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Abstract 

This thesis presents an analysis of multiple-input/multiple-output (MIMO) where the 

objective is to provide a unified solution to the problems of (i) crosstalk coupling in 

transmission line channels (ii) multi-path fading in the time variant high frequency 

wireless channel. In the case of transmission line channels, a comparative analysis is 

presented of the performance of MIMO communications systems based on balanced 

CAT 5 twisted-pair transmission lines, balanced twisted-pair telephone transmission 

lines scheme as well as unbalanced flat-pair transmission line. The unbalanced flat-

pair transmission lines are viewed as a model for digital subscriber lines (DSLs) 

which may be deemed out-of-range for high speed internet connections because of the 

circumstances of poor balanced, high insertion losses and high degrees of crosstalk. 

This comparative analysis is then extended to examine effect of imperfect knowledge 

of the transmission line channels on MIMO communications system performance. In 

the case of wireless channels, an analysis is presented which investigates the effect of 

both the Rayleigh and Ricean channels on MIMO communications system 

performance. Again the analysis of the wireless channels is extended to examine the 

effect of imperfect knowledge of the channel on MIMO communications systems 

performance. All of the analyses in this work are based on experimentally observed 

channels.  

In the case of the transmission line channels, it is concluded that MIMO 

communications systems do offer the possibility of high speed internet connectivity 

on transmission lines that, hereto, would have been considered out-of-range for such 

services. Considering the cat 5 transmission line channels, it is concluded that the 

MIMO communications system provide enhancement at frequencies above 50 MHz 
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and therefore the possibly of extending length and coverage above the standard 100 

metres is proposed. On the other hand, the improved performance of the twisted-pair 

telephone transmission lines is consistent over the range from 300 kHz to 100 MHz 

when the MIMO system is applied. For all the transmission line channels that are 

examined, the extent of imperfect knowledge of the channel that can be allowed while 

maintaining a reasonable MIMO communications system performance is indicated.  

In the case of the wireless channels, it is concluded that MIMO communications 

system performance is better in the case of Rayleigh channel than in the case of 

Ricean channel provided that the degree of correlation of the multi-path channel 

impulse response components is equivalent. Also, as the number of transmitters and 

receivers increases, the effect of a given degree of imperfect knowledge of the 

wireless channel becomes more detrimental on MIMO communication system 

performance. This work thus indicates the extent of imperfect knowledge of the 

wireless channel that can be allowed while maintaining a reasonable MIMO 

communications system performance. The trade-off between increased capacity gain 

and decreased accuracy of knowledge of the channel as the dimension TN was 

increased is highlighted. 
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“You see, telegraph is a kind of a very, very long cat. You pull his tail in New York 

and his head is meowing in Los Angeles. Do you understand this? And radio operates 

exactly the same way: you send signals here, they receive them there. The only 

difference is that there is no cat.” 

              Albert Einstein. 
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Chapter 1: Introduction 

1.1 Introduction 

In communications systems which employ high frequency wireless links, a major 

problem is that of multi-path propagation. Given any realistic urban, sub-urban or 

indoor environment when high bandwidth wireless applications are being used, multi-

path signal propagation will occur as the transmitted electromagnetic radiation is 

reflected from objects as it travels to the receiver. The net result is a phenomenon 

known as, ‘multi-path fading’ where there occur significant losses in received power 

at certain frequencies within the bandwidth of which the wireless application would 

be operating. Moreover, the frequencies at which these losses in receive power occur 

seem to change randomly in time as a result of the fact that any realistic environment 

is dynamic in nature. In turn, communications channels which occur as result of high 

frequency wireless applications may be described as being significantly time variant. 

Historically, a possible solution to this problem is to employ what are known as 

‘diversity techniques’. Broadly speaking, these techniques seek to mitigate the 

nefarious effects of multi-path propagation by taking the signal output of two or more 

antennas at the receiver and, by virtue of the fact that on average the signal received at 

any given antenna will not experience the same multi-path fading statistics, 

reconstruct the signal in a manner where the average receive power is greater.
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In contrast, since transmission line communication channels, which are considered to 

be time invariant, operate in close proximity to one another, their bandwidth of 

operation is limited due to the electromagnetic coupling, known as ‘crosstalk’, which 

occurs as a result of this close physical proximity. As well as this, transmission lines 

also offer much higher ratios of receive signal power, P , to noise power, ϕ , than high 

bandwidth wireless communications systems. However, it can be seen from 

Shannon’s well known capacity equation for the added white Gaussian noise channel, 

i.e. ( )ϕPBC += 1log2 , that the potential data capacity, C  in bits/sec, increases only 

logarithmically with the ratio, ϕP , but increases linearly with bandwidth, B . Thus 

the benefit of increased bandwidth of operation in respect of transmission line 

communications systems becomes clear and consequently there is a benefit in terms 

of increased mitigation of the effect of crosstalk on these communications systems.  

1.2 Motivation and Approach to Analyses 

In this work, an analysis of multiple-input/multiple-output (MIMO) communications 

systems is presented. The objective is to provide a unified solution to the problems of 

(i) multi-path fading in the time variant high frequency wireless channel and (ii) 

crosstalk coupling in transmission line channels. A diagram of a MIMO 

communications system is presented in fig. 1.1 
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Figure 1.1: A MIMO Communications System. 

Clearly, 1x  and 2x are two transmit symbols whose relationship with the two receive 

symbols 1y  and 2y is based on the effect of the channel, the signal processing stages 

at both the transmit and receive ends as well as the additive noise components: 1n  and 

2n . For the sake of simplicity only two parallel data streams are considered. The 

signal processing at either end is based on knowledge of the channel.  

In relation to both transmission line channels and wireless channels, this thesis makes 

direct reference to experimentally observed channels. In the case of the transmission 

lines, the transmission line channels from the following cabling schemes are 

considered: a balanced five twisted-pair telephone line cabling scheme, a balanced 

Cat 5 four twisted-pair cabling scheme and an unbalanced flat-pair cabling scheme. 

It is argued that the physical measurements on the balanced transmission lines are 

indicative of the typical standard of transmission lines that would be seen to exist 

between a customer premises and a subscriber exchange or indicative of the typical 

standard of transmission lines that would be seen to exist in a small local area network 

(LAN). The unbalanced flat-pair transmission lines are not obviously typical of any 

component of a transmission line communications system architecture. However, it 
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should be appreciated that the physical measurements of the unbalanced transmission 

lines are at least indicative of transmission line channels where internet users in 

customer premises would normally be deemed out of range for high speed internet 

connections either due to the fact that the transmission lines are imperfectly balanced 

or that the distance between the customer premises and the subscriber exchange is so 

great that crosstalk levels and insertions losses are too high for high speed internet 

connections. It can be summarised at this point that the overall objective of all of the 

analyses presented in this work, pertaining to transmission lines, is to compare these 

balanced and unbalanced transmission line channels with regard to both SISO and 

MIMO communications systems.  

 

In the case of the wireless channels, channel impulse response measurements and 

transfer functions are derived from measurements made with ultra wideband (UWB) 

monopole antennas which have a nominal centre frequency of 5.2 GHz. The approach 

taken here is to make virtual array measurements where measurements indicative of 

antenna arrays are made by shifting a single transmit antenna and a single receive 

antenna through a series of spatial permutations. The aforementioned centre frequency 

can facilitate physical measurements which are indicative of a single carrier frequency 

centred at 5.2 GHz. Another feature of the approach taken here is the fact that the 

measurements are made in a specially constructed highly reflective enclosure which 

means that a typical channel impulse response will contain components which are 

commensurate with the idea of multi-path electromagnetic propagation between a 

transmit antenna and a receive antenna.  By removing the line-of-sight channel 

impulse response component in software, this allows for a comparison of MIMO 
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communications systems operating on Rayleigh channels with to that operating on 

Ricean channels on the condition that the degree of correlation of the multi-path 

channel impulse components remains the same.  

1.3 Structure of Thesis 

Chapter 2 presents a comprehensive literature review concerning some of the main 

challenges in designing transmission line and antenna wireless links. The continuous 

channel capacity equation was introduced as a metric for performance and contrasted 

against discrete channel capacity. The idea of what is meant by SISO or a MIMO 

communications system are defined in the separate contexts of transmission line 

channels and wireless channels. The study of Kyritsi et al. [93] concerning the effect 

of imperfect knowledge of the channel on the performance of MIMO communications 

systems will be introduced in chapter 2 since much of the analysis presented in the 

latter half of this thesis extend the conclusions of this study. Chapter 2 also seeks to 

introduce an appropriate and consistent mathematical notation which will be used 

throughout this thesis.  

Chapter 3 discusses the methodology which was used in order to obtain physical 

measurements of balanced transmission line channels, unbalanced transmission line 

channels and wireless channels. Channel matrices were derived from these 

measurements. Vectors containing the time domain impulse response of these 

channels were also derived. In the case of the transmission line channels, a novel 

aspect of these physical measurements is that direct connection and far-end crosstalk 

(FEXT) measurements were made in the frequency range from 300 kHz to 100 MHz 

on unbalanced flat-pair transmission lines which has not been reported before. In the 

case of the wireless channels, the virtual array methodology of Ingram et al.[82] [83] 
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was paralleled in order to make physical measurements in a specially built reflective 

enclosure relevant to a communications system using a transmitter array and a 

receiver array. Apart from the specially built reflective enclosure, a novel aspect of 

the overall approach for these wireless channel measurements in this chapter is the 

fact that Rayleigh channels were observed experimentally by removing in software 

the line-of-sight channel impulse response component. From this, channel matrices as 

well as vectors containing a channel impulse response were then derived. This 

allowed for an experimental comparison of Rayleigh channels with Ricean channels 

under the condition that the degree of correlation of the multi-path channel impulse 

components remains the same.  

In chapter 4, the channel matrices which were derived from the physical 

measurements in chapter 3 were related directly to capacity calculations of both 

MIMO and SISO communications systems. A comparative analysis of MIMO 

communications systems, which were based on the various transmission line channels 

mentioned previously, was presented. Specifically, the capacity calculations pertain to 

a low transmit power spectral density (PSD) of -80 dBm/Hz which would occur when 

digital subscriber lines (DSLs) operate in known radio bands as well as a high power 

spectral density of -60 dBm/Hz which would occur when DSLs are not operating in 

known radio bands. It was seen that the capacity gain for MIMO systems over SISO 

systems was minimal when the transmit PSD was -80 dBm/Hz. However, given a 

transmit PSD of -60 dBm/Hz, improvements in capacity gain were indicated. 

Specifically the MIMO capacity gain was reasonably consistent with respect to 

frequency for the case of the balanced telephone transmission lines, however the 

MIMO capacity gain for the balanced cat 5 transmission line was seen mainly at 

frequencies above 50 MHz. In the case of the unbalanced flat-pair transmission lines, 
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the capacity gain was seen mainly at frequencies below approximately 15 MHz thus 

supporting the enhancement of 2–3 MHz asymmetric digital subscriber line standards 

on poor quality transmission lines. In the case of MIMO communications systems 

based on wireless channels, the means of experimentally observing Rayleigh and 

Ricean channels was incorporated into the capacity analysis of this chapter. 

Comparative results in respect of this were presented which support the idea that 

Rayleigh channels provide superior performance. A feature of this analysis of the 

fading statistics, in relation to MIMO communications systems, is that the 

experimental observation of Rayleigh channels and Ricean channels was made where 

the degree of correlation of the multi-path channel impulse response components was 

equivalent in either case. 

The objective of chapter 5 is to support the novel ideas presented in chapter 4 by 

using simulations which incorporated appropriate physical measurements from 

chapter 3. It was seen that results analyses of this chapter offered insight into channel 

matrix conditioning which ultimately supports the analysis of chapter 4. 

Chapter 6 begins by introducing the reasons as to why the assumption of perfect 

knowledge of the channel may not be observed practically. Given the time variant 

nature of the wireless channel, it is proposed that in the case of the wireless channels, 

it is likely that the transfer functions will change at a rate incommensurate with the 

assumption of the quasi-static channel. In contrast it is proposed that in the case of the 

transmission line channels which are considered to be time-invariant, there may be 

imperfect knowledge of the channel due to incorrect assessment of the channel 

transfer functions. A random matrix that is characterised by the variance of its random 

complex normal independent and identically distributed scalar elements was 
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introduced in order to quantify the effect of imperfect knowledge of the channel. In 

the case of both the balanced twisted-pair telephone lines and the balanced twisted-

pair cat 5 transmission lines, a fairly consistent drop in capacity with respect to 

frequency for a fixed number of transit and receive elements, TN , and fixed variance, 

{ }H∆var  was observed. However, the relative drop in capacity increased as TN  was 

increased for a given fixed variance, { }H∆var . Thus a given extent of imperfect 

knowledge of the channel as characterised by the variance, { }H∆var , becomes more 

detrimental to performance as the dimension, TN , increases. The unbalanced flat-pair 

transmission line channels showed good capacity gains at relatively low frequencies, 

even with varying degrees of imperfect knowledge of the channel. Thus the idea is 

further reinforced that current 2-3 MHz ADSLs standards could therefore be deployed 

in the circumstances of poor balance, high insertion losses and high degrees of 

crosstalk using MIMO techniques. A similar analysis was performed on the capacity 

of MIMO communications systems based on wireless channels. It was concluded that 

as the amount of antennas used in the transmitter and receiver array was increased, the 

performance of the MIMO communications systems became more sensitive to the 

effect of a given variance of the random matrix. These particular results in the context 

of the MIMO communications system based on wireless channels paralleled the work 

of Kyritsi [93] and others [103] [138] [137] [14] [20] [113] [64] [143].  However 

since, in this work, the extent of the imperfect knowledge of the channel is quantified 

by the variance of the complex normally distributed scalar elements of a matrix, the 

results themselves will be seen to be novel while providing an important foundation 

for the analysis of chapter 7. 
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The focus of chapter 7 is to extend the analysis of chapter 6 by seeking to address the 

stochastic nature of the calculations therein by applying a lower bound on the capacity 

of MIMO communications systems when there is imperfect knowledge of the 

channel. In doing this, chapter 7 provides some insight into the required accuracy of 

the knowledge of the channel in order to provide a viable MIMO communications 

system. Furthermore, the analysis of chapter 7 makes reference to a quantity known as 

the leakage level. The purpose of incorporating the leakage level into the analysis is to 

introduce a degree of generality into the discussion with regard to quantifying the 

extent of the imperfect knowledge of the channel. Specifically, the use of the leakage 

level as a metric for imperfect knowledge of the channel means that the matrix, H∆ , 

may be defined in an alternative manner, e.g. a different statistical distribution, with 

reproducibility of the results contained within this chapter. Also, for any given 

dimension, TN , the drop in capacity remains consistent when the extent of the 

imperfect knowledge of the channel is quantified by the leakage level. Further to this, 

the novelty of the approach to the analysis of this chapter 7 can best be summarised 

by the fact that the derivation of lower bound on the capacity is entirely novel. 

Combining this lower bound with concept of the leakage level further extends the 

novelty of the results that are given. The results in this chapter propose appropriate 

leakage levels for each of the various channels that are considered in this work.  

In summary, the original material in this thesis is as follows: 

1. Measurements of far end crosstalk signal paths and transmission line signal 

paths on unbalanced flat-pair transmission lines over a frequency range from 

300 kHz to 100 MHz. 
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2. Incorporation of the virtual array methodology of Ingram et al. [82] [83] into a 

wireless channel measurement campaign conducted in a specially built 

reflective enclosure. Additionally, the use of software to develop these virtual 

array measurements in order to make them indicative of wireless channels 

whose fading statistics were both Rayleigh distributed and Ricean distributed 

and additionally where the degree of correlation of the multi-path channel 

impulse response components was equivalent in either case. 

3. Capacity analysis of MIMO communications systems based on balanced cat 5 

twisted-pair transmission lines, balanced telephone transmission line channels 

and unbalanced flat-pair transmission line channels. 

4. Ccapacity analysis of MIMO communications systems based on experimental 

observation of both Rayleigh and Ricean channels where the degree of 

correlation of the multi-path channel impulse response components was 

equivalent in either case. 

5. Development of SIMULINK simulations to compare multi-carrier modulation 

signals in the context of MIMO communications systems based on balanced 

cat 5 twisted-pair transmission lines, balanced telephone transmission line 

channels and unbalanced flat-pair transmission line channels. 

6. Development of SIMULINK simulations to compare multi-carrier modulation 

signals in the context of MIMO communications systems based on wireless 

channels whose fading statistics were Rayleigh distributed with those whose 

fading statistics were Ricean distributed where the degree of correlation of the 

multi-path channel impulse response components was equivalent in either 

case. 
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7. Capacity analysis of MIMO communications systems based on balanced cat 5 

twisted-pair transmission lines, balanced telephone transmission line channels 

and unbalanced flat-pair transmission line channel where the extent of 

imperfect knowledge of the channel is quantified by the variance of the 

complex normally distributed scalar elements of a matrix. 

8. Capacity analysis of MIMO communications systems wireless channels where 

the extent of imperfect knowledge of the channel is quantified by the variance 

of the complex normally distributed scalar elements of a matrix. 

9. Derivation of a novel lower bound on the capacity of MIMO communications 

systems where there is imperfect knowledge of the channel. 

10. Leakage level analysis of MIMO communications systems based on balanced 

cat 5 twisted-pair transmission lines, balanced telephone transmission line 

channels and unbalanced flat-pair transmission line channels using the lower 

bound on the capacity of MIMO communications systems. 

11. Leakage level analysis of MIMO communications systems based on wireless 

channels using the lower bound on the capacity of MIMO communications 

systems. 
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Chapter 2: Review of SISO and MIMO Communications Systems  

2.1 Introduction 

The purpose of this chapter is to discuss the concepts of single-input/single-output 

(SISO) and multiple-input/multiple-output (MIMO) communications systems while 

also making reference to appropriate mathematical notation which will be used 

throughout the thesis. Starting with Shannon’s model for a digital communications 

system, some of the main problems in designing SISO communications systems, in 

the case of both transmission line channels and wireless channels, are highlighted. In 

either case, the MIMO communications system is then introduced in a manner that 

indicates how it may be useful in solving some of the problems that have been 

highlighted in relation to SISO communications systems. 

2.2 Digital Communications Systems 

In this section, a brief overview of digital communications systems is provided. In 

1948, Shannon outlined what a digital communications system is, while also giving an 

equation, known as the Shannon capacity equation [122].  Although this equation 

assumes a boundless degree of complexity within the design of the digital 

communications system itself, it may be used to assess the performance of various 

types of digital communications system. Shannon’s paper itself is quite lengthy but a 

review of some of the key points in this paper which are relevant to this work are 

presented in this section together with the notation that will be used throughout the 

course of this work. 
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2.2.1 Description of a Digital Communications System 

In his paper, Shannon [122] defined a communications system as a series of stages. 

These are shown in fig. 2.1 

 

Figure 2.1: A digital communications system as outlined by Shannon. 

This scheme provides a model for a digital communications system. It contains an 

information source, a transmitter, a channel, a receiver and destination. The 

information source describes a signal to be sent down the channel. It can be simply an 

audio signal for radio transmission, i.e. a digital audio broadcast (DAB) system, 

which would be a single function of time. It could also be a more complex signal, 

such as a Digital Video Broadcast (DVB) where there are moving images and as such 

the signal is a function of time and other variables such as the red, green and blue 

intensity levels on the screen. The transmitter then operates on the information source 

to make these signals suitable for transmission on the channel. This may entail various 

tasks such as coding and modulation.  
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The channel is the physical medium which exists between the transmitter and the 

receiver. It is used to carry the transmitted data to the receiver but it has two very 

important characteristics, its bandwidth and the amount of additive noise that appears 

on it. When a signal is transmitted onto the channel, the bandwidth of the signal 

provides a measure of the extent of significant spectral content of the signal [157]. 

Bandwidth is trivial to define when the signal is strictly band-limited, for example in 

the case of the frequency domain representation of a sinc pulse which exhibits a sharp 

‘brickwall’ frequency response. However for signals that are not strictly band-limited, 

there is no universally accepted definition of bandwidth and a review of different 

definitions for bandwidth in this case may be found in [157]. 

Fig. 2.1 also depicts an additive noise component. Noise refers to unwanted signals 

that can disturb the processing of the signal at the receiver of the communications 

system. The receiver attempts to reconstruct the original transmit signal of the 

information source by performing various signal processing operations. Finally, the 

stage known as, ‘the destination’, describes how the information is made available to 

the person who is viewing it, e.g. certain audio-visual devices or a computer, as well 

the persons themselves. 

2.2.2 Information and Entropy 

Noise, information and the concept of ‘entropy’ are linked. Entropy is derived from 

thermodynamics and may be thought of as a measure of the degree of randomness of a 

system. In 1877, Boltzmann defined entropy, S , as [116] [102]: 

[ ]∑−= ieiB ppkS log                 (2.1) 
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ip  is the probability that a particle, “ i “, will be in a given microstate. bk is 

Boltzmann’s constant which is 23103806504.1 −×  Joules/Kelvin. 
 
The expression 

iei pp log  is summed over all particles in the system to give its entropy, S , which 

itself has units of Joules/Kelvin. The Claussius statement of the second law of 

thermodynamics states that heat flow, Q∆ , always takes place in the direction of 

going from a higher temperature body to a lower temperature body until an 

equilibrium temperature, T , occurs and never the other way around if there is no 

work done by the surroundings. The second law of thermodynamics when no work is 

done by the surroundings can be expressed as: 

T

Q
S

∆
≥∆                    (2.2) 

The increase in the entropy of states, S∆ , occurs in the cooler body due to the warmer 

body when this equilibrium temperature, T , is reached. There is never a flow of heat, 

Q∆− , from the cooler body to the warmer body, thus there is never a decrease in the 

entropy of states, S∆− , in the warmer body due to the cooler body provided no work 

is done by the surroundings. In summary, heat flow, Q∆ , and the change in entropy, 

S∆ , proceed in one direction only.  

In 1861, Maxwell challenged the second law of thermodynamics with his infamous 

“Maxwell’s demon”. Maxwell proposed that the flow of heat between two chambers 

be controlled by some entity who would have charge of a frictionless door [107]. 

When molecules from the cooler chamber were on a collision course with the door, 

the entity or Maxwell’s demon would open the door for just enough time to let them 

in to the warmer chamber. The warmer chamber would then fill up at the expense of 
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the cooler chamber. This means that there is effectively a flow of heat from the cooler 

chamber to the warmer one. The second law of thermodynamics remained valid but 

the idea brought about by Maxwell’s thought experiment persisted until 1929 when 

Szilard [43] pointed out that the demon would have to know a lot about the molecules 

in either chamber in order to perform. This led to a connection between information 

and entropy and it is from this discussion that information theory originates. This 

connection was then clarified by Shannon [122] who showed that information, like 

quantities such as mass and voltage, may be considered as measurable. In doing this 

Shannon stated that entropy, in the context of digital or telegraphic communications 

systems, was a measure of the uncertainty and hence information.  

In order to define entropy as a measure of information in the context of digital 

communication systems, it is first necessary to define a collection of N  transmit 

symbols or source symbols, X : 

{ }1210 −= NxxxxX KK                 (2.3) 

Each symbol has a probability of occurrence, ip  , such that: 

1
1

0

=∑
−

=

N

i

ip                    (2.4) 

An expression for the entropy of the source, X , written as ( )XH Ent , may now be 

written because a given probability of occurrence, ip , has been assigned to each 

symbol, ix . 
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=

1

0

2

1
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N

i i

i

iEnt

p
p

bIEXH
                 (2.5) 

( )ibI  is the information gained after observing the event ib , which has been written 

as the logarithmic function: 








ip

1
log2   in equation (2.5). Since, {}⋅E , is the ensemble 

average operator, the entropy of the source X , ( )XH Ent , is a measure of the average 

information content of the source. In the context of digital communications systems, 

the entropy or average information content, EntH , defined in equation (2.5) has units 

of bits. Shannon was able to extend this idea of entropy to the idea of communication 

system capacity or channel capacity.  

2.2.3 Mutual Information and Channel Capacity 

A model for the discrete-time memoryless channel perturbed by additive white 

Gausssian noise (AWGN) samples, in , is depicted in fig. 2.2.  

 

Figure 2.2: The discrete-time memoryless AWGN channel. 

ix  is a continuous random variable which is obtained by sampling a random process 

whose statistical characterisation does not vary with time, i.e. a stationary process. 
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This random process is band-limited to a bandwidth of B Hz. The samples, ix , are 

transmitted onto the channel over a time T secs. If the number of samples, samplesN , 

transmitted over a time, T , be defined as
1
:  

BTN samples 2=                   (2.6) 

And the relationship between the relationship between the transmit samples, ix , and 

the receive samples, iy , be defined as: 

samplesiii Ninxy ,...,2,1=+=              (2.7) 

Then the average transmit power, P , in respect of this process is:  

{ }2

ixEP =                    (2.8) 

The AWGN noise that perturbs the channel is band-limited to a bandwidth, B , and has 

a two sided power spectral density of 
2

0N
. in  is a sample of this AWGN which has 

mean of zero and a variance, ϕ , given by: 

0BN=ϕ                    (2.9) 

Consider now that the samples: ix ,and , iy , are selected from respective alphabets: 

X and Y , which denote all of the possible channel inputs and channel outputs. The 

entropy ( )XH ent  represents the uncertainty of the channel input before observing any 

                                                 

1
 B2 is the Nyquist sampling rate for the stationary process from which the samples, ix , are derived. 
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channel output. It is also possible to denote a quantity known as a conditional 

entropy, ( )YXH ent | , which represents the uncertainty of the channel input having 

observed the channel output. In respect of these entropies, the mutual information of 

the channel, ( )YXI ;  is defined as: 

( ) ( ) ( )YXHXHYXI entent |; −=               (2.10) 

( )YXI ;  may thus be thought of as the uncertainty of the channel input that is resolved 

by observing the channel output. In contrast, if two continuous Gaussian random 

variables, 
_

X and 
_

Y , are considered where ( )xf
X
−

2
 is the probability density function 

of 
_

X then: 

( )
( )

dx
xf

xfXH

X

X
ent 













=








∫
∞

∞− _

_

1
log 2

_

             (2.11) 

Since,
_

X , is a continuous function, the notation 






 _

XH ent is referred to as a differential 

entropy in contrast to the entropy ( )XH Ent  introduced in equation (2.5) which is an 

absolute entropy. The quantity 






 _

YH ent can be defined in a similar manner. Gaussian 

random variables have two very important properties [157]: 

                                                 

2
 To clarify, here’ x ’ is the dummy variable where the cumulative distribution function, ( )xF

X
− , can 

be written as ( ) 







≤=− xXPxF

X

_

 and hence the corresponding probability density function, 

( )xf
X
− , is thus written as: ( ) ( )xF

dx

d
xf

XX
−− = . 
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Property (i): For a finite variance,ϕ , the Gaussian random variable has the largest 

differential entropy attainable by any random variable. 

Property (ii): The entropy of a Gaussian random variable
_

X is uniquely determined by 

the variance of 
_

X and is independent of the mean of 
_

X . 

The channel capacity, C , is the maximum mutual information between the transmit 

and receive channel inputs, therefore: 

( ){ }YXIC ;max=                 (2.12) 

The notation, {}⋅max , refers to the maximum over all possible probability density 

functions. Keeping this mind, consider the following expressions for the mutual 

information of the channel in fig. 2.2, starting with:  

( ) ( ) ( )iientientii yxHxHyxI |; −=               (2.13) 

Mutual information ( ){ }ii yxI ; has the property of being symmetric [157], therefore: 

( ) ( ) ( )iientientii xyHyHyxI |; −=               (2.14) 

The entropy of the AWGN onto the channel, ( )ient nH , can be written [157]: 

( ) ( )iientient xyHnH |=                (2.15) 

Thus: 

( ) ( ) ( )ientientii nHyHyxI −=;                (2.16) 
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If it is assumed that iy  and in  are independent continuous Gaussian random variables 

then it can be shown that differential entropy of the variable, iy , i.e. ( )ient yH  reduces 

to [157]: 

( ) ( )[ ]ϕπ += PeyH ient 2log
2

1
2               (2.17) 

Where the variance of iy is ϕ+P . Similarly, it can also be shown that ( )ient nH  

reduces to [157]: 

( ) ( )[ ]ϕπenH ient 2log
2

1
2=                (2.18) 

Where,ϕ , was previously defined as the noise variance. Again since it has been 

assumed that iy  and in are independent continuous Gaussian random variables, 

equation (2.12) now reduces to Shannon’s famous result: 

 







+=

ϕ

P
C 1log

2

1
2                 (2.19) 

In this case, the channel capacity, C , is expressed in bits/transmission. The channel is 

used a number of times equivalent to samplesN  for the transmission of a number of 

samples equivalent to samplesN  over a time, T seconds. Therefore, the capacity per unit 

time is: 









+








=

ϕ

P

T

N
C

Sample
1log

2

1
2                (2.20) 
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By definition in equation (2.6), BTN samples 2= , thus the capacity per unit time is 

written more conveniently as: 









+=

ϕ

P
BC 1log 2                 (2.21) 

In the case of equations (2.20) and (2.21), the units ofC in this case are bits/second. 

