. The authentication function involves two

elements in the database: username and password.

The authentication function authenticates end-user by verifying two hash keys: one

hash key is sent by an end-user’s desktop system and created by putting the end-users’

usernames and passwords through a SHA-2 function, and the second hash key is created

from the usernames and password that are stored in the database. The authentication

function will return a success message to the end-user and the Kerberos server simulation

if the hash keys match.
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SHA-2 is a stronger hash function than SHA-1, and NIST had decided to phase

out SHA-1 in favourite of SHA-2 (NIST, 2004); therefore, hash keys are created using the

SHA-2 function in this research. A string that contains the username, role, authentication

result, domain name, issue date and expire date is used as input for the hash function.

The SHA-2 hash function generates a single fixed length string from the input string.

The generated hash is appended to the end of the input string to create a ticket granting

ticket.

Create and Verify Ticket Granting Ticket

Ticket granting ticket (TGT) is one of the core components of Kerberos system simulation.

It shows that the holder of the TGT has been successfully authenticated by the Kerberos

system. The simulation of the TGT is based on the design specifications that were

presented in Needham & Schroeder (1978); Kohl et al. (1991). A TGT contains the

shared key between the Kerberos server and the end-user, and it contains the expired

time of the tickets.

The simulation of TGT is a string that contains the username, role, authentication

result, domain name, issue date, expire date and hash key. These contents are separated

by semicolons (Figure 4.9). Kerberos single sign-on system performs a one-way hash

function on end-users’ credentials to create the hash key.

Figure 4.9: Simulate Kerberos Ticket Granting Ticket

Kerberos system simulation saves a copy of the TGT on the system. The copy is

saved in the form of a text file. It’s named after the end-user’s username. The original

TGT is sent to the end-user. The end-user saves the TGT in a text file for later use (e.g.
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obtaining service ticket).

Create Shared Key between Services and Kerberos Server

Kerberos server simulations create shared keys for service/applications simulations. The

shared keys have two goals: They show that the services/applications have been registered

in the Kerberos server simulation; they are also used to verify the end-users’ service tickets.

A service/application simulation is manually registered in a service database. The

service database is constructed using XML language. The variables of a service include:

service name, domain name and IP address. For example, a sample service has the service

name “ssh” (Figure 4.10). It has the sample domain name “home.virtual.vm” and sample

IP address “127.0.0.1” (i.e. the local machine’s IP address).

These variables are stored in a tree format. The tag <services> is the top of the

hierarchy. Every service is under the section <service>. New service can be added into

the service database by adding new <service> sections.

<?xml version="1.0" encoding="iso-8859-1"?>

<services>

<service>

<serviceName>ssh</serviceName>

<domain>home.virtual.vm</domain>

<ipAddress>127.0.0.1</ipAddress>

</service>

</services>

Figure 4.10: Sample Service Database Written in XML

A Kerberos server simulation needs to verify the service simulation to create a

shared key. It receives the request for shared key, along with the service simulation’s

service name, domain name and IP address. Kerberos server simulation verifies the service

simulation by searching for a matching content in the service database. It compares the

content of <serviceName> and <domain> (under very service section) with the ones

provided by the service simulation. If the service simulation was found in the service

database, it will then create a shared key for the service simulation.

A shared ticket has three elements: service name, domain name and IP address.

They are presented as strings similar to TGT. The service name, domain name and IP
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address are merged into a single string (source string). They are separated by semicolons

(Figure 4.11). This source string is used to create a shared key.

Figure 4.11: Sample Source String

SHA-2 hash function is also used to create shared keys between Kerberos server

and the services. A hash key is created by putting the source string through SHA-2

hash function. The hash key is then appended to the end of the source string to create

the shared key (Figure 4.12). The shared key is then manually input into the service

simulation. The service simulation stores the shared key in the form of a text file.

Figure 4.12: Sample Shared Key

Create Service Ticket

End-users’ ticket granting tickets (TGT) need to be verified by the Kerberos system

simulations in order for them to obtain service ticket (ST). The end-users’ user agents

read the contents of ticket granting tickets (from the text files) and send them to the

Kerberos server simulations. They also send the names of the requested services to the

Kerberos server simulations.

Kerberos server simulations will search for the correspondent copies on the servers

upon receiving the ticket granting tickets. They will continue with the TGT verification

processes if matching copies were found on the system; otherwise, the end-users’ requests

will be rejected. The ticket granting ticket (TGT) verification processes include the

verifications of username, domain name and hash key. They also include ensuring the

issue date has expired.
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A Kerberos server simulation extracts the necessary variables (e.g. username,

domain name and hash key, issue date and expire date) from the TGT and from the

correspondent copy. It ensures the username, domain name and hash key in the TGT

match the corresponding variables in the copy. It also ensures the issue date on the TGT

does not exceed the expired date on the copy. The end-user’s request will be rejected if

any of these condition was not met.

The creation of service ticket is the same as creating the shared key between

a service/application simulation and Kerberos server simulation. The Kerberos server

simulations access the service database and uses the service name (that requested by the

end-user) to search for the service data (e.g. service name, domain name and IP address).

These service data are merged into a single string (source string). Semicolons are used to

separate the individual data. A SHA-2 hash key is created by putting the source string

through SHA-2 hash function (Figure 4.13). The hash key is the service ticket; it is then

sent to the end-user’s user agent.

Figure 4.13: Sample Service Ticket

4.3.3 Ubuntu Desktop and Secure Shell Simulation

The simulation of Kerberos single sign-on system uses its own set of communication

protocol, and it can not interoperate with real world Ubuntu desktop and SSH protocol.

The simulations of Ubuntu desktop and Secure Shell protocol (SSH) are developed with

the aim to support Kerberos single sign-on system simulation and to demonstrate non-web
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based single sign-on.

The simulation of Ubuntu desktop simulations provide basic functionalities (e.g.

Linux shell and web browser). It runs on top of real world operating system, and it can

access/edit/remove real world files. It can share files with real world applications (e.g.

web browsers) that are running on the same real world operating system.

Secure shell protocol simulations provide connection between two Ubuntu desktop

simulations. It runs on the simulation of Ubuntu desktop, and it allows end-users to

remotely access/use different Ubuntu desktop simulations (Figure 4.14). Relationship 1

represents the exchange of messages between an end-user and a Ubuntu desktop simu-

lation, and relationship 2 represents the exchange of information between a SSH client

simulation and a SSH server simulation.

Figure 4.14: Linux Shell and SSH simulation

Both Ubuntu desktop simulation and Secure Shell protocol simulation rely on

Kerberos system simulations to provide single sign-on. For example, end-users are au-

thenticated by Kerberos system simulation to use Ubuntu desktop simulations, then they

can proceed to access/use remote Ubuntu desktop simulations (via SSH simulations) using

the same Kerberos single sign-on sessions (i.e. without requiring re-authentication).
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Ubuntu Desktop Simulation

Ubuntu desktop simulation provides basic functionalities such as Linux shell. The “Shell”

is the Linux term for a user interface to the system. It lets end-users to communicate

with the computer via the keyboard and the display (Newham & Rosenblatt, 2005). It

allows end-users to interact with the Ubuntu desktop system (e.g. creating, modifying,

deleting or executing files).

A Ubuntu desktop requires the end-users to be authenticated before accessing the

Linux shell. It relies on Kerberos system simulation for authentication. It includes the

following functionalities:

• Connecting to Kerberos Server Simulation

The Ubuntu desktop simulation uses network socket to connect with the Kerberos

server simulation. The connection allows the Ubuntu desktop simulation to send

ticket granting ticket requests to the Kerberos server simulation.

• Present login prompt to the end-user

When end-users access the Ubuntu desktop simulation for the first time, it presents

a login prompt that asks for a username and a password. The login prompt asks

for the end-user’s username first, then it asks for the end-user’s password. It will

display the username as it been entered; it will not display the password.

• Requesting and Storing Ticket Granting Ticket

The simulation sends end-users’ requests for ticket granting tickets to the Kerberos

server simulation. Section 4.3.2 describes the verification process for the creden-

tials. It will receive ticket granting ticket from the Kerberos single sign-on system

simulations if the end-users’ credentials were successfully verified.

• Storing Ticket Granting Ticket

The Ubuntu desktop simulation accepts the end-user’s access and presents it with

a Linux shell simulation when it received the ticket granting ticket. The ticket

granting ticket (TGT) is stored on the desktop simulation in the form of a text file.
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The TGT can be accessed by SSH client simulation.

The Linux shell simulation only supports secure shell protocol. It provide the

secure shell command “ssh”, which triggers Secure Shell (SSH) client simulation. End-

users can access remote Ubuntu desktop simulations by executing the command “ssh”

followed by the domain name of the remote Ubuntu desktop. For example, a remote

Ubuntu desktop has the domain name “foreign.virtual.vm.” The SSH client simulation

(on the end-user’s desktop) will attempt to communicate with the SSH server simulation

on that Ubuntu desktop when the end-user executes “ssh foreign.virtual.vm”. The SSH

connections use pre-defined domain names (e.g. home.virtual.vm, foreign.virtual.vm and

third.virtual.vm). These are proof of concept systems, and new remote domains need to

be manually added into the source code of the SSH simulations.

Secure Shell Protocol Simulation

The research uses a Secure Shell Protocol simulation that allows end-users to access remote

Ubuntu desktop simulations from their local Ubuntu desktop simulations. Secure Shell

Protocol (SSH) is a protocol for secure remote login and other secure network services

over an insecure network (Ylonen & Lonvick, 2006). SSH allows end-users to authenticate

with Kerberos authentication system (MIT, 2008; Migeon, 2008).

The goal of a SSH simulation is to support Kerberos server simulation, Ubuntu

desktop simulation and AIIP. The SSH simulation needs to support the communication

protocol and Kerberos ticket that are used by Kerberos server simulation. It also needs to

have two ends, a client and server. The SSH client and server can both run on the same

Ubuntu desktop simulation; however, they usually run on different Ubuntu desktops. The

SSH clients initiate connections by sending connection requests to the SSH servers. The

SSH servers listen and accept connection requests from SSH clients. The SSH sessions

are maintained by SSH clients and servers.

Secure Shell Client Simulation

The SSH client simulation supports Kerberos server simulation and SSH server simulation.
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It also uses network sockets for connecting to Kerberos single sign-on system simulations

and SSH server simulations. It has the following functions:

1. Extracting ticket granting ticket information (TGT) from the TGT text file.

The ticket granting tickets that were created by the Kerberos server simulation are

stored on the Ubuntu desktop simulation. The SSH client simulation reads the

ticket files and extracts the content into a string. The string is stored in the SSH

client simulation’s memory.

2. Sending the ticket granting ticket information (with the request for service tickets)

to the Kerberos server simulations.

The SSH client simulation connects and sends the ticket granting ticket strings to

the Kerberos server simulations.

3. Receiving the service tickets from the Kerberos server simulations.

The SSH client accepts the service tickets that were sent from Kerberos server

simulations. The service ticket creation process is described in section 4.3.2.

4. Sending the service ticket to the SSH server simulation.

The SSH client establish connection with SSH server simulation using network sock-

ets. It then sends the service ticket to the SSH server simulation.

5. Receiving the result of service ticket verification.

The SSH client simulation receives the result of service ticket verification. It will

Maintain the SSH session if the verification was successful. It will terminate the

SSH session if the verification was unsuccessful.

6. Send the end-user’s command requests to the SSH server simulation.

The SSH session allows the end-user to execute commands on the remote Ubuntu

desktop simulation. The Linux shell simulation receives the commands from the

end-user, then the SSH client simulation sends these commands to the SSH server

simulation.
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7. Receiving the result from the SSH server simulation.

The SSH client receives the result of executing the commands, and the Linux shell

simulations displays them to the end-user.

Secure Shell Server Simulation

The SSH server simulations run on Ubuntu desktop simulations. They listen to connection

requests, and they can handle multiple connections at the same time. The SSH server

simulations have the following functions:

• Requesting shared key from the Kerberos server simulation.

The SSH server simulation needs to be registered in Kerberos single sign-on system’s

service database in order to obtain the shared key. For example, a SSH server has

been manually registered in the service database under the name “ssh” (Figure

4.15). It has the domain name “home.virtual.vm”. It has the sample IP address

127.0.0.1.

<?xml version="1.0" encoding="iso-8859-1"?>

<services>

<service>

<serviceName>ssh</serviceName>

<domain>home.virtual.vm</domain>

<ipAddress>127.0.0.1</ipAddress>

</service>

</services>

Figure 4.15: Sample SSH server simulation Entry in the Service Database

The SSH server simulation connects to the Kerberos server simulation, then it sends

its service name, domain name and IP address to the Kerberos server simulation.

It will acquire a shared key from the Kerberos server simulation if it was registered

in the service database. The shared key consists of a service name, a domain name,

an IP address (i.e. sample IP address) and a hash key (Figure 4.16).

Figure 4.16: Sample Shared Key between SSH Server and Kerberos Server Simulation
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• Verifying the end-user’s service ticket.

The SSH client simulation sends the service ticket and the end-user’s username to

the SSH server simulation. The service ticket is appended to the username, and the

two strings are separated by a semicolon (Figure 4.17). The SSH server simulation

compares the hash key in the shared key with the hash key in the service ticket.

Figure 4.17: Sample Message that includes a Username and Service Ticket

• Maintaining the network socket to maintain the SSH session.

The end-user’s service ticket is successfully verified if both hash keys match. The

SSH server maintains the network socket that is connecting to the SSH client sim-

ulation. It receives the command requests from the SSH client simulation. The

remote Ubuntu desktop simulation, which runs the SSH serve simulation, executes

these commands. The SSH server simulations returns the results (of the executions)

to the SSH client simulation.

• Closing the connection.

The SSH server simulation returns the result and closes the network socket if the

service ticket was not verified. Closing the network socket results in the termination

of SSH session.

Exiting the SSH session

SSH allows end-users to access remote Ubuntu desktop simulations. SSH simulation

runs on top of the Ubuntu desktop simulation, however, they are isolated sessions. The

termination of SSH session will not terminate the (local or remote) Ubuntu desktop

session.

Termination of SSH session will not remove the end-user’s saved files on the remote

Linux desktop simulation. Files and directories that were created in the SSH session are
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saved on the remote Ubuntu desktop simulation. End-users can access the same files and

directories in the next session.

The SSH client simulation will send a termination message to the remote SSH

server simulation. The SSH server confirms the termination, and both sides will terminate

the connection by closing their network sockets. The termination of SSH session ends the

end-user’s access to remote Ubuntu desktop and returns the end-user to its local Ubuntu

desktop simulation.

4.3.4 SAML based FSSO System Simulation (Identity Provider)

SAML based federated single sign-on system simulation contains two components: web-

based authentication system simulation (i.e. identity provider end) and web-based ser-

vice/application simulation(i.e. service provider end). A network domain can have the

web-based authentication system simulation, the web-based services/applications or both

at the same time. This section presents the simulation of the web-based authentication

system. Section 4.3.5 presents the simulation of the web-based services/applications.

The web-based authentication system simulation presents the end-users with a

web-based authentication portal. The web portal currently requires end-users to enter

their username and password (i.e. authentication). This research will address this problem

using IDAWA in section 4.4.2. End-users won’t need to enter their username and password

for authentication in the new simplified federated single sign-on system.

Create Identity Assertion

The web-based authentication system simulation provides identity assertions if the end-

users have been successfully authenticated. The identity assertions allow end-users to ac-

cess web-based services/applications in the other domains without requiring re-authentication.

The identity assertion message includes the following variables: username, role, domain

name and authentication result.

Web cookies are used by real world SAML based federated single sign-on system
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to transfer identity assertion message; therefore the simulations also use web cookies.

The four variable, username, role, domain name and authentication result, are stored as

web cookies. The web cookies are stored on the end-user’s web browser. The web-based

service/application simulations (i.e. service provider) in different domains can access the

end-user’s identity assertion variables via the web cookies.

4.3.5 SAML based FSSO Simulation (Service Provider)

The simulation of a web-based service/application (i.e. service provider) only presents

successful/unsuccessfully federated single sign-on in this research. It verifies end-users’

identity assertion messages and grants the access to the end-users if their identity assertion

messages indicate that they are from domains within the federation. It then displays the

end-users’ authentication data (e.g. username, domain name, role).

