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Abstract

Astronomical photometry is the science of measuring the flux of a celestial object. Since

its introduction in the 1970s the CCD has been the principle method of measuring flux to

calculate the apparent magnitude of an object. Each CCD image taken must go through

a process of cleaning and calibration prior to its use. As the number of research telescopes

increases the overall computing resources required for image processing also increases. As

data archives increase in size to Petabytes, the data processing challenge requires image

processing approaches to evolve to continue to exceed the growing data capture rate.

Existing processing techniques are primarily sequential in nature, requiring increas-

ingly powerful servers, faster disks and faster networks to process data. Existing High

Performance Computing solutions involving high capacity data centres are both complex

in design and expensive to maintain, while providing resources primarily to high profile

science projects.

This research describes three distributed pipeline architectures, a virtualised cloud

based IRAF, the Astronomical Compute Node (ACN), a private cloud based pipeline, and

NIMBUS, a globally distributed system. The ACN pipeline processed data at a rate of 4

Terabytes per day demonstrating data compression and upload to a central cloud storage

service at a rate faster than data generation. The primary contribution of this research

however is NIMBUS, which is rapidly scalable, resilient to failure and capable of processing

CCD image data at a rate of hundreds of Terabytes per day. This pipeline is implemented

using a decentralised web queue to control the compression of data, uploading of data to

distributed web servers, and creating web messages to identify the location of the data.

Using distributed web queue messages, images are downloaded by computing resources

distributed around the globe. Rigorous experimental evidence is presented verifying the

horizontal scalability of the system which has demonstrated a processing rate of 192 Ter-

abytes per day with clear indications that higher processing rates are possible.
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Chapter 1

Introduction

Photometry is defined as the branch of science that deals with measuring the intensity

of the electromagnetic radiation, or flux of a celestial object [1]. The word photometry

is derived from the Greek word photos, meaning light, and métron, meaning measure [2].

This science can be traced as far back as 130 BC to Hipparchus [3], who devised the first

measurement system categorising objects’ apparent brightness from brightest to faintest.

While the initial Hellenistic method provided only six classifications, the sophistication and

sensitivity of the tools used in measurements evolved dramatically throughout the ages,

with the current system of measurement of apparent brightness allowing for fractional

measurements, both positive and negative, which have no specific upper or lower limits.

Modern photometry has evolved and been revolutionised by the use of Charge-Coupled

Devices (CCD). CCDs are light sensitive integrated circuits that are used in imaging and

signal processing. Information is represented as packets of electric charge which are stored

in an array of closely space capacitors which can be moved from one capacitor to another.

Charges can be moved systematically to a location on the device where the charge is

converted to a digital value representing the light intensity for each pixel to form an image.

Since their first introduction to astronomy, CCDs have received considerable attention from

the astronomical community [4], and revolutionised this field of science providing levels of

sensitivity beyond the capability of photographic plates, extending the detection range into

the infrared spectrum, providing immediate results with a linear response, and allowing

for software to compensate for CCD defects. When a CCD digital image is recorded it

contains a digital count of the electrical charge of each of the pixels on the CCD array.

The electrical charge per cell is converted to a digital pixel value by first transferring the

charge to a corner of the array and then using an analog to digital conversion to record
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its value. This digital image contains a number of different artefacts introduced by the

process of recording and reading, which must be removed. These and other sources of noise

require a computation operation to be performed across the image in order to quantify the

signal to noise ratio. So for each image taken there is a computational overhead required

before scientific analysis can be performed. As the number of images increases, so does

this computation cost.

Over the last few decades the number of ground based astronomical research observa-

tories has continued to increase and currently stands at approximately 400 sites globally

[5] with each site using some form of CCD device. While CCD devices, which have im-

proved both in terms of resolution and capture rates are still the primary capture device

in use, Complementary Metal Oxide Semiconductor (CMOS) devices which offer the po-

tential for faster imaging capture rates with lower power utilisation and higher resolutions

[6] are increasing in popularity. It is the combination of these developments, faster image

capture rates, higher resolutions and more telescope observatories that drives the increase

in image processing based computing requirements. Even this requirement pales in com-

parison to the potential of highly distributed robotic telescope projects being developed

[7] which could, over time, increase the number of CCD or CMOS images being produced

to billions per second, raising the issue of data processing to terabytes and petabytes per

day. Within the last few years astronomers have voiced serious concerns about the growing

data tsunami with Berriman [8] predicting 60PB of data being available as an archive by

the year 2020. The International Digital Coporation’s 7th annual Digital Universe Study

echoes this concern with the issues of data growth and the subsequent data generation,

storage, search and processing highlighted, identifying exponential growth in digital data

expanding from 4.4 to 44 zettabytes1 by the year 2020 [9]. As with astronomical data,

much of the cause for this growth is identified as falling costs of capture devices and the

increase in digital versus analogue data collection technology.

Many of the existing approaches to CCD image data processing are still primarily se-

quential in nature with software tools written for single Central Processing Unit (CPU)

cores using single threads. This approach was reasonably successful given that for many

years Moore’s Law continued to hold true, and faster machines could be purchased to speed

up the overall system performance every one to two years without dramatically altering the

underlying software applications used to process raw CCD images. However, given that
1 A zettabyte is one billion terabytes, or 1021 bytes
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Moore’s law stated that there would be a doubling of the number of transistors on an afford-

able CPU every two years, and that this has led to multi-core CPU chip designs, the law,

while still technically true will no longer provide significant performance enhancements for

single threaded sequential processing applications. Programs must become multi-threaded

and software must evolve to take advantage of multiple CPU cores.

Other limitations also appear once the volume of data becomes sufficiently large. Net-

work bandwidth becomes a limiting factor when large volumes of data are centralised,

and even single server multi-core CPU systems may not provide enough of a performance

enhancement to processing rates. As it becomes cheaper to generate data, more sophisti-

cated processing techniques are required which can easily utilise large arrays of computing

resources. A more sensible redesign of data processing software should consider exploiting

additional processing and networking resources beyond a single infrastructure and embrace

a distributed processing approach.

In order to address the issue of cleaning and preparing terabytes or even petabytes

of CCD based astronomical photometry images per day, a distributed elastic cloud based

computing model to perform standard image data processing is required. A processing

pipeline has been designed which demonstrates a working CCD image reduction pipeline,

which incorporates an elastic data processing model where resources can join or leave a

swarm of distributed computing workers which communicate via a distributed web based

messaging queue. Furthermore, taking advantage of the fact that CCD images can be

cleaned in isolation from each other, image data is distributed for parallel processing to

eliminate sequential image processing bottlenecks.

To ensure that access is provided to all data sources, experimental results and source

code used within this thesis, the following URL is provided as an access point to all material

http://www.dit.ie/computing/staff/pauldoyle/research/.

1.1 Background

1.1.1 Definitions

To ensure clarity of the terms used within the context of astronomical photometry, the

following definitions are provided for reference.
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Apparent Magnitude

The apparent magnitude of a source is based on its apparent brightness as seen

on earth, adjusted for atmosphere. The brighter the source appears, the lower the

apparent magnitude value. The apparent magnitude of an object is measured us-

ing a standard reference as shown in this equation where m2 and F2 are reference

magnitude and reference flux values and F1 is the observed flux. m1−m2 = 2.5logF1
F2

Absolute Magnitude

The absolute magnitude is a measure of a stars brightness as seen from a distance

of 10 parsecs (32.6 light years) from the observer. The absolute magnitude M of an

object can be calculated given the apparent magnitude m and luminosity distance

D which is measured in parsecs. M = m− 5((log10DL)− 1)

Instrumental Magnitude

The instrumental magnitude is an uncalibrated measure of the apparent magnitude

of an object which is only used for comparison with other magnitude values on the

same image. This is calculated using the following formula where f is the measure

of the intensity value of the source image. m = 2.5log10(f)

Luminosity

The Luminosity of an object is a measure of the total energy emitted by a star or

other celestial body per unit of time and is independent of distance and is measured

in watts. The luminosity of a star L is related to temperature T and the radius

R of the star and is defined as follows where σ is the Stefan-Boltzmann constant.