To clarify, C  is the information capacity of a continuous channel of bandwidth 

B Hertz which is perturbed by two sided AWGN noise of power spectral density, 

2

0N
, and average transmit power, P . It is derived on the basis that the 

variables: ix , iy and in are statistically independent continuous random Gaussian 

variables. Equation (2.21) sets an upper limit on the rate of information that can be 

transmitted in order to obtain an arbitrarily low probability of error at the receiver. 
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2.2.4 The Ideal System  

Distinguishing between a signal energy and signal power, the average transmit 

power, P , defined in equation (2.8), may also be defined in terms of the transmitted 

energy per bit, bE , and the transmit bit rate in bits/sec, bR , as: 

bb REP =                  (2.22) 

Further to this, consider the specific case of the ‘ideal communications system’ [157], 

which has a transmit bit rate equivalent to the capacity, C , and thus the average 

transmit power, P , may be written as: 

CEP b=              (2.23) 

Since 0BN=ϕ , the ideal system can be defined by the expression: 









+=

B

C

N

E

B

C b

0

2 1log                 (2.24) 

Thus: 

B

C

N

EbB

C

0

12 +=             (2.25) 

0

12

N

E

B

C

b
B

C

=








−              (2.26) 

The ratio,
B

C
, may be referred to as the bandwidth efficiency of the ideal system with 
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ratio, 
0N

Eb , denoting the ratio of signal energy-per-bit to noise power spectral density. 

A plot of these ratios is shown in fig. 2.3 and together they define a capacity boundary 

on a bandwidth efficiency diagram
3
. Also shown in fig. 2.3 is the Shannon limit. The 

Shannon limit is the ratio of 
0N

Eb which can ensure reliable transmission over an 

infinite bandwidth, numerically it can be expressed as: 

dB6.1

693.0

2loglim
0

−=

=

=







∞→

e

b

B N

E

                (2.27) 

                                                 

3
 A bandwidth efficiency diagram highlights the potential trade-offs between the quantities: 

0N

Eb
and 

B

Rb
for various communication systems. Clearly for the specific case of the capacity boundary which, 

by definition, arises from the analysis of the ideal system, the quantity
B

Rb
 is equivalent to 

B

C
.  
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Figure 2.3: Bandwidth efficiency diagram showing the capacity boundary, Shannon 

limit and operating points for FSK and PSK modulation schemes of various 

constellation sizes [157]. 

 

By definition, the ratio 
B

Rb approaches zero as the Shannon boundary asymptotically 

approaches the vertical line which crosses the axis labelled 
0N

Eb  at a value of -1.6 dB.  

However, the capacity, C , for an infinite bandwidth system can be expressed 

analytically as [157]: 

( ) e
N

P
C

B
2

0

loglim =
∞→

                           (2.28) 
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Also shown in fig. 2.3 are the combinations of 
0N

Eb and
B

Rb  which ensure a probability 

of bit error of 510−=eP . These are known as known as operating points [157]. Two 

cases are considered, the case of an unencoded modulation scheme known as 

frequency shift keying (FSK) and the case of an unencoded modulation scheme 

known as phase shift keying (PSK).
4
  In either case, operating points are plotted for 

various constellation or M-ary sizes in fig 2.3. FSK clearly operates in a low power 

and high bandwidth regime since, as constellation size increases, the operating point 

shifts closer to the Shannon limit. On the contrary, PSK operates in a high power and 

low bandwidth regime since as the as the constellation size increases, the operating 

point shifts in the opposite direction because higher ratios of 
0N

Eb are required to 

maintain 510−=eP . 

Finally in this section, it is important to clarify that operating points which occur north 

or west of the capacity boundary, i.e. in the region labelled CRb > in fig 2.3, can 

never achieve an arbitrarily low probability of error, eP . To ensure an arbitrarily small 

value for eP , the operating point for a given communication system must fall south or 

east of the capacity boundary, i.e. in the region labelled CRb < in fig 2.3 . This fact is 

a consequence of Shannon’s third theorem which indicates that there is a maximum to 

the rate at which any communication system can operate reliably when the system is 

constrained in power [157].  

                                                 

4
 Equations for these operating points may be found in the appendix, A1. 
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2.2.5 The Discrete Channel 

At the end of section (2.2.3), it was stipulated that equation (2.21) was derived on the 

basis of two properties, (i) and (ii), which imply ultimately that the 

variables: ix , iy and in are continuous random Guassian variables. Hence equation 

(2.21) refers to the capacity of the continuous channel. In this section, the capacities 

of some discrete channels are computed and compared with the continuous case. In 

these discrete channels, the transmit and receive symbol alphabets are finite and are 

chosen over a uniform distribution.  

Taking the approach of Ungerboeck [159] in the context of two dimensional 

modulation schemes, the signal to noise ratio (SNR) is defined as: 

ϕ2

P
SNR =                             (2.29) 

Where P is constrained such that: 

{ } 1
2

== ixEP              (2.30) 

Consistent with Ungerboeck’s [159] approach, the capacity, C , of the continuous 

channel is calculated from: 

[ ]SNRC += 1log 2                 (2.31) 

In this case C  has units of bits per modulation interval (bits/T).  For the case of the 

various two dimensional digital modulation schemes, Ungerboeck [159] gives the 

following expression for discrete channel capacity, MC : 



Chapter 2: A Review of SISO and MIMO Communications Systems with an 

Introduction to Notation._________________________________________________ 

28 
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         (2.32) 

ix , is a sample from the transmit sequence which is derived from a given two 

dimensional modulation scheme. in is a noise sample whose variance  is ϕ2  subject to 

the constraint of the normalisation in equation (2.30). In fig. 2.4, the capacity, C , is 

plotted over a range of SNRs along with calculations of MC in the case of the 

following modulation schemes: 

• 4-PSK
5
 

• 8-PSK 

• 16-quadrature amplitude modulation (QAM) 

• 64-QAM  

Also, plots of the points which indicate bit error rates 510−=eP are shown for each of 

these modulation schemes when they are unencoded.  

                                                 

5
 4-PSK refers to phase shift keying whose constellation size or M-ary size is M = 4, etc 
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Figure 2.4: Comparison of the capacity, C , of the continuous channel with some 

discrete capacities, MC , for various two-dimensional modulation schemes including 

bit error rates: 510−=eP  with respect to SNR [159]
6
. 

Looking at fig. 2.4. the following conclusions may be drawn: 

(i) The capacity for the continuous channel increases monotonically over the 

range of SNR whereas the capacities of the discrete channels appear to 

saturate. This due to the fact that M-ary constellation schemes cannot 

transmit at rate beyond that set by M2log . Furthermore, the saturation is 

not sharp, it occurs gradually with respect to SNR. 

                                                 

6
 Not shown in fig. 2.4 is the fact that the discrete channel capacity for certain modulation schemes will 

not be as good as others for a given SNR and constellation/M-ary size. In [159], it is possible to 

compare 16-PSK with 16-QAM 
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(ii) In the high SNR region, for a given value of SNR the capacity of the M-

ary constellation schemes are less than that of the continuous channel. As 

stated in [166], this discrepancy is due to the fact that a uniform rather than 

Gaussian distribution is chosen over the signal set. 

(iii) Since the values of 510−=eP occur at SNRs that are higher than the 

theoretical error-free transmission, clearly coding effort can lower these 

SNRs.  

(i) indicates even if an appropriate modulation scheme and coding were chosen for a 

given SNR, there is a loss in SNR with respect to capacity just before saturation. The 

problem highlighted in (ii) can partially be solved by a technique known as N-sphere 

shaping. This technique involves the projection of the uniform probability 

distribution, which occurs in the discrete channel case, to an N-dimensional sphere. 

The result is a non-uniform probability distribution which approaches the Gaussian 

distribution as N approaches infinity. This technique is discussed in the context of 

phase amplitude modulation (PAM) in [166] where the discrepancy between the 

discrete and continuous channel capacity is 1.53 dB in the high SNR region. The 

improvement in capacity with respect to SNR is known as the shaping gain and the 

authors of [166] plot the shaping gain with respect to dimension, N, as well as 

discussing the relative merits of various shaping techniques. They also indicate that 

shaping gains of 1 dB are possible under certain conditions. Finally, in relation to (ii), 

at low SNRs, i.e. at 0 dB or below, the discrepancy between the continuous channel 

capacity and the discrete channel capacity becomes negligible when binary alphabets 

are used [166]. 
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This section highlights the discrepancy between the continuous channel capacity as a 

figure for merit against that of the more realistic discrete channel capacity. The reader 

is thus cautioned to the significance of the continuous capacity as metric for 

communication system performance both in the context of this thesis as well as much 

of the literature on MIMO communications systems which uses it [150] [106] [37] 

[35] [95] [108] [10] [46] [51] [50] [140] [16] [17] [40] [36] [39]. It is argued that in 

the context of this work, the analyses presented are comparative in nature and thus the 

choice of the continuous channel capacity as a figure of merit is reasonable.  

2.3 SISO Communications Systems Based on Transmission Line 

Channels 

In the context of transmission lines, a single-input/single-output (SISO) 

communications system will used throughout this thesis to designate the scenario 

depicted in fig 2.1. There is clearly one transmitter, one channel and one receiver. In 

theory any neighbouring transmission lines are thought of as SISO communications 

systems which function independently. In reality however, these communications 

systems do not function independently and as a result, it is possible to identify two 

distinct types of signal path: 

 

(i) A signal path from a given transmitter along the physically conducting 

transmission line to a corresponding receiver. 

(ii) A signal path from a given transmitter which couples onto another 

transmission line, due to far end crosstalk (FEXT), and as a result is 

detected at another receiver which is not the same as the corresponding 

receiver mentioned in (i). 
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Although crosstalk may be divided into two categories: near end crosstalk (NEXT) 

and far end crosstalk (FEXT), the analysis in this work neglects the effect of NEXT 

since it can be cancelled effectively using echo cancellation techniques [171]. In the 

analyses that follow in later chapters, figures for noise power will be chosen which 

reflect the assumption of echo canceller implantation. Considering now these signal 

paths, define a transmit vector x  as: 

 





















=

TNx

x

x

M

2

1

x                  (2.33) 

 

From the notation, it can be seen that there are TN  transmitters. Similarly defining the 

a corresponding receive vector, y : 

 





















=

TNy

y

y

M

2

1

y                  (2.34) 

 

There are clearly an equivalent number, TN , of  transmitters as receivers.  As a result 

of the two distinct signal paths identified in (i) and (ii), the relationship between a 

receive vector, y , and a transmit vector, x , may be written using Teletar’s linear 

model [152]:  

 

nHxy +=                               (2.35)     
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H is referred throughout this work as the ‘channel matrix’ and is defined as: 
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The diagonal terms of H are complex transfer functions which correspond to the 

signal paths described in (i) and the off-diagonal terms are complex transfer functions 

which correspond to the signal paths described in (ii). The vector,n , contains 

uncorrelated AWGN components and is defined: 





















=

TNn
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n

M

2

1

n                  (2.37) 

This mathematical relationship is depicted in the context of two neighbouring 

transmission lines fig. 2.5 in the context where there is no noise
7
. 

 

                                                 

7
 The vector of AWGN has been omitted from fig.2.5 for the sake of clarity.  
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Figure 2.5: A SISO communications system based on transmission line channels. 

Equations written above the various operations clarify how Teletar’s linear model in 

equation (2.7) may be applied in this situation. The dimension 2=TN . 

 

Fig. 2.5 is quite similar to the model for transmission lines as presented by Fang and 

Cioffi [49]. An expression for the capacity of the SISO communications system 

depicted in fig. 2.3 comes from work by Helenius et al [75] with similar expressions 

appearing in [163] [164]. The use of notation in this paper by Helenius [75] et al. is 

somewhat inconsistent, but it will now be set out clearly in a fashion relevant to fig. 

(2.2). Firstly consider the following notation which will used throughout this thesis: 

• Denote the scalar elements
8
 of a matrix using subscript notation: ( ) ji,⋅ . 

• Denote the diagonal elements of a matrix using the sub-script notation: ( ) ii ,⋅ 9
.  

                                                 

8
 A convention adopted by Stewart [125] is used throughout this thesis where the elements of vectors 

or matrices are referred to as scalar elements regardless of whether they are real or complex valued.  
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• Denote a vector formed from the thj column of a matrix using the notation: ( )
j

⋅ . 

• Denote the th
i element of a vector using the notation: ( )i⋅ and if the vector is 

derived from the thj column of a matrix then: ( )
j
i⋅ . 

• Denote the absolute value of a complex quantity using the notation, ⋅ .  

The capacity of the SISO communications system based on transmission line channels 

can be written in terms of the power, P , of the transmit signal as well as the AWGN 

power as detected at th
i receiver, iϕ  , as [75] : 

∑
∑

=

= 
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ϕ

                       (2.38) 

It is a common convention in literature to normalise the capacity, C , with respect to 

bandwidth and this has been done in equation (2.38). In light of what was outlined in 

section 2.2.5, C  actually refers to the bandwidth efficiency of the ideal system but 

will hereafter be simply referred to a capacity in line with convention. The units of 

C are bits/sec/Hz. Inspection of fig. 2.5, in conjunction with equation (2.38) reveals 

that in a mathematical sense it is possible to make reference to a thj transmitter, an 

th
i receiver and an th

i transmission line. P is the transmit power in watts and thus the 

product, 
2

,iiP H , is the receive power in watts at the th
i receiver as a result of a signal 

                                                                                                                                            

9
 Since in this case ji =  
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path similar to the one described in (i). iϕ  is in units watts. The term,∑
= 








ij
j

2

H , refers 

to the sum over the particular thj column vector which would intersect the relevant 

th
i row of the matrix, H . Thus the term,∑

=

−








ij

ii
j

2

,

2

HH , is a measure the FEXT 

signal paths described in (ii). Since this term appears in the denominator of equation 

(2.38) it has the same effect on the capacity as the AWGN power term, iϕ .  

Models for FEXT [75] [118] [49] [15] and, indeed, measurements of FEXT [22] [23] 

show that it is frequency dependent. This means that the term,∑
=

−








ij

ii
j

2

,

2

HH , in 

equation (2.8) increases with increasing frequency. Due to insertion losses, the 

term, ii,H , decreases with increasing frequency. In summary, SISO communications 

systems based on transmission line channels are characterised by a decrease in 

performance with increasing frequency. The capacity in equation (2.38) will thus be 

higher at lower frequencies where the effects of FEXT and insertion losses are less. 

Equation (2.38) outlines the challenges faced in transmitting signals over SISO 

communications systems based on transmission line channels and will be used in this 

thesis in calculations of the capacity of such SISO communications systems.  

2.4 MIMO Communications Systems Based on Transmission Line 

Channels 

The discussion in section 2.3 highlighted the effect of FEXT on the performance of 

SISO communications systems based on transmission channels. The MIMO 

communications systems is discussed in detail in chapter 4, however, the objective of 
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this section is to provide the reader with some brief introductory comments as to how 

MIMO communications systems based on transmission line channels can mitigate the 

effect of FEXT on performance.  

In the context of MIMO communications systems based on transmission line 

channels, Mutjabi [108] states that: 

“To develop an intuition for the capacity that can be achieved in a linear MIMO 

channel, consider the singular value decomposition of the channel matrix, H .” 

The singular value decomposition will be discussed in more detail in chapter 4 but 

when a singular value decomposition is performed on the channel matrix H , it is 

transformed into a diagonal matrix, D . D  has the same dimensions, TT NN × , as 

H but contains zero in its off-diagonal terms. As a result of this transformation, 

throughout this thesis, the capacity of MIMO communications systems will be written 

as DC :  

∑
= 













+=

TN

i

iiP
C

1

2

,

2 1log
ϕ

D
D                       (2.39) 

The units of DC  are bits/sec/Hz. Again the reader is reminded and cautioned to the 

use of the continuous channel capacity as a performance metric and the fact that DC  

may be thought of as bandwidth efficiency.   Taking into account the mathematical 

notation described and comparing equation (2.39) with equation (2.38), it can be 

concluded that the matrix, D , now shows how the receive power, P , is distributed to 

each of the th
i receivers. It is implicit within equation (2.39) that since the matrix, D , 
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in contrast with the matrix, H , contains no off-diagonal terms, there is a relative 

performance improvement over the SISO communications system based on 

transmission line channels.  

MIMO communications system based transmission line channels which use the 

singular value decomposition
10

 to achieve the capacity given in equation (2.39) 

require knowledge of the channel matrix, H , in order to provide appropriate signal 

processing at the transmit and receive end. Reasons as to why imperfect knowledge of 

the channel may arise in the context of transmission line channels are discussed in the 

works of Bostoen et. al [18] as well as  Galli and  S., Waring, D.L [57], and others 

[15] [141].  A study by Kyritsi [93] discusses the effect of imperfect knowledge of the 

channel on the Shannon capacity of MIMO communications systems, however 

Kyritsi’s study concerned itself specifically with imperfect knowledge of wireless 

channels.  

2.5 SISO Communications Systems Based on Wireless Channels 

In the case of SISO communications systems based on wireless channels, it should be 

understood that throughout this work, there is only one transmitter and one receiver. 

In contrast to SISO communications systems based on transmission line channels 

which were discussed in section 2.3, this communications system is assumed to be 

entirely independent. Objects within the vicinity of the wireless channel that exists 

between the transmitter and receiver cause the transmitted electromagnetic radiation 

                                                 

10
  As well as using the singular value decomposition as a means of creating a MIMO communications 

system based on transmission line channels, it is also possible to use the QR decomposition. The details 

of this approach can be found in [62]. 



Chapter 2: A Review of SISO and MIMO Communications Systems with an 

Introduction to Notation._________________________________________________ 

39 

to be reflected before it arrives at the receiver. This gives rise to a phenomenon 

known as multi-path fading and given a dynamic environment this will manifest itself 

as a random fluctuation in receive power. This random fluctuation may be 

characterised by a random variable, h , which is defined arbitrarily as: 

)1,0(~ Ch                  (2.40) 

The symbol, “~” should be read as, “is distributed as”. The notation C is used to 

denote some arbitrary random complex distribution. For the sake of generality in 

discussion, this particular distribution is non-specific. Typical distributions that occur 

in wireless channels are Rayleigh and Rician distributions. In this notation, the 

position of the digit, ‘0’, in parenthesis refers to the mean, i.e. zero mean, and position 

of the digit, ‘1’, in the parenthesis indicates a variance of one. The capacity of SISO 

communications systems based on wireless channels is [59] [61]:  














+=

ϕ

2

2 1log
hP

C                 (2.41) 

In equation (2.41), the units of the capacity, C , are in bits/sec/Hz. P  is the transmit 

signal power in watts while ϕ is the AWGN power as detected at the receiver  The 

quantity, C , is the capacity of a SISO communications system based on wireless 

channels at an arbitrary instant of observation since h is a random quantity. For 

analyses of this type, the channel is assumed to be ‘quasi-static’ [59] [61] [152] [150]. 

This means that a finite amount of information, usually referred to as a, ‘burst’, is able 

to be transmitted over the channel before its transfer function changes. 
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The capacity defined in equation (2.41) is changes randomly with each instance h . As 

a result of this, two common types of capacity calculation are used to assess the 

performance of SISO communications system based on wireless channels. In work by 

Gesbert [59], these two capacities are referred to as (i) the outage capacity, OutC , and 

(ii) the average capacity, AvC , both of which measured in bits/sec/Hz. An expression 

for the capacity, OutC , is [59]: 

       (2.42)                                                                   

Here the notation, ‘ { } %9.99≥CProb ’, should read as, ‘that capacity, C , that can be 

guaranteed 99.9 % of the time’, or indeed simply, ‘that capacity, C , that can be 

guaranteed with a high level of certainty’. The quantity, AvC , is defined as the capacity 

that arises when the average is taken over all possible occurrences of C as it is defined 

in equation (2.41). In practice, AvC , is usually this average calculated over an 

arbitrarily large amount of trials. If both methods for calculating, AvC , should be equal 

then it is referred to as the, ‘ergodic’ capacity in bits/sec/Hz. For the purposes of this 

work, AvC  and the ‘ergodic capacity’ will be thought of as interchangeable terms. 

When the ratio, 
ϕ

P
, is 10 dB, results presented by Gesbert [59] show that OutC , for a 

SISO communications system based on wireless channels which is centred on a 

nominal carrier frequency, is approximately 0 bits/sec/Hz. The same results also show 

that AvC , in the same case, is 3 bits/sec/Hz.  

Although, no specific remarks have been made with regard to transmit and receive 

element complexity, it can be concluded at this point that performance of SISO 

{ } %9.99≥= CCOut Prob
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communications systems based on wireless channels are possible but that they may, at 

times, exhibit a degree of unreliability. It is stressed that by highlighting multi-path 

fading in respect of the time variant nature of the wireless channel, the objective in 

this section was to outline the challenges in designing SISO communications systems 

based on wireless channels. It is not, however, the objective of this work in this thesis 

to address the time variant nature of the wireless channel in the context of SISO 

communications systems and as such no results will ever be offered in this respect. As 

a result of this, in any future calculations presented in this work of the Shannon 

capacity of SISO communications systems based on wireless channels, the variable 

h will be set to unity.  

2.6 MIMO communications Systems Based on Wireless Channels 

 

In contrast to MIMO communications systems based on transmission line channels, 

the literature on MIMO communications systems based on wireless channels is 

markedly more extensive and encompasses a greater amount of techniques for 

implementation. In order to reflect this in the context of a literature review, this 

section is divided three sub-sections. Firstly, section 2.6.1 introduces antenna 

diversity. Although the content of section 2.6.1 is not to be considered as a discussion 

MIMO communications systems per se, it does however introduce many relevant 

concepts. The MIMO communications system will be introduced from the point of 

view of a discussion of space-time codes which will be provided in section 2.6.2. It 

will be seen that the discussion in section 2.6.2 is pertinent to MIMO communications 

systems since multiple transmit and multiple receive elements can be utilised by 
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space-time codes. In section 2.6.3, Foschini’s layered architecture or ‘BLAST’ (Bell 

Labs’ Layered Space-Time) is first discussed and then from this the relevance of the 

singular value decomposition to MIMO communications systems based on wireless 

channels is introduced. This will then be seen to unify the approach taken in this 

thesis in relation to the discussion of MIMO communications systems based on 

wireless channels and the MIMO communications systems based on transmission line 

channels. 

2.6.1 Antenna Diversity 

The concept of antenna diversity refers to the idea of using multiple elements at either 

end of a communications link to mitigate the effect of multi-path propagation and the 

time variant nature of the wireless channel. In a practical sense, many different types 

of antenna diversity exist which are classed by the method in which the signals at the 

receive end are combined. A comprehensive discussion of these practical aspects of 

antenna diversity can be found in the text by Durgin [47]. The focus of the discussion 

in this section is on a capacity analysis of antenna diversity with some accompanying 

comments of communications system complexity.  

The idea is now considered where antenna diversity can be achieved when there are 

multiple antennas at the transmitter and one antenna at the receiver. This can be 

referred to as a multiple-input/single-output (MISO) wireless link. It is also possible 

to consider the idea that antenna diversity can be achieved in a situation where there is 

one antenna at the transmitter and multiple antennas at the receiver, this can be 

referred to as a single-input/multiple-output (SIMO) wireless link. In this section, the 

number of receive elements will be denoted by RN  and the number transmit elements 
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will be denoted TN . Furthermore in this section, unless otherwise stated, TN  will be 

set 1=TN . This means that the SIMO wireless link will be discussed for the most 

part in this section. For a given amount of receive antennas RN , as indicated, there 

will be RN  individual transfer functions for each of the wireless channels which exist 

between the transmit element and the RN various receive elements. Taking the 

specific case where an identical antenna pattern and polarization are used, such a 

communications system is said to be exploiting ‘spatial divserity’ [49]. In relation to 

this, a vector of transfer functions, i.e.h , may now be defined. 





















=

jh

h

h

M

2

1

h                             (2.43) 

Again for the sake of generality, define the elements of h  as: )1,0(~ Ch . The relevant 

expression for the capacity, in bits/sec/Hz, is: 









+= hh

TP
C

ϕ
1log 2                            (2.44) 

The notation, ( )T
⋅ , denotes the conjugate transpose of a vector. Gesbert [59] states that 

the impact of such a communications scheme on the capacity is to increase both the 

outage capacity, OutC , and the average AvC  over the single transmit and receive 

element scheme making the link more reliable. In a mathematical sense the ratio, 

hhTP

ϕ
, will be seen to increase with increasing amount of receive elements. 

However, this improvement in performance is quite gradual with respect to increasing 
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the number receiver elements because the quantity, hhT , is increasing inside the 2log  

function. Gesbert [59] also warns that the, “spatial diversity benefits quickly level 

off”, by making direct reference to two situations. The first situation is where there 

are eight receive elements with the second situation being where there are nineteen 

receive elements. Gesbert [59] shows that this increase in receive elements from eight 

to nineteen has little effect on both of the capacities OutC , and AvC .  

Durgin [47] and Vucetic et al [135] highlight that, in theory, the increase in Shannon 

capacity is equivalent for the situation where RN  is set 1=RN  and the dimension TN  

is increased. Indeed, Wennstrom [139] argues that when an antenna diversity 

technique known as beamforming is used in the case of multiple transmit elements, 

then such an antenna set-up can, in a practical sense, be optimal in terms of 

approaching Shannon capacity for a given ratio, 
ϕ

P
. The concept of beamforming is 

described in work by Haynes [73]. In short, beamforming, for the case of multiple 

transmit elements, would use weights derived from knowledge of the communications 

channels between each transmit element and the receive element. In [139], 

Wennstrom’s observation is independent of any practical consideration of 

communication system complexity. It is generally more convenient, in terms of 

communications system complexity, to obtain knowledge of the wireless channel at 

the receive end than the transmit end [59] [61]. Indeed, Gesbert [59] argues that 

multiple antennas at the transmit end, given the case where there is no knowledge of 

the channel at the transmit end, has the net effect of only increasing the outage 

capacity, OutC , and not the average capacity, AvC . This would appear to indicate that 

there is only an increase in the reliability of the communications link but not an 
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increase in its average capacity. In contrast to this, for multiple receive elements both 

quantities OutC  and AvC are seen to increase due to more easily obtainable knowledge 

of the wireless channel. 

This section has thus argued that, from a capacity perspective, it is logical to restrict 

the amount of transmit antennas to 1=TN , while allowing for there to be multiple 

receive elements, i.e. a SIMO wireless link. This does not mean, however, that 

antenna communications systems with multiple transmit antennas are never 

considered as will be seen in section 2.6.2. 