Accessing Identity Assertion

The end-users’ identity assertions contain four variables, “username”, “domain name”,

“role” and “authentication result” (presented in section 4.3.4). They are stored as web

cookies in the web browsers. They can be accessed by the web-based service/application

simulation.

Web-based service/application simulation looks for the variable “authentication

result”. The “authentication result” is a boolean variable (i.e has the value “true” or

“false”). A successfully authenticated end-user will have the “true” value under “authen-

tication result”.

4.4 New Simplified FSSO System Design

This section presents the design of the new simplified federated single sign-on system. It

contains the designs of two major components: the “Authentication Infrastructure Inte-

gration Program” (AIIP) and the “Integration of Desktop Authentication and Web-based
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Authentication” (IDAWA). The designs of these two components follow the specifications

that were presented in the design environment (section 4.2).

AIIP facilitates federated single sign-on by bridging connections between end-users’

desktop systems (in one domain) and Kerberos single sign-on systems (in different network

domains). It seamlessly acquires Kerberos tickets from Kerberos single sign-on systems in

different network domains and sends these tickets to the end-users’ desktop systems, and

end-users can access non-web based services in the different domains using the acquired

Kerberos tickets.

IDAWA is an extension to the SAML based federated single sign-on system. It

allows the web-based authentication systems (i.e. the identity provider end) to use Ker-

beros single sign-on tickets as means of authentication (subsection 4.4.2). It allows end-

users who obtained Kerberos tickets to access web-based services without requiring re-

authentication.

4.4.1 Authentication Infrastructure Integration Program (AIIP)

AIIP contains two ends: the identity provider end (AIIPi) and the service provider end

(AIIPs). A network domain can have a AIIPi, a AIIPs or both at the same time.

The AIIPi and the AIIPs work together to bridge the communications between end-

users’ desktop system (in one domain) and Kerberos single sign-on systems (in the other

domains). They use the trust that were established between network domains within the

federation.

The goal of the AIIPi is to verify that end-users have obtained desktop authen-

tication sessions (i.e. the end-users have been authenticated by Kerberos single sign-on

systems). It presents itself as a service that supports Kerberos single sign-on, and it

requests for end-users’ service tickets. It will create and send identity assertions to the

AIIPs after it successfully verified end-users’ service tickets.

The goal of the AIIPs is to acquire Kerberos service ticket on behalf of the end-

users in different domains. It will present itself as an end-user to the Kerberos single
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sign-on systems. After it received identity assertions from the AIIPi, it will request ticket

granting ticket and service ticket using end-users’ provisioned credentials. It then sends

the service tickets to the AIIPi, which will pass these service tickets to the end-users.

Identity Provider End of AIIP

This section describes the functions of the identity provider end of “Authentication Infras-

tructure Integration Program” (AIIPi). The AIIPi relies on Kerberos server simulations

for authentication. It verifies end-users’ service tickets (that were created by Kerberos

server simulation), and it provides identity assertions for end-users who have valid Ker-

beros service tickets. It has the following functions:

1. Requesting shared key from Kerberos server simulation.

2. Verifying the end-users’ service tickets.

3. Creating and sending the identity assertion messages.

4. Receiving the Kerberos service tickets from domain Beta and passing them to the

end-users.

Requesting Shared Key

The AIIPi presents itself as a service to the Kerberos single sign-on systems in a network

domain. Like any services, the AIIPi needs to be registered in Kerberos server simu-

lation’s service database. The AIIPi is stored under “saml-aai-kerberos” in the service

database (Figure 4.18). It has the sample domain name of “home.virtual.vm” and the

sample IP address of “127.0.0.1”. It has different domain names in different domains. For

example, the AIIPi in domain Beta has the domain name of “foreign.virtual.vm”.

The AIIPi requests a shared key from the Kerberos server simulation. It will

receive a shared key when Kerberos single sign-on system simulation found its entry in

the service database. The shared key consists of the AIIPi’s service name, domain name

and IP address and a hash key (Figure 4.19). The service name, domain name, IP address
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<?xml version="1.0" encoding="iso-8859-1"?>

<services>

<service>

<serviceName>saml-aai-kerberos</serviceName>

<domain>home.virtual.vm</domain>

<ipAddress>127.0.0.1</ipAddress>

</service>

</services>

Figure 4.18: Sample AIIPi Entry in the Service Database

are merged into a single string (i.e. source string). The hash key is created by putting

the source string through SHA-2 hash function.

Figure 4.19: Sample Shared Key of AIIPi

Verifying Service Ticket

The AIIPi needs to verify the end-users’ service tickets before creating identity assertions

for them. The verification process is the same as SSH server simulation (described in

section 4.3.3): an end-user sends its username and service ticket to AIIPi, and AIIPi

compares the hash key in the share key with the hash key in the service ticket.

By supporting the Kerberos single sign-on, AIIPi can authenticate end-users using

their Kerberos service ticket instead of their credentials. This is the first step of integrating

end-users’ desktop authentication session with non-web based federated single sign-on

sessions. The next stage is creating and send identity assertion to AIIPs.

Creating and Sending Identity Assertion

The AIIPi will send a response to the end-user if the service ticket was successfully

verified. The response indicates that the end-user’s service ticket has been successfully

verified. The end-user then sends its username, role and domain name to AIIPi upon

receiving the response. These data are merged into a single string, and they are separated

by semicolons (Figure 4.20). The string is used as the identity assertion message. AIIPi

then sends the identity assertion message to the AIIPs in another domain.
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Figure 4.20: Sample Identity Assertion

This step connects the AIIPi in one domain and the AIIPs in another domain. By

sending the identity assertion message, the bridge between two domains is established.

The next step involves AIIPs acquiring Kerberos service ticket from one domain and

sending it to AIIPi in another domain.

Receiving and Passing the service tickets

AIIPs (in another domain) will reply with a service ticket after it receives the identity

assertion message. This service ticket was created by the Kerberos server simulation in

another domain. It allows end-users to access non-web based services that are in the same

domain as AIIPs. AIIPi receives the service ticket and sends it to the end-user. The

detail processes of acquiring service tickets are described in section 4.4.1.

This step comes after the AIIPs acquiring a service ticket on behalf of the end-

users. It completes the non-web based federated single sign-on process. AIIPi passes

the service ticket that was created in another domain to the end-user. The end-user can

use the service ticket to access non-web based services in the domain that created the

service ticket. The entire federated single sign-on process did not request the end-user to

be authenticated.

Service Provider end of AIIP

This section describes the design of AIIPs. The main goals of AIIPs are acquiring ticket

granting ticket and service ticket on behalf of the end-users (in the other domains).

Acquiring Ticket Granting Tickets

AIIPs uses network sockets for network connection. It listens on a specific network

port (port 80). The network port can be changed to suite the firewall configuration. It

will attempt to acquire ticket granting tickets for the end-users if the identity assertions
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indicated that the correspondent end-users have been authenticated by AIIPi.

AIIPs acquires ticket granting tickets on behalf of the end-users. It extracts the

username and domain name from the identity assertion messages. It then searches for

the correspondent identities in the end-user database. Once it finds the credentials of the

end-users in the database, it will request of ticket granting tickets (from the Kerberos

single sign-on system simulation in the same domain) using the end-users’ credentials. It

then proceed to request service tickets after it receives the ticket granting tickets from the

Kerberos single sign-on system.

Acquiring Service Ticket

The other function of AIIPs is acquiring service tickets on behalf of the end-users. The

AIIPs sends the ticket granting tickets and requests for service tickets to Kerberos single

sign-on system in the same domain. Once it receives the service ticket, it will pass it back

to AIIPi.

These two functionalities complete the connections between the Kerberos single

sign-on sessions in separate domains. The acquired service tickets will be sent back to the

AIIPi and then passed to the end-users. The acquired service tickets allow the end-users

from other domains to access non-web based services/applications (in the same domain

that created the service tickets).

Modifying SSH clients

The SSH client selects Kerberos single sign-on systems based on the domain name that

were entered in the SSH command. For example, the SSH command “ssh home.virtual.vm”

will trigger the SSH client to request service ticket from Kerberos single sign-on system

in domain “home.virtual.vm”. This is suitable for Kerberos secure sharing (KSS) since

KSS allows SSH clients to connect to Kerberos servers in different domains; however, this

is not suitable for the AIIP.

The AIIP bridges the communications between end-users’ desktop systems and

Kerberos single sign-on systems. Kerberos single sign-on systems are not accessible from
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outside their network domains; therefore, the SSH clients can not communicate with

Kerberos single sign-on systems in the other domains, and it will not be able to request

Kerberos service tickets.

An extension has been added to the SSH client to address this problem. The

extension reads the domain names in the SSH command and decides whether they point

to local domain or foreign domains. It will allow the SSH client to continue on its request

(for service tickets) if the domain names point to local domain. It will direct the request

for service tickets to AIIPi in the local domain if the domain names point to foreign

domains.

The extension currently needs to be added to the source code of SSH clients, and

the SSH client needs to be recompiled and redeployed into the network domains. This

process requires support from network domains and application creators. This problem

can be addressed in the future by separating the extension from the SSH client and into

a stand alone program, so that it will not require SSH client to be re-compiled and re-

deployed. In addition, the stand along extension can provide the same functionalities for

the other clients of non-web based services (e.g. NFS).

Another solution is AIIPi can pretend to be Kerberos single sign-on systems from

foreign domains. It seamlessly intercepts the ticket requests from SSH clients when end-

users attempted to access SSH servers in foreign domains. It can then proceed to acquire

Kerberos tickets from the actual Kerberos single sign-on systems in foreign domains and

send the tickets back to the SSH clients. This approach does not require SSH clients (or

any non-web based services/applications clients) to be modified; therefore, it will further

simplify the deployment of the AIIP.

AIIP Design Analysis

The benefits of AIIP (over Kerberos Secure Sharing) is that it does not expose Kerberos

single sign-on systems to the outside world, and it does not require any changes to the

Kerberos single sign-on systems (Figure 4.21). The AIIPi presents itself as a service to
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the Kerberos single sign-on systems in one domain, while the AIIPs presents itself as

an end-user to the Kerberos single sign-on systems in another domain. The Kerberos

single sign-on systems will treat them as normal services and normal end-users, and

the AIIP seamlessly connects the Kerberos single sign-on sessions in these domains by

acquiring/transferring Kerberos service tickets from one domain to another domain. They

allow end-users to use Kerberos service tickets (acquired from different domains) to access

non-web based services in different domains.

Figure 4.21: Side by side comparison of AIIP and KSS

Although the AIIP does not expose Kerberos single sign-on systems to the outside

world, it needs to communicate with the AIIPs in other domains; therefore, AIIPs are

exposed to the outside world. They can’t be protected by security firewall; therefore,

they are open to security problems such as man-in-the-middle attack and single point of

failure.

The AIIPs only manage the federated single sign-on processes; therefore, they will

not effect the local network authentications. In case of security compromise, network

domains can shut down its AIIP to protect the local network. Shutting down the AIIP

will stop end-users from accessing non-web based services in the other domains in a single
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sign-on fashion; however, end-users can still access/use non-web based services in local

network domain in a single sign-on fashion.

The AIIPs can use Transport Layer Security (TLS) (Dierks & Rescorla, 2008)

to defend against a man-in-the-middle attack. It uses asymmetric cryptography for key

exchange and symmetric encryption for confidentiality, and message authentication codes

for message integrity. It can secure the communication between the two end points of

AIIP (i.e. AIIPi and AIIPs) during communication.

The AIIP handles all of the non-web based federated single sign-on processes.

This may cause a single point of failure. Although AIIP does not affect the single sign-on

processes in the local domains, end-users will not able to access non-web based services in

the foreign domains in a single sign-on fashion. Each domain should have a primary AIIP

system and multiple secondary AIIPs in order to defend against single point of failure.

If the primary AIIP has failed, the secondary AIIPs can take over the non-web based

federated single sign-on processes.

4.4.2 Integration of Desktop Authentication and Web-based Au-

thentication (IDAWA)

The Integration of Desktop Authentication and Web-based Authentication (IDAWA) is

an extension to the web-based authentication system (i.e. identity provider end of SAML

based federated single sign-on system). It aims to allow web-based authentication sys-

tems to use end-users’ Kerberos tickets as means of authentication instead of end-users’

credentials (i.e. username and password). It allows end-users (who have gained access to

desktop systems) to access web-based services without requiring re-authentication.

End-users who have been authenticated by Kerberos single sign-on system will

acquire Kerberos tickets. Since end-users need to gain access to desktops before accessing

a web-browser, it’s safe to assume that end-users were already authenticated by Kerberos

server (and acquired ticket granting tickets) when they are accessing a web-browser.

Requesting Shared Key
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The IDAWA are added into the source code of web-based authentication system, and

it executes as part of the web-based authentication system. It uses shared keys (cre-

ated by Kerberos single sign-on systems) to verify end-user’s service tickets; therefore,

it needs to be registered in the Kerberos service database (Figure 4.22). The web-based

authentication systems in different domains will have different data. For example, it

has domain name “home.virtual.vm” in domain Alpha, and it will have domain name

“foreign.virtual.vm” in domain Beta.

<?xml version="1.0" encoding="iso-8859-1"?>

<services>

<service>

<serviceName>idp</serviceName>

<domain>home.virtual.vm</domain>

<ipAddress>127.0.0.1</ipAddress>

</service>

</services>

Figure 4.22: Sample Web-based Authentication System Simulation Entry

The IDAWA connects to the Kerberos server simulation and sends its service name,

domain name and IP address to the Kerberos server simulation. It should obtain a shared

key from the Kerberos server simulation if it has been registered in the service database.

The shared key consists of the service name, domain name, IP address (i.e. sample IP

address) and SHA-2 hash key (Figure 4.23).

Figure 4.23: Sample Shared Key between Web-based Authentication System Simulation
and Kerberos Server Simulation

The IDAWA acquires shared keys from Kerberos single sign-on systems. The

shared keys allows the web-based authentication systems to verify end-users’ service tick-

ets. This is the first step for web-based authentication systems to support Kerberos

tickets. The next step is acquire end-users’ service tickets.

Requesting Service Ticket

The IDAWA creates a file uploading system to accept end-users’ TGTs (Figure 4.24). It



CHAPTER 4. THE DESIGN OF A NEW SIMPLIFIED FSSO SYSTEM 83

passes the contents of TGTs to the Kerberos single sign-on systems once they have been

uploaded by the end-users. It will receive the service ticket from the Kerberos server

simulation after it verifies TGTs.

The IDAWA verifies the service ticket by comparing the SHA-2 hash key in the

service ticket with the SHA-2 hash key in the shared key. It will create identity assertions

for the end-users if both keys match.

Figure 4.24: Kerberos Ticket Granting Ticket Portal

4.4.3 Simplified Federated Single Sign-on System Life-cycles

This section covers four scenarios that may occur to an end-user. Life-cycle 1 shows an

end-user (in domain Alpha) attempts to access/use a non-web based service/application

in domain Beta. Life-cycle 2 is a continuation of life-cycle 1; it shows the same end-user in

domain Alpha attempts to access/use a web-based service/application in domain Gamma

after life-cycle 1. Life-cycle 3 shows an end-users in domain Beta attempts to access/use

both web-based and non-web based services/applications in domain Alpha.

A federation (i.e. a circle of trust) has been established between there three do-

mains (Alpha, Beta and Gamma). The federation is expressed in the form of security

policies (described in section 4.2.2). The policies indicate that end-users in each do-

main can access both web-based and non-web based services/applications in each other’s

domains.

The life-cycles assume that encryption methods have been applied during network

communications and file storage. For example, the communications between the two

ends of AIIP are encrypted using TLS. Communications between Kerberos single sign-on

(KSSO) systems and AIIP are encrypted using AES (which is supported by Kerberos).

Kerberos tickets (ticket granting tickets and services tickets) are encrypted during transfer

and storage (also using AES).
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Life-cycle 1: end-user accesses non-web base application

Authentication Infrastructure Integration Program (AIIP) includes two ends: AIIPi and

AIIPs. The AIIPi resides in domain Alpha, and AIIPs resides in domain Beta in life-

cycle 1. Both AIIPi and AIIPs rely on the federation that was established between

domain Alpha and Beta.