L = 4πR2σT 4

Flux

The flux is a measure of the apparent brightness of a source which is inversely pro-

portional to the square of the distance and is measured in watts per square meter

W/m2. How bright a source appears is based on the distance from the object and the

Luminosity of the object which can be defined as follows where L is the Luminosity

and d is the distance to the source. F = L
4πd2

4



1.1.2 Photometry

There have been many methods devised to estimate apparent magnitude values within

astronomical photometry with each new system or advancement aimed to reduce the error

margin and increase repeatability for each measurement, but until relatively recently, it

was the skill of the observer that ultimately determined the accuracy of the recorded

magnitude value [10]. A brief look at the origins of photometry and the evolution of

magnitude measurements will help to explain the magnitude scale.

The earliest measurement of a star’s magnitude is credited to Hipparchus (190 –120

BC), a Greek astronomer and mathematician who it is believed made his observations

in the 2nd century, BCE. While his original work did not survive, it was referenced by

Ptolemy in the Almagest (which is dated at approximately 147 AD, see Figure 1.1 ),

which contains a star catalogue of just over 1000 stars referenced by positions within a

constellation and their apparent brightness or magnitude. The original magnitude scale

used by Hipparchus was a six point system where the brightest stars were designated as

m = 1 (First Magnitude) and the faintest stars are designated m = 6 (Sixth Magnitude).

An increase from magnitude 1 to 2 for example represents more than a halving of the light

visible from an object. While Ptolemy claimed to have observed all of the stars himself, it

has been argued that the data was based at least partially on the Hipparchus observations

(almost 300 year earlier) [3]. The reason for the increasing number for less brilliant stars is

most likely based on the division of the twilight into 6 equal parts and stars which became

visible within each segment were assigned a magnitude value, hence more faint stars were

visible later and received a high magnitude numerical number. This system of magnitude

calculation stood for almost 2000 years and it is only relatively recently that the precision

of magnitude calculations has increased significantly from these ancient times.

Hearnshaw [12] provides an excellent account of this progression pointing out that

while many systems existed, the ability to combine and standardise star catalogues was

a consistent concern. When telescopes were introduced to astronomy it became possible

to see even fainter stars than those observed with the naked eye, and the magnitude scale

moved beyond the value of 6. With current state of the art instrumentation we are entering

an era of observing objects as faint as magnitude 30 [13] and possibly beyond. To determine

where a star is on the magnitude scale, a reference star is chosen and allocated a standard

number. At one point Polaris was assigned the magnitude value of 2.0, but this star is
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Figure 1.1: Claudius Ptolemy Star Catalogue. Alexandria, 2nd century. [11]

a variable star (apparent magnitude changes over time) so this was not an appropriate

reference star. Vega was finally selected and assigned the value of 0. Using the star Vega

as a reference point for magnitude 0, the table of magnitude values for the Moon, Planets

and the Sun requires the magnitude scale to enter negative values as shown in Figure 1.2.

What is being measured during the photometric process is the apparent brightness (or

apparent magnitude) of an object and not its actual magnitude. To illustrate the difference

in actual versus apparent magnitude consider the apparent brightness of a 40 watt bulb

as seen from 10 meters versus 10 kilometres. In both cases the light bulb retains the

same luminosity, but the apparent brightness is dramatically different due to the distance

between the observer and the light bulb.

Sun Moon V enusV ega

Sirius faintest

naked eye

star

brightest

quasar

faintest

objects

V ery Bright V ery Faint

−25 −20 −15 −10 −5 0 +5 +10 +15 +20 +25

Figure 1.2: Apparent brightness of a selection of objects using the magnitude system
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Photometry measurements from the time of Ptolemy remained relatively unchanged for

about fifteen centuries with photometry estimations not improving until William Herschel

(1738-1822) produced the first reliable naked eye star catalog using a telescope. Herschel

used a system of estimating the difference between objects, which was later formalised

by Friedrich Argelander (1799-1875) who established the step method. John Herschel

continued his father’s work achieving an estimated error of ±0.12 magnitude which is

close to the practical limit of visual photometry, ±0.1 mag. The visual photometer, which

appeared in the mid 19th century used prisms to project two objects into the field of view

of the observer who would then equalise the apparent brightness of each object through a

series of adjustments. The relative difference in the calibration process contributed to the

calculation of the magnitude difference between the objects.

The next major advancement in photometry was the introduction of the photographic

plate in 1871. By comparing existing stars within reference catalogues using visual in-

spection, large photographic surveys were undertaken. By 1930 it was estimated that

measurements could now be made which were at a precision of ±0.02 mag.

William Henry Stanley Monck (1839-1915), made the first electrical measurement of

light 1892 but it was not until 1907 however, that Joel Stebbins (1878-1966) used the

photoconductive cell in conjunction with the photocell achieving a photometric accuracy

of ±0.023 mag, surpassing existing accuracy levels of photographic photometry. Frequent

technical issues ensured that photographic plates remained in place for the first half of the

20th century.

The glass photomultiplier tube (pmt) became the primary photometry measurement

system in the mid 20th century due to to its quantum efficiency of about 10%-30% com-

pared to just 1% for photographic systems. These systems would make way for the CCD

by the early 1970’s which provided two dimensional array detectors, and ultimately higher

levels of precision. A good summary of the history of the photometric evolution is given

by Richard Miles, 2007[14].

1.1.3 Charge Couple Devices

It is only quite recently that our ability to measure and record highly precise magnitude

values for faint objects has developed, and this ability can be attributed to the introduction

and use of the CCD in the 1970s [15]. With highly accurate photometry measurements

based on CCD technology and careful observation it is possible to detect fluctuations
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in apparent magnitude, which may be used, among other things, in the identification of

extra-solar planets orbiting distant stars [16].

The CCD was invented in 1969 at Bell Labs [12] by William Boyle and George Smith

and was initially conceived as a memory module, but it was only four years later that a

program was initiated within the NASA Jet Propulsion Laboratory (JPL) to work on an

imaging device of greater than 100x100 pixel resolution for space based probes using this

technology. By 1974 Texas Instruments, under contract from NASA, produced a report

outlining the feasibility of such a device [17], which would later be used in the Galileo

mission to Jupiter (1989) and the Hubble telescope (1990), among others. By the mid

1970s it was decided that in order to engage the scientific community in this new CCD

technology (the primary technology in use at the time was photographic film and vidicons)

was to create a mobile CCD device, which was brought to a number of ground based

telescopes. According to Janesick, new scientific discoveries were made each time the

camera system visited a new site [18], and it was these trips and a high quantum efficiency

rating (photon to electron conversion rate) which quickly led to a dramatic increase in the

demand for CCD devices. Figure 1.3 shows the first ever image of Uranus [19] taken using

a 400x400pixel CCD sensor on Mount Lemmon’s 154cm telescope. Since then the CCD

has evolved and become the dominant device used by professional astronomers.

Figure 1.3: First CCD image of Uranus taken in 1976 at Mount Lemmon [19].

There are many reasons for requiring accurate magnitude calculations and an interest-

ing and topical example of their use is in the hunt for extra-solar planets [16]. One such

method is referred to as the photometric transit method [20] where stars with planetary

bodies that rotate around the star in the same plane cause a reduction in the apparent
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magnitude of the star. The transit is detected using a photometric light curve as shown

in Figure 1.4 for star HD 209458, which was the first planetary transit of a star identified

using this method.

Figure 1.4: Detection of the first planetary transit of the star HD 209458. [21].

The most well known example of this method in use, is the recent Kepler Mission,

which had the specific aim of detecting Earth-class extra-solar planets around stars with a

detection method determined to be viable based on two factors, "that the stellar variability

on the time scale of a transit be less than the decrease in brightness caused by the transit

and that the photometric instrumentation has sufficient precision to detect the transit".

[22]. The instrumentation referred to is the CCD of which there are 42 devices. Each

50x25 mm CCD has 2200x1024 pixels. The level of change to the brightness of the object

is as small as 1/10,000 (100 parts per million, ppm) for a terrestrial sized planet, which

provides some indication of the need for high precision photometry.

The CCD has contributed dramatically to photometry within the astronomical commu-

nity. It is the primary instrument of most, if not all, of the large-scale optical astronomical

survey systems currently in existence. As stated, the Kepler spacecraft uses 42 CCD de-

vices, the Sloan Digital Survey comprises of 30 CCD devices of approximately 2048x2048
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pixels in size, and the Hubble telescope initially used 8 low resolution CCD chips. A CCD

chip is built on a single wafer and is made up of a two dimensional array of pixels. As a

photon of light hits the silicon surface of a light sensitive CCD pixel the energy is absorbed

raising some electrons to a higher energy state and releasing them, allowing them to flow

towards the n-type silicon layer as shown in Figure 1.5 where an electrical charge accu-

mulates which is directly related to the level of incident light. This potential well exists

for each pixel. After a period of time (the exposure time) the accumulated charge for the

pixel, is moved towards the readout point by transferring the charge across the device.