2.6.2 Space-Time Codes 

In relation to space-time codes, there two main types of coding paradigm for these  

MIMO communications systems [61]. These two categories are known as space-time 

trellis codes (STTCs) and space-time block codes (STBCs). For a given ratio of 

transmit signal power, P  to noise power ratio, ϕ ,  i.e. 
ϕ

P
, STTCs appear as an 

attractive means of transmitting data in this context since they offer superior bit error 

rates (BERs). This means that STTCs offer superior ‘coding gain’ by comparison to 

STBCs. However, the complexity overhead of STTCs is such that the degree of 

attention that they are receiving in literature is gradually being superseded by the 

relatively lower complexity STBCs [59]. The greater emphasis on the appropriate 

design of STBCs that occurs in literature will be reflected here by discussing only 

STBSs and not STTCs. A comparative study of STTcs and STBCs may be found in 

work by Sandhu et al.  [119]. 
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Considering the case where is one transmit antenna and two receive antennas, 

Alamouti [2] was the first to consider the idea of a space-time block code (STBC) 

where, in a spatial sense, the data are transmitted in blocks of symbols rather than one 

symbol at a time. Firstly, two symbols: 0s  and 1s , where C, 10 ∈ss , are launched 

onto the communications channel over an arbitrary length time interval. Secondly, 

over the next similar time interval, another pair of symbols are launched which bear a 

specific mathematical relationship with respect to the first pair, these are: Ts1−  and 

T
s0 . Denoting the conjugate transpose of a complex number as, ( )T

⋅ , it is now possible 

to consider a matrix,S :  








 −
=

T

T

ss

ss

01

10S                 (2.45) 

The rows of S denote antennas while the columns denote time-slots. Fig. 2.6 depicts 

Alamouti’s  STBC communications system. 
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Figure 2.6: Alamouti’s Space-Time Block Code Communications System. 

The receiver detects and then collects data over two timeframes.  If the vector of 

channel transfer functions is written as [ ]10 , hh=h , then the appropriate receive 

vector, y , is written as: 

nhSy +=                  (2.46) 

The vector, n , is a vector of uncorrelated AWGN components. The matrix S  may be 

thought of as a means of coding the two symbols, 0s  and 1s , across space and time 

and indeed may be thought of as an, ‘array in time’. The mapping: 
_

yy →  depicted on 

the right hand side (RHS) of fig. 2.6 is now described in a series of mathematical 

steps. Although, h has been defined in this context as a vector, if the vector Ty is now 

considered then equation (2.46) may be rewritten as [61] [109]: 
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nsHy +=
_

T                  (2.47) 

The vector, s , contains the scalars which occur in time slot one and is defined as:  









=

1
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s

s
s                  (2.48) 

This leaves the matrix,
_

H , to be defined as: 
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H                 (2.49) 

This matrix 
_

H is orthogonal by design when subject to appropriate normalisation as 

can be seen in the expression which follows: 

[ ] 2

2

1

2

0

____

IHHHH hh

HH

+==               (2.50) 

The matrix, 2I , refers to the 22 × identity matrix and the notation, ( )H
⋅ , refers to the 

Hermitian transpose or conjugate transpose of a matrix. In order to decode the 

symbols at the receiver, the assumption made is that the channel transfer functions 

contained in [ ]10 , hh=h  remain constant over the time period which is constituted by 

the two time slots, i.e. time slot 1 and time slot 2. Setting the factor,α , 

2

1

2

0 hh +=α , then another receive vector, 
_

y may be defined as: 

___

nsyHy +== αT

H

                (2.51) 



Chapter 2: A Review of SISO and MIMO Communications Systems with an 

Introduction to Notation._________________________________________________ 

49 

Where the vector 
_

n  is defined as: 

nHn

H__

= .                  (2.52) 

The vector, 
_

y , is then passed to the maximum likelihood decoder whose task it is to 

retrieve the original transmit vector s  from 
_

y . In summary therefore, this 

communications system may be thought of as retrieving two complex symbols based 

on the appropriate transmission of four complex symbols as contained in the matrix, 

S . An appropriate expression for maximum likelihood detection in this context is 

given as:  

2
_

sys α−= minarg     Ts ∈             (2.53) 

The notation, ( ) ( ) 2
⋅−⋅ , refers to the squared Euclidean distance between two vectors. 

The matrix, T , is defined here as a matrix that contains all possible combinations of 

the scalars contained in s . The notation, minarg ,thus means that the vector s is 

selected iteratively from the matrix T  on the basis that the Euclidean distance squared 

between the vectors sα  and 
_

y is minimised. Gesbert [61] gives an expression for the 

SNR of this communications system:  

α
ϕ

P
SNR =                    (2.54) 

As stated by Durgin [47], this Alamouti STBC communications system is equivalent 

to a communications system consisting of one transmitter and two receivers. 
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However, in reality, transmit diversity has now been achieved without the need for 

knowledge of the channels at the transmitter. It is also possible to implement a similar 

communications system using the same STBC for the case where there are two 

receivers [47]. 

The Almouti STBC is a transmission rate one code, which means that there is a one-

to-one correspondence between the number of input symbols to the number of output 

symbols into the space time coder. Alamouti’s scheme is unique when a modulation 

scheme using complex valued constellations is used in this particular regard. 

Specifically, the dimension of the transmit vector s  is equivalent to the dimensions of 

a square matrix 
_

H . This one-to-one correspondence means that there is no coding 

delay or that there is a code rate of unity. Should 
_

H be rectangular in respect of s , this 

one-to-one correspondence does not hold and there is said to be a coding delay.   In 

equation (2.51) the matrix,
_

H , which arises from the space-time code S , is square. 

However for situations where 2>TN  with C∈s
11

, in a mathematical sense, the 

matrices S  and 
_

H can never be square in dimension giving rise to a coding delay. If 

the mathematical condition C∈s  is changed to R∈s , then for the cases where 

8,4,2=TN
12

 it is possible to attain a full transmission rate [135][130][128]. This 

means that a one-to-one correspondence between the number of input symbols to the 

number of output symbols into the space time coder can be achieved. The reason for 

this is that square orthogonal code designs do exist in the case of real numbers but not 

                                                 

11
 C∈ denotes the set of complex numbers. R∈ denotes the set of real valued numbers. 

12
 As noted in [130], for the case where 4=TN , this particular STBC is based on Hamilton’s famous 

quaternion number. 
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for complex numbers. In a practical sense, this may mean sacrificing the amount of 

information in the modulation scheme for the low complexity in the STBC scheme. 

This could mean switching from a quadrature amplitude modulation (QAM) scheme 

which would require C∈s , to a pulse amplitude modulation scheme which only 

requires R∈s . However, Tarokh et al [128] have shown that complex modulation 

constellations can achieve, at the very maximum, a 
4

3
transmission rate by appropriate 

design of the code matrix for cases where 4,3=TN  only. They further showed that 

for all cases where 4>TN , the maximum transmission rate is 
2

1
. Also, in an attempt 

to remedy this barrier offered here by mathematics, Tirkkonen et al. have introduced, 

‘quasi-orthogonal’ STBCs [131]. In this case, the transmission rate of one is 

maintained for the case where 2>TN  with C∈s , but there is a loss in the BER 

performance, due to a loss in orthogonality or the ‘quasi-orthogonality’ offered by the 

code matrix. This loss in BER is a trade off for the superior transmission rate.    

Using space-time block codes it is therefore possible to minimise the effect of multi-

path fading by using an orthogonal code design to exploit antenna diversity provided 

by TN , transmit elements.  Space-time block codes therefore form the basis for a type 

of MIMO communications system. Although they do not offer the same degree of 

coding gain by comparison to STTC coding techniques, their comparably lower 

complexity is attractive from a design complexity point of view. One particular 

drawback of STBCs that has not been addressed here so far is the detrimental effect of 

imperfect knowledge of the channel on their performance. A possible solution to this 

is to use diffrential STBC (DSTBC) coding designs which do not require channel 
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knowledge at either the receiver or the transmitter. Work, by Tarokh [135] and others 

[129] [79] [77] [76], has addressed the design of DSTBCs. The basic premise on 

which they operate is that the data is encoded with respect to the interval between the 

symbols as opposed to encoding the data with respect to the actual value of the 

symbols themselves. However, successful operation of these differential STBCs is 

contingent on the quasi-static assumption holding for each burst of data. The drop in 

coding gain for the DSTBC designs is 3 dB with respect to the conventional STBCs 

discussed previously. 

Finally, the invention of turbo coding technique in 1993 jointly by Berrou, Glavieux 

and Thitimajshima [147], is noted as a type of coding technique that can achieve near 

Shannon capacity results. Recent research at most notably the University of York has 

seen the proposal of a new type of space-time coding called, ‘differential turbo space-

time block coding’ based on turbo coding over a rapidly changing channel where the 

quasi-static assumption no longer holds. The interested reader is referred to [123] 

[146] [145]. 

2.6.3 MIMO Communications Systems Based on Wireless Channels 

In order to introduce an appropriate expression for the capacity of MIMO 

communications systems based on wireless channels, it is necessary to start with a 

brief mathematical description of what has been described as one of the first MIMO 

prototypes [47], i.e. Foschini’s layered architecture. This system is sometimes referred 

to as ‘BLAST’ (Bell Labs’ Layered Space-Time) architecture.  
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A more detailed description of this architecture can be found in [55] but Foschini’s 

layered architecture is now described concisely as follows. Defining the channel 

matrix, H , as:  

)1,0(~ CRH                  (2.55) 

Specifically an uncorrelated Rayleigh fading channel with equal average power on all 

elements is considered and thus the notation,CR , denotes the complex Rayleigh 

distribution. This specific channel fading scenario has been described by Durgin [47] 

as the ideal MIMO channel and allows for the derivation of specific capacity 

equations which will be given at a later stage. To simplify the analysis here, the 

noiseless case of Teletar’s linear model is given as:   

Hxy =                  (2.56) 

Since
13

: 

IHH =−1 ,                 (2.57) 

Then:  

IxxHHy == −1                 (2.58) 

Thus in theory, each channel could then be separated by a simple linear combination 

of 1−H  on the receive vector y and thus the transmit vector x  could be retrieved at the 

receiver. The problem with such a straightforward architecture, however, is the 

                                                 

13
 The notation, ( ) 1−

⋅ , refers to matrix inverse throughout.  
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presence of low powered channels between the transmit elements and the receive 

elements [47]. As result, some of data streams between the transmit elements and the 

receive elements which arise due to appropriate partitioning of the data into x  can be 

irretrievable.  

Foschini’s layered architecture offers a solution to this problem by cycling the data 

before partitioning it in x . The result of this is that each data stream or, indeed simply, 

each element of the transmit vector x  will experience on average the same channel. In 

terms of the scalar elements of the vector, x , the correspondence between these scalar 

elements and a given transmit element shifts with respect to an allotted time slot. This 

idea is highlighted in fig. 2.7 for a communications system where 4=TN . In this case, 

a ‘layer’ corresponds to four time slots, with layer 1 equal to time slots one through to 

four, layer two is then equal to time slots two through to five, etc 
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Figure 2.7: Transmission Scheme for Foschini’s layered architecture for 4=TN . 

Time slot 6 would come next and it reverts back to the sequence in time slot 2 and the 

cycle continues. Each layer corresponds to four time slots.  

 

For this communications system, it is necessary to elaborate on the noiseless case of 

Teletar’s linear model in equation (2.56). Although the matrix, H , may change from 

time slot to time slot, it is assumed to remain constant with respect to a given layer. In 

the context of a time period corresponding to one layer: 

)()( tt Hxy =                  (2.59) 
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The transmit vector, )(tx , will be a function of the time slot number, t . Each scalar 

element with the vector x will correspond to a component of the transmit data stream. 

A similar conclusion can be inferred for the receiver vector, )(ty . At the receiver, the 

first data stream, 
_

1x  which corresponds to the transmitted scalar element 1x , is 

retrieved from layer one. In theory, of course 1

_

1 xx ≈ , but the notation, “
−

”, serves to 

distinguish the fact that 
_

1x  is retrieved from appropriate the stream of received data, 

corresponding to the vector y , thus: 

)()(
1

1
1

_

1 ttx i
j

xHH
−=     TNji ,...,2,1, =∀  

[ ] )(0001 tx=                 (2.60) 

1
iH refers to the first column of H since equation (2.60) has been qualified by the 

notation TNji ,...,2,1, =∀ . By virtue of the same qualifying notation, 
j

1
1−

H refers to 

first row of the matrix 1−H . Layer two can now be used to retrieve the data stream 

which corresponds to
_

2 )(tx : 

)()(
2

2
1

_

2 ttx i
j

xHH
−=     TNji ,...,3,2, =∀  

[ ] )(0010 tx=                 (2.61) 

The process outlined in equation (2.60) is similar to the process in equation (2.61) 

with the key difference that the qualifying notation has been changed to 
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TNji ,...,3,2, =∀ . This now means that 
j

2
1−

H  refers to the second row of 1−H  but 

where the mathematical effect of the first column of 1−H has been removed, similarly 

2
iH is the second column of H but where the mathematical effect of the first row has 

been removed. This process is referred to as ‘interference suppression’ which has 

been applied at this stage. It can be applied because the data stream referred to as 

)(
_

1 tx is known and is removed from the receive signal vector )(ty . In a mathematical 

sense, the removal of )(
_

1 tx corresponds to an increase in the degrees of freedom 

which define 
_

2 )(tx . From a practical point of view it is also possible to say that there 

has been increase in the diversity order. A similar conclusion can be inferred for the 

calculation of the data stream 
_

3 )(tx in layer three but where there would be a further 

increase in the diversity order due to the fact that the effect of the removal of data 

streams )(
_

1 tx  and 
_

2 )(tx . 

Clearly in order to retrieve all the data streams, a computation of the matrix, 1−H , is 

necessary. This can be achieved using the singular value decomposition or the QR 

composition and a comparison of either method may be found in [142].  The capacity, 

in bits/sec/Hz, of the channel which corresponds to the data stream, )(
_

1 tx , i.e. 

))((
_

1 txC , is written as [150] [55] [47]:  









+= 2
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_

1 1log))(( χ
ϕ

P
txC                (2.62) 
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Owing to the way in which the channel matrix, H , was defined in equation (2.55), the 

variable, 2χ , is chi-squared random variable. The qualifying subscript notation, ( )2⋅ , 

which indicates that it has two degrees of freedom. 

Similarly, in the case of ))((
_

2 txC , the corresponding chi-squared random 

variable, 2χ , will have four degrees of freedom, thus: 
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_

2 1log))(( χ
ϕ

P
txC                (2.63) 

The total capacity, C , in bits/sec/Hz, for a MIMO communications system defined by 

the dimension, TN , of this type is given as [55]: 

∑
=
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k

P
C

1

2

22 1log χ
ϕ

               (2.64) 

Equation (2.64) holds on the basis that the channel matrix, H , was defined in terms of 

a complex Rayleigh distribution. Durgin [47] summarises Foschini’s layered space-

time architecture in the context where 4=TN  as follows:  

“…the receiver buffers the incoming streams of data and extracts streams in steps, 

each step lasting the duration of one single time slot. At every step, the receiver 

detects a layer of data, consisting of a single stream spanning a block of four time 

slots….This continues for other layers until time slot 5, when the receiver returned to 

detect the layer corresponding to stream 1.”  
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Ariyavisitakul [7] [8] then showed that equation (2.64) was in actual fact a tight 

mathematical lower bound on a more optimal expression for the capacity. 

Ariyavisitakul provides a rigorous mathematical proof of this fact in the appendix to 

[8]. This more optimal expression for the capacity is written as [8]:   

{ }∑
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2 1log HHD λ
ϕ

              (2.65) 

The notation, DC , is used here by anaology with case of the MIMO communications 

system based on the transmission line channels. {}⋅kλ denotes the th
k eigenvalue of a 

matrix. In equation (2.65), { }H

k HHλ  refers to the th
k eigenvalue of the matrix HHH . 

In relation to capacity gain offered by MIMO wireless systems, Gesbert [61] states 

that: 

“the first results hinting at the capacity gains of MIMO (wireless communications 

systems) were published by Winters [140].” 

Foschini and Gans [150] refer to equation (2.65) in a more general sense as the 

‘convenient formula for generalised capacity’ in the context of wireless MIMO 

communications systems. Also, as indicated by Nguyen et al. [110] and Anderson [5], 

the most elegant means of achieving the capacity in equation (2.65) is to use the 

singular value decomposition. In common with many of the expressions for capacity 

thus far presented, the reader is reminded that equation (2.65) is in respect of 

continuous channels. 
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MIMO communications systems based on wireless channels require knowledge of the 

channel transfer functions given by the channel matrix, H . In the case of the wireless 

channels, this is likely to occur because the channel changes at a rate quicker than the 

rate at which bursts of information are transmitted. The effect of this has been 

outlined in the studies by Médard [103], Weber et al [138] [137], Kyritsi et al. [93], 

Berriche et al. [14], Cano-Gutierrez et al. [20], and others [113] [64] [143] [153]. 

Indeed, Kyritsi et al. [93] concluded that as the amount of antennas used in the 

transmitter and receiver array was increased, the performance of the MIMO 

communications systems became more sensitive to a given extent of imperfect 

knowledge of the channel. Since the extent of imperfect knowledge of the channel is 

effectively defined as random quantity, studies by McKay and Collings [153], 

Goldsmith and Yoo [64] and Médard [103] have considered the derivation of a lower 

bound on the Shannon capacity of MIMO communications systems based on wireless 

channels.  

2.7 Summary 

In this chapter, the equation for the capacity of a communications system was 

introduced. The distinction was made between a continuous channel and a channel 

which uses discrete modulation schemes and thus the reader has been cautioned on the 

way in which the capacity metric is being applied throughout this thesis. The concepts 

of single-input/single-output (SISO) communications systems and multiple-

input/multiple-output (MIMO) communications systems were introduced in the 

separate cases of transmission line channels and wireless channels. It is clarified that 

SISO in the context of transmission line channels refers to multiple neighbouring 



Chapter 2: A Review of SISO and MIMO Communications Systems with an 

Introduction to Notation._________________________________________________ 

61 

transmission lines which couple each other in a nefarious manner due to FEXT. While 

MIMO, in this context, refers to the idea of using appropriate signal processing to 

mitigate the nefarious effect of FEXT coupling. In contrast, SISO in the context of 

wireless channels refers to idea of using a single transmit and single receive antenna 

for communication. While MIMO in this context refers to the use of using an array 

transmit antennas and an array of receive antennas.   In either case, the approach taken 

was to introduce how limitations in SISO communications systems may be overcome 

by MIMO communications systems. The problem associated with channel knowledge 

in MIMO communications systems has also been highlighted. 
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Chapter 3: Experimental Observation of Channels 

3.1 Introduction 

Experimental observation of communications channels requires making physical 

measurements. The objective of this chapter is to outline the methodologies for 

making physical measurements on transmission line channels and wireless channels. 

Channel matrices containing transfer functions and vectors containing channel 

impulse responses will then be derived. The channel matrices are required to support 

the analysis of chapters 4, 6 and 7, whereas vectors containing appropriate channel 

impulse responses are required for the simulation model which will be introduced in 

chapters 5. The physical measurements of transmission line channels parallels the 

methodology of that described by Bostoen et al [18]. A novel aspect of this is the fact 

that direct connection and far-end crosstalk (FEXT) measurements are made in the 

frequency range from 300 kHz to 100 MHz on unbalanced transmission lines which 

has not been reported before. In the case of the wireless channels, the virtual array 

methodology of Ingram et al.[82] [83] is paralleled in order to make physical 

measurements indicative of a communications system using a transmitter array and a 

receiver array. However a novel aspect of the overall approach outlined for these 

wireless measurements is the fact that a specially constructed enclosure was built 

which was seen to be rich in multi-path reflections. As a result of this, Rayleigh 

channels are observed experimentally by removing in software the line-of-sight 

channel impulse response component. For the sake of clarity, all matrices and vectors 

which have been defined in this chapter are listed at the end of the chapter in order to 

provide a summary. 

 



Chapter 3: Experimental Observation of Channels_____________________________ 

63 

3.2 Transmission Line Channels 

Physical measurement of gain and phase variation of the transmission scattering 

parameter ( S -parameter), 21S , with frequency is central to the determination of the 

elements of channel matrix. 21S , is a two-port measurement of the ratio of the receive 

voltage to transmit voltage over a swept frequency response. In this work, this swept 

frequency response is from 300 kHz to 100 MHz. Measurements of 21S are made 

under matched conditions. In the case of the transmission line channels, 

measurements are made in both the frequency and time domain. Considering firstly, 

the frequency domain, the reader is reminded of the channel matrix introduced in 

chapter 2: 
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There are two distinct signal paths which were illustrated in chapter 2 and as can be 

seen in fig. 3.1, the off-diagonal terms of equation (3.1) pertain to measurements of 

far end crosstalk signal paths while the diagonal terms pertain to measurements of the 

direct connection signal paths. In both cases, transfer functions are calculated from: 

{ }2121, exp SjSh ji ∠=                   (3.2) 

21S  is the magnitude of 21S while 21S∠ is the phase angle of 21S . The measurement 

set-up is depicted in fig. 3.2.  



Chapter 3: Experimental Observation of Channels_____________________________ 

64 

 

Figure 3.1: A multi-transmission line communications system defined by 2=TN . 

The ground plane of the transmission lines has been omitted for the sake of generality. 

Equations are written above the various operations. 

 

 Figure 3.2: Experimental set-up for measurements of the S -parameters: 11S  and 21S   
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Measurements were made using a HP 85047A microwave network analyser (MNA) 

capable of performing a swept frequency response over frequency range 300 kHz to 6 

MHz. Fig. 3.2 shows that a balun may be switched in or out via a toggle switch to 

facilitate balanced or unbalanced transmission line operation. When the toggle switch 

is set to, ‘B’, the balun is activated. The balun is a device which facilitates an 

appropriate electrical interaction between the unbalanced currents in the co-axial 

cables and the balanced currents which are used in transmission over twisted-pair. The 

balun used was a 93 Ω  BNC plug to RJ45 socket balun which was compatible with 

IBM 3270 system wiring [170]. Since the unbalanced transmission line would 

inherently not require a balanced current, the toggle switch, for the balun described, 

would be set to, ‘U’, for unbalanced transmission. Circuit diagrams which distinguish 

between balanced and unbalanced transmission are presented in fig 3.3 and 3.4. In 

either case, the reference plane of measurement may be extended just beyond the 

toggle switch for the balun, to the transmission line by means of a response calibration 

of the MNA. In the case of balanced transmission line measurements, this removed 

the effect of the balun on the measurements. It was done using the S -parameter test 

kit which is incorporated into the MNA.  As a result of this response calibration, 

measurements were made exclusive of the effects of the co-axial leads. All 

transmission lines were removed from reels and were laid around the perimeter of the 

laboratory in order to make the measurements free from the effect of any cross 

coupling that would exist as the result of being on a reel. Three distinct types of 

transmission lines were measured and are described in table 3.1. 
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Figure 3.3: Circuit diagram depicting the balanced transmission line scheme. The 

transmission line has been depicted by the lumped component, 0Z . Matching is 

assumed thus: SL ZZZ ==0  . 

 

 

 

Figure 3.4: Circuit diagram depicting the unbalanced transmission line scheme. The 

transmission line has been depicted by the lumped component, 0Z . Matching is 

assumed thus: SL ZZZ ==0  . 
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Transmission Line 

Type 

Length Twist-Rate Thickness 

Cat 5 – Complies 

and exceeds 

ANSI/TIA/EIA
14

 

568-A-5 and 

ISO/IEC 11801 

drafts. Four 

Twisted-Pairs. 

88 metres Varied between 

one twist per cm 

and one twist per 3 

cm length. 

Different rate on 

each pair. 

0.5 mm: American 

wire guage (AWG) 

24 

Twisted-Pair 

Telephone cable. 

Five Twisted-Pairs 

88 metres 1 twist per 8 cm. 

The same twist rate 

on all pairs 

0.8 mm: AWG 20 

Flat Pair: Burglar 

Alarm cable. Three 

Pairs 

88 metres Not Applicable 0.4 mm: AWG 26 

 

Table 3.1: Specifications of experimentally observed transmission line channels. 

In figs. 3.4 and 3.5, LZ  is the impedance into port two of the MNA and SZ is the 

output impedance at port one of the MNA. Measurements were made under matched 

conditions and thus Ω=== 1000 SL ZZZ . In reality, any transmission line would be 

lossy over a frequency range of 300 kHz to 100 MHz and thus 0Z  is complex and 

varies with frequency. Indeed the four transmission line parameters R, L, G and C can 

readily be plotted for the case of Cat 5 transmission lines with respect to the frequency 

                                                 

14
 ANSI: American National Standards Institute, TIA: Telecommunications Industry Association, EIA: 

Electronics Industry Alliance, ISO: International Organisation for Standardisation, IEC: International 

Electro-technical Commission. 
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range of 300 kHz to 100 MHz using curve fitting methods [124] in figs 3.5 - 3.7.  

 

Figures 3.5-3.7: Three transmission line parameters: R, L, G over the frequency 

range from 300 kHz to 100 MHz plotted using curve fitting methods [124]. C 

remained at a value of 1255.48 ×  Farads per metre over the entire frequency range.  

Top: R in ohms per meter. Middle: L in Henries per metre. Bottom: G in Siemens per 

metre 

 

Measurements of return loss, 11S , were made in order to quantify the goodness of 

matching over the frequency range of 300 kHz to 100 MHz . These return loss 

measurements are depicted in figs 3.8-3.10 
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Figures 3.8-3.10:  Measurements of 11S , the return loss, for telephone twisted-pair, cat 

5 twisted-pair and unbalanced flat-pair respectively from top figure to bottom. 

 

All transmission lines were terminated in Ω100 . Clearly, the return loss in the case of 

the telephone cable twisted-pair is low at low frequencies which is unsurprising given 

that it was designed to operate in the vocal frequency range. In contrast, the Cat 5 

cable exhibits low return losses at high frequencies which is also unsurprising given 

that is designed to operate at comparatively higher frequencies than the telephone 

twisted-pair. The flat-pair exhibits higher figures for return loss figures over the 

frequency range than the other two transmission line schemes. 
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FEXT measurements were made by stimulating a given transmission line on port one 

and measuring on an alternate transmission line. All un-used pairs were terminated in 

100 Ω . Measurements were made firstly in the time domain in order to remove the 

effect of coupling between ports one and two by means of a process known as gating. 

This is particularly important in the context of FEXT measurements since these are 

quite sensitive in nature and thus any coupling between the two ports, however weak, 

could significantly alter the FEXT measurements. This coupling will be evident in the 

time domain as a received signal that is commensurate with the relatively short 

distance that it has travelled. A simple and approximate calculation of the expected 

time of arrival, arrivalT , of an electromagnetic pulse propagating down a transmission 

line with velocity factor, fv , can be performed as: 

( )( )

sn

cv

L
T

f

arrival

sec489

1036.0

88
8

=

×
=

=

 

c is the speed of light in vacuum and fv  was chosen as 0.6. Windowing is required to 

alternate from frequency to the time domain signal representation. Windowing is a 

form of frequency domain filtering which is required to limit the effect of abrupt 

transitions which occur in the frequency domain at the start and stop sweep 

frequencies. It is a trade-off between side-lobe reduction and increased length of 

channel impulse response in the time-domain. It does not effect frequency domain 

measurements and is only apparent in the time domain. The ‘normal’ windowing 

option was chosen from a list: Minimum, Normal and Wide, since it provides a good 

trade-off between these effects [169]. The process of removing signals that are due to 
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coupling between the MNA ports, known as gating, can be facilitated by the MNA. 

Time domain measurements depicting both direct connection and FEXT signal paths 

are presented for three transmission line types are presented in figs 3.11 – 3.13. 

 

 

Figures 3.11-3.13: Measurements of 21S  in the time domain, for telephone twisted-

pair, cat 5 twisted-pair and unbalanced flat-pair respectively from top figure to 

bottom. Gating has been performed.  

 

Clearly the time domain signals suffer less attenuation on cat 5 cabling than in the 

case of the telephone cable. The attenuation on the flat-pair is quite significant and it 

is because of this that it is deemed indicative of poor quality digital subscriber line 

(DSL). The propagation characteristics of the flat-pair appear unusual. This is thought 

to be due to a significant degree of both common mode and differential mode 



Chapter 3: Experimental Observation of Channels_____________________________ 

72 

propagation along the line. It may therefore be indicative of poorly balanced 

transmission lines. The corresponding frequency domain measurements are presented 

in fig. 3.14 – 3.16. 