The AIIPi and the AIIPs handle the communications between an end-user’s desk-

top system in domain Alpha and the Kerberos single sign-on (KSSO) system in domain

Beta. They facilitate federated single sign-on by acquiring Kerberos ticket for end-users

(from domain Alpha) in domain Beta (Figure 4.25). The end-user has an input and out-

put relationship with the desktop system. They exchange information such as credentials,

authentication results, application requests and applications request results. The full life-

cycle can be viewed in appendix C.1; this section only shows the steps that involve the

new simplified federated single sign-on system.

9 SSHc extracts STα from the desktop system and sends it to AIIPi.

10 AIIPi will create an identity assertion message for the end-user and send it to AIIPs

if STα was successfully verified.

Step 9 and step 10 show the AIIP (in domain alpha) initialises the FSSO processes

in the new simplified FSSO system. These steps are the primary difference between

Kerberos secure sharing (KSS) and the new simplified FSSO system. The Kerberos single

sign-on system (in domain Alpha) only manages local single sign-on and is not aware

of the FSSO transactions; therefore, it is not exposed to the outside work in the new

simplified FSSO system.

11 AIIPs accepts the end-user’s identity assertion based on the federation’s policies.

It creates a database query that searches for end-user’s provisioned identity (Iβ) in

domain Beta. It sends the query to Dβ.

12 Dβ executes the query and returns Iβ to AIIPs.
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Figure 4.25: A New Simplified Federated Single Sign-on Life-cycle 1

13 AIIPs uses the Iβ to authenticate to the KSSO system in domain Beta (Kβ) on

behalf of the end-user.

14 Kβ sends a search query to Dβ.

15 Dβ finds the credentials and return the result to Kβ since Iβ exists in Dβ.

16 Kβ creates and sends a ticket granting ticket (TGTβ) to AIIPs. TGTβ will be stored

in AIIPs.

17 AIIPs sends TGTβ to Kβ and requests service ticket (STβ) for SSHs on behalf of

the end-user.

18 Kβ verifies TGTβ and sends STβ to AIIPs.

Step 11 to step 18 shows that the AIIP (in domain Beta) accepts the FSSO request
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from domain Alpha, and it acquires a Kerberos single sign-on ticket (in domain Beta) for

the end-user (in domain Alpha). The ticket is sent from domain Beta to domain Alpha

by the AIIP in domain Beta. The Kerberos single sign-on system in domain Beta is also

not aware of the FSSO transactions; therefore, it isn’t exposed to the outside world as

well.

19 AIIPs sends STβ to AIIPi.

20 AIIPi sends STβ to SSHc.

Step 19 and step 20 show that the Kerberos ticket (created in domains Beta) is

sent to domain Alpha, and it is then passed to the end-user. This is the last stage of

the federated single sign-on. The end-user (in domain Alpha) can then use the Kerberos

ticket to access the SSH server in domain Beta. The entire FSSO process did not require

authentication of the end-user, and they are seamless to the end-user.

The entire non-web based FSSO process didn’t expose KSSO systems (in both

domains Alpha and Beta) to the outside world. The AIIPi presents itself as a service

to the KSSO system domain Alpha, while the AIIPs presents itself as an end-user to

the KSSO system in domain Beta. Neither KSSO system was modified, and neither one

aware that they were part of federated single sign-on process.

Life-cycle 2: end-user accesses web-based application

Integration of Desktop Authentication and Web-based Authentication (IDAWA) is an-

other component of the new simplified federated single sign-on system. IDAWA is an

extension to web-based authentication system (WBASα). It allows WBASα to accept

and verify Kerberos tickets (Figure 4.26).

Life-cycle 2 is a continuation of life-cycle 1. The end-user already gained access to

a desktop system in domain Alpha and a non-web based services in domain Beta. He/she

will attempt to access a web-based service/application in domain Gamma (WSAγ). The

user agent is a web browser (WBα) that runs on the desktop.
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The relationship between the end-user and desktop is the same as figure 4.25. They

exchange information such as credentials, authentication results, application requests and

applications request results. The entire life-cycle can be viewed in appendix C.2. This

section only presents the steps that are relate to IDAWA.

Figure 4.26: A New Simplified Federated Single Sign-on Life-cycle 2

5 WBα sends the ST to WBASα. IDAWA (in the WBASα) accepts the ST.

6 After IDAWA successfully verifies the ST, WBASα, it then creates an identity

assertion message and passes it back to WBα.

Step 5 and step 6 are the most important steps in this life-cycle. They show that

the IDAWA uses the Kerberos ticket (from the end-users) as a means for authentication,

and the end-user doesn’t need to re-enter its credential (e.g. username and password).

This enables the web-based authentication system to create identity assertion message

without re-authenticating the end-user.

Life-cycle 2 shows that the IDAWA can be used in conjunction with the AIIP.

The end-user, who has already gained access to a non-web based service/application
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in domain Beta, can gain access to a web-based service/application in domain Gamma

without requiring re-authentication. The same Kerberos ticket granting ticket (gained by

desktop authentication) was used for both web-based and non-web based FSSO.

Although life-cycle 1 and life-cycle 2 only show three domains (Alpha, Beta and

Gamma), each FSSO process only involved two domains (the FSSO process in life-cycle

1 involves domain Alpha and domain Beta, and the FSSO process in life-cycle 2 involves

domain Alpha and domain Gamma). The numbers of domains will not affect each FSSO

process; therefore, the new simplified FSSO system is not restricted in three domains.

Life-cycle 3: an end-user in domain Beta access domain Alpha

This life-cycle shows a reverse of domains. An end-user in domain Beta attempts to

access any computer services/application in domain Alpha in this life-cycle. He/she then

attempts to access a web-based service/application (WSAα) using a web browser (WBβ)

on the desktop (Figure 4.27). The same end-user then attempts to access a remote SSH

server (SSHs) in domain Alpha using SSH client (SSHc) on the same desktop system.

The entire life-cycle can be viewed in appendix C.3.

Steps 1 to 4 show an end-user enter its credentials into the desktop login prompt

and gain access to the desktop system in domain Beta. This is the first (and only)

authentication process that the end-user has to go through. A Kerberos ticket is created

for the end-user and stored on the desktop system.

Steps 5 to 14 show the same end-user attempts to access a web-based service/application

in domain Alpha. The end-user uses its Kerberos ticket (that was created during desktop

authentication) as mean for web-based authentication. The steps are the same as life-

cycle 2: the IDAWA accepts and verifies the end-user’s Kerberos ticket in domain Beta, it

creates identity assertion message to the web-based service/application in domain Alpha,

and the web-based service/application grants access to the end-user.

Step 14 to 32 show the same end-user attempts to access a non-web based ser-

vice/application (i.e. SSH server) in domain Alpha. This steps are the same as life-cycle
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Figure 4.27: Life-cycle 3: an end-user in domain Beta access diverse service/applications
domain Alpha

1: the end-user uses the Kerberos ticket (i.e. the same that was created during desktop

authentication) as a means for authentication to AIIP in domain Beta. The AIIP (in

domain Beta) accepts and verifies the end-user’s Kerberos ticket and creates/sends an

identity assertion to the AIIP in domain Alpha. The AIIP in domain Alpha replies with

a Kerberos ticket (that was created in domain Alpha), and the new Kerberos ticket allows

the end-user (in domain Beta) to access the non-web based service/application (in domain

Alpha) without requiring re-authentication.

This life-cycle shows an end-user (from domain Beta) accessing both web-based

and non-web based services/applications in domain Alpha. Both AIIP and IDAWA share

the same desktop session, and they used the same Kerberos ticket for authenticating end-

users. The new simplified FSSO system (i.e. the combination of AIIP and IDAWA) allows

end-users (from any domain) to access desktop systems, web-based services/applications
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and non-web based services/applications (in different domains within the federation) using

one authentication process.

4.5 Summary

The design of the new simplified federated single sign-on system attempts to address

the limitations of existing federated single sign-on systems. By incorporating the au-

thentication systems of desktop systems, web-based services/applications and non-web

based services/applications, this new system allows end-users to access desktop systems,

web-based services/applications and non-web based services/applications using one au-

thentication process. It achieves it with two major components: the “Authentication

Infrastructure Integration Program” (AIIP) and the “Integration of Desktop Authentica-

tion and Web-based Authentication” (IDAWA). The AIIP supports desktop systems and

non-web based services/applications. Although AIIP provides the same single sign-on as

Kerbero secure sharing (KSS), it improves upon KSS by acquiring Kerbeors tickets from

Kerberos single sign-on systems (in different network domains) without establishing trust

between these Kerberos single sign-on systems. This allows AIIPs to be deployed into

network domains without modifying their existing Kerberos single sign-on systems. The

IDAWA supports desktop systems and web-based services/applications; it is an extension

to the web-based authentication systems. It uses Kerberos tickets as means of web-based

authentication instead of end-users’ credentials (e.g. username and password). The new

simplified federated single sign-on system uses a combination of AIIP and IDAWA to

provide single sign-on.



Chapter 5

Proof of Concept Implementation

5.1 Introduction

This chapter presents the proof of concept implementation of the new simplified federated

single sign-on (FSSO) system. The implementation is divided into two stages. The

first stage is the implementation of the design environment. The seconds stage is the

implementation of the new simplified FSSO system.

The design environment includes the implementation of the simulations of Ker-

beros single sign-on system, SAML based federated single sign-on system, web-based

services/applications, Ubuntu desktop and Secure Shell protocol (SSH). The simulations

are strip down version of the real world systems. They serves as foundations for im-

plementing the new simplified federated single sign-on system. They provide necessary

functionalities such as desktop authentication, web-based authentication, local network

single sign-on, web-based federated single sign-on. They assume that encryption methods

have been applied during network communication and ticket storage (described in section

4.2).

The new simplified FSSO system includes the implementations of the “Authentica-

tion Infrastructure Integration Program” (AIIP) and the “Integration of Desktop Authen-

tication and Web-based Authentication” (IDAWA). AIIP bridges the connections between

91
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end-users’ desktop system in one domain and Kerberos single sign-on systems in the other

domains; it achieves it by acquiring Kerberos tickets in different domains for end-users.

IDAWA is an extension to web-based authentication system, and it uses Kerberos tickets

as means of authentication.

A federation (i.e. a circle of trust) has been established between network domains

(e.g. domain Alpha, domain Beta and domain Gamma). The federation is expressed

in the form of federation policies. The main policy that was introduced in the design

environment was: “End-users from any domain can access any services/applications in

the other domains.” This policy is followed by the SAML based federated single sign-on

system, and “Authentication Infrastructure Integration Program” (AIIP).

Section 5.2 presents the technical overview. It includes the development environ-

ment (e.g. computer software and programming language) and system configuration (e.g.

hardware and software configuration). Section 5.3 presents the implementations of the

design environment. Section 5.4 presents the implementations and testing of the new

simplified federated single sign-on system. Section 5.6 summaries the chapter.

5.2 Technical Overview

5.2.1 Development Environment and Programming Languages

The new simplified federated single sign-on system and it’s design environment were

developed on the Ubuntu 10.04.4 LTS Server and Xubuntu 12.04 LTS platform. The

programming languages (that are used in the implementations) are Python, PHP and

AJAX. Python 2.6 was used to develop AIIP, the simulation of Kerberos single sign-on,

the simulation of Ubuntu desktop and the simulation of SSH. PHP 5.3.10 and AJAX

were used to develop IDAWA and the simulation of SAML based federated single sign-on

system.

AIIP and the simulations of Kerberos single sign-on system, Ubuntu desktop and

SSH involve communications between multiple applications. They require the source code
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to be clean and easy to debug. Python uses a clean and easy to read code style; therefore,

it’s suitable for programming and debugging complex applications.

IDAWA and the simulation of SAML based federated single sign-on system are

small but dynamic web applications. These reasons promoted the use of PHP and AJAX.

PHP is a server-side HTML embedded scripting language. It is suitable to create small

scale web applications. AJAX creates asynchronous web applications. It can change

contents on a web page without refreshing the web browser.

5.3 Implementation of Design Environment

This section presents the implementations of Kerberos single sign-on system simulation,

Ubuntu desktop system simulation, SSH simulation and SAML based federated single

sign-on system simulation. The implementations follow the design environment described

in chapter 4. Kerberos single sign-on system simulations provides authentication for

Ubuntu desktop system simulations and SSH simulations. Web-based authentication

system (i.e. identity provider end of the SAML based federated single sign-on system)

authenticates end-users and provides identity assertions. Web-based services/application

(i.e. service provider end of the SAML based federated single sign-on system) only displays

successfully federated single sign-on; it does not have any other functions.

The communication protocol that is used by the simulation is implemented using

Python sockets. It’s a independent communication protocol that ensures the different

simulations (e.g. Kerberos single sign-on, Ubuntu desktop, SSH protocol and AIIP) can

communicate with each other. It does not interoperate with real world Kerberos single

sign-on systems.

5.3.1 Kerberos Single Sign-on System

The goal of the Kerberos single sign-on system simulations is to support single sign-on in

a single domain. Each system is isolated from the outside world, and it has the following
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functionalities that are the same as the real world system: creating system daemon that

listing on a specific network port (i.e. port 88) for external connections, receiving requests

(e.g. ticket granting ticket requests, service ticket requests and share key requests) and

replying to these requests.

The simulation of Kerberos single sign-on system creates human readable Kerberos

tickets and shared keys (e.g. ticket granting ticket, service ticket and shared keys). They

are stored as text files. They are easier to manage than real world Kerberos tickets since

they can be read and edited by text editors instead of real world Kerberos tools.

Create System Daemon

The socket type of Kerberos single sign-on system simulation is defined using AF INET

and SOCK STREAM, and the socket is bind to the machine’s IP address (i.e. LOCAL IP)

and network port (i.e. LOCAL PORT) (Figure 5.1) . The AF INET defines the socket

as an Internet socket, the SOCK STREAM defines the connection as TCP connection,

the LOCAL IP is set by the DHCPD server: 169.168.1.59, and the LOCAL PORT is set

to 88. Port 88 is also used by the real world Kerberos single sign-on system.

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

s.bind((LOCAL_IP, LOCAL_PORT))

s.listen(5)

Figure 5.1: Start Kerberos Server Simulation

This Kerberos system daemon requires class ClientThread to manage multi-

ple clients. Each connection (from an end-user) will be managed by a thread and each

thread provides Kerberos functions such as creating ticket granting tickets, verifying ticket

granting tickets and creating service tickets (Figure 5.2).

The thread determines a client’s requests by examine the messages that were sent

by the client (using message = self.conn.recv(1024). The messages are long strings

that contain multiple short strings. Short strings are separated by semicolons (in the

long string). The first short string (in a long string) contains the type of request. The

thread determines a client’s request by comparing the first short string with three values:
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Figure 5.2: Kerberos single sign-on system thread flowchart
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req_tgt, req_sk and req_st.

• req_tgt: The client is requesting a ticket granting ticket. The message also contains

a set of credentials (including username and password).

• req_sk: The client obtains a shared key. The message also contains service infor-

mation (including service name and domain name).

• req_st: The client is requesting a service ticket. The message also contains ticket

granting ticket (including username, password, role, authentication result, domain

name, ticket creation date, expire date and SHA-512 hash key).

Creating Ticket Granting Ticket

The simulation of Kerberos single sign-on system will execute two functions once it de-

termined a client is requesting a ticket granting ticket:

• auth_user(self,username, password). It authenticates the end-users’ identities.

• create_tgt(self). It creates ticket granting tickets for authenticated end-users.

It extracts the username and password and passes them into function

auth_user(self,username, password). The function travels from the root of the end-

user database (i.e. userdatabase.xml) to the child nodes and searches for matching cre-

dentials (Figure 5.3). It uses if statements to search for values that match end-user’s

credentials (e.g. username and password).

DOM was originally used as interface to XML files (e.g. userdatabase.xml). It

was later changed to ElementTree since ElementTree was designed to support Python’s

coding style. The implementation was changed to use ElementTree to provide a easy to

read source code.