Once the parallel shift of pixel charges is performed, the pixels at the edge of the device

are transferred using a serial shift to transfer the charge to the measurement electronics.

Using an analog to digital converter, the charge is converted to a digital numerical value

for the specific pixel charge. This is used as the raw digital image value from the exposure

and is transferred to the computer.

Figure 1.5: Cross section through a CCD pixel [23].
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1.1.4 The Data Processing Challenge

When a single CCD detector records an image, the size of the digital image is usually

dependant on the number of pixels on the device and the number of bytes used to store the

value for the pixel. The size of the data-set generated by an array of CCDs is dependant

on the size of each digital image, the image capture rate (ranging from milliseconds to

minutes), the time period over which images are taken, and the number of CCDs in the

array. While a small telescope may use a single CCD, larger telescopes may employ an

array of CCDs, and robotic telescope farms may use an array of telescopes each with its

own CCD array. With megapixel CCD arrays already in use, and with frame rates per

second increasing, the tsunami of data production is already beginning. Indeed, Graham

[24] refers to the data avalanche, tsunami and explosion of data, predicting that by 2020

the scale of the problem will be apparent as not just optical, but radio telescopes generate

petabytes of data on a nightly basis. Ferguson et al [25], looking to the next decade of

data reduction and analysis sees the three major challenges as follows:

1. Data rates growing rapidly as CPU processing rates level off.

2. Industry trends in computing hardware leading to major changes in astronomical

algorithms and software.

3. Computationally demanding analysis techniques becoming more essential with in-

creasing pressure on computing resource.

New sky survey systems in development, such as the Large Synoptic Survey Telescope

(LSST), will produce up to 20 terabytes of data per day in the very near future. Su-

percomputers/high performance computing is proposed as a primary requirement with

parallelism being the natural development to address challenge one above. With this level

of data production, issues beyond processing must also be considered. Concerns about

storage, input/output and processing have been in the published literature for many years.

Shaw et al in 1995, in a short paper [26] described the growing issue of large databases of

data, the possibility of moving to lossless compression, and stating that vast data arrays

will "tax networks, I/O systems, and storage capabilities, so compression techniques will

be crucial". These concerns remain the same today. Murtagh et al [27] summarised the

issue as follows going on to discuss the requirement for some form of image compression

strategy for data movement. "The quantity of astronomical data is rapidly increasing. This
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is partly owing to large digitized sky surveys in the optical and near infrared ranges. These

surveys, in turn, are due to the development of digital imaging arrays such as charge cou-

pled devices (CCDs). The size of digital arrays is also increasing, pushed by astronomical

research demands for more data in less time."

It is only when considering the combination of these challenges that the extent of the

problem of large dataset production and processing can be fully appreciated. The factors

which contribute to large dataset generation are summarised as follows.

• Resolution: Number of pixels captured per image.

• Capture Rate: Number of images taken per second.

• Capture Period: The length of time over which images can be taken.

• Device Count: The number of capture devices operating at one time.

• Capacity: Ability to read and store data generated.

When a CCD image is created, the pixel value is a combination of both signal and

noise. The process of performing image reduction and preparing the image for use in

photometry is an essential step in all CCD image based pipelines and is often referred

to as CCD reduction. There are typically three calibration frames used in the reduction

of raw images, which are bias, dark and flat field frames [28]. In addition to these basic

reductions, further image processing is required to complete the calculation of an accurate

magnitude value for a series of reference objects within each image and all of these steps

are precursors to the production of light curves from the CCD image. As the number of

images produced increases, so does the processing requirement as this reduction process is

applied to each image.

1.1.5 Research Scope

The data processing of CCD images is restricted in this research to pixel level calibration

and basic photometric analysis. Figure 1.6 provides a summary of the operations performed

by the NIMBUS pipeline which stops short of performing any actual science on extracted

magnitude values from images. To ensure that the ability to analyse magnitude values can

be done in real-time, PCAL and PHOT should process data at the same rate as data is

being generated and supplied to the pipeline. Just-in-time processing must be completed
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within a 24 hour period which would mean data processing must be no less than 3 times

slower than data acquisition before a bottleneck is created, assuming an 8 hour image

capture period per day.

PCAL

Pixel

Calibration

PHOT

Photometric

Analysis

Raw FITs

Data

Magnitudes

Values

Processing rate ≥ Data Input rate (Real-time Processing)

Processing rate ≥ Data Input rate /3 (Just-in-time Processing)

PCAL
Bias reduction, dark current removal, flat fielding for selected

pixel regions around objects of interest and pixel calibration

PHOT
Sky background removal, centroid calculation, and aperture

photometry for magnitude estimation

Figure 1.6: An overview of calibration and photometric analysis performed on raw CCD

images within the NIMBUS pipeline.

1.2 Research Hypothesis

The research hypothesis proposed within this thesis was to determine if a globally dis-

tributed astronomical CCD image reduction pipeline can process data at a rate which

exceeds existing data processing requirements and is scalable such that it can meet future

data processing challenges.

To support scalable growth, a pipeline would be required to allow horizontal scaling of

all components relying on parallel processing of data in a robust reliable manner. Work

orchestration requires the communication of thousands of computing processes allowing for

nodes to be added or removed without interfering with the running of the system. Image

processing must be suitable to parallelised processing. The pipeline should also not be

restricted to the specifics of CCD photometry, but be flexible enough to process other data

products, which can also be processed in parallel.
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1.3 Thesis Contributions

A distributed pipeline was conceived which was validated to determine how processing

rates upwards of 200 terabytes of data per day could be achieved. The NIMBUS pipeline,

developed as the primary contribution of this thesis, accomplishes this by enabling the use

of global computing resources to easily and seamlessly contribute to image processing. The

key enabling features of the architecture are distributed web queuing for message based

communications, self configuring workers which allow for multiple science payloads to be

processed, system resilience which allows running workers to join or leave the pipeline

seamlessly, parallel processing of images, and decentralised storage and processing.

The main contributions of this thesis can be identified as follows:

1. NIMBUS, a globally distributed data processing architecture that can process hun-

dreds of terabytes of data per day which is also scalable beyond this point.

2. A self configuring, balancing system that is scalable and resilient to failure.

3. A dynamically reconfigurable pipeline that has wider applications than astronomical

image processing.

4. A real-time pipeline, which in this context may involve a small processing latency in

the order of one to two minutes, but this latency would be small enough to enable a

feedback response to the telescope, or observatory, to allow them to react to recently

captured and processed scientific data.
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1.4 Structure of this Thesis

This thesis is structured as follows.

Chapter 1

This chapter provides context for the thesis and introduces the challenge posed by

the growing volume of image data within astronomy. An overview of how this the-

sis proposes to address this problem is presented through the globally distributed

NIMBUS pipeline, and the contributions are clearly identified.

Chapter 2

This chapter reviews the literature on the processing of astronomical photometry,

describing the primary noise sources within a CCD and the processes of reducing

them. Data generation sources within the astronomical community are identified in

addition to reviewing existing data processing techniques, processing rates and the

data volume challenges facing the astronomical community. Distributed computing

techniques and how these are being used within the scientific community at present

within astronomy and other scientific disciplines are also reviewed.

Chapter 3

Chapter 3 gives an overview of the experimental methodology used in all experiments

and discusses a series of experimental designs based on distributed computing tech-

niques and how they can be used. The experimental setup for Chapters 5 and 6 are

also presented with a review of the technology used in these experiments.

Chapter 4

Chapter 4 presents the design, implementation, results and evaluation of the Astro-

nomical Compute Node (ACN) experimental model. This model uses a distributed

hybrid cloud, which relies on a private Network File System (NFS) locking mech-

anism to communicate with workers available data for processing. The results and

findings from these experiments are presented within the chapter.
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Chapter 5

In Chapter 5 the design, implementation, results and evaluation of the NIMBUS

experimental module are described. NIMBUS uses a global processing cloud con-

trolled incorporating Amazon Web Services for web based message queuing, comput-

ing instances and data storage. The results and findings from these experiments are

presented within the chapter.

Chapter 6

Chapter 6 provides an analysis of the findings of this thesis, reviews and summarises

the work presented, drawing conclusions and identifying possible future work.