 

Figures 3.14-3.16: Measurements of 21S  in the frequency domain, for telephone 

twisted-pair, cat 5 twisted-pair and unbalanced flat-pair respectively from top figure 

to bottom. The effect of MNA port coupling has been removed  

 

The frequency domain measurements clearly indicate less attenuation and lower 

FEXT levels for the case of the cat 5 cable than for the other transmission lines. This 

concurs with the time domain measurements. Cat 5 cable complies with various 

standards as outlined in table 3.1. It is therefore argued that all other transmission line 

measurements may be benchmarked against Cat 5 as well as the analyses which 

follow. 
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3.3 Wireless Channels 

By analogy with the previous section, the reader is reminded of the channel matrix: 
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However in the case of the wireless channels, the diagonal and off-diagonal terms of 

the channel matrix represent are pass-band transfer functions of multi-path wireless 

channels. The pass-band transfer function is defined as [120]: 

{ } { })(21)(

4

1

)(21, exp2exp LL

L

Lji SjfjSh ∠=∑
=

τπ                                      (3.4) 

Considering a typical measurement of the multi-path wireless channel carried out in 

this work in fig 3.17, )(21 LS  is the amplitude response of the thL  multi-path component 

or ‘tap’ [120] or echo signature [67].  Similarly, the quantity, )(21 LS∠ , refers to the 

phase response of the thL  tap and )(Lτ  refers to the time delay between the thL  tap and 

the tap which would be observed when there is through connection between port one 

and two of the MNA.  
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Figure 3.17: Multi-path channel impulse response 

The quantity, f , in equation (3.4) refers to a carrier frequency. The choice of f is 

motivated by the fact that it is a popularly cited frequency encountered in literature 

[86] [97] [111] and is used in the IEEE 802.11a and HyperLAN standards [78]. 

Although various definitions for the ultra wide band (UWB) exist [117], it is 

discussed here in simple terms as the unlicensed frequency range from 3.1 GHz to 

10.6 GHz where the isotropic transmit power spectral density is restricted to –41 

dBm/MHz as assigned by the Federal Communications Commission (FCC) [127] 

[52]. The channel impulse response in fig 3.14 is formed from transformation of 

swept frequency response of 21S  over the UWB frequency range. Considering the 

idea of the time-frequency uncertainty principle, the UWB is also deemed a sufficient 

bandwidth in order from which to form a channel impulse response in the time 
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domain which allows for experimental observation of multi-path reflections. A 

detailed mathematical description of the relationship between bandwidth and the 

corresponding duration of the time window, i.e. time-frequency uncertainty principle, 

can be found in [12].  

A diagram of the experimental set-up for making wireless measurements is shown in 

fig. 3.18 along with a photo in fig. 3.19. The measurements were performed using an 

Anritsu 37369A Vector Network Analyser capable of performing a swept frequency 

response from 40 MHz to 40 GHz. This was clearly a different device to the one 

depicted in fig. 3.2 in the context of the transmission line channel measurements. A 

transmit and receive antenna, marked, ‘Tx’ and, ‘Rx’, respectively, are supported by 

retort stands. These antennas are printed strip monopole antennas which were 

designed by Ammann and John [3] and are impedance matched to their respective 

ports on the MNA. The S-parameter test kit, which is used in the calibration of the 

MNA, is used to extend the plane of measurement to the antennas themselves and thus 

the effect of the co-axial cables on any of the measurements has been removed. A 

series of microwave energy absorbing pads underneath appear under either retort 

stand in order to eliminate ground-plane reflection signal paths. A reflective enclosure 

is clearly marked in the bottom right hand side of the diagram. This enclosure was 

purposely constructed to give rise to a rich multi–path environment. Before making 

measurements of the multi-path channel, similar to the one in fig 3.17, measurements 

of the return loss from the Tx and Rx antennas, i.e. 11S  and 22S  respectively, were 

made over the UWB. These return loss measurements are given in fig. 3.19 
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Figure 3.18: Experimental set-up for making measurements of S-parameters: 11S , 

21S , and 22S .  

 

Figure 3.19: Measurements of return loss, 11S  and 22S , over the UWB. 
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The return loss at the lower end of the UWB frequency range, i.e. at approximately 

3.1 GHz, is high, but it is argued that the measurements using these antennas are 

indicative of a measurement in the UWB. Since the return loss is low at 5.2 GHz, the 

return loss measurements indicate that the carrier frequency of 5.2 GHz used in 

calculations of the passband transfer function is reasonable.  

A diagram and photo of the multi–path environment which occurs as a result of the 

enclosure, depicted in fig 3.18, is given in fig. 3.20. Comparing fig. 3.17 and fig. 3.20, 

the first tap in fig. 3.17, i.e. where L = 1, should correspond to the signal path signal 

labelled as, ‘line-of-sight (LOS)’, in fig. 3.20. Similarly, the next two taps in fig. 3.17 

should correspond to the two multi-path signals both labelled, ‘first order/one 

reflection’ in fig. 3.20. It may be inferred from fig. 3.20 that one of the first order 

multi-path signals traces a path which is substantially longer, in terms of distance, 

than the other. Thus, the two taps, labelled L = 2 and L = 3 in fig. 3.17, should 

correspond individually to the two first order multi-path-signal paths in respect to 

their times of arrival with respect to distance. Extending this argument, it may further 

be inferred that the multi-path signal component labelled, ‘second order/two 

reflections’, in fig. 3.20, should correspond to the final tap, labelled, ‘L = 4’, in fig. 

3.17.  

A time domain representation of a multi-path measurement has an equivalent 

frequency domain response, which consists of a series of frequency selective ‘fades’ 

or reductions in power. This idea has been stated explicitly by Bello [13] as well as 

Kaliath [85] and is integral in forming the idea of a wideband channel model. 
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Figure 3.20: Diagram and photo of the multi–path environment which occurs as a 

result of the enclosure which has reflective surfaces.   
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In a communications system where the channel is time variant, these fades occur 

randomly with respect to frequency. As a result of this, the fading amplitude with 

respect to frequency is usually assessed as a statistical distribution. Two of the most 

common statistical distributions which are used to characterise multi-path wireless 

channels are known as the, ‘Rayleigh’ and ‘Ricean’ distributions. In this analysis the 

approach taken is that of Saunders [120] who states that, 

 “The Rayleigh distribution is an excellent approximation to measured amplitude 

fading statistics for channels in non line of sight situations”.  

In contrast, Saunders also states that,  

“The Ricean distribution applies where one path (multi-path signal component) is 

much stronger than the other multi-path (components)”. 

The following transfer functions are now defined with respect to an appropriate 

qualifying sub-script notation which refers specifically to the channel impulse 

response component that has been removed.  

{ } { } 4,3,2,1exp2exp )(21)()(21 =∀∠=∑ LSjfjSh
L

LLLAll τπ              (3.5) 

{ } { } 4,3,2exp2exp )(21)()(21 =∀∠=∑ LSjfjSh
L

LLLLOS τπ                (3.6) 

{ } { } 4,3,1exp2exp )(21)()(21)1(1
=∀∠=∑ LSjfjSh

L

LLLorderst τπ               (3.7) 

{ } { } 4,2,1exp2exp )(21)()(21)2(1
=∀∠=∑ LSjfjSh

L

LLLorderst τπ               (3.8) 
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{ } { } 3,2,1exp2exp )(21)()(212
=∀∠=∑ LSjfjSh

L

LLLordernd τπ               (3.9) 

The subscript notation which appears in equations (3.5) to (3.9) refers to multi-path 

component which has been omitted from the calculation of the transfer function in 

each case. Equation (3.5) is merely a recasting of equation (3.4) for the sake of 

consistency in notation. Given the forgoing comments, Allh , is indicative of a Ricean 

channel and LOSh , in equation (3.6) is a transfer function indicative of a ‘Rayleigh 

channel’, since the influence of line-of-sight multi-path component has been removed 

from the calculation of this transfer function.  

Referring to fig. 3.15, not shown for the sake of clarity is a pair of grids with 
2

λ
 

increments, with respect to a frequency of 5.2 GHz, marked on them. The function of 

these grids is to facilitate measurements with respect to the ‘virtual array’ approach of 

for MIMO communications systems as outlined by Ingram et al [82][83][84]. The 

‘virtual array’ approach to making physical measurements allows for the formation 

appropriate channel matrices. This approach allows for only one Tx and one Rx 

antenna to be used in order to make physical measurements which are indicative of an 

entire array of Tx and Rx antennas.  

Taking the specific example where the dimension TN , is set 3=TN , the virtual array 

process is outlined in three steps in fig. 3.21. Reference is made to channel matrix 

subscript notation, ( ) ji,⋅ , there are j transmitter positions and i receiver positions. In 

step one, the transmit antenna remains fixed in the position denoted 1=j  while three 

consecutive wireless channel measurements are made. For the first of these three 

measurements, the Rx antenna remains in the position denoted 1=i , but for the 
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second of these three measurements, it is then shifted to the position denoted 2=i . 

Similarly, for the third of these three measurements, the Rx antenna is shifted to the 

position denoted 3=i . In step two, this whole measurement process is then repeated 

but in this case the Tx antenna remains fixed in the position denoted 2=j , while the 

Rx antenna is then shifted as described previously for each of the respective three 

measurements required. Similarly, in step three, the Tx antenna remains fixed in the 

position denoted 3=j , while the Rx antenna is shifted as described in step one for 

each of the respective three measurements required.  

The details of similar virtual array measurement campaigns can now be inferred for 

where the dimension, TN  is set 2=TN , 4=TN  or 5=TN . 

In respect of the shifts in position of 
2

λ
, the approach adopted is in accordance with 

the views expressed in the following statement by Foschini and Gans [150] which 

appears to paraphrase a similar statement by Jakes [80]: 

“The assumption of independent Rayleigh paths that we will also often make, is 

thought of as an idealized version of the result that for antenna elements placed on a 

rectangular lattice with half wavelength 








2

λ
spacing, the path losses tend to roughly 

decorrelate” 

The chosen carrier frequency used in this analysis is 5.2 GHz, and thus the antenna 

spacing is set at 3 cm, i.e. 
2

λ
.  
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Figure 3.21: Virtual array approach to making measurements in three steps where the 

dimension, TN , is set 3=TN .  
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Having described virtual array approach, the appropriately subscripted channel 

transfer functions defined in equations (3.5) to (3.9) can be extended to appropriately 

subscripted channel matrices: LOSH , AllH , 
)1(1 OrderstH , 

)2(1 OrderstH  and 
Ordernd2

H . 

Furthermore, the scalar elements of the channel matrix, LOSH , are indicative of 

Rayleigh channels and similarly the scalar elements of AllH  are indicative of Ricean 

channels.  It is implicit that the dimension of these channel matrices can vary as TN  is 

set 2=TN , 3=TN , 4=TN  or 5=TN as a result of the virtual array measurement 

campaign as outlined in fig. 3.18. As a result of this methodology, the experimental 

observation of the channel matrices: AllH  and LOSH  have an equivalent degree of 

correlation in their multi-path channel impulse response components. This idea will 

be seen to be quite significant in relation to the analysis which will be based on these 

channel matrices. 

It could be argued that Rayleigh channels per se may exhibit greater amounts of 

multi-path signals than what was indicated experimentally in fig 3.20. In order to 

support the fact that the channel matrix, LOSH , is indicative of a Rayleigh channel, the 

conditioning of this matrix is considered in terms of the eigenvalue properties of the 

matrix H

LOSLOS HH . The assumption that a Rayleigh distributed channel is observed in 

this experimental campaign when the line-of-sight channel impulse response is 

removed is now addressed. Consider firstly the Rayleigh fading channel, it has a 

Rayleigh distributed amplitude distribution, R , written as: 

22
YXR +=               (3.10) 

Where X and Y are two uncorrelated normally distributed variables defined as: 
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)1,0(~ NX                (3.11) 

)1,0(~ NY                (3.12) 

The phase response of the Rayleigh fading channel is uniformly distributed between 0 

and π2 . Since both amplitude and phase information have now been defined for the 

Rayleigh channel, the notation CR~ is chosen to denote the Rayleigh channel in a 

mathematical sense. It is now possible to consider a matrix, RayH  , whose elements are 

complex random under the Rayleigh distribution:  

)1,0(~ CRRayH               (3.13) 

If RayH  were of full rank and of dimension 55× , it is then possible to consider the 

five eigenvalues, 521 ,...,, λλλ of the matrix H

RayRay HH ,or equivalently the squares of 

singular values of RayH , in terms of the ratios:  
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It will be seen in the forthcoming chapters that the maximum achievable capacity is 

attainable when all sub-channels have equal gains [92], this idea may then be written 

mathematically as:  
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             (3.14) 

These eigenvalues are denoted such that they are in descending magnitude from 

521 ,...,, λλλ . In relation to this, this analysis will now consider the closeness of the 



Chapter 3: Experimental Observation of Channels_____________________________ 

85 

eigenvalue ratios to the condition in equation (3.14). The ratio 
5

1

λ

λ
 can be referred to 

as the condition number of the matrix and so this exercise in fact considers matrix 

conditioning. In fig. 3.22, the closeness to the condition in equation (3.14) is 

considered for the case of the matrices: RayH , LOSH  and AllH . Since RayH  is 

effectively a mathematically generated random matrix, the expected values of the 

ratios: 
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this case. Each of the matrices: RayH , LOSH  and AllH was normalised such that the 

sum of eigenvalues of the respective matrix HHH  was unity in each case. 

 

Figure 3.22: Eigenvalue distributions of RayH , LOSH  and AllH  in relation to the 

condition in equation (3.14). 
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Comparing the eigenvalue distribution in relation to LOSH  and AllH , it can be seen 

that for the case LOSH  the ideal condition in equation (3.14) is more closely 

approximated than in the case of AllH . In the case of RayH , the first four eigenvalues 

approximate more closely the condition in equation (3.14) whereas the fifth 

eigenvalue is significantly skewed. Thus, it may be concluded that removal of the 

line-of-sight channel impulse response component significantly alters the eigenvalue 

distribution in a manner which more closely approximates the ideal condition in 

equation (3.14). The closeness of this to the case of the mathematically generated 

Rayleigh fading channel matrix, RayH , has been indicated and it is argued that LOSH  

is at least indicative of a Rayleigh channel.   

 

Finally, time domain vectors are now defined using appropriate notation. Again, when 

this sub-script notation is applied to these time domain vectors, it does not reference 

elements within the vector but instead is purely descriptive of the measurement from 

which the vector is derived. The elements of two of these vectors, )1,1(Allh , and 

)1,1(LOSh are now plotted in fig. 3.23. The elements of )1,1(LOSh are the same as the 

elements of )1,1(Allh , except that software has been used to remove the tap which 

corresponds to the line-of-sight (LOS) channel impulse response component from this 

vector. 
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Figure 3.23: A plot of the two vectors, )1,1(Allh , and )1,1(LOSh .  

 

Taking the example where the dimension TN is set 3=TN , then a complete list of 

vectors pertaining to ),( jiAllh  would be listed as follows:  

)1,1(Allh , )2,1(Allh , )3,1(Allh , )1,2(Allh , )2,2(Allh , )3,2(Allh , )1,3(Allh , )2,3(Allh , )3,3(Allh .  

The appropriate list of vectors pertaining to ),( jiAllh , in each case when the dimension, 

TN , is set 2=TN , 4=TN , or 5=TN , may be inferred by example. Again to 

clarify, the vector )1,1(LOSh  contains a channel impulse response indicative Rayleigh 

channel and similarly the scalar elements of )1,1(Allh  are indicative of a Ricean channel. 
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Inspection of fig. 3.23 also reveals that if the Rayleigh channels are observed by 

simply removing the line-of-sight channel impulse response component using 

software then the channel impulse responses of the Ricean channel and the Rayleigh 

channel are equivalent except for this obvious exception. In a similar manner to the 

case of the channel matrices previously discussed, as a result of this methodology 

employed here the time vectors: )1,1(Allh  and )1,1(LOSh  have an equivalent degree of 

correlation in their multi-path channel impulse response components. This idea will 

be seen to be quite significant in relation to the analysis and simulation which will be 

based on these vectors.  

3.4 Summary 

In this chapter, the methodology for making physical measurements on unbalanced 

transmission line channels, as well as balanced transmission line channels, using an 

HP 85047A MNA was outlined. This methodology paralleled that of Bostoen et al 

[18] but some novel aspects were highlighted. In the case of wireless channel 

measurements, an Anritsu 37369A MNA was used in a specially built enclosure in 

conjunction with the virtual array methodology of Ingram et al.[82][83][84]. This 

methodology was employed to make measurements indicative of an array of transmit 

antennas and receive antennas and again any novel aspects of this methodology were 

highlighted.  

The measurements in this chapter were used to form a series of vectors and matrices 

which are now summarised: 
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In the case of the transmission line channels:  

)( fUH : is channel matrix derived from transfer functions which were based 

measurements of 21S  on an unbalanced three flat-pair transmission line cabling 

scheme. Off-diagonal terms represent FEXT signal paths, diagonal terms represent 

direct connection signal paths. It was evaluated over 201 points between 300 kHz and 

100 MHz and its dimension is 3=TN  

)( fBH : is channel matrix derived from transfer functions which were based 

measurements of 21S  on a balanced five twisted-pair transmission line telephone 

cabling scheme. Off-diagonal terms represent FEXT signal paths, diagonal terms 

represent direct connection signal paths. It was evaluated over 201 points between 300 

kHz and 100 MHz and its dimension can be 3=TN , 4=TN  or 5=TN . 

)( fCH : is channel matrix derived from transfer functions which were based 

measurements of 21S  on a balanced four twisted-pair transmission line cat 5 cabling 

scheme. Off-diagonal terms represent FEXT signal paths, diagonal terms represent 

direct connection signal paths. It was evaluated over 201 points between 300 kHz and 

100 MHz and its dimension can be 3=TN or 4=TN . 

),( jiUh : represents a family of TT NN × vectors, each of which contains 201 scalar 

elements which comprise a given channel impulse response measured on an 

unbalanced three flat-pair transmission line cabling scheme. For a given vector, when 

ji ≠ , the channel impulse response of a signal path corresponding to FEXT is 
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indicated and when ji = a direct connection signal path is indicated. The dimension 

TN in this specific case is 3=TN . 

),( jiBh : represents a family of TT NN × vectors, each of which contains 201 scalar 

elements which comprise a given channel impulse response measured on a balanced 

five twisted-pair transmission line telephone cabling scheme. For a given vector, 

when ji ≠ , the channel impulse response of a signal path corresponding to FEXT is 

indicated and when ji = a direct connection signal path is indicated. The dimension 

TN in this specific case can be 3=TN , 4=TN  and 5=TN  

),( jiCh : represents a family of TT NN × vectors, each of which contains 201 scalar 

elements which comprise a given channel impulse response measured on a balanced 

four twisted-pair transmission line cat 5 cabling scheme. For a given vector, when 

ji ≠ , the channel impulse response of a signal path corresponding to FEXT is 

indicated and when ji = a direct connection signal path is indicated. The dimension 

TN in this specific case can be 3=TN or 4=TN .  

 

In the case of the wireless channels:  

Channel matrices were defined, each of which contained transfer functions pertaining 

to various wireless channels that would be seen to exist between an array of transmit 

antennas and an array of receive antennas. With the obvious exception of AllH , when 

computing the transfer functions for each channel matrix, a given channel impulse 

response was not factored in. The appropriate channel impulse response in each case 
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is denoted by the subscript that appears on each channel matrix. These channel 

matrices are as follows: 

AllH , LOSH , 
)1(1 OrderstH , 

)2(1 OrderstH  and 
Ordernd2

H . 

In each case, the dimension TN  can be 4,3,2=TN or 5. 

The following vectors were also defined: 

Allh , LOSh , 
)1(1 Ordersth , 

)2(1 Ordersth  and 
Ordernd2

h . 

Each of these terms represents a family of TT NN × vectors, each of which contains 

201 scalar elements which comprise a channel impulse response where the subscript 

notation denotes the channel impulse response component which was removed using 

software. Clearly, Allh  contained all measured channel impulse response components 

and in each cased the dimension was 5=TN . 
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Chapter 4: Capacity Analysis of MIMO Communications Systems  

4.1 Introduction 

In this chapter, the channel matrices which were derived from experimental 

observation of the channel in chapter 3 will be incorporated into comparative 

calculations of the capacities of MIMO and SISO communications systems. In the 

case of the transmission line channels, these comparative calculations propose the 

novel idea of using MIMO communications systems to allow, or indeed enhance, 

transmission lines which would have been previously deemed out-of-range in order 

that they can be used for high speed internet connections. In the case of the wireless 

channels, the idea that Rayleigh channels provide superior performance to Ricean 

channels is proposed on the basis of the conditions under which these channel were 

observed experimentally.  

4.2 Capacity of MIMO Communications Systems 

Teletar’s linear model where the received vector y  depends on the transmitted vector 

x is written mathematically as:  

nHxy +=                               (4.1) 

In the case of transmission line channels, it was seen in chapter 2 that the off-diagonal 

terms of the matrix, H , refer to the transfer functions of signal paths which arise due 

to far end crosstalk (FEXT). While the diagonal terms of the channel matrix, H , refer 

to the transfer functions of the direct connections. In the case of wireless channels,
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each of the scalar elements of the channel matrix, H , is a transfer function of the 

wireless channel that exists between a given transmit antenna and a given receive 

antenna. n is a vector whose scalar elements are uncorrelated added white noise 

(AWGN) components. Throughout this analysis, the number of receive elements, TN , 

will be set equal to the number of transmit elements, TN . A depiction of Teletar’s 

linear model is given in figure (4.1) where for the sake of clarity, the situation where 

2=TN  is illustrated.  

 

Figure 4.1: Teletar’s linear model where the received vector y  depends on the 

transmitted vector x . Equations are written above the various operations. TN  is set 

2=TN .    

 

The elements of the vector, x , can be chosen from some complex valued alphabet of 

transmit symbols. The transfer functions contained in the channel matrix, H , are also 

complex. The unified approach to the analysis of MIMO communications systems in 

the case of both transmission line channels and wireless channels which was 
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introduced in chapter 2 indicated the necessity of a singular value decomposition of 

the channel matrix, H . The singular value decomposition of H may be written as:  

H
UDVH =                    (4.2) 

The matrices: H , U , D and V have the following properties[105] [9] [126] [104] [48] 

[94] [134] [89] [136] [125]: 

TT NN ×∈ C, VH,U                   (4.3) 

1==
j

T

jj

T

j
VVUU                    (4.4) 
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                (4.5) 

Equations (4.3) and (4.4) indicate that the matrices U and V  are unitary matrices 

which means that, as stated in equation (4.4), the inner product of each of their 

constituent column vectors is unity or, equivalently, 

TN

HHHH IVVVVUUUU ==== , where the notation, 
TNI , denotes an identity 

matrix of appropriate dimension, TN . Also, the columns of U and V  contain the 

eigenvectors of the matrices HHH and HH H  respectively. D  is a diagonal matrix 

containing the non-negative square roots of the eigenvalues of HHH in numerical 

order with the highest appearing in the top-left most corner as 1σ   and lowest 

appearing bottom right most corner as 
TNσ . The eigenvalues of HHH will be denoted 

TNλλλ ,..., 21  with the non-negative square roots of these eigenvalues, which are 
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equivalent to the singular values of the matrix H , being denoted 
TNσσσ ,..., 21 . It 

should be noted in passing that owing to the Hermitian symmetry of the matrix, 

HHH , its eigenvalues are numerically equivalent to its singular values [105]. 

Returning to Teletar’s linear model in equation (4.1), if the receive vector, y , is 

appropriately weighted then the following substitution is made:  

yUy H=
_

                   (4.6)   

Given the singular value decomposition of the matrix H in equation (4.2), Teletar’s 

linear model may now be rewritten as: 

nxUDVy += H                   (4.7) 

The substitution of equation (4.6) into Teletar’s linear model into equation (4.7) gives: 

__

nxDVy += H                   (4.8) 

The vector,
_

n , is set nUn
H=

_

and refers to the way in which the vector of 

uncorrelated AWGN components, n , has been transformed by appropriate weighting 

of the receive vector y . Further to this, if the transmit vector, x , is appropriately 

weighted then the following substitution is made:  

Vxx =
_

                   (4.9) 

Then, incorporating the substitution in equation (4.9) into equation (4.8): 

___

nxDy +=                             (4.10) 

Equation (4.10) reveals that if the substitutions in equations (4.6) and (4.9) are made 
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then it is possible to transform the communications channel defined by H  into a 

series of TN orthogonal sub-channels defined by the matrix, D . In saying this, the 

assumption has been made that the channel matrix, H , is of rank, TN . Thus, by 

definition, H , has TN linearly independent columns and rows and hence also has TN  

non-zero singular values which would be contained along the main diagonal of the 

matrix, D  [89]. Fig. (4.2) illustrates how the mathematical operations described 

transform the channel matrix, H , from Teletar’s linear model in figure (4.1) into a 

diagonal matrix, D , thereby creating a MIMO communications system. In common 

with figure (4.1), TN  is set 2=TN  for the sake of simplicity.  

 

 

Figure 4.2: The MIMO communications system consisting of two transmit elements 

and two receivers elements. Equations are written above the various mathematical 

operations in the MIMO Communications system. TN  is set 2=TN . 
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Foschini [150], Winters [140], Teletar [152] and many others [35] [95] [108] [10] 

have given the capacity a MIMO communications system. Since the MIMO 

communications system may be considered as a series of orthogonal sub-channels or 

‘eigenmodes’, whose transfer functions are the singular values of the channel 

matrix, H , the capacity, DC  in bits/sec/Hz, of a MIMO communications system now 

follows: 

[ ] 
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The use of the sub-script notation, ( )D⋅ , distinguishes between the capacity of the 

MIMO communications systems and the capacity, C , of SISO communications 

systems. DC , has been referred to by Foschini [150] as, “the convenient formula for 

generalised capacity”. It is more conventional in literature [150] [106] [37] [35] [95] 

[108] [10] [46] [51] [50] [140] [16] [17] [40] [36] [39] to write equation (4.11) as:  
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It can be inferred from the discussion here that equations (4.11) and (4.12) are 

equivalent since the eigenvalues of the matrix HHH  defined previously using the 

notation 
TNλλλ ,..., 21  are equivalent to the squares of the singular values of the matrix 

H defined previously using the notation:
TNσσσ ,..., 21 . Another equivalent of DC  

incorporates the matrix notation outlined in this section, this is: 
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Equations (4.11), (4.12) or (4.13) are equivalent forms. The reader is reminded that 

they refer to the capacity of the continuous channel as outlined in chapter 2. The units 

are in bits/sec/Hz, and thus may also be referred to as bandwidth efficiency but will be 

referred to as capacity throughout this thesis as is the convention in MIMO literature. 

Equation (4.13) is convenient since it makes direct reference to the matrix, D , and will 

be the one used throughout this work. 

4.3 Capacity Calculations and Channel Matrix Normalisation  

It is clear from section 4.2 that a matrix, V , is required at the transmitter and a matrix, 

H
U , is required at the receiver.  It should be stressed at this point that, in theory, 

knowledge of the communications channel at the transmitter could indeed be used to 

for the derive the matrix, V . However, full knowledge of the communications channel 

at the transmitter can refer to the idea of waterfilling [59] [61]. Waterfilling, in the 

context of MIMO communications systems, requires a different form of the capacity 

equation to those presented in equations (4.11), (4.12) and (4.13). The interested 

reader is referred to [4] [5] [59] [61] [69] for an analysis and description of the 

concept of waterfilling in the context of MIMO communications systems since it is 

not the focus of this work. 