The Kerberos system simulation uses function, create_tgt(self), to create ticket

granting tickets. It uses the end-user’s username, password, role, authenticate result,
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def auth_user(self, username, password):

tree = xml.parse("userdatabase.xml") # Parse the user database

doc = tree.getroot() # Get the root node

# Check the username and password

for user in doc:

if user[0].text == username and user[1].text == password:

self.user = user

return True

return False

Figure 5.3: Searching for a Matching Credentials

# Create Ticket Granting Ticket

def create_tgt(self):

ticket_info = ‘’

issue_time = datetime.datetime.now()

expire_time = datetime.datetime.now() + datetime.timedelta(days=1)

for elements in self.user:

ticket_info += elements.text

ticket_info += ‘;’

ticket_info += issue_time.strftime("%Y-%m-%d %H:%M")

ticket_info += ‘;’

ticket_info += expire_time.strftime("%Y-%m-%d %H:%M")

ticket_info += ‘;’

hash = hashlib.sha512(ticket_info) # Hash the shared key informations

hash_hex = hash.hexdigest()

ticket_info += str(hash_hex)

f = open(self.user[0].text, ‘w’) # Keep recodes of authenticated users

f.write(ticket_info)

f.close

return ticket_info

Figure 5.4: Creating Ticket Granting Tickets

domain name, ticket creation date and ticket expire date to create a SHA-512 hash string

(Figure 5.4).

The hash function is part of the Python’s hashlib library. The hash string is

appended to the end of the presented data. The result is the ticket granting ticket (i.e.

tgt_message); it’s then sent to the client (using self.conn.send (tgt_message)). A

copy of the ticket granting ticket is also saved on the Kerberos system simulation.

Creating Shared Key

Kerberos system simulation extracts the two variables (service name and domain name)

from the request message. It then passes these two variables into function

auth_service(self, service_name, service_domain_name) to determine whether or
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# Authenticate the service

def auth_service(self, service_name, service_domain_name):

tree = xml.parse("servicedatabase.xml") # Parse the service database

doc = tree.getroot() # Get the root node

# Compare the service name and domain name against the database

for service in doc:

if service[0].text == service_name and \

service[1].text == service_domain_name:

self.service = service

return True

return False

Figure 5.5: Verifying Services Data

# Create Share Key

def create_share_key(self):

share_key = ‘’

for elements in self.service:

share_key += elements.text

share_key += ‘;’

# Hash the shared key informations

hash = hashlib.sha512(share_key)

hash_hex = hash.hexdigest()

share_key += str(hash_hex)

return share_key

Figure 5.6: Creating Shared Key

not the service has been registered in the service database. It will create a shared key for

the service if a matching pair was found in the service database. The function searches

through the service database to find a matching pair of service name and domain name

(Figure 5.5).

The function create_share_key(self) uses a similar method to that used to

create ticket granting ticket in creating the shared key (Figure 5.6). The shared key

includes the service name, domain name, IP address and hash key. The hash key is a

SHA-512 hash key that was created from the service’s service name, domain name and IP

address. The shared key (i.e. sk_message) is then manually input into the service (using

self.conn.send (sk_message)).

Creating Service Ticket

The Kerberos system simulation verifies a client’s (i.e. end-user’s) ticket granting ticket

and creates a service ticket for the end-user. It uses function auth_tgt(tgt_info) to
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# Verify Ticket Granting Ticket

def auth_tgt(self, tgt_info):

f = open(str(tgt_info[0]), ‘r’)

if f == None:

print ‘User not found’

return False

else:

key_info = f.readline()

f.close()

key_info_list = key_info.split(‘;’, 7)

if tgt_info[0] == key_info_list[0] and \

tgt_info[4] == key_info_list[4] and \

tgt_info[5] < key_info_list[6] and \

tgt_info[7] == key_info_list[7]:

return True

else:

return False

Figure 5.7: Verifying Ticket Granting Ticket

# Create Service Ticket

def create_st(self, service_name):

tree = xml.parse("servicedatabase.xml") # Parse the service database

doc = tree.getroot() # Get the root node

st_info = ‘’

# Compare the service name and domain name against the database

for service in doc:

if service[0].text == service_name:

self.service = service

break

for elements in self.service:

st_info += elements.text

st_info += ‘;’

hash = hashlib.sha512(st_info) # Hash the shared key informations

hash_hex = hash.hexdigest()

return str(hash_hex)

Figure 5.8: Creating Service Ticket

verify the end-user’s ticket granting ticket (i.e. tgt_info).

The function uses a build-in function (i.e. open("filename", permission)) of

Python to open the saved ticket granting ticket (i.e. f = open(str(tgt_info[0]), ‘r’)).

It then compares the username and hash key of the end-user’s ticket granting ticket with

the saved copy. It also ensures the ticket has not expired (Figure 5.7).

The Kerberos system simulation creates service tickets using the services’ service

name (e.g. “ssh”), domain name, IP address and a SHA-512 hash key based on these

variables (Figure 5.8). It then sends the service tickets to the end-users.
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Kerberos Single Sign-on System Summary

The simulation of Kerberos single sign-on system contains functionalities that can create

ticket granting ticket, services tickets and shared keys. It only supports single sign-on

in a single domain, and it does not have functionalities to communication with other

Kerberos single sign-on systems in different domains. Its communication protocol can be

supported by any program that supports a network socket, and it creates human readable

ticket/keys. It provides the foundation for implementing the AIIP.

5.3.2 Ubuntu Desktop and Secure Shell Protocol

Ubuntu Desktop Simulation

The Ubuntu desktop system simulation provides end-users with Linux shell and Secure

Shell (SSH) protocol (Figure 5.9). It does not provide any other functionalities.

The Ubuntu desktop simulation relies on Kerberos single sign-on system simulation

for authenticating end-users (Figure 5.10). It requests end-users to input their usernames

(name = raw_input(‘Username: ’)) and passwords

(password = getpass.getpass(‘Password: ’) ). The entered credentials are appended

to the end of the request strings. For example, req_tgt;chen;alpha123 is a string that

requests ticket granting ticket; it contains the username chen and password alpha123. It

then sends the credentials to the Kerberos single sign-on system simulation.

The Ubuntu desktop simulation will receive the ticket granting ticket if the end-

user’s credentials were successfully authenticated by Kerberos system simulation. It then

grants access to the end-user by presenting them with Ubuntu shell simulations (i.e.

local shell~>). It also saves the ticket granting ticket (i.e. ticket) on the system

using function save_tgt(ticket). It saves the ticket granting ticket into a text file

(Figure 5.11).
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Figure 5.9: Flowchart of Ubuntu desktop simulation

# End-user Authentication

def authentication():

try:

# Socket for connecting to Kerberos server simulation

krb_sok = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

krb_sok.connect((KRB_HOST, KRB_PORT))

print ‘Connecting to’, KRB_HOST, ‘...’

name = raw_input(‘Username: ’)

password = getpass.getpass(‘Password: ’)

krb_sok.send(‘req_tgt;’ + name +‘;’ + password)

Figure 5.10: Desktop Authentication and Requesting Ticket Granting Ticket
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# Save ticket granting ticket from KDC

def save_tgt(tgt_info):

# Set ticket granting ticket content in memory

tgt.set_ticket_info(tgt_info)

print ‘Recieved and saved Ticket Granting Ticket.’

# Save ticket granting ticket content in file

f = open(‘tgt.key’, ‘w’)

f.write(tgt_info)

f.close()

Figure 5.11: Saving Ticket Granting Ticket

SSH Client Simulation

The SSH client simulation aims to establish connections to SSH servers (Figure 5.12). It

first acquires the service ticket from Kerberos single sign-on system in the same domain

using function (request_service_ticket()). The process includes sending the end-

user’s ticket granting tickets to the Kerberos system simulation along with a request for

the service ticket (Figure 5.13). It will receives a copy of the service ticket if the Kerberos

single sign-on system simulation successfully verified the ticket granting ticket.

Once the SSH client received the service ticket, it will send it to the SSH server

simulation as a means for authentication (Figure 5.14). A connection will be established

between the SSH client simulation and SSH server simulation (Figure 5.15) if the service

ticket was successfully verified (i.e. if shell_name != ‘fail’). The connection will not

terminate until both sides have confirmed the end request

(while results != ‘exit_confirm’).

Secure Shell Server

The SSH server simulation is used to test single sign-on (and federated single sign-on

at later stage). It does not provide any functionalities other than requesting shared key,

verifying end-users’ service ticket and accepting/establishing remote connection from SSH

clients (Figure 5.16). It uses one socket to listen for requests from SSH client simulations,

and it uses another socket to connect to Kerberos servers simulation.

The SSH server simulation connects to Kerberos single sign-on system simulation

and requests the shared key (Figure 5.17). The SSH servers simulation will receive a copy
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Figure 5.12: Flowchart of SSH client simulation
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# Get service ticket from KDC to access services

def request_service_ticket():

krb_sok = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # KRB socket

f = open(‘tgt.key’, ‘r’)

tgt_info = f.readline()

f.close()

tgt_info_list = tgt_info.split(‘;’, 7)

krb_sok.connect((KRB_HOST, KRB_PORT))

print ‘Connecting to’, KRB_HOST, ‘...’

krb_sok.send(‘req_st;’ + tgt_info)

answer = krb_sok.recv(1024)

if answer == ‘fail’:

return ‘fail’

else:

krb_sok.send(‘ssh’)

st_info = krb_sok.recv(1024)

return tgt_info_list[0] + ‘;’ + st_info

Figure 5.13: Requesting Service Ticket

# SSH client simulation

def ssh_local(st_info):

ssh = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # SSH socket

ssh.connect((SSHD_HOST, SSHD_PORT))

# Send service ticket to ssh server

ssh.send(st_info)

Figure 5.14: Sending Service Ticket

# Recieve single sign-on reply

shell_name = ssh.recv(1024)

if shell_name != ‘fail’:

results = ‘’

while results != ‘exit_confirm’:

command = raw_input(shell_name)

ssh.send(command)

results = ssh.recv(1024)

if results != ‘exit_confirm’:

print results

Figure 5.15: Secure Shell Client Simulation
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Figure 5.16: Flowchart of a SSH server thread simulation
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def request_shared_key():

# Get shared secure ticket from KDC (kdc_sim.py)

krb_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

krb_socket.connect((KRB_HOST, KRB_PORT))

message = ‘’

message += ‘req_sk;’

message += (SERVICE_NAME + ‘;’)

message += (DOMAIN + ‘;’)

message += (IP)

krb_socket.send(message) # Send service information to KDC

share_key = krb_socket.recv(1024) # Recieve reply from KDC

# Check the replied message

if share_key != ‘fail’:

f = open(SERVICE_NAME + ‘.key’, ’w’) # Save the shared key

f.write(share_key)

f.close

krb_socket.close

return True

else:

krb_socket.close

return False

Figure 5.17: SSH Server Simulation Requesting Shared Key

f = open(‘ssh.key’, ‘r’) # open ssh.key to read the key

key_info = f.readline()

key_info_list = key_info.split(‘;’, 3)

Figure 5.18: SSH Server Simulation Opens the Shared Key

of the shared key if its service name (e.g. ssh), domain name (e.g. home.virtual.vm)

and IP address (e.g. 192.168.1.59) were found in Kerberos’s service database.

The SSH server simulation will not listen for connection requests until it obtained

a shared key from the Kerberos system simulation. This helps to debug the system during

implementation. If the service was not registered in the Kerberos service database, the

simulation will not start.

Secure shell (SSH) server simulation uses thread (ClientThread) to manage con-

nections from multiple clients. It receives the end-user’s service ticket

(st_info = self.conn.recv(1024)). It extracts the username and SHA-512 hash key

from the service ticket (username, st = st_info.split(‘;’, 1)). It then extracts the

SHA-512 hash key from the shared key that was issued by the Kerberos server simulation

(Figure 5.18).

The SSH server simulation will accept the SSH connection if the two SHA-512 hash

keys match. It then directs the end-users to their dedicated directories and will create
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if key_info_list[3] == st:

# Create home directory for the user if the directory doesn’t exist

if os.path.exists(username):

os.chdir(username)

else:

os.makedirs(username)

os.chdir(username)

print "Authenticated the service ticket"

self.conn.send(‘home remote shell~>’) # Send the SSH server’s shell name to the SSH client.

Figure 5.19: Create Dedicated Directories

dedicated directories for first time to the end-users (Figure 5.19).

Ubuntu Desktop and SSH Protocol Summary

The goals of the simulations using the Ubuntu desktop and SSH protocol are to demon-

strate local network single sign-on and federated single sign-on. The Ubuntu desktop

relies on Kerberos single sign-on for providing authentication and ticket granting ticket.

The SSH client and server runs on top of Ubuntu desktop simulation. They communicate

with each other using network sockets. The SSH server can authenticate the end-user

by verifying their service tickets instead of verifying their credentials (i.e. usernames

and passwords). Currently the end-user can access remote Ubuntu desktops (in the local

domain) via SSH protocol in a single sign-on fashion.

5.3.3 SAML based Federated Single Sign-on System Simulation

Web-based Authentication System

The simulation of web-based authentication system provides the foundation for imple-

menting IDAWA. It’s the identity provider end of the SAML based federated single sign-on

system. The other end is the simulation of the web-based service/application.

The authentication system currently authenticates end-users by verifying their

usernames and passwords, and it creates identity assertion for end-users that have been

successfully authenticated. It provides the foundation for implementing IDAWA, which

will accept Kerberos service tickets as means of authentication.
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The identity assertion message is a strip down version of the real world assertion

message. It includes the end-users’ username, password, domain name, role and the result

of authentication (e.g. true or false). The value “true” means the end-user has been suc-

cessfully authenticated; the value “false” means the end-user hasn’t been authenticated.

It does not include any SAML tags (e.g. <SAML>) or SAML attributes.

The web-based authentication system uses session variables to transfer variables

between web pages. Session variables are named as following: $_SESSION["username"],

$_SESSION["idp_domain"], $_SESSION["role"] and $_SESSION["authenticated"]. They

are created and maintained by placing session_start(); at the start of the PHP script.

Session variables can not be accessed by web pages in different domains. For

example, the session variables in home.virtual.vm can not be accessed by web pages in

foreign.virtual.vm. My implementation addresses this problem using web browser cookies.

Web cookies are stored on end-users’ web browsers. They are accessible by web

pages. An end-user’s identity assertion message can be stored as cookies on the web

browsers. These cookies can be accessed by web-based service/application simulation

when the end-users are accessing the web-based service/applications (using web browsers).

The use of web cookie is based on the assumption that the web-browsers support

the use of web cookies. The web-browsers can save and read the web cookies. If they do

not support web cookies, then the implementation will not work.

PHP script, setcookie("user", $value, time()+3600, "/", "virtual.vm"),

is used to create cookies. Variable “user” is the name of the cookie. \$value contains

the value of the cookie; it contains the session variables such as username, role, domain

name and authentication result (Figure 5.20). time()+3600 is the life time of the cookie.

“/” indicates the cookie is place at the root of the domain and accessible by sub domains.

virtual.vm is the root of the domain. This allows domain “foreign.virtual.vm” to access

the identity assertion messages.
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$value = $_SESSION["username"].‘;’.$_SESSION["role"]. \

‘;’.$_SESSION["idp_domain"].‘;’.$_SESSION["authenticated"];

Figure 5.20: Creating Cookie Value

$user = $_COOKIE["user"];

$user_list = explode(";", $user);

$username = $user_list[0]; //$_SESSION["username"];

$role = $user_list[1]; //$_SESSION["role"];

$domain = $user_list[2]; //$_SESSION["idp_domain"];

Figure 5.21: Extracting Cookie Value

Web-based Service/Application

The goal of the simulation of web-based service/application is to display successfully

federated single sign-on. It displays that end-users have been successfully authenticated

by the simulation of web-based authentication systems, and it displays the roles of the

end-users. It does not provide any real world functionalities (e.g. web-based document

editor).

The simulation of web-based service/application extracts the variables (e.g. user-

name, role, domain) from the cookies. These variables compose an end-user’s identity

assertion message (Figure 5.21).

The simulation of web-based service/application reads an end-user’s identity as-

sertion message (i.e. user “chen”). It determines the permission of the end-user according

to the federation’s policy (described in section 4.2.2). It then displays the end-user’s data

(Figure 5.22).

SAML based FSSO Simulation Summary

The SAML based federated single sign-on system provides the foundation for implement-

ing the IDAWA. The identity provider side (i.e. web-based authentication system) does

not support Kerberos single sign-on system, and it authenticates end-users by verifying

their usernames and passwords. It provides identity assertions, which are strip down ver-

sion of real world assertions for end-users that have been successfully authenticated. The

service provider side (i.e. web-based services/applications) displays the end-users’ data
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Figure 5.22: Web-based Service/Application Simulation in Domain foreign.virtual.vm

(e.g. username, domain name, role); it does not provide any real world functionaries.