Appendicies

Appendix A through D provide additional data and material referenced within the

main chapters of this thesis.
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Chapter 2

Astronomical Photometry Data Processing

2.1 Introduction

In this chapter the literature for standard reduction techniques, basic photometry, the

source of data and existing data processing practices is reviewed. These four sections

are essential to demonstrate that the data processing techniques implemented within the

NIMBUS pipeline are consistent with standard data processing operations performed on

astronomical CCD images. It is also required to provide context for the NIMBUS pipeline

against existing technologies and current state of the art practices.

CCD and CMOS imaging systems have well understood reduction processing steps

designed to calibrate a raw image. The accuracy of photometric measurement is based on

these well defined cleaning techniques which are discussed in more detail in this chapter.

Aperture photometry techniques provide a clear process for the estimation of apparent

magnitude of objects, using a standard reference scale. Finding the centre of objects,

estimating the sky background and calculating the flux of an object for a range of aperture

sizes are all well defined procedures.

The sources of CCD data production are also considered, including existing and future

data processing techniques and challenges. The most commonly referenced projects, given

as examples of the growing data challenge within astronomy, are the Large Synoptic Survey

Telescope (LSST) [29] which is primarily optical in nature, and the Square Kilometre Array

(SKA) [30] which is radio based. The LSST (expected to come on-line in 2019) is predicting

data acquisition sizes in the region of 20-30 terabytes per night, while the SKA (2024) has a

variety of predicted data capture rates depending on the implementation size of the array,

although most agree this has the potential for generating one terabytes per second [31].
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Data processing requirements vary extensively and the following categories are reviewed

in terms of their data generation capabilities.

Observatories large and small, space based and ground based all employ some form

of software processing on images. Well established file formats, a range of data reduction

pipelines and an extensive set of software packages and technologies ensures there are a

mix of approaches in existence for performing data reduction.

2.2 Standard Image Reduction Techniques

When a CCD instrument is used, the recorded file output stored on the computer contains

a measure of the source signal in addition to unwanted random contraptions for various

sources. The noise introduces an error into the measurement. In this section the sources

of noise in CCD image reading are described along with the techniques used to deal with

them. These techniques are incorporated into the NIMBUS system.

2.2.1 Noise Sources

If a CCD recorded a single electron for every photon striking a pixel and this was the

readout value obtained from the CCD then it could be considered to be a perfect CCD. In

reality this is not the case, and a number of factors contribute to the introduction of noise

to the process. Noise is the introduction of unwanted variations to the image, distorting

the readings in some way. If a CCD pixel has a well depth of 100,000 electrons (the total

amount of charge that can be stored in a pixel) and the average noise can be determined to

be approximately 40 electrons per pixel then the SNR (Signal to Noise Ratio) is 100,000/40

or 2,500. If the amount of noise can be reduced then the SNR is increased. The process of

reducing the level of noise in an image is critical to performing high precision photometry.

The standard equation for SNR is given in equation 2.1 and is often unofficially referred

to as the CCD Equation [32].

SNR =
N∗√

N∗ + npix(NS +ND +N2
R)

(2.1)

• N* represents the total number of photons collected from an object of interest which

can be either 1 or more pixels.

• npix represents the total number of pixels considered.
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• NS represents the total number of photons per pixel from the sky background.

• ND represents the total number of dark current electrons per pixel.

• NR
2 represents the total number of electrons per pixel from read noise.

The main contributions to noise within a CCD are described here and the method for

reducing them is expanded upon in the following subsections :

• Dark current is a thermal noise source build-up within a pixel. Longer exposures

exhibit cumulative effects as it is exposure time dependant. Cooling the CCD is an

effective strategy to reduce this noise in addition to the use of shorter exposures or

through the use of Dark Frames.

• Pixel non-uniformity refers to the variation in pixel sensitivity when exposed to the

same levels of light. While standards are exacting, differences in pixel sensitivity

exist. This noise is eliminated to some degree by Flat Fielding which also eliminates

other optical variations or dust.

• Read noise is an additive noise source introduced during the reading of values from

the CCD during the conversion from an analog to a digital number. It is primarily

removed using a Bias Frame as the amount of noise is independent of the exposure

time. There have been dramatic improvements in this noise reduction over time.

Initially this value was as high as 500 electrons per readout in early astronomical

CCD imagers, but this value has been reduced to as low as 3 electrons per readout

in CCDs and as low as 1 in CMOS devices.

• Charge transfer efficiency. As pixel charge values are moved across the CCD towards

the readout point some electrons may get dropped or lost during the transfers. A

charge may be transferred thousands of times (for example in a 1024x1024 pixel array

the maximum a charge will be transferred is 2048 time). The CTE is not usually an

issue with a typical efficiency rating of 99.99997% not being uncommon. This relates

to approx. 2.5 electrons out of every 85,0000 being left behind or lost.

• Cosmic rays are particles which travel at high velocity and may dramatically increase

the electron count for a pixel. The energy released by the particle releases many

electrons which are then recorded as bright spots on the image. If this value is used,
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it has the ability to distort calculations such as star magnitudes, bias pixel values or

flat field pixel values.

The noise within the CCD can be characterised using equation 2.2 [33]. When a CCD

image is taken, a two dimensional digital representation of the image is created, which

we can reference using x for the column position and y for the row position. The values

recorded in a file are the digital counts of the charge generated by the electrons detected

by each pixel (the signal) and additional charges relating to unwanted sources (noise).

s(x, y) = B(x, y) + tD(x, y) + tG(x, y)I(x, y) + randomnoise (2.2)

where

• (x, y) represents the pixel row and column position on the image.

• s(x, y) is a raw pixel digital count recorded on the CCD for an integration time of t.

• t is the integration time of the exposure in seconds.

• B(x, y) is the bias digital count of each pixel for a 0 length exposure.

• D(x, y) is the dark current digital count of each pixel for an exposure length of t

seconds.

• G(x, y) is the sensitivity of each pixels.

• I(x, y) is the digital count of the light flux received by the pixel.

2.2.2 Bias Frames

A bias frame has a dark frame with an exposure time of zero and is a measure a pixel’s

read-noise. This value is usually caused by a low level spatial variation caused by the

on-chip CCD amplifiers. Read-noise from a CCD is an additive noise source that is intro-

duced during the pixel read process which does not vary with exposure time. This is a

systematic noise source which must be removed. A master bias frame is created through

the combination of multiple bias frames using the average pixel values seen across each

frames as shown in Figure 2.1. An average value is considered acceptable given that the

CCD should not be exposed to cosmic rays since there was no exposure of the CCD sensors.

The master bias frame can then be used in cleaning data images by subtracting the master

bias value for each pixel.
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Bias Frame 1

Bias Frame 2

Bias Frame 3

Bias Frame 4

Average pixel value calculated
for use in Master Bias frame

Figure 2.1: Master bias frame created using multiple bias frames.

Given that a bias frame is taken with a time interval of t = 0 equation 2.2 can be

reduced to equation 2.3, where b(x, y) is the bias value recorded in the pixel s(x, y).

s(x, y) = b(x, y) = B(x, y) + noise (2.3)

While a simple estimate of the bias value B of a pixel can be obtained by simply using

the value b(x, y) a better estimate of B can be obtained using the average value of the

pixel across multiple bias images where N is the number of bias images used as shown in

equation 2.4.

B̂(x, y) =
1

N

N∑
i=1

bi(x, y) (2.4)

Figure 2.2: Example of a master bias frame.
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2.2.3 Dark Current

A dark frame is used to determine the level of noise introduced by thermal events in the

CCD device. Most devices are now cooled and thus reduce the amount of noise however

it is still useful to understand this process. While a bias frame is taken with the shutter

closed and the minimum exposure time, this dark frame is taken with the shutter closed,

but for a specific period of time. The noise from thermal interference is time dependant,

so the length of time of the exposure is important as the noise level is related to it.

The formula for a dark current frame with an exposure time tdark is given in equation

2.5 when the closed shutter sets I = 0.

s(x, y) = d(x, y) = B(x, y) + tdarkD(x, y) + noise (2.5)

An estimate of dark current for a pixel is found by subtracting the bias and dividing

by the exposure time.