It is assumed in this chapter that the receiver has perfect knowledge of the channel 

matrix, H , and is furthermore able to pass the matrix, V , back to the transmitter at a 

rate commensurate to the rate at which the channel might be changing. In the case of 

transmission line channels, typically the transfer functions which make up the scalar 

elements of the channel matrix, H , are derived from one-port measurements. This 

methodology can lead to there being a discrepancy between the actual transfer 
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functions and those which are derived from these one-port measurements. As a result 

of this discrepancy, there is imperfect knowledge of the channel. A discussion of this 

discrepancy can be found in work by Galli and  Waring  [151], Bostoen et. al [18], 

Bingham [15], as well as Wong and Aboulnasr [141]. It is an objective of chapters 6 

and 7 to address the effect on capacity of MIMO communications systems when this 

discrepancy occurs. In the case of the wireless channels, the channel is considered 

time-variant. A quasi-static channel is one which remains constant, or indeed may be 

attributed a given transfer function, over an arbitrary length of time. In common with 

the approach of Gesbert [59] [61], Foschini [150] and Teletar [152], in this work, a 

quasi-static channel is considered to be one where the channel remains constant long 

enough in order that it is possible for the receiver to be able to pass the matrix, V , 

back to the transmitter. It is an objective of chapters 6 and 7 to address the effect on 

capacity of MIMO communications systems when the assumption of the quasi-static 

channel no longer holds. 

Having stated the assumption on which the capcity calculations in this chapter hold, it 

is now necessary to outline the process of channel matrix normalization.  

The process of normalising the channel matrix used in this work is similar in the case 

of both the transmission line channels and the wireless channels.  Considering the 

channel matrix, H , the appropriate Frobenious norm, 
F

H , can be defined as: 

∑∑
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The normalised channel matrix, 
_

H , is now defined as:  
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F
H

H
H =
_

                 (4.15) 

Re-arranging equation (4.2): 

HVUD
H=                  (4.16) 

It is now possible to write: 
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               (4.17) 

Normalising the channel matrix thus creates a normalised diagonal matrix, 
_

D , written 

as: 

F
H

D
D =
_

                 (4.18) 

Furthermore since 
_

D is diagonal and considering equation (4.14), it is now possible to 

write: 

)(
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==                (4.19) 

Therefore:  

1
__

=







DDtr                  (4.20) 

Substituting the normalised diagonal matrix into the expression for the MIMO 

capacity in equation (4.13) gives: 
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Thus the ratio,
ϕ

P
, may now be written as an equivalent expression inside a 

summation:  
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It is shown that normalisation of the channel matrix ensures that the quantity,
ϕ

P
, is 

distributed entirely amongst the eigenmodes of the MIMO communications system. 

 

4.4 Capacity calculations on Transmission Line Channels 

In this section the capacity of MIMO and SISO communications systems based on 

transmission line channels are compared. A minor change to the normalisation of the 

channel matrix that was given in the previous section is now indicated:        
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The matrix, ( )1=fH , is the channel matrix that has been defined at the first or lowest 

frequency of measurement. It is argued that this minor change in the normalisation 
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allows for the frequency dependence of capacity of the MIMO and SISO 

communications systems to be apparent in calculations. In respect of this, the 

frequency dependent capacity of the SISO communications system based on 

transmission line channels may now be calculated from: 

 ∑
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Similarly for MIMO: 
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The units of the continuous channel capacities in equations (4.24) and (4.25) are 

bits/sec/Hz. These capacities are now considered under following conditions: 

(i) An added white Gaussian noise power spectral density, 0N , of -110 

dBm/Hz is assumed. As indicated by Aslanis and Cioffi [171], this level 

exceeds that set by electronics alone but includes the noise floor set by an 

echo canceller. 

(ii) A transmit bandwidth of 4.3125 kHz is assumed. This is the bandwidth set 

by the American National Standards Institute (ANSI) for a discrete multi-

tone (DMT) tone in the asymmetric digital subscriber line (ADSL) T1.413 

DMT standard [124] [172]. Each capacity is calculated at intervals of 
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approximately 496 kHz, i.e. at 201 intervals between 300 kHz to 100 

MHz. 

(iii) Two transmit power spectral densities are considered. The first one is -60 

dBm/Hz which is the figure given in [124] for nominal transmit power 

density of high bit-rate digital subscriber line (VDSL) signals. The second 

one is -80 dBm/Hz, which is the transmit power spectral density given in 

[124] for VDSLs signal that occur in known radio frequency bands.  

(iv) The balanced twisted-pair telephone cable, the balanced cat 5 twisted-pair 

and the unbalanced flat-pair are compared for a dimension, 3=TN . The 

cat5 is also examined for a dimension, 4=TN  and the twisted-pair is also 

examined for a dimension, 5=TN . 

(v) Cumulative plots of capacity with respect to bandwidth are also presented. 

Starting with MIMO and SISO capacity calculations for twisted-pair telephone cable, 

cat 5 twisted-pair and flat pair for the dimension 3=TN : 
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Figures 4.3-4.4: From top to bottom: MIMO and SISO capacity calculations for 

twisted-pair telephone cable (top, fig. 4.3), cat 5 twisted-pair (middle, fig. 4.4) and flat 

pair (bottom, fig. 4.5) for the dimension 3=TN . The transmit power spectral density 

is 600 −=P  dBm/Hz in all cases. 

 

Looking at fig. 4.3, for the case of the MIMO communications system, the relative 

gain in capacity over the SISO communications system is quite consistent with 

respect to frequency for the twisted-pair telephone cable channels. In fig. 4.4, for the 

cat 5 twisted-pair, most of what is gained in terms of capacity for the MIMO 

communications systems over the SISO communications systems occurs at 

frequencies above 50 MHz. In fig. 4.5, there is a significant increase in capacity of 

MIMO over the SISO communications system up to approximately 20 MHz. Beyond 

25 MHz, there appears to be a very minor increase in capacity for the MIMO 

communications system while the capacity of SISO communications system remains 
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more or less constant. This minor capacity increase is thought to be due to changes in 

the channel matrix conditioning as a result of increased presence of FEXT as 

frequency increases. However since the capacity increase is quite small in this region, 

this has not been considered in much detail. The cumulative capacities are now 

considered. 

 

Figures 4.6-4.8: From top to bottom: MIMO and SISO cumulative capacity 

calculations for twisted-pair telephone cable (top, fig. 4.6), cat 5 twisted-pair (middle, 

fig. 4.7) and flat pair (bottom, fig. 4.8) for the dimension 3=TN and a transmit power 

spectral density is 600 −=P  dBm/Hz. 

 

Remembering that capacity is calculated at 496 kHz intervals, the curves in figs 4.6-

4.8 are not entirely representative of the total capacity that is possible over any given 

frequency range. However, looking at fig. 4.7 it is indicated that cat 5 shows the 
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greatest overall capacity improvement in the context of the MIMO communications 

system over the other types of transmission line channels in figs 4.7 and 4.8. Again 

looking at fig. 4.7 in respect of the MIMO communications system, cat 5 exhibits the 

greatest consistent gain in capacity with frequency, in contrast to the case of the flat-

pair in fig. 4.8 where most of what is gained in terms of capacity with respect to 

frequency has occurred before 25 MHz. Notwithstanding this, the analysis does 

confirm that the MIMO communications system may be used to enhance the flat-pair 

channels at frequencies below 25 MHz. As a result, this comparative analysis supports 

the novel idea of using MIMO communications systems to allow, or indeed enhance, 

transmission line channels that are poorly balanced or exhibit high degrees of 

insertion loss and FEXT. Given that present ADSL standards generally transmit over 

a bandwidth of only 2-3 MHz [124] [172], the idea is therefore offered here that 

MIMO communications systems may indeed serve to enhance internet connections 

which would have been previously deemed out-of-range in order that they can be used 

for high speed internet connections. 

Increasing the dimension, TN , from 3 to 4 for the case of the cat 5 twisted-pair 

channels, the capacities of the MIMO and SISO communications system are 

considered in figs 4.10 and 4.11. Fig. 4.11 is the cumulative capacity. In fig. 4.9, the 

appropriate plot depicting the same capacities for 3=TN  has been reproduced for 

comparison. Looking at figs. 4.9 and 4.10 allows for the comparison of the capacity 

plots of the SISO communications system where 3=TN with that where 4=TN . For 

4=TN there are marginal increases in capacity in the frequency range up to 25 MHz. 

In the same regard, the capacity however drops quite quickly leaving equivalent 

figures for SISO capacities in figs. 4.9 and 4.10 at 50 MHz. Looking at fig 4.10 only, 
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and this time comparing the capacity of the MIMO and SISO communication systems 

where 4=TN , there appears to be quite a significant improvement in the MIMO 

capacity over the SISO capacity particularly after 50 MHz. The lower cumulative 

capacity plot in fig. 4.11 indicates that there is a reasonably consistent increase in 

capacity for the case of the MIMO communications system over the entire frequency 

range. However, fig. 4.11 shows that most of what is gained in terms of capacity for 

the case of the SISO communications system occurs before 50 MHz 

 

Figures 4.9-4.11: From top to bottom: MIMO and SISO capacity calculations for 

twisted-pair cat 5 cable with the dimension 3=TN (top, fig. 4.9).  MIMO and SISO 

capacity calculations for twisted-pair cat 5 cable with the dimension 4=TN (Middle 

and bottom, figs. 4.10 and 4.11). Fig. 4.11 depicts cumulative capacity calculations.  

The transmit power spectral density is 600 −=P  dBm/Hz in all cases. 
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In figs 4.13 and 4.14, the capacities of the MIMO and SISO communications system 

in the case of the twisted-pair telephone cable with dimension, 5=TN  are considered 

with fig. 4.14 depicting cumulative capacity calculations. In fig. 4.12 is the 

appropriate plot depicting the capacity for 3=TN reproduced for comparison. 

Looking at figs. 4.12 and fig. 4.13, and thus comparing the capacity plots where 

3=TN with that where 5=TN , in the case of the SISO communications system, 

there appears to be marginally greater capacities at frequencies up to 25 MHz. 

However in the same regard, these capacities are more or less the same at frequencies 

above 25 MHz. In fig. 4.14, the MIMO capacity plot for the case where 5=TN  may 

be compared with that where 3=TN  in fig. 4.13. There appears to be an 

improvement over the frequency range up to 50 MHz. However as the frequency 

approaches 75 MHz, these two MIMO capacities appear to approach the same value. 

The cumulative capacity plots in fig. 4.14 reveals that when 5=TN , the MIMO 

capacity of the twisted-pair telephone cable appears to be increasing reasonably 

consistently over the entire frequency range whereas in the case of the SISO capacity 

most of what is gained has occurred at frequencies between 25 MHz and 50 MHz. 
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Figures 4.12-4.14: From top to bottom: MIMO and SISO capacity calculations for 

twisted-pair telephone cable with the dimension 3=TN (top, fig. 4.12).  MIMO and 

SISO capacity calculations for twisted-pair telephone cable with the dimension 

5=TN (Middle and bottom, figs. 4.13 and 4.14). Fig. 4.14 depicts cumulative 

capacity calculations. The transmit power spectral density is 600 −=P  dBm/Hz in all 

cases. 

 

The effect of increasing the dimension TN has been outlined in the case of the 

twisted-pair telephone cable and the twisted-pair cat 5 cable. It can however be 

appreciated that since many of the conclusions drawn in this work are comparative in 

nature in respect of the three different transmission line channels, it is sufficient that 

the dimension be 3=TN .  
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An analysis of MIMO and SISO communications systems based on the three types 

transmission line channels are now considering for a transmit power spectral density 

of 800 −=P dBm/Hz. 

 

 

Figures 4.15-4.17: From top to bottom: MIMO and SISO capacity calculations for 

twisted-pair telephone cable (top, fig. 4.15), cat 5 twisted-pair (middle, fig. 4.16) and 

flat pair (bottom, fig. 4.17) for the dimension 3=TN . The transmit power spectral 

density is 800 −=P  dBm/Hz in all cases. 

 

In the case of the MIMO communications system, the lower power spectral density of 

-80 dBm/Hz, which is used by VDSL systems when operating in known radio 

frequency bands, offers little improvement. Also, since the results in figs 4.15 – 4.17 

assume perfect knowledge of the channel, which in a practical sense may not be 



Chapter 4: Capacity Analysis of MIMO Communications Systems________________ 

111 

available, it is concluded that the MIMO communications system should not be used 

when transmitting in radio frequency bands. The cumulative capacity plot is therefore 

not considered in this case. It is noted finally, in the context of the transmit power 

spectral density of – 80 dBm/Hz, that similar results were obtained for the case of cat 

5 twisted-pair cable when the dimension, 4=TN , and indeed for the case of the 

twisted-pair telephone cable when 5=TN . 

4.5 Capacity calculations on Wireless Channels  

The objective of the analysis in this section is to compare the capacities of MIMO and 

SISO communications systems based on wireless channels. In all of the figures that 

follow in this section, the term SISO should be understood to refer to the case of one 

Tx antenna and one Rx antenna with the somewhat ideal situation being considered 

where effect of multi-path fading is ignored. The SISO capacity is calculated from: 

∑
=
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In contrast to the case of the SISO communications system, the term MIMO refers to 

Tx and Rx antenna arrays of various sizes where the effect of multi-path fading is 

considered. The MIMO capacity is calculated as: 
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The units of the continuous channel capacities in equations (4.24) and (4.25) are 

bits/sec/Hz. These capacities are now considered under following circumstances: 
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(i) As outlined in chapter 3, all the transfer functions and hence channel 

matrices pertain to a centre frequency of 5.2 GHz. 

(ii) Five channel matrices: AllH , LOSH , 
)1(1 orderstH , 

)2(1 orderstH  and 
ordernd2

H  are 

considered. The four channel matrices: LOSH , 
)1(1 orderstH , 

)2(1 orderstH  and 

ordernd2
H  are compared against AllH in each figure which follows. 

(iii) The various channel matrices were normalised in the manner described in 

section 4.3. 

(iv) The receive signal power to noise power ratio denoted: 
ϕ

P
  is fixed at a 

ratio of 18 dB throughout this section. It should be appreciated that the 

capacities for the MIMO communications systems are examined from the 

perspective of the channel matrix conditioning or eigenvalue distribution 

due to various multi-path channel impulse response components. 

(v) Since the all of the channel matrices are derived from common sets of 

experimental data with the obvious exception that various relevant channel 

impulse response components have been removed, the degree of 

correlation amongst common channel impulse response components in 

each channel matrix is exactly the same.  
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Each of the relevant results will now be presented with some concluding remarks 

afterwards. The capacity of the MIMO communications system based on the channel 

matrices denoted: AllH  and LOSH are compared in fig. 4.18. Based on what was 

described in chapter 3, it has been assumed that the channel matrix AllH is indicative 

of a Ricean channel and that LOSH is indicative of a Rayleigh channel.  

 

Figure 4.18: MIMO calculations for the channels denoted by the matrices: AllH  

(Ricean) and LOSH  (Rayleigh) for the dimensions:  4,3,2=TN and 5. The dimension, 

1=TN  refers to the SISO calculation and the ratio: 18=
ϕ

P
dB. 
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The capacity of the MIMO communications system based on the channel matrices 

denoted: AllH  and 
)1(1 orderstH are compared in fig. 4.19.  

 

Figure 4.19: MIMO calculations for the channels denoted by the matrices: AllH  

(Ricean) and 
)1(1 orderstH  for the dimensions:  4,3,2=TN and 5. The dimension, 1=TN  

refers to the SISO calculation and the ratio: 18=
ϕ

P
dB. 
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The capacity of the MIMO communications system based on the channel matrices 

denoted: AllH  and 
)2(1 orderstH  are compared in fig. 4.20.  

 

Figure 4.20: MIMO calculations for the channels denoted by the matrices: AllH  

(Ricean) and 
)2(1 orderstH  for the dimensions:  4,3,2=TN and 5. The dimension, 

1=TN  refers to the SISO calculation and the ratio: 18=
ϕ

P
dB. 
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Finally, the capacity of the MIMO communications system based on the channel 

matrices denoted: AllH  and 
ordernd2

H  are compared in fig. 4.21.  

 

Figure 4.21: MIMO calculations for the channels denoted by the matrices: AllH  

(Ricean) and 
ordernd2

H  for the dimensions:  4,3,2=TN and 5. The dimension, 1=TN  

refers to the SISO calculation and the ratio: 18=
ϕ

P
dB. 
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Examination of fig. 4.18 reveals that removal of the line-of-sight channel impulse 

component clearly has the effect of increasing the capacity of the MIMO 

communications system under the conditions stated in (i) to (v). In particular, Gesbert 

offers the following comment on this result [61]:  

“In Ricean channels, increasing the LOS strength at fixed signal to noise ratio reduces 

capacity”. 

Durgin extends the argument contained within Gesbert’s comment by saying [47]: 

“The channel capacity expression (in equation (4.27) in this work) is maximised when 

the signal power is evenly distributed among the singular values (denoted in this work 

as:
TNσσσ ,...,, 21 ). In the absence of multi-path (richness), the singular values become 

heavily skewed towards a single dominant singular value. Rich multi-path 

propagation is necessary in order to break the MIMO channel into separate sub-

channels.” 

Durgin’s comment clearly extends the argument made by Gesbert’s comment since by 

definition Rayleigh channels exibit a richer multi-path environment than Ricean 

channels. 

Further to this, work by Ozcelik et al. [156] indicates that in general, channel impulse 

responses that contain dominant channel impulse response components, such as the 

line-of-sight channel impulse component in the case of Ricean channels, give rise to 

higher degrees of multi-path correlation and hence lower capacities. However, there 

exist some literature which argue that Rayleigh channels, which by definition would 

have no dominant channel impulse response component can sometimes exhibit lower 

capacities than Ricean channels  [154] [155]. Indeed further to this, the work by 
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Ozcelik et al. [156] has highlighted the fact that Rayleigh fading channels can exist 

with a high degree of multi-path correlation and can thus lead to low capacities. In 

relation to this idea, an important aspect of the experimental approach taken in this 

work should now be highlighted. The degree of correlation of the channel impulse 

response components, which arise specifically due to the multi-path propagation in 

the specially built enclosure discussed in chapter 3, is the same in the cases of the 

experimentally observed wireless channels which are indicative of both the Rayleigh 

fading statistics and the Ricean statistics. This idea is supported by the fact that the 

Rayleigh channels were observed experimentally by removing the line-of-sight 

channel impulse response component using software. Thus, these experimentally 

observed Rayleigh channels are identical to the experimentally observed Ricean 

channels but with the obvious exception that in the case of Ricean channels the line-

of-sight channel impulse component has not been removed in software. This means 

that the degree of correlation between the multi-path channel impulse response 

components must be equivalent in both cases.  

Removal of the channel impulse response component, known as first order (1) in fig. 

4.19, indicates a drop in capacity when the number of Tx elements and Rx elements is 

TN  =  2, 3, or 5. However, when TN  = 4, removal of this channel impulse response 

component seems to have little or no effect on capacity.  Fig. 4.20 and fig. 4.21 

indicate that removal of the channel impulse response components known as ‘first 

order (2)’ and ‘second order’ have little or no effect on the capacity of the MIMO 

communications system in the case of wireless channels. 
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4.5  Summary 

In this chapter, calculations of the capacity of MIMO and SISO communications 

systems were presented which derived from appropriate physical measurements. In 

the case of the transmission line channels, the novel idea of using the MIMO 

communications system to enhance transmission lines which were poorly balanced 

and exhibited a high degree of insertion loss and FEXT was presented. It was thus 

argued that such a transmission line is indicative of that which would have been 

deemed out-of-range for high-speed internet connections. MIMO and SISO capacity 

calculations based on unbalanced flat-pair transmission lines over the frequency range 

from 300 kHz to 100 MHz were presented and were readily comparable to similar 

calculations based on balanced twisted-pair cat 5 transmission line measurements and 

balanced twisted-pair telephone transmission line measurements. It was also seen that 

when using a low power spectral density of – 80 dBm/Hz, which occurs when VDSL 

systems are transmitting in known radio band, the capacity gain when using MIMO is 

minimal. It is therefore clarified that the results presented in terms of the transmission 

lines are indicative of overall performance given that in reality not all of the 

frequencies can be used in the context of MIMO because of the aforementioned 

problem of radio band interference.  

In the case of the wireless channels, an experimental methodology for observing  

wireless channels indicative of fading statistics which were either Rayleigh or Ricean 

was outlined in chapter 3.  Suitable channel matrices were then derived. When the 

capacity of the MIMO and SISO communications systems based on these channel 

matrices were calculated in this chapter, the results presented supported the idea that 

channels whose fading statistics are Rayleigh provide superior performance when the 
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degree of multi-path correlation and signal to noise ratio were equivalent in either 

case.
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Chapter 5: Multi-Carrier Modulation 

5.1 Introduction 

The objective of this chapter is to support the conclusions presented in chapter 4 by 

incorporating various channel impulse responses into an unencoded baseband multi-

carrier modulation simulation of a multiple-input/multiple-output (MIMO) 

communications system. All of these channel impulse responses are contained within 

vectors which were defined in chapter 3.  In the case of the transmission line channels, 

a novel aspect of the analysis in the chapter is the fact that channel impulse responses 

of unbalanced flat-pair transmission line channels, will be incorporated into this 

simulation. A comparative analysis of the same simulation, where instead channel 

impulse responses of balanced twisted-pair telephone line transmission line channels 

and balanced twisted-pair cat 5 transmission line channels were incorporated, will be 

presented. Specifically, this comparative analysis will be seen to support the idea from 

chapter 4 that the MIMO communications system can enhance transmission lines 

which would have otherwise been deemed out-of-range for high speed internet 

connections. In the case of the wireless channels, some justification for referring to 

the experimentally observed non line-of-sight scenario as Rayleigh channel is 

provided by comparing the simulation model with mathematically derived matrices 

whose elements were Rayleigh distributed. Also, results from the simulations confirm 

the corresponding analysis of chapter 4 where MIMO communications systems based 

Rayleigh channels exhibited superior performance over MIMO communications 

based on Ricean channels for fixed receive SNR and common degrees of multi-path 

correlation. 
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5.2 MIMO Multi-Carrier Modulation 

Section 5.2.1 presents multi-carrier modulation in the context of a single receive (Rx) 

element and a single transmit (Tx) element. In section 5.2.2, this multi-carrier 

modulation scheme is used to sound the various channels that can exist between two 

Tx elements and two Rx elements without making any explicit reference to 

transmission line or wireless channels per se. In section 5.2.3, the discussion of the 

previous two sections is combined and extended to describe a simulation of MIMO 

communications system which uses multi-carrier modulation signals. 

5.2.1 Multi-Carrier Modulation Simulation 

The multi-carrier modulation scheme which will be used in this simulation is 

presented in fig. 5.1 [45] [62]: 

 

 

Figure 5.1: Multi-carrier modulation simulation model.  

 

Looking at the left hand side of fig. 5.1, a is vector which contains complex scalar 

elements. In the context of this simulation, a  is a transmit vector which contains 

symbols which arise from the modulation scheme of choice which is quadrature 
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amplitude modulation (QAM).  a  is the frequency domain output of a bank of QAM 

modulators and is defined as:  
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In a mathematical sense it can now be appreciated that any of the th
i  scalar elements 

of the vector,a ,is a complex variable, Cai ∈ , with the exception of one element 

which is set at zero. In the context of this sub–script notation, transmission occurs 

over s2  sub–bands, so that Ss == 5122 . The notation, ( )T
⋅ , refers to the complex 

conjugate of a given variable and so the vector a is composed of a series of elements 

which are conjugate symmetric about the origin. Consider now the discrete Fourier 

transform (DFT) written as an lm × matrix W :   









−= ml
S

j
S
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π2
exp

1
,W                                                  (5.2) 

If a vector of dimensions 1×S  is to be transformed, then 1,0 −≤≤ Slm  and the 

quantity 1−=j .  
S

1
 is a scaling factor [124] which is chosen such that W be 

unitary thus: 

IWW =H                    (5.3) 
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Looking at fig. 5.1, and considering equation (5.3), the inverse discrete time Fourier 

transform (IDFT) matrix operation which is the Hermitian transpose of W , written as 

H
W . As a result the product R

H ∈aW . This product, aW
H , is a time domain vector 

which, when convolved with the channel impulse response, will produce a new time 

domain vector. However, examination of fig. 5.1 reveals that before this occurs there 

is a stage marked: ‘+CP’. This refers to the addition of a cyclical prefix (CP) to the 

time domain vector, aW
H . To clarify, normally the term, ‘convolution’ is understood 

to refer to a process known as ‘linear convolution’ where in this instance the time 

domain vector aW
H  would ordinarily be multiplied by a Toeplitz matrix which is 

derived from the channel impulse response. The CP is a repetition of the last L  

elements of aW
H . L  is chosen so that the CP also acts as a ‘guard band’ which 

means that L  is of sufficient length to ensure that the channel impulse response does 

not cause corruption of the elements in the next symbol to be transmitted after the 

time domain vector aW
H . This corruption of the next symbol to be transmitted is 

known as inter symbol interference (ISI). The addition of the CP to aW
H  means that 

the operation of linear convolution becomes a process known as circular convolution 

and proof of this may be found in [42]. As a result of this fact,  in fig. 5.1 the matrix, 

C , is a circulant matrix which is derived from the vector, h . In this chapter, it should 

be understood that the vector, h , is used to refer to any of the channel impulse 

response vectors which were defined in chapter 3. In fig. 5.1, the circular convolution 

appears as a matrix multiplication of an SS × matrix,C , defined as: 
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Circulant matrices are diagonalised by the IDFT and DFT matrix operations, thus 

defining a vector of uncorrelated additive white Guassian noise (AWGN), η , as:   
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The receive vector, b , which is on the extreme right hand side of fig. 5.1, may now be 

written as: 

{ }

WηΛa

ηaCWWb

+=

+= H

                  (5.6) 

Λ  is a diagonal matrix which may be defined by the product, H
WCW . The receive 

vector, b ,is therefore equivalent to the transmit vector, a , having a gain profile 

defined by the diagonal matrix, Λ , with an additional frequency domain noise vector 

defined by the matrix-vector product, Wη .  As indicated previously, the CP acts as a 

‘guard band’ which means that it is of sufficient length to ensure that the channel 

impulse response does not cause corruption of the elements in the next symbol to be 

transmitted after the time domain vector aW
H , i.e. it mitigates ISI. However, since 

the CP also gives rise to circular convolution as described, it mitigates the effect of 

interference that can occur between sub-bands, known as inter-band interference 

(IBI), on the basis that the matrix,Λ , is diagonal. 
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Finally, it should be noted in this section that this baseband simulation model for 

multi-carrier modulation is similar to the discrete multi-tone (DMT) modulation, 

which is a baseband modulation scheme that is often used on digital subscriber lines. 

It is therefore reasonable to apply this simulation to the case of transmission line 

channels.  In the case of the wireless channels, a passband simulation model for multi-

carrier modulation is more pertinent. This distinction serves to highlight the difference 

between this baseband DMT based simulation and orthogonal frequency division 

multiplexing (OFDM) which is often used in wireless channels. Both are essentially 

the same technology with the main difference being that OFDM is in general a 

passband multi-carrier modulation scheme which incorporates extra circuitry at the 

transmit and receive ends in order to modulate the complex time domain sun-symbols 

to a given carrier frequency [96] [74]. However, in this work only the baseband multi-

carrier modulation scheme which was outlined will be considered in the case of both 

the transmission line channels and the wireless channels. 
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5.2.2 Channel Sounding Sequence Simulation 

The objective of this section is to outline how channel transfer functions may obtained 

using a channel sounding sequence simulation based on the multi-carrier modulation 

simulation model presented in section 5.2.1. For the sake of clarity in explanation the 

number of Tx and Rx elements, TN , is set at 2. The channel sounding sequence is 

depicted in fig. 5.2 

 

Figure 5.2: Channel sounding sequence which uses a baseband multi-carrier 

modulation simulation model.  

 

In fig. 5.2, there are two distinct frequency domain transmit vectors denoted, a1  and 

a2 , with: η1 , η2 , η3  and η4  being vectors of uncorrelated AWGN components 

similar to the vector η  previously defined. The circulant matrix, C11 , represents the 

channel that exists between the first transmitter and the first receiver. The circulant 
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matrix,C12 , represents the channel that exists between the first transmitter and the 

second receiver. The significance of the other matrices: C21 and C22  may now be 

inferred by example. For this analysis, each of the circulant matrices: C11 , C12 , 

C21  and C22  is derived from the appropriate physical measurements in chapter 3. 