5.4 Implementation of the New Simplified FSSO Sys-

tem

This section presents the implementation of the new simplified federated single sign-on

(FSSO) system. The implementation incorporates the simulations of Kerberos single sign-

on system and SAML based federated single sign-on system, and it includes two major

components: Authentication Infrastructure Integration Program (AIIP) and Integration

of Desktop Authentication and Web-based Authentication (IDAWA).

This section also presents the modifications to the SSH client simulations. These

modifications allow the SSH clients to request Kerberos tickets (from foreign domains)

through AIIP instead of requesting ticket from foreign domains’ Kerberos single sign-on

systems.

5.4.1 Implementation of AIIP

The “Authentication Infrastructure Integration Program” (AIIP) follows the federation’s

policies, which state, “End-users from any domain can access any services/applications

in the other domains.” It includes the implementation of two ends: the identity provider
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end (AIIPi) and service provider end (AIIPs). A network domain may have both ends;

however, a single federated single sign-on process involves two ends that are in separate

domains.

Both ends work together to extend end-users’ desktop authentication sessions (i.e.

Kerberos authentication sessions) from one domain to other domains. The AIIPi uses

Kerberos system simulation for authentication, and it creates/sends identity assertions to

the service provider. The AIIPs receives and verifies the identity assertions; it acquires

Kerberos tickets in the same domains and sends them to the AIIPi.

The AIIPi chooses AIIPs based on end-users’ requests. For example, an end-user

entered the command “ssh foreign.virtual.vm”, then the AIIPi will communicate with

the AIIPs in the domain that has the domain name “foreign.virtual.vm”.

AIIP (Identity Provider End)

The identity provider end (AIIPi) of the AIIP has two main functions: authenticating

end-users using Kerberos server simulation and creating/sending identity assertions for

the authenticated end-users. It authenticates end-users by verifying their Kerberos service

tickets, and it creates identity assertions and sends them to the service provider end of

the AIIP (Figure 5.23).

The AIIPi uses a network socket to listen for federated single sign-on requests

from the end-users’ non-web based user agents (e.g. SSH client). It requires two more

sockets for connecting to Kerberos server simulation and the service provider end of AIIP

(AIIPs).

In order to support Kerberos single sign-on, the AIIPi requests a shared key from

the Kerberos server simulation (Figure 5.24). It receives and stores the shared key. The

shared key is later used to verify end-users’ service tickets.

The AIIPi listens for requests from end-users. It accepts connections from end-

users’ SSH clients and accepts their service tickets (Figure 5.25). It also reads the contents

in the shared key (saml-aai-kerberos.key). It compares the SHA-512 hash key (i.e.
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Figure 5.23: Flowchart of identity provider end of AIIP
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def request_shared_key():

# Get shared secure ticket from Kerberos system simulation

krb_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

krb_socket.connect((KRB_HOST, KRB_PORT))

message = ’’

message += ’req_sk;’

message += (SERVICE_NAME +’;’)

message += (DOMAIN + ’;’)

message += (IP)

krb_socket.send(message) # Send service information to Kerberos system

share_key = krb_socket.recv(1024) # Recieve reply from Kerberos system

# Check the replied message

if share_key != ’fail’:

f = open(SERVICE_NAME + ’.key’, ’w’) # Save the shared key

f.write(share_key)

f.close

krb_socket.close

return True

else:

krb_socket.close

return False

Figure 5.24: Requesting Shared Key

f = open(‘saml-aai-kerberos.key’, ‘r’) # open ssh.key to read the key

key_info = f.readline()

key_info_list = key_info.split(‘;’, 3)

st_info = self.conn.recv(1024)

username, st = st_info.split(‘;’, 1)

Figure 5.25: Accepting Service Tickets

key_info_list[3]) in the shared key with the hash key (st) in the service ticket. The

end-users are authenticated if the two SHA-512 hash keys match.

The AIIPi requests authenticated end-users’ data (e.g. username, role and domain

name). It receives the data and appends them to the end of FSSO request message

(‘req_st_foreign;’) to create identity assertion messages. It then sends the identity

assertion messages to the service provider end of AIIP (Figure 5.26). The data (in the

identity assertion messages) are necessary for the other domains to determine the level of

access of the end-users to their services/applications.

The firewalls between the two domains have been set to support the web-based

services; therefore, port 80 was opened. The AIIPs can use any network port for commu-

nication. They can be reconfigured to suit the network domains’ firewall rules. In this

case, the AIIPs chose port 80 as the communication port so that network domains (that

already opened port 80) don’t need to re-configure their firewall rules. In addition, AIIP’s
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def send_assertion(self, assertion):

foreign_sak_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

foreign_sak_socket.connect((self.FOREIGN_MIDDLE_HOST, self.FOREIGN_MIDDLE_PORT))

message = ‘req_st_foreign;’

message += assertion # Create identity assertion message

print message

foreign_sak_socket.send(message) # Send identity assertion message

# Wait for the reply from the service provider end of AIIP

foreign_st_info = foreign_sak_socket.recv(1024)

foreign_sak_socket.close()

return foreign_st_info

Figure 5.26: Creating/Sending Identity Assertion to the Service Provider End of AIIP

sockets are in the Transport Layer of the OSI stack. It will not interfere with HTTP since

HTTP is in Application Layer of the Internet model.

The AIIPi will receive the Kerberos service tickets (created in the other domains)

from the AIIPs if the identity assertion messages were accepted. It then passes these

service tickets to the end-users’ user agents (e.g. SSH clients). The end-users can then

use the service tickets to access non-web based services in the other domains without

requiring re-authentication.

AIIP (Service Provider)

The service provider end of AIIP (AIIPs) listens for new connections from the AIIPis,

and it manages clients using thread (ClientThread). Each thread manages each request

from the identity provider end of AIIP (Figure 5.27). It verifies the identity assertions

(req_st_foreign) and extracts the end-users’ data (e.g. username, role/permission and

domain name) from the identity assertion messages (Figure 5.28).

The AIIPs maps an end-user’s identity to an identity in the AIIPs’s domain

(Figure 5.29). It reads the end-users database (in the same domain) and looks for a

matching username (if user[0].text == username). It reads the rest of the credentials

(username, password, domain name, permission) if it found a matching username. The

provisioned credentials will be used for acquiring Kerberos tickets.

The AIIPs requests the Kerberos ticket granting ticket on behalf of the end-
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Figure 5.27: Flowchart of a thread of service provider end of AIIP

foreign_user_info = self.conn.recv(1024) # Receive identity assertion message

foreign_user_info_list = foreign_user_info.split(‘;’, 1) # Extract request message

if foreign_user_info_list[0] == ‘req_st_foreign’:

detailed_info = foreign_user_info_list[1].split(‘;’, 2) # Extract end-user data

username = detailed_info[0]

domain = detailed_info[1]

permission = detailed_info[2]

Figure 5.28: Extracting End-user’s Identity Information from Identity Assertion Message
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def exist_user(self, username, domain, permission):

try:

tree = xml.parse("foreignuserdatabase.xml") # Parse the user database

doc = tree.getroot() # Get the root node

# Check the username and password

for user in doc:

if user[0].text == username:

self.user = user

provisioned_user_info = ‘’

provisioned_user_info += user[0].text

provisioned_user_info += ‘;’

provisioned_user_info += user[1].text

provisioned_user_info += ‘;’

provisioned_user_info += user[2].text

provisioned_user_info += ‘;’

provisioned_user_info += user[3].text

return provisioned_user_info

Figure 5.29: Mapping End-user’s Credentials

# Requesting TGT on behalf of the end-user

def s4u2selfuser(self, provisioned_user_info):

detailed_info = provisioned_user_info.split(‘;’, 3)

username = detailed_info[0]

password = detailed_info[1]

krb_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # Kerberos socket

krb_socket.connect((KRB_HOST, KRB_PORT))

message = ‘req_tgt;’

message += username

message += ‘;’

message += password

# Request TGT

krb_socket.send(message)

tgt_info = krb_socket.recv(1024)

krb_socket.close()

return tgt_info

Figure 5.30: Requesting Ticket Granting Ticket on behalf of End-user

user similar to SAML-AAI/Kerberos (Figure 5.30). It acquires ticket granting ticket

(req_tgt’) by sending the provisioned credential (i.e. username and password) to the

Kerberos server (in the same domain as the AIIPs). It then stores the ticket granting

ticket in the programme’s memory.

The AIIPs will request the Kerberos service ticket on behalf of the end-user after

acquiring the ticket granting ticket (Figure 5.31). It sends the request for service ticket

(req_st) and the ticket granting ticket (tgt_info) to the Kerberos server simulation. It

then sends the name of the service (e.g. ‘‘ssh’’) to the Kerberos server simulation if

the ticket granting ticket was successfully verified. It will send the acquired service ticket

to the AIIPi in the other domains.
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def s4u2selfproxy(self, tgt_info):

krb_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # Kerberos socket

krb_socket.connect((KRB_HOST, KRB_PORT)) # Create connection

message = ’req_st;’

message += tgt_info

krb_socket.send(message)

answer = krb_socket.recv(1024)

if answer == ’fail’:

krb_socket.close()

return ’fail’

else:

krb_socket.send(’ssh’)

st_info = krb_socket.recv(1024)

krb_socket.close()

return st_info

Figure 5.31: Requesting Service Ticket Ticket on behalf of End-user

Modifying SSH Client

The SSH client simulation requires extra functions to use the AIIP for federated single

sign-on. Instead of accessing Kerberos single sign-on systems in the foreign domains, the

SSH client requests a service ticket from the AIIPi when an end-user issued a command to

access a SSH server in a separate domain. This is achieved using the following functions:

requesting service tickets to access the identity provider end of AIIP (AIIPi), authenticat-

ing (to the AIIPi) using the service ticket, accepting Kerberos tickets that were created

in the other domains, and using the service ticket (created in the other domains) to access

SSH servers in the other domains.

The SSH client will receive a service ticket for accessing a SSH server in a separate

domain. It then can use the service ticket to access the SSH server in the separate

domains (Figure 5.32). It sends the service ticket (st_info) to the SSH server (in the

other domain). The SSH server should successfully verify the service ticket since it was

created by the Kerberos server in the same domain (as the SSH server). A connection

will be established between the client and server.
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def ssh_foreign(st_info):

ssh_foreign_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM) # SSH socket

ssh_foreign_socket.connect((FOREIGN_SSHD_HOST, FOREIGN_SSHD_PORT))

# Send service ticket to ssh server

ssh_foreign_socket.send(st_info)

# Recieve single sign-on reply

shell_name = ssh_foreign_socket.recv(1024)

if shell_name != ‘fail’:

results = ‘’

while results != ‘exit_confirm’:

command = raw_input(shell_name)

ssh_foreign_socket.send(command)

results = ssh_foreign_socket.recv(1024)

if results != ‘exit_confirm’:

print results

else:

pass

else:

print ‘Service ticket failed to authenticate’

ssh_foreign_socket.close()

print ‘exiting...’

Figure 5.32: Accessing SSH Servers in Separate Domains

Implementation of AIIP Summary

The AIIP has two ends, identity provider end and service provider end. Both end follows

the federated single sign-on policies that were established between network domains. A

non-web based federated single sign-on involves an identity provider end in one domain

and a service provider end in another domain. The identity provider end authenticates

end-users using their service tickets, and it creates/sends identity assertions to the service

provider end. The service provider (in another domain) acquires Kerberos tickets in the

same domain and passes them back to the identity provider end, which will proceed to

pass them to the end-users. End-users can use these service tickets to access non-web

based services in the foreign domains. The two end of AIIP work together to bridge the

Kerberos single sign-on sessions in different domains. The SSH clients were added new

functions in order to request a service ticket from AIIP when end-users attempted to

access SSH server in foreign domains.
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5.4.2 Implementation of IDAWA

IDAWA is an extension to the web-based authentication system simulation. It allows

end-users to use their Kerberos ticket for authentication (Figure 5.33). It integrates the

desktop authentication session with web-based authentication session; therefore, end-users

do not need to be authenticated again to access web-based services/applications.

IDAWA uses sockets to connect to Kerberos server simulation. It manually obtain

the shared key from the Kerberos server simulation, and it saves the shared key into

session variable $_SESSION["idp_shared_key"] (Figure 5.34).

IDAWA adds the support of Kerberos tickets onto the web-based authentication

system. It allows end-users to upload their Kerberos ticket granting tickets (Figure 5.35).

The ticket granting ticket is named tgt and saved as a file variable ($_FILE["tgt"]).

The IDAWA gets the content of the Kerberos ticket granting ticket using

($tgt = file_get_contents($_FILES["tgt"]["tmp_name"]);). It assigns the value of

the ticket granting ticket to variable $tgt. It then sends the request of service ticket to

the Kerberos server simulation on behalf of the end-user (Figure 5.36).

The IDAWA will continue send the name of the service (e.g. ‘‘idp’’) to the

Kerberos server simulation if $answer showed the authentication was successful. It then

compares the hash key in the service ticket ($service_ticket) with the hash in the shared

key ($idp_shared_key). It will create identity assertion for the end-user if the two hash

keys are a match (Figure 5.37). It allows end-users to continue to access web-based ser-

vices/applications using the identity assertion (i.e. without requiring re-authentication).

5.5 Demonstration of the New Simplified FSSO Sys-

tem

An end-user (in domain Alpha) attempts to access a remote SSH server and the web-

based service/application in domain Beta. The demonstration attempts to show that
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Figure 5.33: Flowchart of IDAWA
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$kerberos_port = 88; // Get the port for the Kerbero service.

$kerberos_ip = "192.168.1.59"; // Get the IP address for the target host.

/* Create a TCP/IP socket. */

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

$connect = socket_connect($socket, $kerberos_ip, $kerberos_port);

$request = "req_sk;";

$request .= "idp".‘;’;

$request .= "home.virtual.vm".‘;’;

$request .= "192.168.1.59".‘;’;

socket_write($socket, $request, strlen($request));

$shared_key = socket_read($socket, 1024);

$_SESSION["idp_shared_key"] = $shared_key;

Figure 5.34: IDAWA Requesting Shared Key

<form action="auth_key.php" method="post" enctype="multipart/form-data">

<label for="key">Kerberos TGT:</label>

<input type="file" name="tgt" id="tgt" />

<input type="submit" name="submit" value="Submit" />

</form>

(a) Source Code

(b) Web page

Figure 5.35: Uploading Kerberos Ticket Granting Ticket onto IDAWA

$request = "req_st;";

$request .= $tgt;

$reply = ’’;

// Sending service ticket request.

socket_write($socket, $request, strlen($request));

// Recieving response.

$answer = socket_read($socket, 1024);

Figure 5.36: Web-based Authentication System Requests Service Ticket
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// request service ticket

socket_write($socket, "idp", strlen("idp")); //reqest service ticket for idp

$service_ticket = socket_read($socket, 1024);

socket_close($socket);

$idp_shared_key = $_SESSION["idp_shared_key"];

$idp_shared_key_info = explode(";", $idp_shared_key);

if ($idp_shared_key_info[3] == $service_ticket) //compare service ticket and shared key

{

$user_info = explode(";", $tgt);

$_SESSION["username"] = $user_info[0];

$_SESSION["role"] = $user_info[2];

$_SESSION["idp_domain"] = $user_info[4];

// $_SESSION["authenticated"] asserts that the end-user is authenticated

$_SESSION["authenticated"] = true;

}

Figure 5.37: Web-based Authentication System Verifies the Service Ticket

AIIP integrates the Kerberos single sign-on sessions in domain Alpha to domain Beta

and that IDAWA allows the end-user to use the Kerberos ticket (created during desktop

authentication) for web-based authentication.

5.5.1 Demonstration of AIIP

Access the Local Ubuntu Desktop Simulation in Domain Alpha

The end-user attempts to access a desktop system in domain Alpha by entering its user-

name and password at the login prompt (Figure 5.38). Upon successfully verification of

the credentials, the desktop simulation accepts the end-user and present a Linux shell

(i.e. local shell~>). It will also receive a copy of the ticket granting ticket from the

Kerberos single sign-on system in domain Alpha.

Figure 5.38: End-user login the Local Ubuntu desktop simulation in home.virtual.vm (i.e.
domain Alpha)
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Initiate the Remote SSH Server Simulation in Domain Beta

The remote SSH server simulation manually obtains a shared key from the Kerberos single

sign-on system when it’s started (Figure 5.39). It then waits for a connection request (from

SSH clients), and it will remain in this state until receiving a connection request.