D̂(x, y) =
d(x, y)− B̂(x, y)

tdark
(2.6)

A more accurate estimate can be obtained by averaging a number of dark current

frames M and eliminating the bias from each value. This gives a bias reduced master dark

current frame for time interval tdark

D̂(x, y) =
1

tdark

1

M

M∑
i=1

di(x, y)− B̂(x, y) (2.7)

AMaster Dark Image can then be expressed using equation 2.8 for specific time intervals

such as tdata to suit different levels of image exposures.

D̂
′
M (x, y) = D̂(x, y)tdata (2.8)

2.2.4 Flat Fielding

A flat field image is taken when the CCD has been evenly illuminated by a light source.

Flat fielding is used to compensate for differences in pixel to pixel variations of the CCD

response to illumination when the same amount and spectrum of light is illuminated across

each pixel on the CCD. This technique also helps remove the effects of dust which can cause

dark spots on an image and uneven illumination caused by vignetting in the optical system.
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The flat field value is used to modify image pixel values to account for these variations.

There are varying opinions on the best method to create a good flat field image, such as the

use of an illuminated painted screen inside the telescope dome [34]. The difficulty with any

technique is finding a means to illuminate the CCD with a flat distribution of light which

is representative of the wavelength of the light expected during actual image recording of

objects of interest. Techniques range from closing the telescope dome and using a specially

treated surface for illumination, to using an image of the evening sky prior to data capture

where there is still enough light available to illuminate the entire CCD sufficiently. Howell

provides an excellent overview of many of these approaches [15]. A typical flat field is

shown in Figure 2.3.

Figure 2.3: Example of a flat field Image.

Typically there are a number of flat field images taken and combined into a Master

Flat Field Frame. There are similarities to the generation of a Master Bias, however due

to the exposure of the CCD to a light source the possibility of encountering cosmic rays is

increased, so median values, as opposed to average values, are used.

This can be expressed as the flat field value for a pixel with an exposure time of tflat

from Equation 2.2 using Equation 2.9 where L is the flux illuminated across all pixels

equally.

s(x, y) = f(x, y) = B(x, y) + tflatD(x, y) + tflatG(x, y)L+ noise (2.9)

As already described in equation 2.8 a master dark can be created for the flat field

image D̂F
M (x, y) = D̂(x, y)tflat by using the same time integration as the flat field.

The noise of the flat field value can be further reduced by obtaining a median value

for each pixel position using a number of flat field images as per equation 2.10.
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f̃(x, y) =Medianf(x, y) (2.10)

To find a median value, the values for a pixel position are read into an array and sorted

with the median value found using the following formulas.

Medians with odd number of data points

Sort data points and pick the middle data point and use its value. Where n is the

number of data points you must read the value at the following index point in the

sorted list (n+ 1)21.

Medians with even number of data points

Sort data points and pick the two middle data point and use the average of the two

values. Where n is the number of data points2 value1 = n
2 and value2 = n

2 +1 giving

Median = (value1 + value2)/2

By subtracting the master dark frame which used the same time interval as the flat

frames and subtracting the master bias a corrected flat field value is obtained for each pixel

which gives a bias reduced master flat field frame as per equation 2.11.

f
′
(x, y) = f̃(x, y)−DF

M (x, y) = tflatG(x, y)L (2.11)

The final step is to create a normalised flat field which has an average value of 1. First

calculate F the average value of all values in the flat field where n is the number of elements

in the flat field image in equation 2.12.

F =

∑n
i=1 f

′
i (x, y)

n
(2.12)

Normalising each of the pixels in the master flat field can be performed by dividing

each pixel by the average value F in equation 2.13.

G(x, y) =
f

′
(x, y)

F
(2.13)

1 for C where the array starts at 0, adjust this index as follows (n− 1)/2
2 for C where the array starts at 0, adjust this index as follows value1 = (n/2)− 1 and value2 = n/2
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2.2.5 Image Reduction

The process of characterising the level of noise within a CCD pixel has been presented in

equation 2.2. Using the estimation techniques identified, a basic image calibration process

designed to reduce noise from the CCD raw images, a necessary process in preparing the

CCD images for analysis, can be summarised. To simplify the process it can be assumed

that the dark current frames were taken with the same time integration as the flat field

frames and the data images. All images are stored using the Flexible Image Transport

Systems (FITS) [35] format unless otherwise stated.

• Multiple CCD bias frames are captured with time integration of 0.

• Multiple CCD flat Field frames are captured for integration time tdata.

• Multiple CCD dark current frames for integration time tdata.

• Generate a master bias frame using equation 2.4.

• Generate a bias reduced master dark current frame for integration time tdata using

equation 2.8.

• Generate a normalised bias reduced flat field master using equation 2.13.

• Capture raw CCD images frames.

Following the capture of raw CCD images, equation 2.2 can be used to estimate the

value of flux for a pixel for a time interval tdata using equation 2.14.

s(x, y)− B̂(x, y)− D̂M (x, y)

G(x, y)
= Î(x, y)tdata (2.14)

A pixel value on a CCD frame has the bias and dark current removed and is then

adjusted for the calculated responsiveness of the pixel relative to all other pixels. This

calculation must be performed on all pixels which are ultimately used in the calculation

of magnitude values. A new version of the image can then be created containing the

calibrated pixel values. The creation of the master bias, flat field or dark frames is often

done once for each night of observation and are then used in the calibration of pixels for

that night.
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2.3 Photometry using CCD images

The general steps in classical photometry using a cleaned digital image are usually identified

as follows.

1. Image centring, the process of finding the centre of an object.

2. Estimation of the sky background for the purpose of removing it from the flux inten-

sity value.

3. Flux value intensity calculation for an object for a specific aperture size.

4. Magnitude calculation for an object for a specific aperture size taking into account

the sky background.

Multiple magnitudes can be generated based on variations in the software aperture

size used in the calculation of the flux intensity. Each of these steps are described below,

identifying the basic techniques and formulas as appropriate.

2.3.1 Centroid Algorithm

Once an image has been reduced, the first step is the calculation of the geometric centre of

an object of interest, which must be precisely determined. There are a number of different

algorithms available [36]. A gradient based technique is presented in Figure 2.4 along with

the corresponding algorithm, Algorithm 6, given in section 4.2.3.4 of Chapter 4. The first

step using this method is to clip a region of the image where the point source is located

and apply a binary mask where all pixels above a chosen threshold are set to the value

1 and all pixels below the threshold are set to 0. The X position of the centre is found

by using a column gradient where each pixel within the mask has its value set to the

column number that it is in. The Y position of the centre is found by using a row gradient

where each pixel within the mask has its value set to the row number that it is in. Where

N = number of pixels in the mask, MC(x, y) representing a pixel within the column

gradient image, and MR(x, y) representing a pixel in the row gradient image, the centroid

X and centroid Y values using Equation 2.15 can be calculated.

CentroidX =

∑
MC(x, y)

N
CentroidY =

∑
MR(x, y)

N
(2.15)
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Binary P ixel Mask Column Gradient Row Gradient

Figure 2.4: Centroid detection using a gradient technique

2.3.2 Sky Background Estimation

Using a calibrated image and the centre point of an object, the next step is magnitude

calculation for specific objects on an image. Figure 2.5 shows the software aperture (solid

line), around the star and the sky annulus (two dashed line circles). A simple estimate of

the background sky level is to calculate the per pixel average value of the pixels within the

sky annulus. These pixels also contain noise in addition to photons from the background

sky which needs to be removed. More accurate estimates use the median value BM and

exclude values which are plus or minus 3 standard deviations form the median which will

exclude cosmic rays and possibly other light sources. A buffer exists between the aperture

and the sky annulus to ensure that the background is far enough away from the object as

to be representative of the background.

The sky background B is an estimate of the amount of light which should be removed

from the final flux value of a star and can be considered to be a photon based noise

level. Typically the background calculation only includes pixels which are fully within the

sky annulus and excludes partial pixels as shown in 2.6. By sorting these pixel values and

obtaining a median value, the sky background B̂ per pixel can be estimated. The Euclidian

distance is used to determine if a pixel is within the sky annulus. If R1 is the distance

between the centroid and the inner part of the sky annulus and R2 is the distance to the

outer part of the sky annulus, the distance from the centroid to a pixel r must be between

these two values. The distance between the centroid Cx,Cy and the pixel position x, y

can be calculated using equation 2.16. A pixel is considered within the sky annulus if r is

greater than R1 + 0.5 and less than R2 − 0.5.

r =
√
(Cx− x)2 + (Cy − y)2 (2.16)
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Figure 2.5: Representation of a star, with the aperture around the star shown in blue

and the sky annulus shown between the dashed lines.[15]
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Figure 2.6: Determining if a pixel is within the sky annulus by ensuring the distance to

the centre of the pixel is between R1 and R2 .
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2.3.3 Calculating Flux Intensity values

The next step is to calculate the total flux value recorded for an object by summing all of the

record pixel electron counts I within the software aperture. This is a total count of the unit

values stored within each pixel within a specific aperture range. A more accurate flux total

FT is then obtained by including all pixels within the aperture and partial pixel counts.