As a result of the matrices: C11 , C12 , C21  and C22 , there are now four frequency 

domain receive vectors denoted: b11 , b12 , b21  and b22 . The absence of blocks 

marked, ‘EQ’ should be noted in fig. 5.2. These are not necessary since it is by 

appropriate comparison of the frequency domain receive vectors, b11 , b12 , b21  and 

b22  with the corresponding appropriate frequency domain transmit vectors: a1  and 

a2 , that provides the channel transfer functions for this analysis. The notation, ( )
3

⋅ , 

appears on the channel matrix, 
3

,, ωjiH , to denote that it is a three dimensional matrix. 

The notation, ( ) ji,⋅ , has its usual significance of referencing the thj transmit element 

and the th
i receive element with respect to matrix elements and the notation, ( )ω⋅ , 

should be thought of referencing the thω sub-band. 
3

,, ωjiH is now defined as:  
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From fig. 5.2, it should now be appreciated how channel transfer functions can be 

obtained from the physical measurements contained within the vectors which were 

tabulated at the end of chapter 3 in the case of either the transmission line channels or 

the wireless channels. Furthermore, it can be seen from equations (5.7), (5.8), (5.9) 

and (5.10) that the three dimensional matrix,
3

,, ωjiH , contains channel transfer 

functions of all the channels that exist between two transmitters and the two receivers 

at all frequencies indexed from 1 to S . 

5.2.3  MIMO Multi-Carrier Modulation Simulation 

A multi-carrier modulation simulation model was described in section 5.2.1. This was 

then extended to a channel sounding sequence in order to derive channel matrices in 

section 5.2.2. This section outlines an unencoded baseband multi-carrier modulation 

simulation of a MIMO communications system. By performing a singular value 

decomposition in an appropriate manner on the three dimensional channel 

matrix,
3

,, ωjiH , the following three dimensional matrices may be derived:  

{ } { }
{ } { }
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The scalar elements inside each brace,{}⋅ , comprise 1×S vectors. Equation 5.11 has 

been included to highlight the difference between 
3

,, SjiU and 
3

,,

H

SjiU where, as described 

previously, the notation, ( )T
⋅ as it is used here refers to the complex conjugate of a 

given complex number. The vectors contained in equations (5.12) and (5.13) are now 

used to form the simulation of the MIMO multi-carrier modulation scheme which is 

depicted in fig. 5.3. The blocks, marked, ‘EQ’ in fig. 5.3 serve to remove the effect of 

the channel on the receive vectors in order to produce two vectors denoted 
_

a1 and 
_

a2 . 

_

a1 and 
_

a2  are noisy estimates of the original transmit vectors denoted a1 and a2 . As 

indicated in fig. 5.3, the vectors, 
_

a1 and 
_

a2  can be compared with the vectors a1 and 

a2  respectively, in order to compute bit error rates (BERs).   
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Figure 5.3: Multi-carrier modulation simulation model of a MIMO communications 

system. 
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5.3 MIMO Multi-Carrier Modulation Simulations Based on 

Transmission Line Channels 

 

The MIMO multi-carrier modulation simulation depicted in fig. 5.3 is a SIMULINK 

[101] simulation. Within each of the QAM blocks is an information source which 

generates a series of equiprobable binary bits which are then mapped onto QAM 

symbols. The simulation is considered under a number of conditions: 

(i) In common with the capacity calculations in chapter 4, an added white 

Gaussian noise power spectral density, 0N , of -110 dBm/Hz is assumed. 

As indicated by Aslanis and Cioffi [171], this level exceeds that set by 

electronics alone but includes the noise floor set by an echo canceller. 

(ii) Again as in chapter 4, a transmit bandwidth of 4.3125 kHz is assumed. 

This is the bandwidth set by the American National Standards Institute 

(ANSI) for a discrete multi-tone (DMT) tone in the asymmetric digital 

subscriber line (ADSL) T1.413 DMT standard [124] [172].  

(iii) Various transmit power spectral densities are considered. The lowest one 

taken is -80 dBm/Hz, which is the transmit power spectral density given in 

[124] for VDSLs signal that occur in known radio frequency bands. In 

common with chapter 4, -60 dBm/Hz is also taken since it is the figure 

given in [124] for nominal transmit power density of high bit-rate digital 

subscriber line (VDSL) signals. The highest transmit power spectral 

density considered is -40 dBm/Hz. It is noted that in reality, the noise 

variance within simulation is adjusted rather than transmit power spectral 
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density. However, this can readily be done to simulate the various transmit 

spectral densities outlined given what has been stated in (i) and (ii). 

(iv) The simulation considers the balanced twisted-pair telephone cable, the 

balanced cat 5 twisted-pair and the unbalanced flat-pair are compared for a 

dimension, 3=TN .  

(v) In the case of each transmission line channel type, the relevant time    

domain channel impulse response vectors from chapter 3, i.e. either 

),( jiUh , ),( jiBh  or ),( jiCh  are used to form circulant matrices. 

 

It is argued that since the effect of the various transmission line channels is being 

compared, it is therefore logical to consider the transmit SNR to facilitate 

appropriate performance comparison. As in chapter 4, since full channel matrix 

rank is assumed, the BERs can be computed on each of three orthogonal sub-

channels which are pertinent to the dimension being 3=TN . The computed BERs 

are given in figs 5.4–5.6 for the cases of the balanced twisted-pair telephone cable, 

the balanced cat 5 twisted-pair and the unbalanced flat-pair respectively. 
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Figure 5.4: Bit error rate (BER) as a function of signal to noise (SNR) for each of the 

three orthogonal sub-channels for the case of the twisted-pair telephone cables. 30 dB 

corresponds a transmit power spectral density of – 80 dBm and 50 dB corresponds to 

a transmit power spectral density of -60 dBm. 
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Figure 5.5: Bit error rate (BER) as a function of signal to noise (SNR) for each of the 

three orthogonal sub-channels for the case of the twisted-pair Cat 5 cables. 30 dB 

corresponds a transmit power spectral density of –80 dBm and 50 dB corresponds to a 

transmit power spectral density of -60 dBm. 

 

 



Chapter 5: Multi-Carrier Modulation.______________________________________ 

136 

 

Figure 5.6: Bit error rate (BER) as a function of signal to noise (SNR) for each of the 

three orthogonal sub-channels for the case of the Flat-pair cables. 30 dB corresponds a 

transmit power spectral density of –80 dBm and 50 dB corresponds to a transmit 

power spectral density of -60 dBm. 

 

The multi-carrier modulation scheme is unencoded and although the BERs given in 

figs 5.4 to 5.6 provide some idea of performance in each case, it is not clear which 

transmission line channel type performs best. In the context of capacity of MIMO 

communications systems, Kyritsi and Cox [92] state the following in relation to the 

orthogonal sub-channel gains: 

“the maximum achievable capacity is attainable when all sub-channels have equal 

gains”  
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This statement concurs with Durgin’s argument which was given in chapter 4 [47], 

i.e. 

“The channel capacity expression is maximised when the signal power is evenly 

distributed among the singular values”  

As a result of this, it would appear that the BER results presented in fig. 5.6, in the 

context of flat-pair, are indicative of the poorest performance since there appears to be 

one dominant singular value. However, greater clarity on the performance of the 

various transmission line channels comes from examination of the singular values 

which are calculated from the transfer functions which were derived from the channel 

sounding sequences. Looking at fig. 5.8, it can clearly be seen that the singular values 

pertaining to the cat 5 twisted-pair remain quite close to each other and do not drop 

below 0.1 until approximately 50 MHz. The singular values of the twisted-pair 

telephone cable in fig. 5.7 do not drop below 0.1 until approximately 30 MHz which 

indicates a slightly poorer performance than the case of the cat 5 twisted-pair. In fig. 

5.9, the singular values of the flat-pair start to drop below 0.1 at approximately 10 

MHz. Further to this, in light of the previous comments from Durgin, Kyritsi and Cox 

which pertain to increased performance as a result of numerical similarity of each of 

the singular values, it is also possible to consider the numerical similarity of each of 

the singular values given in each of figs 5.7-5.9. Careful examination of figs 5.7-5.9 

reveals that the singular values of the Cat5 twisted-pair remain the closest to each 

other over the entire frequency range than in the case of the other two transmission 

line types. The results in figs 5.7–5.9 hence indicate that the best performance of the 

three types of transmission line channels is the twisted-pair Cat 5 transmission line 

channels followed by the twisted-pair telephone channels with the flat-pair channels 
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being the worst. However, the BERs presented in fig. 5.6 do indicate that the flat-pair 

would provide reasonable performance under the conditions specified in (i) – (iv) 

given sufficient coding effort. These conclusions are consistent with the capacity 

analysis of MIMO communications systems based on transmission line channels that 

was presented in chapter 4.  

 

Figures 5.7-5.9: From top to bottom: Singular value calculations derived from 

channel sounding sequence for twisted-pair telephone cable (top, fig. 5.7), cat 5 

twisted-pair (middle, fig. 5.8) and flat pair (bottom, fig. 5.9) for the 

dimension 3=TN .  
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5.4 MIMO Multi-Carrier Modulation Simulations Based on 

Wireless Channels 

 

The MIMO multi-carrier modulation simulation depicted in fig. 5.3 is a SIMULINK 

[101] simulation. Within each of the QAM blocks is an information source which 

generates a series of equiprobable binary bits which are then mapped onto QAM 

symbols. The simulation is considered under a number of conditions: 

 

(i) The families of channel impulse response vectors denoted: Allh , LOSh , 

)1(1 ordersth , 
)2(1 ordersth  and 

ordernd2
h  are considered. The four families of 

channel impulse response vectors: LOSh , 
)1(1 ordersth , 

)2(1 ordersth  and 
ordernd2

h  

are compared against Allh in each figure which follows. 

(ii) The receive signal power to noise power ratio denoted: 
ϕ

P
  is fixed at a 

ratio of 18 dB at the receiver throughout this section on the basis of the 

sounding sequence. Thus it can be appreciated that the capacities for the 

MIMO communications systems are examined from the perspective of the 

channel matrix conditioning or eigenvalue distribution due to various 

multi-path channel impulse response components. 

(iii) Since the all of the channel matrices are derived from common sets of 

experimental data with the obvious exception that various relevant channel 

impulse response components have been removed, the degree of 
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correlation amongst common channel impulse response components in 

each channel matrix is equivalent.  

 

Figure 5.10: Bit error rate (BER) as a function of orthogonal sub-channel for the case 

of the wireless channels whose channel impulse response vectors were denoted: Allh  

(Complete Multi-Path) and LOSh  (Removal of LOS). In both cases, the BERs are zero 

for the first orthogonal sub-channel. The SNR is 18 dB at the receiver. 
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Figure 5.11: Bit error rate (BER) as a function of orthogonal sub-channel for the case 

of the wireless channels whose channel impulse response vectors were denoted: Allh  

(Complete Multi-Path) and 
)1(1 Ordersth  (Removal of first order (1)). In the case of the 

simulation pertaining to Allh , the BER is zero for the first orthogonal sub-channel. The 

SNR is 18 dB at the receiver. 
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Figure 5.12: Bit error rate (BER) as a function of orthogonal sub-channel for the case 

of the wireless channels whose channel impulse response vectors were denoted: Allh  

(Complete Multi-Path) and 
)2(1 Ordersth  (Removal of first order (2)). In the case of the 

simulation pertaining to Allh , the BER is zero for the first orthogonal sub-channel. The 

SNR is 18 dB at the receiver. 
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Figure 5.13: Bit error rate (BER) as a function of orthogonal sub-channel for the case 

of the wireless channels whose channel impulse response vectors were denoted: Allh  

(Complete Multi-Path) and 
Ordernd2

h  (Removal of second order). In the case of the 

simulation pertaining to Allh , the BER is zero for the first orthogonal sub-channel. The 

SNR is 18 dB at the receiver. 

 

In fig. 5.10 it can be seen that removal of the line-of-sight channel impulse response 

component provides bit error rate performance. The similarity of the bit error rates in 

the third and fourth orthogonal sub-channels when the line-of-sight component is 

removed is indicative of a change in channel matrix conditioning. This analysis 

therefore supports the fact that for a fixed receive SNR, Rayleigh channels exhibit 

superior performance to Ricean channels. This supports the capacity analysis in 

chapter 4 where a similar conclusion was reached with respect to the effect of these 
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fading statistics of the wireless channels in light of the fact that the degree of multi-

path correlation was equivalent. Looking at fig.5.11, fig. 5.12 and fig. 5.13, the effect 

of removing other channel impulse components from the channel impulse response of 

the wireless channels does give significantly different bit error rates recorded in the 

MIMO multi-carrier modulation simulation outlined in this chapter. 

     

5.5 Summary 

The overall objective of this chapter was to support the capacity based conclusions of 

chapter 4. MIMO multi-carrier modulation simulations have been described which 

were based on channels which were experimentally observed in the time domain. 

Specifically, vectors which contain the channel impulse responses of various 

transmission line and wireless channels support the analysis. In the case of the 

transmission line channels, the novel idea from chapter 4 of using the MIMO 

communications system to enhance transmission lines which would have otherwise 

been deemed out-of-range for high speed internet connections was supported by 

considering the flat-pair channels. However, the transmission line analysis in this 

chapter supported the analysis of chapter 4 where the flat-pair was seen to exhibit the 

worst overall performance. In the case of the wireless channels, it was seen that there 

was an improvement in the bit error rates when the line-of-sight channel impulse 

response component was removed. Again, it is argued that this improvement is 

indicative of a Rayleigh channel whose multi-path components have equivalent 

correlation to those of a comparative Ricean channel which has the additional line-of-

sight component.  
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Chapter 6: The Effect of Imperfect Knowledge of the Channel on the 

Capacity of MIMO Communications Systems 

6.1 Introduction 

This chapter extends the analysis of chapter 4 by examining the effect of imperfect 

knowledge of the channel on the capacity of multiple-input/multiple-output (MIMO) 

communications systems. In the case of the time-invariant transmission line channels, 

it was discussed in chapter 4 how, in a practical sense, the channel transfer functions 

are in fact computed from one-port measurements. It will be seen in this chapter that 

these channel transfer functions may be incorrect and hence there is imperfect 

knowledge of the transmission line channels. In the case of the time-variant wireless 

channels, it was assumed in chapter 4 that the channel transfer functions remained 

constant over an arbitrary period of time known, i.e. the channel was assumed ‘quasi-

static’. Again, should the wireless channels not be quasi-static, there is imperfect 

knowledge of the channel. In the case of the transmission line channels, this chapter 

presents a novel comparative analysis of the capacity of the MIMO communications 

system based on the unbalanced flat-pair transmission lines, balanced twisted-pair 

telephone transmission lines and the balanced Cat 5 twisted-pair. In each case, the 

effect of increasing the extent of the imperfect knowledge of the channel is examined. 

A similar analysis of the effect of increasing the extent of the imperfect knowledge of 

the channel on the capacity of MIMO communications systems in the case of the 

wireless channels is also presented in this chapter. In respect of the wireless channels, 

this particular analysis parallels the work of Kyritsi [93] and others [103] [138] [137] 

[14] [20] [113] [64] [143], but with differences to the overall approach which deem
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 the analysis and its results novel. All the analyses and results within this chapter will 

also be seen to provide an important foundation for the analyses of chapter 7. 

6.2 Imperfect Knowledge of the Channel 

Transmission line channels are considered to be time-invariant. In this case, imperfect 

knowledge of the channel is likely to occur due to incorrect assessment of the channel 

transfer functions from one-port transmission line measurements. This idea has been 

outlined in the studies by Bostoen et. al [18], Galli and Waring [57], Wong and 

Aboulnasr [141] and has been described in a text by Bingham [18]. In contrast to 

transmission line channels, the wireless channel is considered to be time variant. As a 

result of this, the channel transfer functions will change with time as a result of multi-

path fading in a dynamic environment. Imperfect knowledge of the channel will 

therefore occur when these channel transfer functions change at a rate 

incommensurate with the assumption of the quasi-static channel. In other words, the 

channel transfer functions could change at a rate quicker than the rate at which bursts 

of information are transmitted. This idea has been outlined in the studies by Médard 

[103], Weber et al [138] [137], Kyritsi et al. [93], Berriche et al. [14], Cano-Gutierrez 

et al. [20], and others [113] [64] [143].  

Define the extent of the imperfect knowledge of the channel as a matrix H∆ : 

{ }( )HH ∆∆ var,0~ CN                  (6.1) 

H∆ is a matrix whose scalar elements are random complex independent and 

identically distributed. The notation in equation (6.1) indicates that the statistical 

distribution of these scalar elements is complex normal as identified by the 
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notation,CN . This notation also indicates that the mean of these scalar elements is set 

at zero and that their variance is set at an arbitrary variance, { }H∆var .  Imperfect 

knowledge of the channel may be defined by the matrix sum of the channel matrix, H , 

and the extent of the imperfect knowledge of the channel, H∆ , i.e., HH ∆+ . A 

singular value decomposition of the matrix, HH ∆+ , is given as: 

( )( )( )H
∆VVDD∆UU∆HH +∆++=+                (6.2) 

The matrices: UU ∆+  and VV ∆+  are unitary and the matrix, DD ∆+ , is a diagonal 

matrix. Recalling from chapter 4 that in a MIMO communications system where there 

is perfect knowledge of the channel, the weighted receive vector,
_

y , is related 

mathematically to the weighted transmit vector, 
_

x  , by:  

___

nxDy +=                    (6.3) 

Equivalently in the original transmit vector, x , and the receive vector y ,are written as: 

nHVxUUy += H                   (6.4) 

This is depicted in fig. 6.1. However, when the unitary matrices UU ∆+  and 

VV ∆+ are applied to a MIMO communications system, whose channels are defined 

mathematically by the channel matrix, H , the relationship between the transmit 

vector, x , and the receive vector, y , may be depicted in fig. 6.2. 
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Figure 6.1: The MIMO communications system consisting of two transmit elements 

and two receivers elements. Equations are written above the various mathematical 

operations in the MIMO Communications system. TN  is set 2=TN . 

 

Figure 6.2: The effect of imperfect knowledge of the channel on MIMO 

communications systems consisting of two transmit elements and two receivers 

elements. Equations are written above the various mathematical operations in the 

MIMO Communications system. TN  is set 2=TN . 
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Looking at fig. 6.2, an erroneously weighted transmit vector, Err

_

x , and an erroneously 

weighted receive vector, 
Err

_

y , have been defined. In this case, the relationship 

between the transmit vector, x , and the receive vector, y , is written as:  

nU)(UV)xH(VU)(UyU)(U HHH ∆++∆+∆+=∆+              (6.5) 

Comparing equation (6.5) with equation (6.4), the matrix vector product 

of yU)(U H∆+ , in equation (6.5), results in an erroneously weighted receive vector, 

defined as 
Err

_

y in fig. 6.2. Similarly, the matrix vector product of V)x(V ∆+  results in 

an erroneously weighted transmit vector, defined as Err

_

x  in fig. 6.2. In relation to this, 

the channel matrix, ED + , in fig. 6.2 is: 

V)H(VU)(UED ∆+∆+=+ H                 (6.6) 

Recalling from chapter 4 that the matrix, D , is a diagonal matrix:  

{ }
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Thus the matrix, E , is: 
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The diagonal elements of the matrix, E , 
 
are perturbations in the singular values which 

are contained along the main diagonal of the matrix, D . These perturbations, are 

denoted:  

TN∆∆∆ ,..., 21 σσ   

Use of this notation is logical since the diagonal elements of D , i.e. the singular values 

of H , were denoted 
TNσσσ ,..., 21  in equation (6.7). In contrast to the matrix, D , the 

matrix, E , contains non-zero off-diagonal terms
15

. These non-zero off-diagonal terms 

indicate a degree of coupling or ‘leakage’ between the sub-channels which would 

previously have been viewed as orthogonal by the receiver when the transmit and 

receive vectors were correctly weighted, i.e. when there was perfect channel 

knowledge. Combining equations (6.7) and (6.7), the channel matrix, ED + , may also 

be written as: 





















∆+

∆+
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ee

ee

ee

σσ

σσ

σσ

L

MOMM

L

L

2,1,

,2221,2

,12,111

ED            (6.9) 

This matrix, ED + , forms the basis for computing the capacity, denoted ED+C , of 

MIMO communications systems where there is imperfect knowledge of the channel.  

 

                                                 

15
Throughout this work the exponential function has been denoted, {}⋅exp , and the expectation 

operator has been denoted, {}⋅E . As a result, the matrix, E , in equation (6.8) and its scalar elements 

should not be confused with either the exponential function or the expectation operator. 

  



Chapter 6: The Effect of Imperfect Knowledge of the Channel on the Capacity of 

MIMO Communications Systems__________________________________________ 

151 

This capacity, ED+C , is now defined as: 

( )

( ) ( )
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          (6.10) 

The reader is reminded that equation (6.10) is of the form pertinent to a continuous 

channel capacity with units of bits/sec/Hz. As before, P  is the total receive power, in 

watts, as detected over all the receivers and iϕ  is the noise power, in watts, as 

detected at the th
i receiver. The matrix, ED + , is ultimately derived from a matrix of 

random elements, H∆ , hence the capacity, ED+C , is evaluated with respect to the 

expectation operator, {}⋅E . The use of parenthesis on the matrix, ED + , emphasises 

that any relevant qualifying matrix notation makes reference to the entire matrix, 

ED + , as it has been defined in equation (6.9). The term: 

 

( ) ( )∑
=

+−












+
ji

ii
j

2

,

2

EDED  

 

quantifies the degree of degree of coupling, or loss in orthogonality, of the sub-

channels in the MIMO communications system where there is imperfect knowledge of 

the channel.  
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6.3  Capacity Calculations on Transmission Line Channels 

In chapter 4, the capacity calculations based on transmission line channels were 

calculated under a number of conditions. These conditions are now recalled in the 

context of the analysis to be presented in this section.  

(i) An added white Gaussian noise (AWGN) power spectral density, 0N , of -

110 dBm/Hz, pertinent to the noise floor set by an echo canceller [171], is 

assumed. 

(ii) The American National Standards Institute (ANSI) discrete multi-tone 

(DMT) tone transmit bandwidth of 4.3125 kHz is assumed [124] [172]. 

Capacities are calculated at intervals of approximately 496 kHz, i.e. at 201 

intervals between 300 kHz to 100 MHz. 

(iii) The lower nominal transmit power density -80 dBm/Hz for high bit-rate 

digital subscriber line (VDSL) signals yielded little in the way of 

improvement for MIMO over SISO in chapter 4. Thus only the higher 

transmit power spectral density of -60 dBm/Hz for high bit-rate digital 

subscriber line (VDSL) signals [124] is considered here.  

(iv) The balanced twisted-pair telephone cable, the balanced cat 5 twisted-pair 

and the unbalanced flat-pair are compared for a dimension, 3=TN . The 

cat5 is also examined for a dimension, 4=TN  and the twisted-pair is also 

examined for a dimension, 5=TN . Cumulative plots of capacity with 

respect to bandwidth are also presented. 
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(v) As described in chapter 4, the channel matrix, ( )fH , was normalised such 

that: 

( ) ( )
( )

F
f

f
f

1

_

=
=

H

H
H                (6.11) 

The capacity calculations in this section are therefore derived from: 

HH ∆+)(
_

f  

Using:  
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                  (6.12) 

Consider now the effect of increasing the variance, { }H∆var , from 0.001 through to 

0.01 for the case of the balanced twisted-pair telephone cable with dimension 3=TN   

in figs 6.3 and 6.4.  
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Figure 6.3-6.4: Effect of increasing imperfect knowledge of the channel, { }H∆var  = 

0.001, 0.005 and 0.01, on MIMO communications system based on balanced twisted-

pair telephone cable transmission lines. Upper plot: capacity in bits/sec/Hz. Lower 

plot: cumulative capacity in bits/sec. In all cases, the dimension 3=TN and the 

transmit power spectral density is 600 −=P  dBm/Hz. 

 

It appears from capacity plot in fig. 6.3 that there is a minimal gain in capacity for the 

case of the MIMO communications system when the extent of the imperfect 

knowledge of the channel is { } 005.0var =∆H . The cumulative capacity plot in fig. 6.4 

clarifies that for a MIMO communications system operating over the entire frequency 

range from 300 kHz to 100 MHz, the extent of the imperfect knowledge of the 

channel should be between { }H∆var  of 0.005 and 0.001. Fig. 6.4 also clarifies that 

there is no capacity gain for MIMO when { }H∆var is 0.01 in this case. 
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The effect of increasing the variance, { }H∆var , from 0.001 through to 0.01 for the 

case of the balanced twisted-pair cat 5 cable, with dimension 3=TN , is considered in  

figs 6.5 and 6.6. 

 

Figures 6.5-6.6: Effect of increasing imperfect knowledge of the channel, { }H∆var  = 

0.001, 0.005 and 0.01, on MIMO communications system based on balanced twisted-

pair cat 5 transmission lines. Upper plot: capacity in bits/sec/Hz. Lower plot: 

cumulative capacity in bits/sec. In all cases, the dimension 3=TN and the transmit 

power spectral density is 600 −=P  dBm/Hz. 

 

Fig. 6.5 indicates that when the imperfect knowledge of the channel is quantified by 

{ }H∆var  = 0.01, the MIMO communications system based on the cat 5 twisted-pair 

transmission line channels appears to perform poorer than the SISO communications 

system at frequencies up to 50 MHz, but better above 50 MHz. However, the 
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cumulative capacity plot in fig. 6.6 indicates that there is no capacity gain in the case 

of MIMO over the entire frequency range from 300 kHz to 100 MHz when { }H∆var  

= 0.01. Given this extent of imperfect knowledge of the channel, the use of SISO 

techniques up to 50 MHz is indicated with MIMO techniques being confined to 

frequencies above 50 MHz. Inspection of fig. 6.5 indicates that a similar argument in 

respect of a { }H∆var  = 0.005 can be made. Comparison of figs 6.3 and 6.4 with figs 

6.5 and 6.6, at frequencies above 50 MHz, reveals that performance of the MIMO 

communications system in the case of cat 5 cable is such that for a given extent of 

imperfect knowledge of the channel, it does not degrade towards to the performance 

of the SISO communications to the same extent as the twisted-pair telephone cable. 
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The effect of increasing the variance, { }H∆var , from 0.001 through to 0.01 for the 

case of the unbalanced flat-pair cable, with dimension 3=TN , is considered in figs 

6.7 and 6.8. 

 

Figures 6.7-6.8: Effect of increasing imperfect knowledge of the channel, { }H∆var  = 

0.001, 0.005 and 0.01, on MIMO communications system based on unbalanced flat-

pair transmission lines. Upper plot: capacity in bits/sec/Hz. Lower plot: cumulative 

capacity in bits/sec. In all cases, the dimension 3=TN and the transmit power spectral 

density is 600 −=P  dBm/Hz. 

 

The results in fig. 6.7 and 6.8 clearly support the idea of low frequency operation for 

the unbalanced flat pair transmission lines. For the MIMO communications system, at 

frequencies higher than 25 MHz, the effect of imperfect knowledge of the channel on 

capacity as quantified by the variances: { }H∆var  = 0.001, 0.005 is such that 



Chapter 6: The Effect of Imperfect Knowledge of the Channel on the Capacity of 

MIMO Communications Systems__________________________________________ 

158 

performance is more or less equivalent to the SISO communications system. As 

mentioned in chapter 4, some current asymmetric digital subscriber lines (ADSLs) 

standards operate in the frequencies 2-3 MHz. At frequencies below approximately 10 

MHz, the flat-pair exhibits reasonable capacity gain for MIMO with respect to SISO 

in relation to the variances: { }H∆var  = 0.001, 0.005. Thus this analysis of imperfect 

knowledge of the channel further supports the argument for the enhancement of poor 

quality digital subscriber line using MIMO. 
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In the case of the balanced twisted-pair cat 5 transmission line, the effect of increasing 

the dimension, TN , from 3 to 4 is now considered in figs 6.9-6.11. 

 

Figures 6.9-6.11: Effect of increasing imperfect knowledge of the channel, { }H∆var  

= 0.001, 0.005 and 0.01, on MIMO communications system based on balanced 

twisted-pair cat 5 transmission lines. Upper plot: capacity in bits/sec/Hz for 3=TN . 