Figure 5.39: Start the remote SSH server simulation in domain foreign.virtual.vm (i.e.
domain Beta)

Non-web based Federated Single Sign-on using AIIP

The end-user executes the command “ssh foreign.virtual.vm” in the local Ubuntu desktop

simulation (Figure 5.40). The remote SSH server simulation requests authentication. This

triggers the local Ubuntu desktop simulation to request a service ticket from the identity

provider end of AIIP in domain Alpha.

Figure 5.40: End-user attempts to access the remote SSH server in foreign.virtual.vm (i.e.
domain Beta)

AIIPi first authenticates the end-user by verifying its service ticket. It then cre-

ates/sends an identity assertion to the service provider end of AIIP (AIIPs) in domain

Beta (Figure 5.41). If AIIPs replies with a service ticket (that was created in domain

Beta), AIIPi will pass the acquired Kerberos ticket to the end-user’s SSH client simulation

in domain Alpha.
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Figure 5.41: AIIPi verifies the end-user’s identity and sends an identity assertion to
AIIPs

AIIPs verifies the identity assertion message and acquires a ticket granting ticket

and service ticket on behalf of the end-user (Figure 5.42). It then passes the service ticket

to AIIPi.

Figure 5.42: AIIPs accepts the end-user’s identity assertion and requests ticket granting
ticket and service ticket on behalf of the end-user in domain foreign.virtual.vm

Figure 5.43: The remote Ubuntu desktop simulation accepts the request from the end-user

The end-user uses the service ticket (created in domain Beta) to access the remote

SSH server simulation in domain Beta. The remote SSH server simulation verifies the

end-user’s service ticket, and it accepts the service request (Figure 5.43). The end-user

(in domain Alpha) is granted access to the remote SSH server simulation in domain Beta
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Figure 5.44: The end-user is granted access the to remote SSH server in domain for-
eign.virtual.vm

(Figure 5.44).

Demonstration of IDAWA

IDAWA is an extension to web-based authentication systems, and it allows the end-users

to use their Kerberos ticket for as means for authentication. The end-users need to upload

their ticket granting ticket onto the IDAWA during the first web-based federated single

sign-on process (Figure 5.45).

Figure 5.45: Use Kerberos Authentication Method in domain home.virtual.vm (i.e. do-
main Alpha)

The web-based authentication system creates an identity assertion message for the

end-user after IDAWA verified the end-user’s identity (using Kerberos single sign-on).

The identity assertion message includes the end-user’s username, the issue date of the

message, the end-user’s domain and the end-user’s role.



CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATION 126

The end-user accesses the web-based service/application (in domain Beta) with

the identity assertion message. The web-based service/application verifies the identity

assertion and displays the result. The result shows the end-user has been granted access

to the web-based service/application (Figure 5.46).

Figure 5.46: Successful access to web-based service/application in domain for-
eign.virtual.vm

5.6 Summary

This chapter presented the proof of concept implementation of the new simplified fed-

erated single sign-on system. It includes the proof of concept implementations of these

two major components: Authentication Infrastructure Integration Program (AIIP) and

the Integration of Desktop Authentication and Web-based Authentication (IDAWA). The

AIIPs do not require any modifications to network domains’ Kerberos single sign-on sys-

tems and their firewall rules during deployment, and they don’t expose Kerberos single

sign-on systems to the outside world. They facilitate federated single sign-on by acquir-

ing Kerberos service tickets in different network domains and send them to the end-users;

end-users can authenticate using these Kerberos service tickets in different domains. The

IDAWA, which is added to the web-based authentication systems, allows end-users to up-

load their Kerberos ticket. End-users are authenticated using their Kerberos ticket instead

of their credentials. The demonstrations showed that the end-users can acquire Kerberos

tickets after desktop authentication, and the combination of AIIP and IDAWA allows the

end-users to use these Kerberos tickets to access both web-based and non-web based ser-
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vices/applications instead of using their credentials. Therefore, the end-users access desk-

top systems, web-based services/applications and non-web based services/applications

using one authentication process.

A good implementation change is changing from using DOM as the interface

to XML files to using an ElementTree instead. ElementTree was designed to support

Python’s coding style; therefore, the source code is easier to read and debug than using

DOM. Another good practice during the implementation stage is inserting debug mes-

sages into source code in order to track any coding problems (e.g. tracking positions in

loops). s into source code in order to track any coding problems (e.g. tracking positions

in loops).



Chapter 6

Research Evaluation

6.1 Introduction

This chapter presents the evaluation of the research, in which we use five criteria for

evaluating the new simplified federated single sign-on systems. The first, second and

third criteria were developed as part of this research. The fourth and fifth criteria were

adopted from Painless Security (2010).

The evaluation assumes that a federation has been established between network

domains. It also assumes that network domains employ their own Kerberos single sign-

on systems (i.e. non-web based authentication infrastructures) for managing desktop

authentications, and network domains use SAML based federated single sign-on systems

for web-based federated single sign-on.

The new simplified federated single sign-on (FSSO) includes two major compo-

nents: “Authentication Infrastructure Integration Program” (AIIP) and the “Integration

of Desktop Authentication and Web-based Authentication” (IDAWA). The AIIP bridges

the communications between end-users’ desktop systems (in one domain) and Kerberos

single sign-on systems (in the other domains), and it acquires Kerberos service tickets in

different domains without setting up trust between these Kerberos single sign-on systems.

IDAWA is an extension to web-based authentication systems (i.e. identity provider end of

128
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SAML based federated single sign-on system), and it supports the use of Kerberos tickets

as means for authentication. The evaluation compares the new simplified federated sin-

gle sign-on system (i.e. the combination of AIIP and IDAWA) with Project Moonshot,

Kerberos Secure Sharing, SASL-SAML and SAML-AAI/Kerberos.

Section 6.2 presents the development of criteria. Section 6.3 evaluates Project

Moonshot, SASL-SAML, Kerberos Secure Sharing, SAML-AAI/Kerberos and the new

simplified federated single sign-on system using the developed criteria. Section 6.5 sum-

maries this chapter.

6.2 Criteria Development

Although this research specified security measures such as TLS and master/slave setup

to address security risks (e.g. man-in-the-middle attack and single point of failure) in

section 4.4.1, the security methods are not the focus of the evaluation. The goals of the

new simplified federated single sign-on system is to provide single sign-on; therefore, the

new criteria focuses on evaluating the usability of the systems. The five criteria are:

1. How many authentication processes are required for an end-user to access a desktop

system (in the same domain as the end-user), a web-based service/application (in a

separate domain) and a non-web based service/application (in a separate domain)?

2. Does the federated single sign-on system modify network domains’ existing non-

web based authentication infrastructures (i.e. Kerberos), or does it deploy a new

authentication infrastructure?

3. Does the system expose network domains’ existing authentication infrastructures to

the outside world?

4. Whether the client needs to talk directly to the authentication infrastructure or

whether the conversation with the authentication infrastructure is tunnelled?

5. How much new development is required?
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6.3 Evaluation using the Developed Criteria

6.3.1 First Criterion

The first criterion examines the number of authentication processes that are required

for an end-user to access a desktop system, web-based service/application and a non-

web based services/application (Table 6.1). This criterion considers the authentication

processes start at desktop authentication (i.e. an end-user walks up to a desktop system

and enters his/her username and password into the login prompt). The end-user and

the desktop system reside in one domain, and the web-based service/application and the

non-web based service/application reside in a separate domain.

This criterion is the key to identify whether a federated single sign-on system can

deliver single sign-on. This is a new criterion that considers desktop authentication as

part of the federated single sign-on process, and it starts from desktop authentication

and counts the number of times that an end-user needs to enter his/her username and

password at a login prompt. An end-user attempts to access both web-based and non-web

based services/application in both local and foreign domains.

The evaluation (using the new criterion) showed that Kerberos Secure Sharing,

Project Moonshot, SASL-SAML and SAML-AAI/Kerberos require more than one authen-

tication process for end-users to access desktop systems, web-based services/applications

and non-web based services/applications. The new simplified FSSO system addresses the

limitation of the existing system by providing true single sign-on for end-users. It allows

end-users to access desktop systems, web-based services/applications and non-web based

services/applications using one authentication process.
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6.3.2 Second Criterion

The second criterion examines whether the federated single sign-on system modifies net-

work domains’ existing non-web based authentication infrastructures (i.e. Kerberos single

sign-on systems) or deploy a new authentication infrastructure (Table 6.2).

This criterion determines the cost of deploying the federated single sign-on system.

The most ideal scenario is the federated single sign-on system can use the existing non-web

based authentication infrastructures without modifying them. In this way, network do-

mains do not need to spend resources on modifying existing authentication infrastructures

or deploying new authentication infrastructures.

A federated single sign-on process involves two ends: an identity provider and

a service provider. The identity provider manages identities and authentications. The

service provider provides computer services/applications. A network domain can be an

identity provider or a service provider in a single federated single sign-on process.

The comparison showed that the simplified federated single sign-on system has

advantages over the existing approach (e.g. KSS, Project Moonshot, SASL-SAML and

SAML-AAI/Kerberos): it uses network domains’ existing authentication infrastructures

(i.e. Kerberos single sign-on systems) for authentication, and it does not modify these

existing authentication infrastructures (i.e. minimum cost of modification). In addition,

it only facilitates federated single sign-on and does not affect the other authentication

processes (e.g. local domain single sign-on).
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Project name Comparison using the first criterion

Kerberos Secure Sharing Kerberos Secure Sharing allows an end-user to access a desktop

system and non-web based services/applications using one au-

thentication process. It does not support web-based federated

single sign-on; therefore, the same end-user needs to be au-

thenticated again (i.e. second authenticate process) to access

web-based services/applications.

Project Moonshot Project Moonshot does not include the desktop authentica-

tion as part of federated single sign-on process, and it does

not support web-based federated single sign-on. An end-user

needs to be authenticated three times to access a desktop sys-

tem, non-web based services/applications, and web-based ser-

vices/applications.

SASL-SAML SASL-SAML does not include the desktop authentication as

part of federated single sign-on process. It supports both web-

based and non-web based federated single sign-on. An end-user

requires two authentication processes: once for desktop au-

thentication, then once for both web-based and non-web based

services/applications.

SAML-AAI/Kerberos SAML-AAI/Kerberos also does not include desktop authenti-

cation as part of the federated single sign-on process. It sup-

ports both web-based and non-web based federated single sign-

on. An end-user also requires two authentication processes:

once for desktop authentication, then once for both web-based

and non-web based services/applications.

The New Simplified

FSSO System

The new simplified FSSO system includes desktop authenti-

cation as part of federated single sign-on process. It supports

both web-based and non-web based federated single sign-on.

An end-user requires one authentication process to access the

desktop system, the web-based service/application and the

non-web based service/application.

Table 6.1: Comparing approaches using the first criterion



CHAPTER 6. RESEARCH EVALUATION 133

6.3.3 Third Criterion

The third criterion examines whether the system exposes the network domains’ existing

authentication infrastructures (i.e. Kerberos single sign-on systems) to the outside world

(i.e. Internet) (Table 6.3). Authentication infrastructures manage all of the authentication

processes in network domains; therefore, network domains are reluctant to use any system

that will expose their authentication infrastructures to the outside world. The most ideal

scenario is the federated single sign-on system doesn’t expose network domains to the

outside world.

Although the new simplified federated single sign-on system relies on network

domains’ Kerberos single sign-on systems (similar to KSS), it does not expose them to the

outside world (similar to Project Moonshot, SASL-SAML and SAML-AAI/Kerberos). It

is more ideal than KSS since it only exposes AIIPs to the outside world instead of Kerberos

single sign-on systems; therefore, it protects the Kerberos single sign-on systems from been

accessed from the outside world.
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Project name Comparison using the second criterion

Kerberos Secure Sharing Kerberos secure sharing (KSS) requires details (e.g. name, do-

main and network location) of Kerberos single sign-on systems

to be registered in each other’s Kerberos single sign-on sys-

tem records, so that they can directly communicate with each

other.

Project Moonshot Project Moonshot does not modify network domains’ existing

authentication infrastructures. It deploys a separate authenti-

cation infrastructure (at both identity provider end and service

provider end) for non-web based federated single sign-on.

SASL-SAML SASL-SAML does not modify network domains’ existing non-

web based authentication infrastructures. It deploys a separate

authentication infrastructure (at the identity provider end and

the service provider end) for non-web based federated single

sign-on.

SAML-AAI/Kerberos SAML-AAI/Kerberos does not modify network domains’ au-

thentication infrastructures. It incorporates the network do-

mains’ Kerberos single sign-on system at the service provider

end. It deploys a separate authentication infrastructure at the

identity provider end.

A new Simplified FSSO

System

The new simplified FSSO system doesn’t request trust to be

established between the Kerberos single sign-on systems; there-

fore, it does not require any modification to network domains’

existing Kerberos single sign-on systems. It also does not de-

ploy new authentication infrastructure.

Table 6.2: Comparing approaches using the second criterion
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Project name Comparison using the third criterion

Kerberos Secure Sharing Kerberos secure sharing requires network domains to share in-

formation about their Kerberos key distribution centres. It

exposes Kerberos single sign-on systems to the outside world,

so that Kerberos single sign-on systems (in different domains)

can directly communicate with each other.

Project Moonshot Project Moonshot is separate from the existing authentication

infrastructures. It does not expose the existing authentication

infrastructure to the outside world.

SASL-SAML SASL-SAML is separate from the existing authentication in-

frastructures similar to Project Moonshot. It does not expose

the existing authentication infrastructure to the outside world.

SAML-AAI/Kerberos SAML-AAI/Kerberos uses web-based software to communi-

cate with Kerberos single sign-on systems, and the processes

do not go beyond network domains’ boundaries. It does not

exposes network domains’ authentication infrastructures to the

outside world.

A new Simplified FSSO

System

The new simplified FSSO system uses methods that are sim-

ilar to SAML-AAI/Kerberos. It doesn’t require the Kerberos

single sign-on systems (in different domains) to communicate

with each other. It does not expose Kerboers single sign-on

systems to the outside world.

Table 6.3: Comparing approaches using the third criterion

6.3.4 Fourth Criterion

The fourth criterion is whether the client needs to talk directly to the authentication

infrastructure or the conversation with the authentication infrastructure is tunnelled (Ta-

ble 6.4). Network domains usually configure their firewall (i.e. open network port 80) to

support web services. They need to add new firewall rules to support new direct commu-

nications (between different domains). Tunnelling communication can change the ports
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that are used by the communications. For example, tunnelling communication can change

different communication protocols to use port 80 for communication. Communications

through opened firewall ports are more desirable to network domains since it does not

require additional firewall configurations.

Although AIIPs directly communicate with each others, they can be configured

to use any network port (e.g. port 80). If firewalls open port 80 to support web-based

services/applications, the new federated single sign-on system can communicate without

adding new rules to the firewalls (similar to Project Moonshot, SASL-SAML and SAML-

AAI/Kerberos). KSS requires network domains to open port 88 on the firewalls in order

for Kerberos single sign-on systems (in different domains) to communicate with the others.

The new simplified FSSO system uses network sockets, which are in the Transport

Layer of the OSI stack. A web-based service uses HTTP, which is in the Application

Layer of the OSI stack. The communication of the new simplified FSSO system will not

interfere with the communication of web-based services/applications.



CHAPTER 6. RESEARCH EVALUATION 137

6.3.5 Fifth Criterion

The fifth criterion for comparison examines the level of new developments that are re-

quired and how well the mechanism will fit into existing applications (Table 6.5). Less

modification to existing applications means easier to deploy to network domains.

Although the new simplified federated single sign-on system improves upon KSS

(i.e. it facilitates FSSO without modifying and exposing Kerberos single sign-on systems),

the improvements require modifications to clients of non-web based services/applications.

Similar to Project Moonshot and SASL-SAML, the new simplified federated single sign-

on system added extra source code into the clients, so the clients will request Kerberos

ticket from AIIP instead of Kerberos single sign-on systems when end-users attempt to

access non-web based services/applications in other domains. The adoption of the new

simplified federated single sign-on systems requires application providers to re-compile

their software, and it requires network domains to re-deploy these clients.
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Project name Comparison using the fourth criterion

Kerberos Secure Sharing Kerberos secure sharing requires all the Kerberos single sign-on

systems to directly communicate with each other. It requires

the additional port (e.g. port 88) to be opened on network

domains’ firewalls.