Using a similar method to the sky background calculation, pixels can be determined to be

either fully inside the aperture, on the line, partially inside the aperture or outside of the

aperture. If N represents the total number of pixels within the aperture (counting partial

and full pixels) then the total flux can be estimated and the sky background subtracted

using equation 2.17.

F̂T =

N∑
i=1

Ii −NB̂ (2.17)

2.3.4 Calculating Instrumental Magnitude

Given an estimate of the total flux for the object the instrumental magnitudem calculation

using a standard equation [37] can be completed.

m = −2.5 log10(F̂T ) (2.18)

2.4 Data Sources

With an understanding of CCD calibration and magnitude calculations it is important to

consider the context within which these operate. For any world-class scale project (space

or ground based) significant investment is required in IT. Data products are produced,

pre-processed to a pre-defined level, and made available to a Principle Investigator, sup-

porting institutes or potentially to the public, either directly via download servers or via

the Virtual Observatory (VO) [38]. For large projects, data capture, transfer, calibration

and reduction, basic processing, archiving and access are considered as part of the obser-

vatory capabilities and bespoke solutions are often implemented. Smaller institutes often

capture less data due to the capabilities of their instruments but investment in IT is still

required, although more modest computing resources may be sufficient. Researchers and

institutes will have varying requirements and capabilities either in data processing and/or

data capture and it is the ability to match computing resources to large and potentially
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varying data acquisition rates that is of interest. As smaller research groups have the

capacity to generate larger volumes of data, a gap in processing capabilities emerges. As

the pressure for data generation rates goes up, there should be pressure on bringing the IT

costs in line so that smaller institutes take advantage of instrument improvements. Data

processing costs cannot be allowed to grow linearly with data acquisition. Projects such

as the ALMA (Atacama Large Millimeter/submillimeter Array) Correlator3, Figure 2.7,

which locate computing resources physically close to the capture devices due to remoteness

of location or bandwidth restrictions, fail to avail of global resources and cannot be repli-

cated for all observatories. For the purpose of categorising and reviewing existing sources

of CCD image data the following general classifications are used.

Figure 2.7: Technician breathing oxygen at the Alma Correlator, the world’s newest and

highest high performance computing system with over 134 million processors [39].

Space-based telescopes

Space-based telescopes operate with the significant advantage of being free of at-

mospheric conditions but have been limited in terms of data processing and data

transfer. Bandwidth for sending data to Earth has been a bottleneck with trans-

mission rates generally below 1Mbps [40], although recent tests of the Lunar Laser

Communication Demonstration potentially paves the way for significant increases in

bandwidth in future missions [41]. Bespoke and evolving data processing pipelines

are often used per mission to process data, although reuse is becoming evident by

the Operational Pipeline Unified System (OPUS) pipeline operated by the Space

Telescope Science Institute (STScI) [42].
3 Capable of 17 quadrillion operations per second. At an altitude of 5,000 meters on the Chajnantor

Plateau, oxygen levels are only half of what they are at sea level.
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Ground based telescopes - Large

Large ground based observatories involving often large consortiums or national fund-

ing providing survey and project based data. Until relatively recently many of these

observatories have been required to physically move some or all of the science data

to data centres for processing. Projects such as Enabling Virtual Access to Latin-

American Southern Observatories (EVALSO) have significantly enhanced network

connectivity and bandwidth and in 2010 EVALSO provided a 1Gbps connection be-

tween South America and Europe, dramatically reducing the bandwidth bottleneck.

Due to these bandwidth restrictions, often due to the remoteness of the observatory

location, High Performance Computing (HPC) centres are typically paired with these

observatories and often use bespoke data processing solutions. Smaller observatories

or institutes tend to have less computational resources available, lacking significant

investment in IT and either build bespoke HPC solutions or use shared HPC resources

when available.

Survey telescopes

Observatories both large and small designed to continually survey the sky have the

ability to generate large volumes of data. Data management and processing is a

key factor in these systems. Sample rates, image resolution and number of devices

capturing data have the potential to exceed data bandwidth capabilities requiring

local resources to have the capacity to constantly store and potentially process data.

2.4.1 Optical Space Telescopes

Due to the restrictions on data transfer all space-based telescopes will attempt some form

of optimisation at the capture point to reduce the amount of data sent to Earth. Ke-

pler for example performs pixel selection on captured images using a number of specific

criteria [43]. Ultimately however all data needs to be sent to Earth for processing. The

communication mechanism used by US based space crafts since the early 1960’s [44] is the

NASA Deep Space Network (DSN), a collection of Earth based antenna in three primary

locations, Goldstone, Canberra and Madrid all of which connect directly with the Deep

Space Operations Centre, Pasadena, California. The radio link to space crafts is a point to

point system using different frequencies and ultimately different data transfer rates. For

telescopes in Earth’s orbit the Tracking and Data Relay Satellite System (TDRSS) offers
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higher bandwidth communications with recent generations ranging between 300Mbits/s

and 800Mbits/s depending on the microwave band used. Communications from more dis-

tant crafts tend to require higher power which typically results in reduced bandwidth.

Further details are provided based on some of the high profile optical telescopes in space.

2.4.1.1 Hubble Space Telescope and the James Webb Space Telescope

The Hubble Space Telescope (HST) was launched in 1990, produces approximately 120

gigabytes of data per week and communicates from low Earth orbit with the TDRSS [45],

a data relay and service designed to facilitate communications between Earth and orbiting

space crafts. The TDRSS downloads its data to the ground station at White Sands in New

Mexico where it is transferred to the Space Telescope Science Institute (STScl) in Balimore

for processing. The data pipeline used is the Operational Pipeline Unified Systems (OPUS)

[46] which was designed specifically for the HST, but is now used for other programs.

OPUS does not actually perform image calibration but stages data for processing and then

takes the processed data and stages it for inclusion into the Mikulski Archive for Space

Telescopes (MAST) archive. OPUS uses a blackboard architecture of communication using

file names providing a communication layer between processes which allows for distributed

and parallel processing. Once data is staged for processing by OPUS, the calibration is

performed by the Space Telescope Science Data Analysis System (STSDAS) [47], which

is an Image Reduction and Analysis Facility (IRAF) based system.

The successor to the HST is the James Webb Space Telescope (JWST) due to be

parked at L2 (Lagrange point 2) approximately 1.5 million kilometers from Earth and is

expected to launch within the next 5 years. This spacecraft will also communicate with

Earth via the DSN and transfer data to the STScl data centre in Baltimore Maryland for

processing. The JWST and Kepler will be subject to the limits of the DSN bandwidth (the

Ka-band is used for scientific data download, operating at 26 gigahertz) and while Kepler

downloads approximately 23 GB of data per month, JWST may generate in the region of

30 GB per day based on an upgrade of the DSN infrastructure [48]. The limits of data

transmission using the DSNs Ka-band effectively constrain the problem of data processing

to a manageable level at a maximum of 20-30 GB per day.
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2.4.1.2 Kepler Mission

The Kepler spacecraft (designed to search for Earth sized planets in other solar systems)

sits in a heliocentric orbit (centred on the Sun) and is trailing the Earth by over 10 million

kilometres staying within communications range via NASA’s DSN using X-band for twice

weekly command and status, and monthly Ka-band contact for data download at a speed

of 4.33 Mbps [49] which takes 6 hours. Launched in 2009, Kepler monitored approximately

170,000 stars and downloaded approximately 23 GB of pixel data per month [50], which is

approximately 6 million pixels captured every 30 minutes of operation. Due to bandwidth

limitations, 5% of pixels are downloaded each month [51]. The detector is made up of 42

CCD arrays, which operate on 30-minute capture cycles [52], see Figure 2.8. Each CCD is

2.8 by 3.0 cm with 1024 by 1100 pixels. The entire focal plane contains 95 mega pixels.

Figure 2.8: Kepler array consists of 42 charge coupled devices (CCDs). Credit: NASA

and Ball Aerospace.