Middle plot: capacity in bits/sec/Hz for 4=TN . Lower plot: cumulative capacity in 

bits/sec for 4=TN . In all cases, the transmit power spectral density is 600 −=P  

dBm/Hz. 

 

Similar conclusions can be made regarding the relative performance of MIMO and 

SISO communications for the case where 4=TN in figs 6.10 and 6.11 as were made 

for the case where 3=TN  in figs 6.5 and 6.6. However, comparing fig. 6.9 with 6.10, 
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where the dimension 3=TN  may be compared directly with the case where 4=TN , 

for any given variance, { }H∆var , there is a greater loss in capacity as TN  increases. 

This is quite clear from inspection given that the plots in figs 6.9 and 6.10 are to the 

same scale. 

Finally in this section, the effect of increasing the dimension, TN , from 3 to 5, is now 

considered for the case of the balanced twisted-pair telephone transmission line in figs 

6.13-6.14. 

 

Figures 6.12-6.14: Effect of increasing imperfect knowledge of the channel, { }H∆var  

= 0.001, 0.005 and 0.01, on MIMO communications system based on balanced 

twisted-pair telephone transmission lines. Upper plot: capacity in bits/sec/Hz for 

3=TN . Middle plot: capacity in bits/sec/Hz for 4=TN . Lower plot: cumulative 

capacity in bits/sec for 4=TN . In all cases, the transmit power spectral density is 

600 −=P  dBm/Hz. 
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Again, in fig 6.12, there are plots for the case where 3=TN on the same scale as fig 

6.13 for ease of comparison. It is clear again that there is a loss in terms of capacity 

for any given variance as TN is increased. This idea of increasing capacity loss for a 

given variance, { }H∆var , as the dimension TN is increased will be seen to be 

mirrored in the next section which concerns the wireless channels. 

6.4  Capacity Calculations on Wireless Channels 

In chapter 4, the capacity calculations based on wireless channels were calculated 

under a number of conditions. These conditions are now recalled in the context of the 

analysis to be presented in this section. 

(i) As outlined in chapter 3, all the transfer functions and hence channel matrices 

pertain to a centre frequency of 5.2 GHz. 

(ii) The receive signal power to noise power ratio denoted: 
ϕ

P
  is fixed at a ratio 

of 18 dB throughout this section.  

(iii) The various channel matrices were normalised in the manner described in 

section 4.3 of chapter 4. Thus the channel matrix, H , was normalised such 

that: 

( )
F

f
H

H
H =
_

                        (6.13) 

       The capacity calculations in this section are therefore derived from: 
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HH ∆+All

_

 

Using:  

( )
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                  (6.14) 

which is equivalent to equation (6.10). Consider now the effect of increasing the 

variance, { }H∆var , from 0.01 through to 0.01 for the case of the wireless channels as 

the dimension TN is also increased from 2 through to 5 in fig. 6.15. As in chapter 4, 

the SISO communications system is indicated when 1=TN .  
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Figure 6.15: Effects of increasing imperfect knowledge of the channel, { }H∆var  =  

0.03, 0.05, 0.07 and 0.1. and increasing dimension, TN  for a MIMO communications 

system based on wireless channels. When 1=TN , this refers to a SISO 

communications system. 
ϕ

P
=18 dB. 

 

A number of observations can be made from examination of fig. 6.15:  

(i) The variance, { }H∆var , should be no greater than 0.03 in order to achieve a 

linear increase in capacity with respect to the dimension, TN .  
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(ii) Although there is a gain in capacity for MIMO with respect to the SISO for a 

variance, { } 05.0var =∆H , the linear increase in capacity ceases for cases 

where the dimension, 3>TN . 

 

(iii) As the dimension, TN , is increased along the x-axis, the effect of the imperfect 

knowledge of the channel, for a given variance, { }H∆var , on capacity, 

becomes more pronounced. This mirrors the transmission line analysis of the 

previous section. 

 

This analysis indicates that higher dimensions of TN  require a more precise 

knowledge of the communications channel. Similar observations have been made in 

the studies of Kyritsi [93] and others [103] [138] [137] [14] [20] [113] [64] [143], 

however the specific figures quoted in this work which concern the 

variance, { }H∆var , reflect the fact that there are in fact differences in the approach to 

the analysis taken here.   

6.5 Summary 

In this chapter, practical reasons for imperfect knowledge of the channel were offered. 

In light of these, an analysis of the effect on the capacity of MIMO communication 

systems when there is imperfect knowledge of the channel was considered. The extent 

of imperfect knowledge of the channel was quantified by the variance, { }H∆var , 

which denoted the variance of complex normally distributed scalar elements of a 
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matrix: H∆ . A novel comparative analysis between MIMO communications systems 

based on various types of transmission line channels was presented. In the case of the 

balanced twisted-pair telephone lines, a fairly consistent drop in capacity with respect 

to frequency for a fixed dimension, TN , and fixed variance, { }H∆var  was observed. 

While increasing the dimension TN gave an overall greater gain in terms of capacity, 

the relative drop in capacity for a given variance, { }H∆var , increased. This was also 

seen to be true for the case of the balanced twisted-pair cat 5 channels. Given 

reasonable capacities for the SISO communications system, at frequencies up to 50 

MHz, the idea was therefore offered that MIMO techniques, given imperfect 

knowledge of the channel, only be used after 50 MHz in the case of cat 5. Finally in 

relation to the transmission line channels, the idea was further justified that MIMO 

techniques be used to enhance poorly balanced transmission lines with high insertion 

losses and FEXT. Given that the unbalanced flat-pair transmission line channels show 

good capacity gains at relatively low frequencies, even with varying degrees of 

imperfect knowledge of the channel, current ADSLs standards could therefore be 

deployed in these circumstances using MIMO. In the case of MIMO communications 

systems based on wireless channels, it was seen that imperfect knowledge of the 

channel can prohibit the linear increase in capacity with respect to increasing 

dimension, TN . Also, for a given extent of imperfect knowledge of the channel as 

quantified by the variance, { }H∆var , the relative decrease in capacity was seen to 

become more pronounced. The figures reported in this work are such that a viable 

MIMO communications system is seen to exist when the extent of the imperfect 

channel knowledge is quantified by a variance, { } 05.0var =∆H . However, given this 

extent of imperfect knowledge of the channel, the linear increase in capacity with 
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respect to the dimension, TN , does not occur when 3>TN . It is therefore concluded  

that the variance, { }H∆var , should be no greater than 0.03 in order to achieve a linear 

increase in capacity with respect to increasing dimension, TN .  
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Chapter 7: Lower Bound on the Capacity of MIMO Communications 

Systems Based on the Leakage Level 

7.1 Introduction 

In this chapter, a lower bound on the capacity of MIMO communications systems is 

derived and results are presented which will be seen to offer a conservative indication 

of the extent of imperfect knowledge of the channel which still allows for a viable 

MIMO communications system. It is this lower bound along with calculations of the 

leakage level, to quantify the extent of the imperfect knowledge of the channel, that 

entirely define novel contribution of this chapter. In common with chapter 6, a novel 

comparative analysis of MIMO communications systems based on various 

transmission line channels is presented. Also, a novel analysis of the MIMO 

communications systems based on the wireless channels based is presented. 

7.2  The Leakage Level 

Girand et al. [63] have studied the numerical behaviour of several computational 

variants of what is known as the ‘Gram-Schmidt orthogonalisation process’. The 

Gram-Schmidt orthogonalisation process, in the context of some arbitrary real valued 

matrix, A  , of full rank whose arbitrary dimension is MN × , produces two matrices 

Q  and R  which are related mathematically to this matrix, A , in the manner given 

by:  

QRA =                    (7.1) 

The matrix, R , is an upper right triangular matrix and more importantly the matrix Q  
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is orthogonal. For a more rigorous and detailed account of the Gram-Schmidt 

orthogonalisation process, the interested reader is referred to [11] [125] [65]. It is 

important to note however that as a result of the Gram-Schmidt orthogonalisation 

process, the matrix,Q , has a similar property to the two unitary matrices, U and V , 

which were first defined in chapter 4. This property is highlighted by the following 

expression: 

IQQQQ == HH                   (7.2) 

I is the identitiy matrix of appropriate dimensions. Girand et al. indicate that 

algorithms which implement this Gram-Schmidt orthogonalisation  process can  be 

numerically unstable under certain circumstances. The result of this is the generation 

of a non-orthogonal matrix, 
_

Q , where, in contrast to the orthogonal matrix, Q : 

IQQ ≠
H__

.                    (7.3) 

Girand et al. quantify the loss in orthogonality in 
_

Q  with respect to Q  using the term: 

F

H__

QQI −  

This idea is effectively extended by Nguyen et al [110] who, in the context of MIMO 

communications systems, define a ‘leakage level’ which is denoted here as: L . 

L quantifies the loss in orthogonality of the ‘eigenmodes’ or MIMO sub-channels. 

Before defining the leakage level in the context of thus work, recall from chapter 6 

that the degree of imperfect channel knowledge was quantified by the variance of the 

scalar elements of a matrix, H∆ .The scalar elements of this matrix, H∆ , were defined 
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as being identical and independently (i.i.d) complex normally distributed with mean 

of zero and arbitrary variance, { }H∆var  as:  

{ }( )HH ∆∆ var,0~ CN                   (7.4) 

In the context of MIMO communications systems, this was then seen to give rise to a 

non-diagonal matrix, E :   
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E                (7.5) 

The diagonal elements of the matrix, E , 
 
are perturbations in the singular values which 

are contained along the main diagonal of the matrix, D , The non-zero off-diagonal 

terms of the matrix, E , indicate a degree of coupling or ‘leakage’ between the sub-

channels which would previously have been viewed as orthogonal by the receiver 

when the transmit and receive vectors were correctly weighted. The ‘leakage 

level’, L , hence follows from equation (7.5) as:  

{ }
F

EL E=                    (7.6) 

 

The use of the expectation operator, {}⋅E  in equation (7.4) is logical since calculation 

of the matrix, E , is effectively stochastic in nature. As previously indicated, the 

notation,
F

⋅ , represents the Frobenious norm and may be defined in the context of 

equation (7.6) as:  
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)( H

F
tr EEE =                    (7.7) 

7.3 Leakage Level Calculations on Transmission Line Channels 

 

In fig. 7.1, the leakage level, L , with respect to both increasing frequency and 

increasing variance, { }H∆var  is plotted in the case of the balanced twisted-pair 

telephone transmission line channels for the dimension, TN =3. 

 

Figure 7.1: A plot of the leakage level, L , as a function of the variance, { }H∆var , and 

frequency in MHz for a MIMO communications system based on balanced telephone 

transmission line channels. The dimension TN =3.  
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Within the frequency range from 300 kHz to 100 MHz, although calculation of the 

leakage level, L , is clearly stochastic in nature, it can be appreciated by inspection of 

curves in fig. 7.1 that L is dependent on the { }H∆var  but shows little if any 

dependence on frequency. This supports the conclusion from chapter 6, where it was 

seen that the relative drop in capacity, ED+C , was equivalent with respect to frequency 

for a fixed variance, { }H∆var  and a fixed dimension, TN  . The same is plotted in fig 

7.2 but where the dimension TN = 5. 

 

Figure 7.2: A plot of the leakage level, L , as a function of the variance, { }H∆var , and 

frequency in MHz for a MIMO communications system based on balanced telephone 

transmission line channels. The dimension TN =5.  
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Again, fig 7.2 shows L  is dependent on the variance, { }H∆var ,  but shows little if any 

dependence on frequency. Clearly as the dimension TN  is increased from 3 to 5, 

greater values of L are observed. This supports the idea from chapter 6 where greater 

losses in capacity were observed for a fixed variance as TN  was increased. 

In fig. 7.3, the leakage level, L , with respect to both increasing frequency and 

increasing variance, { }H∆var  is plotted in the case of the balanced twisted-pair cat 5 

transmission line channels for the dimension, TN =3. 

 

Figure 7.3: A plot of the leakage level, L , as a function of the variance, { }H∆var , and 

frequency in MHz for a MIMO communications system based on balanced cat 5 

transmission line channels. The dimension TN =3. 
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In fig. 7.4, the leakage level, L , with respect to both increasing frequency and 

increasing variance, { }H∆var  is plotted in the case of the balanced twisted-pair cat 5 

transmission line channels for the dimension, TN = 4. 

 

Figure 7.4: A plot of the leakage level, L , as a function of the variance, { }H∆var , and 

frequency in MHz for a MIMO communications system based on balanced cat 5 

transmission line channels. The dimension TN =4. 
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Figs 7.3 and 7.4 show that L is dependent on the { }H∆var  but shows little if any 

dependence on frequency. When the dimension TN  is increased from 3 to 4, greater 

values of L are observed. This again supports the idea from chapter 6 where greater 

losses in capacity were observed for a fixed variance as TN was increased. Again, this 

idea will be seen to be mirrored in the analysis of wireless channels. Finally in this 

section, the leakage level respect to both increasing frequency and increasing 

variance, { }H∆var  is plotted in the case of the unbalanced flat-pair transmission line 

channels for the dimension, TN =3. 

 

Figure 7.5: A plot of the leakage level, L , as a function of the variance, { }H∆var , and 

frequency in MHz for a MIMO communications system based on unbalanced flat-pair 

transmission line channels. The dimension TN =3. 
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In the case of the flat-pair channels, L is dependent on the { }H∆var  and shows a 

minor dependence on frequency at low frequencies where the leakage level plots are 

slightly higher. This concurs with the relevant capacity analysis from chapter 6 where 

it was seen that there were relatively high losses in capacity at lower frequencies. 

7.4 Leakage Level Calculations on Wireless Channels  

 

In chapter 6, it was seen that, for MIMO communications systems based on wireless 

channels, the relative drop in the capacity, ED+C , for a fixed variance, { }H∆var , was 

not consistent with respect to increasing dimension, TN . In this section, the objective 

is to support this conclusion by calculation of the leakage level with respect to both 

increasing dimension, TN , and increasing variance, { }H∆var . In fig. 7.6, the leakage 

level, L , as a function of increasing variance, { }H∆var , when dimension, TN , = 2,3,4 

and 5 is plotted. It can be seen that as the dimension, TN , increases, the slope of the 

lines plotted in fig. 7.6 increases. This support the idea that was highlighted in chapter 

6, where it was seen that for a given variance, { }H∆var , the relative drop in the 

capacity, ED+C , increases with increasing dimension, TN . It is clear that higher 

dimensions of TN  require a more precise knowledge of the communications channel. 

Again, similar observations have been made in the studies of Kyritsi [93] and others 

[103] [138] [137] [14] [20] [113] [64] [143], however the specific figures which have 

been quoted in this work may be attributed to the fact that there are in fact differences 

in the approach to the analysis taken here.  Thus these figures are novel and have not 

been reported in literature to date. 
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Figure 7.6: A plot of the leakage level, L , as a function of the variance, { }H∆var , 

when the dimension, TN , = 2,3,4 and 5 for a MIMO communications system based 

on wireless channels. 
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7.5 Lower Bound on the Capacity of MIMO Communications 

Systems 

 

In relation to the effect of imperfect knowledge of the channel on MIMO 

communications systems, the results which were presented in chapter 6 were 

stochastic in nature. In relation to this, it is therefore argued that it is a valuable 

exercise to derive a lower bound on capacity in order to offer a conservative 

indication of the extent of imperfect knowledge of the channel which would still allow 

for a viable MIMO communications system to operate. Since the relationship between 

the variance, { }H∆var , and the leakage level, L ,  has been established, it is thus 

implicit that there is also a relationship between the capacity and the leakage level, L . 

With regard to this, it is argued that the results which will be presented in this section 

add a degree of generality to the discussion since the capacity can now be related to 

the leakage level, L , as opposed to being merely related to the variance, { }H∆var , of 

the specifically statistically distributed matrix, H∆ .  

 

Recall from chapter 6, the capacity, ED+C  where there is imperfect knowledge of the 

channel is given by: 
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In this work, a lower bound on this capacity is given by a quantity,
Lower

C ED+ , defined as: 

( )
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        (7.9) 

Comparing equations (7.8) and (7.9), it is clear that the following identities are 

required to be proven: 

( ) ( ) iiii ,, BDDED +∆+≥+                (7.10) 

( ) ( )
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+ ∑∑∑   (7.11) 

Begin the derivation by defining vector norms. In the context of two arbitrary 

vectors: f  and g , a vector norm on NC∈ is a function R
N ∈→∈⋅ C:   satisfying the 

following conditions:  

0≥f , equality iff 0=∀ f  NC∈∀ f             (7.12) 

ff αα =    C∈∀α  and N
C∈∀f                  (7.13) 

gfgf +≤+   NC∈∀ gf ,             (7.14) 

 



Chapter 7: Lower Bound on the Shannon Capacity of MIMO Communications 

Systems Based on the Leakage Level.______________________________________ 

179 

Now: 

Part (i): Prove ( ) ( ) iiii ,, BDDED +∆+≥+ . 

Let a matrix, ∆DD + , be defined as follows by performing an appropriate singular 

value decomposition: 

∆V)∆H)(V(H∆U)(U∆DD +++=+ H                    (7.15) 

Recalling from chapter 6 that the matrix, ED + , is defined as: 

V)H(VU)(UED ∆+∆+=+ H             (7.16) 

Subtracting equation (7.15) from equation (7.16) then gives: 

[ ] [ ]∆V)∆H)(V(H∆U)(U∆V)(H)(V∆U)(U∆D)(DE)(D +++−++=+−+ HH         

      (7.17) 

Re-arranging equation (7.17) means an expression for the matrix, E , may be given as: 

[ ]∆V)(H)(V∆U)(U∆DE ++−= H               (7.18) 

For the sake of clarity, let a matrix, B , be defined as: 

∆V)(H)(V∆U)(UB ++= H                (7.19) 

Substituting equation (7.19) into equation (7.18) gives: 

B∆DE −=                  (7.20) 

Isolating the diagonal elements of the matrices: E , ∆D and B , it is possible to write:  

{ } { } { }B∆DE diagdiagdiag −=               (7.21) 



Chapter 7: Lower Bound on the Shannon Capacity of MIMO Communications 

Systems Based on the Leakage Level.______________________________________ 

180 

The notation, {}⋅diag refers to the diagonal elements of a given matrix. Vectors can 

now be formed from these diagonal matrices whose relationship is given by: 

{ } { } { }
jjj

diagdiagdiag B∆DE −=                     (7.22) 

To clarify, equation (7.22) effectively refers to the relationship between thj vector 

formed from each of the diagonal matrices implied by an appropriate use of the 

notation: {}
j

diag ⋅ . Define the vector infinity norm,
∞

⋅ , in terms of an arbitrary 

vector, f , as: 

{ } N
C∈=

∞
fff max             (7.23) 

The notation, ‘ {}⋅max ’, should be read as, ‘the maximum scalar element of the vector 

enclosed in parenthesis’. To simplify the use of notation here, ‘ f ’ should simply be 

thought of as a vector containing the absolute values of the vector, f . Considering the 

term, { } { }
jj

diagdiag B∆D − , which appears on the right hand side of equation (7.22), if 

the vector infinity norm is applied to this expression then the following expression 

may be written based on the properties of vector norms which were defined in 

equations (7.12) to (7.14): 

 { } { } { } { }
∞∞∞

−≤+
jjjj

diagdiagdiagdiag B∆DB∆D             (7.24) 

Substituting equation (7.22) into to equation (7.24) gives as expression: 

{ } { } { }
∞∞∞

≤+
jjj

diagdiagdiag EB∆D                   (7.25) 



Chapter 7: Lower Bound on the Shannon Capacity of MIMO Communications 

Systems Based on the Leakage Level.______________________________________ 

181 

Swapping the left hand side of equation (7.25) with the right hand side of equation 

(7.25) and thus reversing the inequality sign gives:  

{ } { } { }
∞∞∞

+≥
jjj

diagdiagdiag B∆DE                    (7.26) 

In essence, each of the terms in equation (7.26) is representative of a family of 

TN scalars since TNj ,...,2,1= . A family of TN scalars defined by the 

term, { }
∞j

diag D , is added to both sides of equation (7.27) to give: 

{ } { } { } { } { }
∞∞∞∞∞

++≥+
jjjjj

diagdiagdiagdiagdiag B∆DDED           (7.27) 

Given that the matrices: { }Ddiag , { }Ediag , { }D∆diag  and { }Bdiag  are diagonal 

matrices by definition and given the definition of the vector infinity norm in equation 

(7.23), then equation (7.27) can be re-written using more convenient notation as: 

( ) ( ) iiii ,,, B∆DDED ++≥+                (7.28) 

In respect of part (i): Q.E.D. 

Now: 

Part (ii) Prove:  
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The vector 2-norm may be defined in terms of an arbitrary vector, f : 

NT
C∈== ∑ fffff

2

2
                  (7.29) 

Again for the purpose of simplifying the use of notation here, ‘ f ’ should simply be 

thought of as a vector containing the squares of the absolute values of the vector, f . 

Also, as has previously been prescribed in this work, the notation, ( )T
⋅ , refers to the 

conjugate transpose of a vector. Recalling equation (7.20), which for the sake of 

clarity is rewritten as:  

B∆DE −=                  (7.30) 

Partitioning the terms in equation (7.30) into vectors:  

jjj
B∆DE −=                (7.31) 

The relationship between the vector 2-norm which arises from equation (7.31) can be 

written as:  

222 jjjj
B∆DB∆D +≤−                (7.32) 

Equation (7.35) is based on the properties of vector 2-norm outlined in equations 

(7.12) and (7.14). Substituting equation (7.31) into equation (7.32) gives:  

222 jjj
B∆DE +≤                       (7.33) 

Equation (7.33) is now re-written based on the definition of the vector 2-norm in 

defined in equation (7.29) previously: 
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∑∑∑ +≤
222

jjj
B∆DE               (7.34) 

Squaring both sides, it is now possible to write: 

 ∑∑∑∑∑ +











+≤

22222

2
jjjjj

BB∆D∆DE            (7.35) 

The object here is to set an upper limit on the sums of the squares of the absolute 

values of the off-diagonal elements of the matrix sum: ED + . The diagonal elements 

of the matrix, D , are equal to zero, but the influence of the diagonal elements of E on 

equation (7.35) needs to be considered. Each of the diagonal elements of the 

matrix, E , i.e. ii,E , is subtracted from both sides of equation (7.35) in the following 

expression: 
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2222
2
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2

2 ii
jjjj
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EBB∆D∆DEE −+











+≤− ∑∑∑∑∑                      (7.36) 

Looking at the definition of the vector 2-norm in equation (7.29), it can be appreciated 

that the term: 











∑∑

22

2
jj

B∆D  is equivalent to the term: 






22

2
jj

B∆D . Thus 

equation (7.36) may be more conveniently as: 
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∆+≤− ∑∑∑            (7.37) 
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Careful attention to the usage of notation here reveals that the term, 
2

,

2

ii
j

EE −∑  is 

in fact equivalent to: ( ) ( )∑ +−












+
2

,

2

ii
j

EDED since the matrix, D , is a diagonal 

matrix, and thus it is possible to write: 

( ) ( )
2

,

2
2

,

2

ii
j

ii
j

EEEDED −=+−












+ ∑∑             (7.38) 

Substitution of equation (7.38) into equation (7.37) gives: 

( )
2
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2

22

2
2
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2

2)( ii
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j

EBBD∆DEDED −+





∆+≤+−













+ ∑∑∑             (7.39) 

In respect of part (ii): Q.E.D. 

 

This expression for the lower bound on the capacity of MIMO communications 

systems is novel and indeed in common with the work of Médard [103], this lower 

bound will become infinitely tight as the elements of the matrix, H∆ , approach zero. 
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7.6 Lower Bound Calculations on Transmission Line Channels 

The lower bound calculations in this section should be thought of as an extension of 

the calculations from section 6.3 of chapter 6. Recall that the conditions under which 

the calculations in that section were made were: 

(i) An added white Gaussian noise (AWGN) power spectral density, 0N , of -

110 dBm/Hz, pertinent to the noise floor set by an echo canceller [171], is 

assumed. 

(ii) The American National Standards Institute (ANSI) discrete multi-tone 

(DMT) tone transmit bandwidth of 4.3125 kHz is assumed [124] [172]. 

Capacities are calculated at intervals of approximately 496 kHz, i.e. at 201 

intervals between 300 kHz to 100 MHz. 

(iii) The lower nominal transmit power density -80 dBm/Hz for high bit-rate 

digital subscriber line (VDSL) signals yielded little in the way of 

improvement for MIMO over SISO in chapter 4. Thus only the higher 

transmit power spectral density of -60 dBm/Hz for high bit-rate digital 

subscriber line (VDSL) signals [124] is considered here.  

(iv) The balanced twisted-pair telephone cable, the balanced cat 5 twisted-pair 

and the unbalanced flat-pair are compared for a dimension, 3=TN . The 

cat5 is also examined for a dimension, 4=TN  and the twisted-pair is also 

examined for a dimension, 5=TN . Cumulative plots of capacity with 

respect to bandwidth are also presented. 
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(v) As described in chapter 4, the channel matrix, ( )fH , was normalised such 

that: 

( ) ( )
( )

F
f

f
f

1

_

=
=

H

H
H               (7.40) 

All lower bound capacity calculations in this section are therefore derived from the 

term: 

HH ∆+)(
_

f  

using equation (7.9). The lower bound for the various transmission line channels is 

now calculated and in light of this some sensible leakage levels are suggested in each 

case. The case of the balanced twisted-pair telephone transmission lines is first 

considered in figs. 7.7-7.8: 
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Figures 7.7-7.8: Lower bound on the effect of imperfect knowledge of the channel for 

a MIMO communications system based on balanced twisted-pair telephone 

transmission lines with { }H∆var  = 0.001 and L  = 0.0038, Upper plot: capacity in 

bits/sec/Hz. Lower plot: cumulative capacity in bits/sec. In all cases, the 

dimension 3=TN and the transmit power spectral density is 600 −=P  dBm/Hz. 

  

While in chapter 6, the extent of imperfect knowledge of the channel could have been 

greater than { }H∆var  = 0.001, the results here are more conservative. It is therefore 

concluded that the extent of imperfect knowledge of the channel be no more than 

{ }H∆var  = 0.001 for the case of the balanced twisted-pair telephone transmission 

lines with dimension 3=TN . This is equivalent to a leakage level, L  = 0.0038. Also, 

the cumulative capacity plots in fig. 7.8 indicate that the rate of capacity gain with 

respect to frequency is more or less equivalent for (i) MIMO, (ii) MIMO with 
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imperfect knowledge of the channel and (iii) the lower bound when L  = 0.0038 but 

this is clearly not the case for SISO. In figs. 7.10 and 7.11, this same leakage level is 

examined for the case where TN = 5. This time a leakage level of 0.0038 corresponds 

to { }H∆var  = 0.0006.  Fig. 7.7 is reproduced in fig. 7.9 to the same scale for ease of 

comparison. 

 

Figures 7.9-7.11: Lower bound on the effect of imperfect knowledge of the channel 

for a MIMO communications system based on balanced twisted-pair telephone 

transmission lines. Upper plot: Capacity in bits/sec/Hz for { }H∆var  = 0.001 and L  = 

0.0038 with 3=TN .  Middle plot: Capacity in bits/sec/Hz for { }H∆var  = 0.0006 and 

L  = 0.0038 with 5=TN . Lower plot: Cumulative Capacity in bits/sec for { }H∆var  = 

0.0006 and L  = 0.0038 with 5=TN . In all cases, the transmit power spectral density 

is 600 −=P  dBm/Hz. 
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Comparison of figs. 7.9 and 7.10 reveals that it has clearly become more difficult to 

maintain a leakage level L  = 0.0038 as the dimension TN  has increased from 3 to 5. 