Project Moonshot Project Moonshot uses EAP for federated single sign-on. EAP

uses tunnel communication between clients and authentication

infrastructures. It does not require additional configurations

to network domains’ firewalls.

SASL-SAML SASL-SAML uses SAML based federated single sign-on sys-

tem. SAML based federated single sign-on systems use web

communication protocols and ports (e.g. port 80). It does not

require any additional configurations to the firewalls since the

firewalls already support web-based services/applications.

SAML-AAI/Kerberos SAML-AAI/Kerberos uses web-based communication protocol

for communication. It uses SAML based federated single sign-

on system (i.e. web communication protocol) for federated

single sign-on. It does not require any additional configurations

to the firewalls similar to SASL-SAML.

A new Simplified FSSO

System

The new simplified federated single sign-on system uses Au-

thentication Infrastructure Integration Program (AIIP) to

manage non-web based federated single sign-on. AIIP use di-

rect communication, and it can be configured to use any net-

work port (e.g. port 80). It does not require any additional

configurations to firewalls.

Table 6.4: Comparing approaches with the fourth criterion
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Project name Comparison using the fifth criterion

Kerberos Secure Sharing Kerberos secure sharing uses Kerberos as it’s primary authen-

tication system. Kerberos has been established as the predom-

inant single sign-on system (Kerberos support has been built

into Microsoft Windows systems, GNU/Linux and Mac OS X).

Existing applications don’t need to be modified to use KSS.

Project Moonshot Project Moonshot proposes to modify the existing user agents

to use EAP for federated single sign-on. This means all non-

web based applications creators needs to modify their existing

user agents.

SASL-SAML SASL-SAML is similar to Project Moonshot. It modifies the

existing user agents to communicate with a web-based identity

provider through SASL.

SAML-AAI/Kerberos SAML-AAI/Kerberos requires the creation of new web-based

applications to access non-web based service applications.

A new Simplified FSSO

System

The new simplified federated single sign-on system added

extra functionalities to existing clients of non-web based

services/applications, so the clients can request Kerberos

tickets from AIIP (instead of Kerberos single sign-on sys-

tems) when end-users attempt to access non-web based ser-

vices/applications in other domains.

Table 6.5: Comparing approaches with the fifth criterion

6.4 Comparison Overview

This section presents the comparison overview using the same five evaluation criteria

(Table 6.6). It compares new simplified federated single sign-on system with Kerberos

secure sharing (KSS), Project Moonshot, SASL-SAML and SAML-AAI/Kerberos.

The new simplified federated single sign-on (FSSO) system is the only system

that supports desktop systems, web-based services/applications and non-web based ser-

vices/applications (according to the evaluation). This system can deliver single sign-on
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for end-users to access desktop systems, web-based services/applications and non-web

based services/applications according to the evaluation. The other approaches (e.g. KSS,

Project Moonshot, SASL-SAML and SAML-AAI/Kerbers) require more than one authen-

tication processes for an end-users to access diverse computer services/applications.

Although the new simplified single sign-on system uses network domains’ existing

Kerberos single sign-on systems similar to KSS, it improves upon KSS by requesting

Kerberos tickets from Kerberos single sign-on systems (in different network domains)

without setting up trust between these Kerberos single sign-on systems. The trust is

established between the AIIPs; therefore, the existing Kerberos single sign-on systems are

not modified and not exposed to the outside world. The system also does not require new

modifications to network domains’ firewall rules.

The new simplified single sign-on system, however, requires new modifications to

user agents (i.e. clients) of non-web based services/applications. An extra model was

added to the user agents, and it allows the user agents to acquire Kerberos tickets (that

were created in foreign network domains) via the new simplified federated single sign-on

system when end-users requested non-web based services/applications in foreign network

domains. This system requires active support from application creators and network

domains (similar to Project Moonshot, SASL-SAML and SAML-AAI/Kerberos). This is

discussed in section 7.4.

Security attacks such as replaying attack, eaves dropping and man in the middle

attacks can be used to compromise the communications between AIIPs and federations.

These security attacks can also compromises the the digital signatures (i.e. hash strings)

that were used for authenticating end-users in the single sign-on processes. Replay attack

allows the attackers to use the authentication information that were previously used for

authenticating end-users, eaves dropping can steal the end-users’ identity assertion in-

formation when they are transferred between federations, and man-in-the-middle attack

allows the attackers to inject arbitrary messages between two end points (e.g. two AIIPs)

or steal authentication messages.
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The new simplified FSSO system requires additional security protocols (e.g. times-

tamping, TLS protocol and digital certificate) before the new simplified FSSO system

can be deployed into universities/institutions (e.g. DIT, UCD and Trinity college). Tim-

stamping limits the life span of Kerberos tickets and identity assertion messages; therefore,

it limits the risk of replay attacks. TLS protocol use asymmetric encryption and sym-

metric encyrption to encrypt the transferred messages. The attackers can not read the

encrypted messages (e.g. authentication messages and identity assertions); therefore, TLS

reduces the risks of eaves dropping. Digital certificates (e.g. X.509) can be used to pre-

vent spoofing attacks (e.g man-in-the-middle) between the AIIPs (AIIP-AIIP and AIIP

to end-users) and communication between federations.
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Evaluation Criteria Keberos Se-

cure Sharing

(KSS)

Project

Moonshot

SASL-SAML SAML-

AAI/Kerberos

New Simpli-

fied FSSO

System

Support of desktop

system, web-based

services/applications

and non-web based

services/applications

Numbers of authentica-

tion processes (includ-

ing desktop authentica-

tion) for accessing two

(web-based and non-web

based) applications

Two Three Two Two One

Modifications to existing

non-web based authenti-

cation infrastructure or

deploying new authenti-

cation infrastructure

Yes Yes Yes Yes No

Exposing existing au-

thentication infrastruc-

ture to the outside

world

Yes No No No No

Modifications to firewall

rules

Yes No No No No

Modifications to ex-

isting computer ser-

vices/applications

No Yes Yes Yes Yes

Table 6.6: Comparison of the New Simplified FSSO System with Existing Approaches
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6.5 Summary

This chapter used five criteria to evaluate the new simplified federated single sign-on

(FSSO) system (i.e. the combination of AIIP and IDAWA). The evaluation shows that the

new simplified FSSO system addresses the limitation of existing FSSO systems. The end-

users, who use the new simplified FSSO system, can access desktop systems, web-based

services/applications and non-web based services/applications using one authentication

process. In addition, the new system is simpler to deploy than other existing approaches:

it can incorporate network domains’ existing non-web based authentication infrastructures

(i.e. Kerberos single sign-on systems) without requiring additional modifications to them,

and it does not require modifications to network domains’ firewall rules.



Chapter 7

Discussion and Conclusion

7.1 Introduction

This research found that current federated single sign-on (FSSO) systems (e.g. Project

Moonshot, SASL-SAML, Kerberos Secure Sharing and SAML-AAI/Kerberos) do not al-

low end-users to access desktop systems, web-based services/applications and non-web

based services/applications (in multiple domains) using one authentication process.

The current FSSO systems partially incorporates the authentication systems of

desktop systems, web-based services/applications and non-web based services/applications

(Figure 7.1): Project Moonshot supports non-web based services/applications. Keberos

secure sharing (KSS) supports desktop systems and non-web based services/applications.

SASL-SAML and SAML-AAI/Kerberos support both web-based and non-web based ser-

vices/applications. The limitations of existing FSSO systems mean end-users need to go

through multiple authentication systems in order to access these services.

This research developed a new simplified FSSO system that incorporates the au-

thentication systems of desktop systems, web-based services/applications and non-web

based services/applications. The system includes the developments of two major compo-

nents: an “Authentication Infrastructure Integration Program” (AIIP) and an “Integra-

tion of Desktop Authentication and Web-based Authentication” (IDAWA).

144



CHAPTER 7. DISCUSSION AND CONCLUSION 145

Figure 7.1: Existing FSSO systems overview

The Authentication Infrastructure Integration Program (AIIP) incorporates the

authentication systems of desktop systems and non-web based services/applications. The

AIIPs (in different network domains) bridge communications between end-users’ desktop

systems in one domain and Kerberos single sign-on systems in the other domains. They fa-

cilitate non-web based FSSO by seamlessly acquiring Kerberos tickets in different domains

for the end-users (that have been authenticated by Kerberos single sign-on systems) in one

domain, so that the end-users can proceed to access non-web based services/applications

in different domains using these tickets (instead of requiring re-authentication).

The Integration of Desktop Authentication and Web-based Authentication (IDAWA)

incorporates the authentication systems of desktop systems and web-based services/applic-

ations. The IDAWA is an extension to the web-based authentication system (of SAML

based federated single sign-on system). It allows end-users to use their Kerberos ticket as

means of authentication (instead of their credentials); therefore, the end-users (who had

gained access to desktop systems) can access web-based services/applications (in multiple

domains) without requiring re-authentication.

The new simplified federated single sign-on system (i.e. the combination of AIIP

and IDAWA) allows end-users to access desktop systems, web-based services/applications

and non-web based services/applications using one authentication process; however, it’s

open for security attacks such as man-in-the-middle attack and single point of failure. To

address the security risks, this research has specified the following security measures:
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• The AIIPs use Transport Layer Security (TLS) (Dierks & Rescorla, 2008) to de-

fend against man-in-the-middle attack. TLS uses asymmetric cryptography for key

exchange and symmetric encryption for confidentiality, and message authentication

codes for message integrity. It can secure the communication between the AIIPs in

different domains.

• Each domain should have a primary AIIP system and multiple secondary AIIPs in

order to defend against a single point of failure. If the primary AIIP has failed, the

secondary AIIPs can take over the non-web based federated single sign-on processes.

7.2 Contributions

Contribution 1

The major contribution of this research is the development of the new simplified FSSO

system. The new system addresses the limitation of exiting FSSO systems – they do not in-

corporate the authentication systems of desktop systems, web-based services/applications

and non-web based services/applications. The two major components (of the new sim-

plified FSSO system) are the “Authentication Infrastructure Integration Program” (AIIP)

and the “Integration of Desktop Authentication and Web-based Authentication” (IDAWA).

By combining AIIP and IDAWA, the new simplified FSSO system allows the end-users to

access desktop systems, web-based services/applications and non-web based services/appli-

cations using one authentication process.

• The AIIP acquires Kerberos tickets (for end-users who have been authenticated

by a Kerberos single sign-on system in one domain) from Kerberos single sign-

on systems in different network domains without establishing trust between these

Kerberos single sign-on systems.

• The IDAWA is an extension to the web-based authentication system (i.e. web

portal), and it authenticates end-users by verifying their Kerberos tickets.
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Contribution 2

The research has developed three new evaluation criteria (in addition to the two existing

criteria) to compare the new simplified FSSO system with known FSSO systems (e.g.

Project Moonshot, Kerberos secure sharing, SASL-SAML and SAML-AAI/Kerberos).

These criteria determine which FSSO system can deliver true single sign-on (i.e. allowing

end-users to access desktop systems, web-based services/applications and non-web based

services/applications using one authentication process). They also determine which FSSO

system requires the least active support and commitment from network domains and has

lower risk to be compromised by attackers from the outside world (i.e. the Internet).

7.3 Critical Review

The work (i.e. the new simplified FSSO system) presented in this thesis is a step towards

achieving true single sign-on. The primary advantage of the new simplified FSSO system

is that it allows end-users to access a desktop system, web-based services/applications

and non-web based services/applications using one authentication process. For example,

the end-users (who have gained accesses to desktop systems in DIT) can proceed to

access IEEE Xplore Digital Library and remote Linux systems in Trinity college without

requiring re-authentication. Any universities and institutions can use the new simplified

FSSO system to provide true single sign-on for their students and staffs.

Although the design of AIIP (i.e. a component of the new simplified FSSO system)

draws extensively from Kerberos secure sharing (KSS) and SAML-AAI/Kerberos, the

AIIP has the following advantages over KSS and SAML-AAI/Kerberos. The AIIP can

be deployed into universities/institutions (e.g. DIT, UCD and Trinity college) without

requiring modifications to their existing Kerberos single sign-on systems and firewall rules.

Therefore, the universities/institutions can provide single sign-on without exposing their

Kerberos single sign-on systems to each other, without setting up trust between their

Kerberos single sign-on systems, and without modifying their firewall rules.
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The new simplified FSSO system currently requires modifications to the user agents

of non-web based services/applications unlike KSS. This is because the user agents request

Kerberos tickets from Kerberos single sign-on systems in the foreign domains (instead of

the AIIPs); therefore, an extra model was added to the user agents. The extra model

allows the user agents to request Kerberos tickets from the AIIPs when end-users are

requesting non-web based services/applications in foreign network domains. Additional

functionalities that allow the AIIPs to masquerade as Kerberos single sign-on systems (in

the foreign network domains) are required to address this limitation. By masquerading as

Kerberos single sign-on systems (in foreign network domains), the user agents will assume

that they are requesting Kerberos tickets from Kerberos single sign-on systems, but they

are in fact requesting them from the AIIPs.

As described in the research evaluation (section 6.4), the new simplified FSSO sys-

tem requires additional security protocols (e.g. timestamping, TLS protocol and digital

certificate) before it can be deployed into universities/institutions (e.g. DIT, UCD and

Trinity college). Timstamping limits the life span of Kerberos tickets and identity asser-

tion messages; therefore, it limits the risk of replay attacks. TLS protocol use asymmetric

encryption and symmetric encyrption to reduces man-in-the-middle attacks, while digi-

tal certificates (e.g. X.509) can be used to prevent spoofing attacks between the AIIPs

(AIIP-AIIP and AIIP to end-users) and communication between federations.

7.4 Future Work

Future work includes adding security protocols (e.g. timestamping, TLS protocol) to the

new simplified FSSO system in order to deploy it into the real world (e.g. DIT, UCD).

Time-stamping can limit the valid period of the FSSO requests (e.g. identity assertion

messages) and replies (e.g. Kerberos tickets); therefore, it can reduce the threat of replay

attacks on the AIIPs. The TLS protocol provides symmetric encryption, asymmetric en-

cryption and message authentication code (Freier et al., 2011). The symmetric encryption

technology ensures the privacy of the communications between the AIIPs by encryption
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the messages with a shared key. The asymmetric encryption technology ensures the

security of the symmetric encryption technology’s key exchange process. The message

authentication code ensures the integrity and authenticity of the messages (Krawczyk

et al., 1997). The use of time-stamping and TLS protocol can increase the security of the

message exchanges between the AIIPs.

Additional functionalities that allow the AIIPs (in the home network domain) to

masquerade as Kerberos single sign-on systems (in the foreign network domains) may be

included in the future work. These functionalities can reduce the modifications to the

user agents by allowing the AIIP (in the same domain as the user agents) to pretend to

be Kerberos single sign-on systems in the foreign network domains, so that user agents

will send requests (e.g. requesting ticket granting tickets and service tickets) to the AIIP

instead of the Kerberos single sign-on systems.

Microsoft Windows operating systems use authentication systems (i.e. Active Di-

rectory) that were developed based on the Kerberos single sign-on systems; therefore,

Windows supports Kerberos single sign-on. Although the proof of concept implementa-

tion of the new simplified federated single sign-on system was developed using the Linux

based environment, the concept should be able to support Window-based operating sys-

tems. One of the future work topics in this area will involve experiments of the concept

of the new simplified federated single sign-on system in a Windows environment, and

determine the requirements for allowing the AIIP to support the single sign-on protocols

of Active Directory.

User-centric federated single sign-on (UFed SSO) was proposed by Suriadi et al.

(2009), and it allows end-users to manage their own identity information instead of net-

work domains’ identity providers. This approach allows end-users to have an effective

control over the use and management of their private identification information. One of

the future work topics in this area will involve incorporating the concept of UFed SSO into

the new simplified FSSO system. By allowing the end-users to provide identity assertions

for themselves, the new simplified FSSO system can be used by end-users that do not

belong to specified network domains.
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Appendix A

System Specifications

A.1 Hardware Specifications

The new simplified federated single sign-on system was developed on a Sun Ultra 40M2

Workstation and HP-ProBook 6550b (Table A.1). The hardware specifications are as

following:

In addition to the hardware that were used for developing the system, the vir-

tual machines’ control centre and the XenCenter 6.0, was installed on a Dell Optiplex

GX260. Hardware includes 2.40 GHz Intel(R) Pentium(R) 4 CPU, 512 MB RAM, In-

tel(R) PRO/1000MT Network Connection and Intel(R) 82845G Graphic Controller. A

Linksys Wireless-N Gigabit Router (WRT350N) is used to create network connections

between applications and machines. The router issues IP addresses to all of the machines

(physical and virtual). The router has the IP address 192.168.1.1. The IP address range

for all the machines is from 192.168.1.10 to 192.168.1.254.