Data from the DSN is eventually routed to the STScl and packaged into FITS files

before being sent to the Space Operations Center (SOC) at the AMES research centre,

Moffet Field, California where data calibration and photometric analysis is performed.

The Kepler pipeline, which uses a Java framework to create units of work, can process

some data in parallel by allowing some modules to be run in a customised sequences per

pipeline. An instance of the framework can run for each of the 42 CCD detectors, which is

parallel processing on the dataset at a very high level. Within each instance of the pipeline,

operations are run more sequentially for the CAL module [53] which puts images through

a series of science algorithms as shown in the Figure 2.9. Each module is composed of a

number of procedures written in Matlab.
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Figure 2.9: Kepler science data flow in the AMES Science Operations Centre (SOC).

Credit: NASA
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In 2011, the volume of data being generated by the Kepler mission and the associ-

ated processing requirements was sufficiently large for the pipeline to require porting to

the Pleiades cluster at the NASA advanced Supercomputing Division. So while the data

pipeline for Kepler was described as highly parallel, the architecture’s ability to scale in

the face of a growing data set was evidently limited. This need to fully reprocess all of

the raw data as part of the constant reviewing of analysis techniques and parameters was

a major driving factor [54]. Porting to the new pipeline required significant investment

demonstrating the lack of expandability by the existing pipeline. At the time a compar-

ative analysis was performed against the Amazon Elastic Compute Cloud (EC2) service

which was ultimately rejected not on expandability, but on raw network performance [55].

The NASA Pleiades supercomputer is an example of a HPC used for computing in-

tensive workloads. Data must be transferred into the system and jobs must be written

and submitted to the central control system for processing. The Pleiades HPC is oper-

ated by the Ames research centre in California USA, was brought online in 2008, and is a

collaborative effort with SGI. This computer cluster ranks in the top 20 supercomputers

and is constantly being expanded. It supports a number of processing environments and

is designed to assist NASA with a variety of processing requirements such as simulation

and modelling. The Kepler mission migrated to this platform to complete processing of

light curves for the hundreds of thousands of stars monitored by the Kepler space craft.

The programming environment is Linux with jobs being batched for execution. The de-

velopment environment is C, C++ or Fortran and the parallel processing components are

supported via the SGI Message Passing Toolkit (MPT) . Open MultiProcessing (OpenMP),

is an application programming interface (API) designed to allow control and execution of

code that takes advantage of multiprocessing, shared memory which is also supported by

Pleiades. Like many systems, OpenMP uses a fork-join approach to parallelism as shown

in Figure 2.10.

2.4.1.3 Global Astrometric Interferometer for Astrophysics

The Global Astrometric Interferometer for Astrophysics (GAIA) is a European Space

Agency survey mission launched December 19th 2013 which aims to provide a three di-

mensional map of the Milky Way using measures of star position and movement. The

spacecraft is positioned at the L2 Lagrange point approximately 1.5 million kilometres

from the Earth, in the same location planned for the James Webb Space Telescope. The
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Figure 2.10: Fork-Join processing

mission is designed to survey appoximately 1% of the 100 billion stars in our Galaxy. The

spacecraft contains an array of 106 CCDs and the data transfer from the spacecraft will

be at a rate of approximately 5 Mbps [56] for eight hours per day, which will delivery

over the lifetime of the project approximately 100 TB of raw uncompressed data. The

total final storage requirements are expected to expand to 1 PB including data backup

and provisional data processing steps. The final data set available to standard researchers

when processed will consist of approximately 20 TB.

Due to the format used to capture the data, significant data processing is required

to reconstruct the images. Two reasons for the complexity of the data are identified by

Mignard et al [57] due to the large number of computations required to process the data,

and the level of interconnections between different subsets of the data. The basic data flow

for processing the data is shown in Figure 2.11.

Data processing will be performed by a European consortium, the Data Processing

and Analysis Consortium (DPAC) which is comprised of contributors from 24 European

countries.

2.4.2 Large Ground-Based Telescopes

Large ground based telescopes overcome atmospheric distortion, to some extent, by being

located in the highest, and driest locations on Earth. As the number of instruments

continues to increase, their data processing requirements also increase. There are a number

of other larger ground based telescopes under construction or in planning at present, such as

the Giant Magellan Telescope which is a 25 meter telescope expected to generate terabytes

of data daily, The European Extremely Large Telescope is planned to have a 40 meter

mirror, again expected to have a large volume of data daily for processing [58].

The Gran Telescopio Canarias (GTC) is currently the largest operational optical tele-
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Figure 2.11: Main structure of the data flow in the processing of the Gaia raw data [57]

scope in the world with a 10.4 meter aperture [59]. Observations are scheduled according

to a predetermined schedule with raw data provided to participating principle investiga-

tors for data processing via FTP. Data is collected on two 2k by 4k red optimised CCD

devices giving a total of 4k by 4k pixels [60]. Flat field and bias files are provided along

with the raw data. Full resolution image readout can run at a variety of rates, with single

image readouts taking between 7.8 and 21 seconds depending on the readout mode. Data

generation rates are in the region of 20 GB per hour assuming 32bit pixel storage while

operating at 7.8 second capture time.

The Keck Observatory operates two 10m telescopes each containing 36 hexagonal mir-

rors which operate as a single reflective unit. The observatory is based on the summit

of the Mauna Kea volcano in Hawaii and uses adaptive optics to overcome the effects of

the atmosphere. Observation time is allocated to partner institutes with raw data made

available for download over FTP, SCP or other similar transfer protocols. The LRIS red

and blue detectors are comprised of 2 x 2k x 4k CCDs with a minimum readout time of

42 seconds. Raw data capture rates are roughly equivalent to the GTC. Image processing

is performed by the participating principle investigator, files are usually available in the
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FITS format.

The Large Binocular Telescope (LBT) (Figure 2.12) has two wide field cameras which

can operate in tandem, one of which is blue optimised and the other red optimised. The

LBT instrument consists of 4 x 2k x 4k CCDs per mirror [61]. Exposure times are given

as 0.3 seconds minimum for accurate photometry, with 30 minutes being the maximum

observing times before the instrument focus is rechecked. Data is made available for

download using a mounted NFS directory from which the observer can copy the data and

proceed to process it themselves. While the telescope has the potential to generate 42

Terabytes of data per day, this is not a constant data rate, and is unlikely to consistently

hit this maximum data generating rate.

Figure 2.12: LBT Large Binocular Telescope Credit: Aaron Ceranski/LBTO

2.4.3 Survey Projects

In addition to telescopes which have large apertures there are projects which focus not on

specific targets but rather sweep large areas of the sky to provide survey data. Surveys are

expensive as data constantly streams into the instrument and must be captured, stored

and processed. Surveys have the capacity to generate terabytes or petabytes of data. The

LSST for example is a multi-million dollar consortium expecting to generate terabytes of

data per day.

The Sloan Digital Survey Systems (SDSS) [62], which is currently in operation using

a 2.5 metre telescope, reported a maximum data capture rate in the region of 160GB per

day in 2004 [63]. This is probably closer to 200GB per day at present. The photometric
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data processing pipeline was written at Princeton University, and the data processing is

performed at Fermilab using their HPC data centre to process data. The telescope uses a 30

x 2k x 2k CCD array, with approximately 54 seconds between exposures [64]. The imaging

pipeline ultimately produces files in the FITS format, but internal formats are used within

the Serial Stamp Collecting pipeline (SSC) with a custom written C implementation which

processes images in sequence.

Building on the success of the SDSS is the LSST [65] which has an 8.4 single mirror

system which will be online by about 2019 and is expected to generate in the region of 20

terabytes of data per night with a resolution of 3.2 billion pixels per image sustaining a

data capture rate of 330Mbytes per second [66]. The LSST plans to move tens of terabytes

of data per day over high-speed fibre network from the Chilean site to the U.S. Processing

is focused on high-speed cores close to the datasets and the belief is that on going advances

in server technology will allow a traditional data centre HPC approach to data processing

[29]. The data reduction pipeline is still in development and is most likely a bespoke

solution. Interestingly they rejected the European Southern Observatory (ESO) Common

Pipeline as an option, given the volume of data to be processed and due to concerns over

its stability and extensibility.