This idea is not surprising since in chapter 6 it was seen that for a given 

variance, { }H∆var ,the relative drop in capacity was greater with increasing dimension, 

TN . It could therefore be argued that there is a ‘cost’ in increasing the 

communications system complexity, i.e. increasing the dimension TN . However there 

is clearly a benefit obtained for this cost which is that of increased capacity. Further to 

this, the idea is therefore offered here that given the time invariant nature of the 

transmission line channel, the increased accuracy of channel knowledge could be 

gained gradually over time using some kind of feedback technique. Another argument 

which runs somewhat counter this one is that the benefit gained for the cost of 

increasing complexity should be that of decreased accuracy of knowledge of the 

channel. This argument is plausible given comparison of figs. 7.9 and 7.10 where the 

difference between the relative MIMO and SISO capacities has increased markedly as 

TN  has increased. On the basis of this argument, in figs 7.13 and 7.14 another leakage 

level, L , of  0.0127 which corresponds to a variance, { }H∆var  = 0.002, is suggested 

for the balanced twisted-pair telephone cable transmission lines where the dimension 

TN  = 5. Again fig. 7.7 is reproduced in fig. 7.12 to the same scale for ease of 

comparison. A possible drawback to this extent of imperfect knowledge of the 

channel is however highlighted in fig. 7.14 where it is seen that the overall rate of 

gain in capacity with respect to frequency more closely resembles that of the SISO 

communications system than it did in fig. 7.11. 
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Figures 7.12-7.14: Lower bound on the effect of imperfect knowledge of the channel 

for a MIMO communications system based on balanced twisted-pair telephone 

transmission lines. Upper plot: Capacity in bits/sec/Hz for { }H∆var  = 0.001 and L  = 

0.0038 with 3=TN .  Middle plot: Capacity in bits/sec/Hz for { }H∆var  = 0.002 and 

L  = 0.0127 with 5=TN . Lower plot: Cumulative Capacity in bits/sec for { }H∆var  = 

0.002 and L  = 0.0127 with 5=TN . In all cases, the transmit power spectral density is 

600 −=P  dBm/Hz. 

 

The balanced twisted-pair cat 5 transmission line channels are now considered in the 

context of the lower bound analysis. Recall from chapter 4 that most of what is gained 

in terms of capacity with respect to frequency for the case of the MIMO 

communications system occurs at frequencies above 50 MHz. The choice of leakage 

level will thus reflect this. In figs 7.15 and 7.16, a leakage level of L  = 0.009, which 

corresponds to a variance: { }H∆var  = 0.0025, is considered for a dimension: TN  = 3. 
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Figures 7.15-7.16: Lower bound on the effect of imperfect knowledge of the channel 

for a MIMO communications system based on balanced twisted-pair cat 5 

transmission lines with { }H∆var  = 0.0025 and L  = 0.009, Upper plot: capacity in 

bits/sec/Hz. Lower plot: cumulative capacity in bits/sec. In all cases, the 

dimension 3=TN and the transmit power spectral density is 600 −=P  dBm/Hz. 

 

The lower bound analysis suggests that a leakage level L  = 0.009 is sensible for the 

cat 5 cable particularly if, as indicated in chapter 6, the MIMO communications 

system only be used after a frequency of 50 MHz. The cumulative capacity plot of the 

lower bound in fig. 7.16 indicates that the relative gain in capacity with respect to 

frequency is not saturating to the extent that the SISO communications system is after 

50 MHz. In figs 7.18 and 7.19, a leakage level of L  = 0.009, which corresponds this 

time to a variance: { }H∆var  = 0.0016, is considered for a dimension: TN  = 4 again in 



Chapter 7: Lower Bound on the Shannon Capacity of MIMO Communications 

Systems Based on the Leakage Level.______________________________________ 

192 

the context of the balanced twisted-pair cat 5 transmission line channels. As was the 

case in previous analyses, fig. 7.15 is reproduced in fig. 7.17 to the same scale to 

facilitate ease of comparison for the cases where TN  = 3 and TN  = 4. 

 

Figures 7.17-7.19: Lower bound on the effect of imperfect knowledge of the channel 

for a MIMO communications system based on balanced twisted-pair cat 5 

transmission lines. Upper plot: Capacity in bits/sec/Hz for { }H∆var  = 0.0025 and L  = 

0.009 with 3=TN .  Middle plot: Capacity in bits/sec/Hz for { }H∆var  = 0.0016 and 

L  = 0.009 with 4=TN . Lower plot: Cumulative Capacity in bits/sec for { }H∆var  = 

0.0016 and L  = 0.009 with 4=TN . In all cases, the transmit power spectral density is 

600 −=P  dBm/Hz. 
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As was the case in figs. 7.9 and 7.10 for the case of the balanced twisted-pair 

telephone transmission lines, the relative drop in capacity, when the leakage level is 

held constant, is equivalent as the dimension TN is increased. Comparing figs. 7.17 

and 7.18, it can be seen that the discrepancy in capacity between the lower bound and 

the SISO system is more or less equivalent for the case where is TN  = 3 and TN  =  4. 

Also, the cumulative capacity in fig. 7.19 exemplifies reasonable capacity gain after 

50 MHz for this leakage level. It is therefore concluded that a leakage level, L  = 

0.009 indicates a good conservative indication of the extent of imperfect knowledge 

of the channel that can be tolerated for balanced cat 5 twisted-pair transmission line 

channels for either TN  = 3 and TN  =  4. Interestingly, the decrease in variance 

{ }H∆var required to maintain this leakage level as TN is increased from 3 to 4 is quite 

small. 

Finally in this section, the unbalanced flat-pair transmission line channels are 

considered. Recall from previous chapters that these transmission line channels are 

indicative of transmission line channels that exhibit poor balance, high degrees of far 

end crosstalk (FEXT) and high insertion losses. Specifically from chapter 6, it was 

concluded that for the MIMO communications system, at frequencies higher than 25 

MHz, the effect of imperfect knowledge of the channel on capacity as quantified by 

the variances: { }H∆var  = 0.01 and 0.005 is such that the performance is more or less 

equivalent to the SISO communications system. Thus the emphasis in this case is on 

the performance of the unbalanced flat-pair transmission line channels at frequencies 

below 20 MHz. This approach was seen to be justified since as mentioned in chapter 

4, some current asymmetric digital subscriber lines (ADSLs) standards operate in the 

frequencies 2-3 MHz. It was seen in chapter 6 that at frequencies below 
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approximately 10 MHz, the flat-pair exhibits reasonable capacity gain for MIMO with 

respect to SISO in relation to the variances: { }H∆var  = 0.001, 0.005. Thus the 

analysis in this chapter focuses on refining this observation by using the lower bound 

and hence suggesting a sensible leakage level. 

 

Figures 7.20-7.21: Lower bound on the effect of imperfect knowledge of the channel 

for a MIMO communications system based on unbalanced flat-pair transmission lines 

with { }H∆var  = 0.0025 and L  = 0.0090, Upper plot: capacity in bits/sec/Hz. Lower 

plot: cumulative capacity in bits/sec. In all cases, the dimension 3=TN and the 

transmit power spectral density is 600 −=P  dBm/Hz. 
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The results in fig. 7.20 indicate that the extent of the imperfect knowledge of the 

channel be quantified by: { }H∆var  = 0.0025. Reasonable capacity gains for MIMO 

over SISO are indicated at low frequencies. The cumulative capacity plots in fig. 7.21 

indicate a reasonable rate of gain in capacity with respect to frequency for frequencies 

up to 25 MHz. Comparing the lower bound curve with the SISO curve in respect of 

this observation, relatively little is gained in terms of capacity for the case of the SISO 

system. A leakage level, L , of 0.0090 is hence indicated. 

 

7.7 Lower Bound Calculations on Wireless Channels 

The lower bound calculations in this section should be thought of as an extension of 

the calculations from section 6.4 of chapter 6. Recall that the conditions under which 

the calculations in that section were made were: 

(i) As outlined in chapter 3, all the transfer functions and hence channel 

matrices pertain to a centre frequency of 5.2 GHz. 

(ii) The receive signal power to noise power ratio denoted: 
ϕ

P
  is fixed at a 

ratio of 18 dB throughout this section.  

(iii) The various channel matrices were normalised in the manner described in 

section 4.3 of chapter 4. Thus the channel matrix, H , was normalised such 

that: 

( )
F

f
H

H
H =
_

                        (7.41) 
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The capacity calculations in this section are therefore derived from the term: 

HH ∆+All

_

 

using equation (7.9). The leakage level calculations in fig. 7.6 of section 7.4 showed 

that when the dimension, TN , was increased, the effect of the imperfect knowledge of 

the channel as quantified by a given variance, { }H∆var , gave rise to comparatively 

greater leakage levels. As a result of this, table 7.1 and table 7.2 present the 

variance, { }H∆var , which arises at the various values of the dimension, TN , for a fixed 

leakage level, L . In table 7.1, the values of the variance, { }H∆var  which pertain to a 

leakage level, L , of 0.1 are given.   

TN  { }H∆var  

2  0.0436 

3  0.0267 

4  0.0198 

5  0.0158 

 

Table 7.1: Table showing the dimension, TN , from 2–5 and the corresponding 

variance, { }H∆var ,  pertaining to a leakage level, 1.0=L . 
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The leakage level of 0.1 is considered in fig. 7.22 by calculating the expected 

capacities using the variances in table 7.1 and then the corresponding lower bounds.  

 

Figure 7.22: Effect of imperfect knowledge of the channel for a leakage level, 

1.0=L  with and increasing dimension, TN  for a MIMO communications system 

based on wireless channels. When 1=TN , this refers to a SISO communications 

system. 
ϕ

P
=18 dB. 

 

The expected capacities indicate reasonable capacity gains for all dimensions TN from 

2 to 5 in respect of the SISO case. However the lower bound provides more 

conservative results given that it indicates no gain in capacity for the MIMO system 

over the SISO system when TN is 2. As a result of this, a leakage level of 0.05 is now 

considered. The appropriate variances are given in table 7.2. 
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TN  { }H∆var  

2  0.0217 

3  0.0136 

4  0.0098 

5  0.0076 

 

Table 7.2: Table showing the dimension, TN , from 2 – 5 and the corresponding 

variance, { }H∆var ,  pertaining to a leakage level, 05.0=L . 

 

The leakage level of 0.05 is considered in fig. 7.23 by calculating the expected 

capacities using the variances in table 7.2 and then the corresponding lower bound 

capacities. The expected capacities indicate almost equivalent capacities to the case 

where there is perfect knowledge of the channel. The capacities indicated by the lower 

bound are however a little more conservative. It is thus indicated that the leakage level 

be between 0.1 and 0.005 for the case of the wireless channels. It may be concluded 

that the benefit of increasing communications system complexity can be a trade-off 

between capacity and extent of knowledge of channel. This is exemplified in fig. 7.22 

where the effect of increasing the dimension TN  allows for relatively low, but still 

reasonable, capacity gains ( but none in the case where TN =2). However the effect 

increasing the dimension TN  in fig 7.23 provides higher capacity gains at the expense 

of increased accuracy of knowledge of the channel. 
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Figure 7.23: Effect of imperfect knowledge of the channel for a leakage level, 

05.0=L  with and increasing dimension, TN  for a MIMO communications system 

based on wireless channels. When 1=TN , this refers to a SISO communications 

system. 
ϕ

P
=18 dB. 

 

7.8 Summary 

In this chapter, the leakage level, L , was defined in order to quantify the extent of the 

imperfect knowledge of the channel. Although, the leakage level was seen to be 

related to the variance, { }H∆var , it can be appreciated that the leakage level 

introduces a degree of generality into the discussion in that the matrix, H∆ , may be 

defined in an alternative manner with reproducibility of the results contained within 

this chapter. Also, for any given dimension, TN , the drop in capacity remains 
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consistent when the extent of the imperfect knowledge of the channel is quantified by 

the leakage level. A novel lower bound on the capacity of MIMO communications 

systems where there is imperfect knowledge of the channel was also derived in this 

chapter. As a result of this lower bound, conservative indications of the extent of the 

imperfect knowledge of the channel which could be tolerated in providing a viable 

MIMO communications systems were then offered.  

In the case of balanced telephone transmission line channels, a leakage 

level 0038.0=L  was initially proposed for the case where the dimension TN  = 3 and 

TN  = 5. The idea was then offered that there can be one of two possible benefits to 

increasing the dimension TN  from 3 to 5. This benefit can come in the form of either 

a high capacity gain or a lower capacity gain but with less of a necessity on the 

accuracy of the knowledge of the channel. In respect of the latter benefit, a higher 

leakage level, L , of  0.0127 was thus proposed for the dimension TN  = 5.   

For the case of the balanced cat 5 twisted-pair transmission line channels, the 

emphasis was on the operation of the MIMO communications system at frequencies 

above 50 MHz since the SISO system performed almost as well at lower frequencies. 

It was concluded that a leakage level, L  = 0.009 indicated a good conservative 

indication of the extent of imperfect knowledge of the channel that can be tolerated 

for either TN  = 3 or TN  = 4 for good MIMO system operation at frequencies above 

50 MHz. Interestingly, the decrease in variance { }H∆var required to maintain this 

leakage level, as TN was increased from 3 to 4, was quite small.  
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In the case of the flat-pair transmission line channels, relatively low frequency 

operation at frequencies below 25 MHz was considered with appropriate justification. 

On the basis of this, a leakage level, L , of 0.0090 was indicated.  

In the context of the wireless channels, two leakage levels were considered, these 

were: 0.1 and 0.05. Expected capacities and lower bound capacities were calculated in 

either case. Considering the leakage level of 0.1, the expected capacities indicated 

reasonable capacity gains for all dimensions from TN from 2 to 5. However the lower 

bound provided more conservative results and given that it indicated no gain in 

capacity for the MIMO system over the SISO system when TN = 2, the lower leakage 

level of 0.05 was considered. In light of this, capacity gains were seen at all 

dimensions TN from 2 to 5 for the lower bound. It was therefore concluded that the 

leakage level be between 0.1 and 0.05 for the case of the wireless channels. The trade-

off between increased capacity gain and decreased accuracy of knowledge of the 

channel as the dimension TN was increased has thus been highlighted. 
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Chapter 8: Summary and Future Work 

8.1 Summary 

Various analyses and simulations of MIMO communications systems based on 

physical measurements have been presented. In respect of this, a comparison of 

MIMO communications systems based on various experimentally observed 

transmission line channels and wireless channels has been considered.  

In chapter 2, the concepts of single-input/single-output (SISO) and multiple-

input/multiple-output (MIMO) communications systems were clarified in the context 

of transmission line and wireless communications systems. The problem of far end 

crosstalk (FEXT) in transmission line communications systems was highlighted. Also, 

the problem of multi-path propagation in high bandwidth wireless links was 

highlighted. While much of the literature and this thesis use the capacity of the 

continuous channel as a metric for communications system performance, the channel 

capacity for discrete channels was introduced and compared. The discrepancy 

between the discrete channel capacity and the continuous channel capacity has been 

highlighted and it is argued that since the much of the analysis in the thesis seeks to 

examine MIMO systems in a comparative manner with respect to appropriate SISO 

communications systems, the results presented herein along with conclusions drawn 

are indicative. 

Having established appropriate background theory and mathematical notation in 

chapter 2, chapter 3 then discussed the physical measurements which would be used 

to support the analyses and simulations which would be developed in subsequent 

chapters. In particular, the different methodologies with regard to making 
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measurements of unbalanced transmission lines and balanced transmission lines were 

outlined as well as the virtual array approach to making the physical measurements in 

respect of the wireless channels. Three types of transmission line channels were 

considered: unbalanced flat-pair, balanced twisted-pair cat 5 and balanced twisted-

pair telephone transmission lines. It was established in chapter 3 that the unbalanced 

flat-pair transmission lines exhibited measurements which were indicative of poorer 

performance in terms of data transmission than in the cases of the balanced cat 5 and 

telephone transmission lines. Specifically, both the insertion loss and the degree of 

FEXT on the unbalanced flat-pair transmission lines increased more rapidly with 

frequency than in the cases of the balanced transmission lines. The idea was therefore 

offered that the measurements on the flat-pair were indicative of digital subscriber 

lines (DSLs) which would be deemed out-of-range for high speed internet connections 

due to one or any combination of: (i) poor balance, (ii) high degrees of FEXT and (iii) 

high insertion losses. The physical measurements of the wireless channels allowed for 

the identification of the various multi-path components within the channel impulse 

response which were clearly indicative of the spatial dimensions of the specially built 

reflective enclosure where these measurements were made. Further to this idea, there 

was experimental observation indicative of wireless channels whose fading statistics 

were Rayleigh and Ricean. The experimental approach was such that the degree of 

correlation of the multi-path components was seen to be equivalent in the case of the 

Rayleigh and Ricean channels using this methodology. This fact was then seen to be 

important in interpreting some of analytical results which were based on experimental 

observation of these wireless channel fading statistics. 

Although chapter 2 introduced the idea of a MIMO communications system, chapter 4 

gave a more mathematically detailed description of this. It was seen how a MIMO 
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communications system was able to transmit data over a communications channel 

defined by a matrix of channel transfer functions, H . This was shown to be achieved 

by creating a series of orthogonal sub-channels or ‘eigenmodes’ which were related 

mathematically to this matrix of channel transfer functions, H . Having described this, 

an appropriate expression for the capacity, in bits/sec/Hz, of MIMO communications 

systems was then derived. In the case of the transmission line channels, two transmit 

power spectral densities were considered: -80 dBm/Hz and -60 dBm/Hz. The lower 

transmit power spectral density (PSD) of -80 dBm/Hz occurs when digital subscriber 

lines (DSLs) operate in known radio bands whereas the higher power spectral density 

of -60 dBm/Hz occurs when DSLs are not operating in known radio bands. It was 

seen that the capacity gain for MIMO systems over SISO systems was minimal when 

the transmit PSD was -80 dBm/Hz, thus only -60 dBm/Hz was considered. When the 

MIMO communications system was applied to the unbalanced flat-pair transmission 

line channels, it was seen that that the MIMO communications systems provided a 

significant increase in performance at frequencies below approximately 15 MHz. 

Given that some asymmetric DSL standards operate in the 2-3 MHz frequency range, 

this thus indicated that the MIMO communications system could greatly enhance the 

performance of the aforementioned out-of-range DSLs. The capacity analysis of cat 5 

transmission lines indicated only using MIMO at frequencies above 50 MHz since 

most of what was gained in terms of capacity occurred at these frequencies. Since cat 

5 cabling is generally restricted to 100 metres, it is proposed that MIMO may be used 

to extend the length of this cabling. In contrast, in the case of balanced telephone 

transmission lines the MIMO capacity gain was reasonably consistent with respect to 

entire frequency range of 300 kHz to 100 MHz. It is clarified that the results presented 

in terms of the transmission lines are indicative of overall performance given that in 
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reality not all of the frequencies can be used in the context of MIMO because of the 

aforementioned problem of radio band interference. When the MIMO 

communications system was applied to the wireless channels, it was seen that when 

the line-of-sight channel impulse response component was removed from the 

measurements, the capacity was greater than for the case where all of the channel 

impulse components were present. This observation is indicative of the fact that 

Rayleigh channels permit better performance than Ricean channels in the context of 

MIMO communications systems. However, this result holds on the basis that the 

degree of correlation of the multi-path channel impulse response components remains 

the same in the case of the Rayleigh and Ricean fading statistics. This was seen to be 

an important aspect of the experimental observation of the aforementioned wireless 

channels.  

The objective of chapter 5 was to support the conclusions of chapter 4 by developing 

a multi-carrier modulation based simulation. It was seen that the bit error rates 

recorded were indeed indicative of eigenmode gain distributions that could then be 

correlated with corresponding calculations of capacity. In the case of the transmission 

line channels, the unbalanced flat-pair exhibited the worst performance since it had 

one dominant eigenmode gain. On the other hand, it could be concluded that the cat 5 

transmission line scheme had more evenly distributed eigenmode gains indicating 

superior performance. Similar conclusions could be drawn when the Ricean and 

Rayleigh channels were compared. When the line-of-sight channel impulse response 

component was removed, the bit error rates, as recorded on each of the eigenmodes, 

became more similar to one another. This indicated a more even distribution of 

eigenmode gains and hence higher capacities.  
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The objective of chapter 6 was thus to investigate the effect of imperfect knowledge 

of the channel on the capacity of MIMO communications systems. Reasons for 

imperfect knowledge of the channel were stated in the relevant context, i.e. non-quasi 

static wireless channel and incorrect assessment of channel transfer functions from 

one-port transmission line measurements. The extent of imperfect knowledge of the 

channel was quantified by the variance, { }H∆var , of a matrix, H∆ , defined as: 

{ }( )HH ∆∆ var,0~ CN . In the case of both the balanced twisted-pair telephone lines 

and the balanced twisted-pair cat 5 transmission lines, a fairly consistent drop in 

capacity with respect to frequency for a fixed number of transit and receive elements, 

TN , and fixed variance, { }H∆var  was observed. However, the relative drop in 

capacity increased as TN  was increased for a given fixed variance, { }H∆var . Thus a 

given extent of imperfect knowledge of the channel as characterised by the 

variance, { }H∆var , becomes more detrimental to performance as the dimension, TN , 

increases. The unbalanced flat-pair transmission line channels showed good capacity 

gains at relatively low frequencies, even with varying degrees of imperfect knowledge 

of the channel. Thus the idea was further reinforced the idea that current 2-3 MHz 

ADSLs standards could therefore be deployed in the circumstances of poor balance, 

high insertion losses and high degrees of crosstalk using MIMO techniques. A similar 

analysis was performed on the capacity of MIMO communications systems based on 

wireless channels. It was concluded that as the amount of antennas used in the 

transmitter and receiver array was increased, the performance of the MIMO 

communications systems became more sensitive to the effect of a given variance of 

the random matrix. These particular results in the context of the MIMO 

communications system based on wireless channels paralleled the work of Kyritsi 

[93] and others [103] [138] [137] [14] [20] [113] [64] [143].  However since, in this 
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work, the extent of the imperfect knowledge of the channel is quantified by the 

variance of the complex normally distributed scalar elements of a matrix, the results 

themselves will be seen to be novel.  

The focus of chapter 7 was to extend the analysis of chapter 6 by seeking to address 

the stochastic nature of the calculations therein by applying a lower bound on the 

capacity of MIMO communications systems when there is imperfect knowledge of the 

channel. In doing this, chapter 7 provides some insight into the required accuracy of 

the knowledge of the channel in order to provide a viable MIMO communications 

system. Furthermore, the analysis of chapter 7 makes reference to a quantity known as 

the leakage level. The purpose of incorporating the leakage level into the analysis is to 

introduce a degree of generality into the discussion with regard to quantifying the 

extent of the imperfect knowledge of the channel. Specifically, the use of the leakage 

level as a metric for imperfect knowledge of the channel means that the matrix, H∆ , 

may be defined in an alternative manner, e.g. a different statistical distribution, with 

reproducibility of the results contained within this chapter. Also, for any given 

dimension, TN , the drop in capacity remains consistent when the extent of the 

imperfect knowledge of the channel is quantified by the leakage level. Further to this, 

the novelty of the approach to the analysis of this chapter 7 can best be summarised 

by the fact that the derivation of lower bound on the capacity is entirely novel. 

Combining this lower bound with concept of the leakage level further extends the 

novelty of the results that are given. The results in this chapter propose a leakage 

level 0038.0=L  for the case of the balanced telephone transmission line channels. 

Further to this, the idea is then offered that there can be one of two possible benefits 

to increasing the dimension TN  from 3 to 5. This benefit can come in the form of 

either a high capacity gain or a lower capacity gain but with less of a necessity on the 
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accuracy of the knowledge of the channel. In respect of the latter benefit, a higher 

leakage level, L , of  0.0127 was thus proposed for the dimension TN  = 5.  For the 

case of the balanced cat 5 twisted-pair transmission line channels, it was concluded 

that a leakage level, L  = 0.009 indicated a good conservative indication of the extent 

of imperfect knowledge of the channel that can be tolerated for either TN  = 3 or TN  

= 4 for good MIMO system operation at frequencies above 50 MHz. In the case of the 

flat-pair transmission line channels, MIMO system operation at frequencies below 25 

MHz was considered with appropriate justification. On the basis of this, a leakage 

level, L , of 0.0090 was indicated. In the case of the wireless channels, a trade-off 

between increased capacity gain and decreased accuracy of knowledge of the channel 

as the dimension TN was increased was highlighted. This trade-off was clarified when 

two leakage levels were considered, these were: 0.1 and 0.05. A leakage level of 0.05 

ensured that there was a linear increase in capacity as the dimension TN  was 

increased from 2 through to five but a leakage level of 0.1 only ensured increases in 

capacity when TN  was greater than 2. 

8.2 Future Work 

In respect of MIMO communications systems based on the of transmission line 

channels, personal correspondence with Michail Tsatsanis of Aktino technology [133] 

has revealed that their modem designs are based on the QR decomposition. It is 

therefore reasonable that future work would, in this regard, encompass simulation 

models of MIMO communications systems which would be based on the QR 

decomposition. Incorporating physical measurements of the various transmission line 

channels encountered in this work would therefore allow for the appropriate 
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comparative analysis of these MIMO communications systems based on the QR 

decomposition. 

In the context of the MIMO communications system based wireless channels, future 

work could focus on space-time block coding that was first described in chapter 2. 

Since, space-time block codes essentially function on the basis of the quasi-static 

wireless channel, much of the analysis in chapters 6 and 7 should be applicable to an 

examination of the performance of space-time block codes when the assumption of 

the quasi-static channel no longer holds. Clearly, a multi-carrier modulation 

simulation model of space-time block codes, similar to the multi-carrier modulation 

simulation model discussed in chapter 5, could also be developed. 

The multi-carrier modulation model presented in chapter 5 could be extended to 

incorporate appropriate channel coding, such as turbo codes, to improve BER 

performance. Also the multi-carrier modulation simulation model presented in chapter 

5 could be extended to incorporate orthogonal pre-coding techniques such as Walsh-

Hadamard (WH) pre-coding [44] [45] [112] [56] which, in the context of MIMO 

systems, could be applied either spatially or temporally. Specifically some recent 

work has considered peak to average power (PAPR) reduction in the context of 

OFDM signals in quasi-orthogonal space-time block codes [177]. Since a feature of 

WH pre-coding is PAPR reduction [176], it is thought that the WH technique could be 

applied spatially, temporally or in a combination of spatial and temporal manners as a 

low complexity alterative to selective mapping technique outlined in [177]. 

In other recent work [178], the authors have discussed the effect of interference at 

cellular boundaries when MIMO is applied to mobile technology. In a similar manner 

to chapters 6 and 7 of this work, they quantify losses in the orthogonality due to the 
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fact that eigenvectors have been applied as a result of singular value decompositions 

made on neighbouring (different) channels. While some capacities have been 

calculated in [178], it is argued that the lower bound analysis discussed in this thesis 

could extend the novelty of the analysis in [178]. 

 

While the analysis of chapter 4 sought to examine different propagation scenarios for 

MIMO, it is clarified that the design of the antenna is also important in this regard. In 

[179] [180], the recent work therein addresses a novel antenna design proposal 

specifically for MIMO referred to as an, ‘Intelligent Quadrifilar Helix Antenna’ 

(IQHA). The IQHAs are defined in [179] [180] under different specifications and are 

then compared, in terms of their performance in the context of a MIMO system, with 

half wavelength spaced dipole antennas using an appropriate measurement campaign. 

It is argued that incorporating the IQHAs into an analysis similar to that described in 

chapter 4 of this thesis would strengthen the analysis of [179] [180] given that 

different types of channel, i.e. Rayleigh and Ricean, under specific experimental 

conditions have been considered. 

The literature on discrete channel capacity calculations in the context of MIMO 

communications systems does not appear to be extensive. Notwithstanding this, the 

capacities of some discrete channels have been calculated in [173] [174] [175] in 

relation to MIMO. It is argued that the results presented in this thesis could be 

presented comparatively in respect of various discrete channel capacities with 

appropriate re-usage of the analytical framework used herein with novelty. 



 

211 

Appendix A: Operating Point Calculations for FSK and PSK 

Modulation 

For the case of FSK, the operating points can be calculated from [157]: 
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For the case of PSK, the operating points can be calculated from [157]: 
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Where the error function, ( )xerf , is defined as: 
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Its relationship with the inverse error function ( )xerf 1−  is expressed simply as: 

( ) )(, 1 yerfxxerfy −==                (A.6) 
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