A.2 Software Specifications

.
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Sun Ultra 40M2 Work-
station

HP-ProBook 6550b

Processor 2 x Dual-Core AMD
Opteron (tm) Processor
2222

4 x Intel(R) Core(TM) i3
CPU M 370

Memory 4096MB 2048MB
Hard disk drive
(HDD)

128GB 300GB

Networking 2 x Bridge: nVidia Corpo-
ration MCP55 Ethernet • Intel Corporation

82577LC Gigabit
Network Connection

• Broadcom Corpo-
ration BCM4313
802.11b/g/n Wireless
LAN Controller

Video nVidia Corporation G92
[Quadro FX 3700]

Intel Corporation Core Pro-
cessor Integrated Graphics
Controller

Table A.1: IBM eServer Hardware Overview.

DNS server Beta Virtual Server
Processor Single CPU Single CPU
Memory 512MB 1024MB
Hard disk drive
(HDD)

8GB 8GB

Networking Bridge Connection Bridge Connection
Operating Sys-
tem

Ubuntu Server 10.04.4 LTS
32bit

Ubuntu Server 10.04.4 LTS
32bit

Key Software

• bind9

• openssh-server

• apache2

• php5

• openssh-server

• python2.6

IP Address 192.168.1.24 192.168.1.17
Domain Name hostmaster.virtual.vm foreign.virtual.vm
MAC CA:78:6B:9B:9B:5D B2:CD:11:E2:F5:87

Table A.2: Sun Ultra 40M2 Workstation Configuration.
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DNS server
Operating Sys-
tem

Xubuntu Desktop 12.04
LTS 64bit

Key Software

• apache2

• php5

• python2.7

IP Address 192.168.1.59
Domain Name home.virtual.vm
MAC AC:81:12:43:58:7C

Table A.3: HP Probook 6550b Software Configuration.

Figure A.1: Dell Optiplex GX260 configuration.



Appendix B

List of Security Technologies

B.1 The Simple Authentication and Security Layer

(SASL)

The Simple Authentication and Security Layer (SASL)(Melnikov & Zeilenga, 2006) is a

framework for providing authentication and data security services in connection-oriented

protocols via replaceable mechanisms. SASL provides a structured interface between

protocols and mechanisms. SASL also provides a protocol for securing subsequent protocol

exchanges within a data security layer. The data security layer can provide data integrity,

data confidentiality, and other services.

SASL’s design is intended to allow new protocols to reuse existing mechanisms

without requiring redesign of the mechanisms and allows existing protocols to make use

of new mechanisms without redesign of protocols.

SASL is conceptually a framework that provides an abstraction layer between

protocols and mechanisms as illustrated in figure B.1.

It is through the interfaces of this abstraction layer that the framework allows any

protocol to utilize any mechanism. While this layer does generally hide the particulars of

protocols from mechanisms and the particulars of mechanisms from protocols, this layer

does not generally hide the particulars of mechanisms from protocol implementations.
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Figure B.1: SASL is conceptually a framework that provides an abstraction layer between
protocols and mechanisms(Melnikov & Zeilenga, 2006)

For example, different mechanisms require different information to operate, some of them

use password-based authentication, some of then require realm information, others make

use of Kerberos tickets, certificates, etc. Also, in order to perform authorization, server

implementations generally have to implement identity mapping between authentication

identities, whose form is mechanism specific, and authorization identities, whose form is

application protocol specific.

B.2 Generic Security Service Application Program

Interface (GSS-API)

Generic Security Service Application Program Interface (GSS-API)(Linn, 2000) Version

2 provides security services to callers in a generic fashion, supportable with a range of

underlying mechanisms and technologies and hence allowing source-level portability of

applications to different environments. This specification defines GSS-API services and

primitives at a level independent of underlying mechanism and programming language

environment, and is to be complemented by other, related specifications:

• documents defining specific parameter bindings for particular language environ-

ments.

• documents defining token formats, protocols, and procedures to be implemented in

order to realize GSS-API services atop particular security mechanisms.
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B.3 Extensible Authentication Protocol (EAP)

Extensible Authentication Protocol (EAP)(Aboba et al., 2004) is an authentication frame-

work which supports multiple authentication methods. EAP typically runs directly over

data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring

IP. EAP provides its own support for duplicate elimination and retransmission, but is

reliant on lower layer ordering guarantees. Fragmentation is not supported within EAP

itself; however, individual EAP methods may support this.

EAP may be used on dedicated links, as well as switched circuits, and wired as

well as wireless links. To date, EAP has been implemented with hosts and routers that

connect via switched circuits or dial-up lines using PPP(Simpson, 1994). It has also been

implemented with switches and access points using IEEE 802(IEE, b). EAP encapsulation

on IEEE 802 wired media is described in IEE (a), and encapsulation on IEEE wireless

LANs in IEE (c).

One of the advantages of the EAP architecture is its flexibility. EAP is used

to select a specific authentication mechanism, typically after the authenticator requests

more information in order to determine the specific authentication method to be used.

Rather than requiring the authenticator to be updated to support each new authentication

method, EAP permits the use of a backend authentication server, which may implement

some or all authentication methods, with the authenticator acting as a pass-through for

some or all methods and peers(Aboba et al., 2004).

B.4 Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP for short) is a directory service for man-

aging the user accounts. It’s an open Internet standard, produced by the Internet Engi-

neering Task Force (IETF), the same body that gave the world TCP/IP as an alternative

to the heavy weight DAP.(Howes & Smith, 1997) LDAP is a directory service, it is a

simplified database, and should not be confused with traditional database. Typically,
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it does not have the database mechanisms to support transactions (Wang et al., 2008).

Directories are flexible, secure, and can be personalized. Another defining characteristic

of a directory is that it supports Information Extensibility and Data Distribution(Howes

et al., 2003).

A computer system requires the compatibility to locate certain types of information

easily, efficiently, and quickly. As a directory service, LDAP is reasonably simple, but

provides a wealth of features. It consolidate existing services into a single directory that

can be accessed by it’s clients from various vendors, such as browsers, email clients, and

authentication protocols(Carter, 2003; Howes & Smith, 1997).

In the 1980s, two separate standard bodies, International Telegraph and Telephone

Consultative Committee, now know as International Telecommunication Union and In-

ternational Organization for Standardization (ISO) started work on directory services for

their own purpose. Eventually, the two independent directory specification efforts merged

into one effort, and X.500 standard was approved in late 1988 then published in 1990.

Like other open standards, LDAP have many implementations, from property software,

to open source software such as openLDAPHowes & Smith (1997); Voglmaier (2003).

B.5 ActiveDirectory

“Active Directory (AD) is a Microsoft network operating system (NOS) directory, built

on top of Windows 2000 and Windows Server 2003”(Richards et al., 2006; Hunter, 2006).

In 1997 Microsoft release Active Directory beta as the basis of their domain management

function(Richards et al., 2006). The initial version was released with Windows 2000 and

Windows Server 2003(Hunter, 2006). Active Directory proved to be one of the most

important new features in Windows NT 5.0. It greatly simplify the tasks involved in

administering and managing large Windows NT networks, and it improves the user’s

interaction with networked resources.

The Active Directory is also the underpinning key that enables the improvements
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in distributed system security. All resources are stored and managed on the network,

it’s easy for developers, administrators, and users to find and use. It provides a single,

consistent, open set of interfaces for performing common administrative tasks, such as

adding new users, managing printers, and locating resources throughout the distributed

computing environment(Solomon, 1998).

The Active Directory data model has many concepts similar to X.500. It includes

many other useful features such as group policies and delegation of authority that are

useful in a diverse and distributed environment such as the university (Blezard & Marceau,

2002). The directory holds objects that represent various resources, which are described

by attributes. The universe of objects that can be stored in the directory is defined in

the schema. For each object class, the schema defines what attributes an instance of the

class must have, what additional attributes it can have, and what object class can be a

parent of the current object class. This directory structure has the following key features:

• Flexible hierarchical structure.

• Efficient multimaster replication.

• Granular security delegation.

• Extensible storage of new classes of objects and properties.

• Interoperability through Lightweight Directory Access Protocol (LDAP) version 3

support.

• Scalability to millions of objects per store.

• Integrated dynamic Domain Name System (DNS) server.

• A programmable class store.

Programmability and extensibility are significant capabilities of the Active Direc-

tory. Developers and administrators deal with a single set of directory service interfaces,

regardless of the installed directory service(s). The programming interface, called the
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Active Directory Service Interfaces (ADSI), is accessible by any language. You can also

access the directory using the LDAP API. The LDAP C API, defined in RFC 1823, is a

lower-level interface available to C programmers.

To establish if the functionality offered by Active Directory above NT domains is

actually required we need to examine the functionality required in our environment for

the support of Windows clients. Some simple questions need to be asked. These questions

include the following:

• Is there anything that Microsoft Active Directory domain offers that is not read-

ily available from Samba based Windows NT or (if supported in Samba) Active

Directory domains?

• Is there anything that we need that Samba cannot provide to Windows clients?

One requirement that is clear is the availability of simple tools for use by systems

administrators for the management of existing user accounts and resources. From experi-

ence, it is the opinion of the author that the majority of regular sysadmin tasks should be

performed by scripting rather than by hand. This is the best way to ensure the consistent

application of settings, options and parameters to user and resource accounts. It is true

that in certain cases, individual settings may need to be verified and for this reason a

graphical tool is desirable. However, in many cases, the assertion or re-assertion of such

settings using a pre-defined script tool is an equally sure guarantee that the required set-

tings have been applied. The different opinions on this matter are somewhat analogous to

the difference between a stateful and a stateless approach to system management. While

one system administrator might prefer to check the settings applied to a user or resource

and to do this with a graphical tool, another might ignore the current state and simply

apply a pre-defined state using a configuration script.



Appendix C

Life-cycles of the New Simplified

FSSO System

C.1 Life-cycle 1: end-user accesses non-web base ap-

plication

1. An end-user in domain Alpha logs onto a desktop system by entering his/her cre-

dentials. The credentials are then sent to the KSSO system (Kα).

2. Kα sends a search query to the end-user database (Dα) in domain Alpha.

3. Dα returns the results to Kα.

4. Kα creates and sends a ticket granting ticket (TGTα) to the desktop system if the

credentials were found in Dα. The TGTα will be stored on the end-user’s desktop

system.

5. The end-user requests access to SSH server (SSHs) in domain Beta. The end-user

accesses SSHs using SSH client (SSHc).

6. SSHs requests the end-user to be authenticated.
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7. SSHc extracts TGTα from the desktop system and presents it to Kα. It then

requests a service ticket (STα) from Kα to access AIIPi.

8. Kα will create and send STα to SSHc if TGTα was successfully verified. STα will

be stored on end-user’s desktop system as well.

9. SSHc extracts STα from the desktop system and sends it to AIIPi.

10. AIIPi will create an identity assertion message for the end-user and and send it to

AIIPs if STα was successfully verified.

11. AIIPs accepts the end-user’s identity assertion based on the federation’s policies.

It creates a database query that searches for end-user’s provisioned identity (Iβ) in

domain Beta. It sends the query to Dβ.

12. Dβ executes the query and returns Iβ to AIIPs.

13. AIIPs uses the Iβ to authenticate to the KSSO system in domain Beta (Kβ) on

behalf of the end-user.

14. Kβ sends a search query to Dβ.

15. Dβ finds the credentials and return the result to Kβ since Iβ exists in Dβ.

16. Kβ creates and sends a ticket granting ticket (TGTβ) to AIIPs. TGTβ will be stored

in AIIPs.

17. AIIPs sends TGTβ to Kβ and requests service ticket (STβ) for SSHs on behalf of

the end-user.

18. Kβ verifies TGTβ and sends STβ to AIIPs.

19. AIIPs sends STβ to AIIPi.

20. AIIPi sends STβ to SSHc.

21. SSHc presents STβ to SSHs.

22. SSHs verifies STβ and accepts the request from SSHc.
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C.2 Life-cycle 2: end-user accesses web-based appli-

cation

1. The end-user uses a web browser (WBα) to request a web-based service (WSAγ) in

domain Beta.

2. WSAγ requests WBα to identify the domain that the end-user belongs to. WSAγ

then re-directs WBα back the web-based authentication system (WBASα) in do-

main Alpha.

3. WBα will retrieve the TGT from the desktop and send it to Kα.

4. Kα verifies the TGT and sends the service ticket ST to WBα.

5. WBα sends the ST to WBASα. IDAWA (in the WBASα) accepts the ST.

6. After IDAWA successfully verified the ST, WBASα then creates an identity assertion

message and passes it back to WBα.

7. WBα sends the identity assertion message to WSAγ.

8. WSAγ sends a search query to the end-user database in domain Beta (Dγ).

9. Dγ returns the result to WSAγ.

10. WSAγ grants the request from WBα.

C.3 Life-cycles 3: an end-user in domain Beta access

domain Alpha

1. An end-user in domain Beta logs onto a desktop system by entering his/her creden-

tials. The credentials will be sent to the Kerberos server (Kβ) in domain Beta.

2. Kβ sends a search query to the end-user database (Dβ) in domain Alpha.
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3. Dβ returns the results to Kβ.

4. Kβ will create and send a ticket granting ticket (TGTβ) to the desktop system if the

credentials were found in Dβ. The TGTβ will be stored on the end-user’s desktop

system, and it’s accessible by WBβ and SSHc.

5. The end-user uses WBβ to request WSAα in domain Alpha.

6. WSAα requests WBβ to identify the domain that the end-user belongs to. WSAα

then re-directs WBβ back the web-based authentication system (WBASβ) in do-

main Beta.

7. WBβ will retrieve the TGT from the desktop and send it to Kβ.

8. Kβ verifies the TGT and sends the service ticket ST to WBβ.

9. WBβ sends the ST to WBASβ. IDAWA (in the WBASβ) accepts the ST.

10. After IDAWA successfully verified the ST, WBASβ then creates an identity assertion

message and passes it back to WBβ.

11. WBβ sends the identity assertion message to WSAα.

12. WSAα sends a search query to the end-user database in domain Beta (Dα).

13. Dα returns the result to WBASβ.

14. WSAα grants the request from WBβ.

15. The end-user proceeds to request access to SSH server (SSHs) in domain Alpha.

The end-user accesses SSHs with SSH client (SSHc).

16. SSHs sends a authentication request to SSHc.

17. SSHc extras TGTβ from the desktop system and presents it to Kβ. It then requests

another service ticket (STβ) from Kβ to access AIIPi.

18. Kβ will create and send STβ to SSHc if TGTβ was successfully verified. STβ will

be stored on end-user’s desktop system as well.
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19. SSHc extracts STβ from the desktop system and sends it to AIIPi.

20. AIIPi will create an identity assertion message for the end-user and and send it to

AIIPs if STβ was successfully verified.

21. AIIPs accepts the end-user’s identity assertion based on the federation’s policies.

It creates a database query that searches for end-user’s provisioned identity (Iα) in

domain Alpha. It sends the query to Dα.

22. Dα executes the query and returns Iα to AIIPs.

23. AIIPs uses the Iα to authenticate to the KDC in domain Beta (Kα) on behalf of

the end-user.

24. Kα sends a search query to Dα.

25. Dα finds the credentials and return the result to Kα since Iα exists in Dα.

26. Kα creates and sends a ticket granting ticket (TGTα) to AIIPs. TGTα will be stored

in AIIPs.

27. AIIPs sends TGTα to Kα and requests service ticket (STα) for SSHs on behalf of

the end-user.

28. Kα verifies TGTα and sends STα to AIIPs.

29. AIIPs sends STα to AIIPi.

30. AIIPi sends STα to SSHc.

31. SSHc presents STα to SSHs.

32. SSHs supports Kα. It verifies STα and accepts the request from SSHc.
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