Extensive archives for astronomical data are being produced and made available to

researchers from multiple sources. Diverse data archives exist which are consolidations

of optical data from multiple observations or projects such as the ESO Science Archive

Facility which contains approximately 1/3 of a petabyte of data and is growing by terabytes

per month [67]. Similarly the National Optical Astronomy Observatory (NOAO) provides

access to data from its primary facilities such as Kitt Peak, and limited access to other data

products from partnerships such as the Keck Observatory with plans to include future data

products from the LSST and the Giant Magellan Telescope. The NASA National Space

Science Data centre provides approximately 230TB of digital data covering 5,500 distinct

data collections, while MAST provides data from the HST and other space based telescopes.

There has been a concerted effort to create a central repository of astronomical data by the

International Virtual Observatory Alliance (IVOA) which was formed in 2002 [68]. The

concept is for astronomical data to be made available from multiple sources/instruments

to scientists around the world in a centralised, standardised way. In 2003 it was reported

that ESO would have greater than 1 petabyte of compressed data available by 2012 [38]. A

distributed architecture to support multiple repositories of data was discussed by Hanisch
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in the year 2000 where it is conceded that a single data archive cannot hold all of the data

products being produced. [69]. A distributed data archive would seem to logically require

a distributed data processing solution using a similar argument. No single data centre

could be big enough to process all of the data available.

2.4.4 Radio Astronomy

The issues associated with large data set generation is not limited to optical telescopes or

CCD photometry. Additional projects exists which offer the potential to generate Petabytes

of data, such as the ASTRON initiated Low Frequency Array for radio astronomy (LOFAR)

project [70] and the Square Kilometre Array (SKA) [30]. The LOFAR project requires raw

data to be transferred from each of the distributed array nodes to a Central Processing

System (CEP) which recombines the data for distribution to offline user based processing.

Data recombination was initially performed using an IBM Blue Gene/P supercomputer

which provided at its peak, 34 TFlops of processing power before it is transported to the

Long Term Archive (LTA) were 20 PB of data is expected to be stored over the next 5

years [71]. Processing is currently performed by a GPU cluster. For researchers to use the

data products produced by such projects, large scale computing resources are required to

access, download and process the data. Such resources are often costly to construct and

difficult to maintain. Challenges for data processing and management also exist within an

Irish context as the I-LOFAR http://www.lofar.ie consortium aims to join the European

wide LOFAR initiative, helping to extend the east-west baseline of the array to just over

1400 kilometres.

The SKA will provide even further data processing challenges with data capture rates

measured in the 100’s of Gbps. Construction is expected to begin in 2018 with a completion

date of 2024. The Science Data Processor consortium will be responsible for focusing on

the software, hardware and algorithms required to process the raw data into a series of

data products. These challenges are expected to be in excess of anything existing within

the field of science at present. Using the LOFAR project as a reference example, the

IBM/ASTON Dome project will also review state of the art computing technologies in an

effort to build an exascale computing system to process and store data. Further technical

challenges will also be presented to researchers seeking to use these data products in terms

of data management and data processing and the technology accessible by researchers will

require significant advancement in line with that of the SKA itself.
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2.5 Data Reduction Software

The astronomical community does not suffer from a poor selection of data processing tools.

The variety of low-level tools emphasizes the lack of standards in this area. In the 2007

ESO Instrument Calibration Workshop [72] the session on Data Flow and Data Reduction

Software reviewed the history of pipelines, and looked at some of the pipelines proposed

across various sites. A brief summary of these technologies is provided in Section 2.5.1.

2.5.1 Fits Formats and APIs

The FITS format (the Flexible Image Transport System) is a standard astronomical image

format endorsed by the International Astronomical Union (IAU) and NASA, which was

approved in 1981. FITSIO and CFITSIO are C and FORTRAN libraries supported by

NASA to access and manipulate the FITS file format. There are many other languages

with interfaces to these libraries allowing reduction software to be written in a multitude

of languages including Python, Java, Perl, MATLAB and C++. Most data produced for

researcher to consume are provided using this format.

2.5.2 IRAF

Image Reduction and Analysis Facility is a standard application used throughout the

astronomical community which has been in development since the mid to early 1980s

[73], and is a Linux based software package. It provides the closest thing to a standard

for data reduction and analysis within much of the astronomy community. Many of the

tools referenced by data archives are IRAF based. It is well documented and available on a

variety of platforms. Much of the code is implemented in FORTRAN and data processing

of files is sequential using batch type processing. Researchers interested in processing data

from data archives will often use IRAF as the basic reduction software package.

2.5.3 NHPPS

The NOAO High-Performance Pipeline System (NHPPS) is a python based pipeline which

can operate with local processing clusters of software nodes. Connections to nodes are

NFS based with SSH access required between each node. Each node must be password-

less and have the the NHPPS software installed. Originally based on the OPUS system

[74] the NHPPS uses the blackboard architecture for communication across a multi-node
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distributed environment which is a multi-queue based system which contains queues of

work which can be assigned to pipelines and queues which contain available datasets.

Parallelisation within the pipeline is referred to as coarse grain parallelisation, which splits

the data into chunks which can be processed independently and runs multiple processes on

single servers to reduce CPU idle time. The distributed features of the pipeline are based

on a directory server requiring the CPU nodes to be connected via sockets as shown in

Figure 2.13. Limitations identified with the pipeline include the requirement for controlled

shutdown of the computing nodes in case of data loss due to partial completion of data

processing by a node. [75].

Figure 2.13: NOAO High Performance Pipeline System Architecture [75].

2.5.4 ESO: Common Pipeline Library (CPL)

The VLT instrument pipelines are based on the ESO Common Pipeline Library (CPL),

a C based technology closely coupled to the FITS format, which is used as the basis of a

number of pipelines, the first of which was the GIRAFFE pipeline [76]. CPL was designed

to consolidate different software implementations that existed within various ESO instru-

ments to provide a common technology to assist with rapid data reduction development.

Currently all VLT pipelines are either using CPL or are being converted to it. CPL based

applications will require faster processors to run pipelines faster and does not provide

multi-threaded support although work is on-going to enable multi-threading applications

using a thread safe version of CPL [77]. CPL runs on Linux based operating systems,

primarily Scientific Linux, and relies on NASAs CFITSIO libraries.

42



2.5.5 OPUS

In a review of NASAs experience with Data Reduction pipelines over the last 30 years

given by Don Lindler [72] the initial Hubble pipeline implementation was considered a

step backwards from previous pipelines and the Space Telescope Science Institute, respon-

sible for data processing quickly moved to development of the OPUS pipeline, which was

later used in Chandra X-Ray Observatory, the Spitzer Space Telescope and the Far Ul-

traviolet Spectroscopic Explore. The new pipeline quickly proving to be quite versatile.

Initially a VAX/VMS solution, it was moved to Sun/Solaris platform based on an IRAF

implementation. Its legacy will continue into the JWST although Mac OSX is a more

likely platform with Python/PyRAF as the implementation software.

2.5.6 IUE

Prior to OPUS, one of the first and most successful reduction pipelines was developed to

support the International Ultraviolet Explorer launched in 1978 and designed to run for 3

years. It was 19 years later however that the IUE pipeline was eventually shutdown (despite

the satellite being in sound working order). To maintain the accessibility of the data, the

pipeline was ported to IRAF in 1998 [78]. The HST system, based on Sun workstations is

having similar longevity issues with hardware being difficult to replace and repair.

2.5.7 Other pipelines

In addition to the STScI use of OPUS and the ESO focus on CPL there are some pri-

mary technologies, which should be briefly mentioned. There are many other examples

of pipeline software development within the astronomical community. In 2005 Ó Tuairisg

[79] described a distributed computing model using a GRID system allowing images to be

processed in parallel. Having data on a shared file system helped reduce data transfer cost

and facilitates processing times. This approach builds a large cluster around the data to

be processed.

The Apsis package on the other hand is a more traditional system developed in Python

to process the early release images from the Advanced Camera for Surveys in 2002. Images

and tables were processed via Pyraf and Pyfits [80].
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2.6 Distributed Computing

The concept of distributing computing tasks to multiple machines is a well-established

discipline within computer science dating back as early as 1969 to ARPNET. Instead of a

single processor processing data in sequence, work is processed on distributed computing

nodes at the same time. There are many issues with this approach and much research into

optimising the process. Broadly speaking there are two areas to consider, the first is how

work can be partitioned into smaller jobs, and the second is the practical management of

those jobs across a distributed system. A good summary of the pitfalls of working within

a distributed system were initially formalised in 1994 by Peter Deutsch, a fellow at Sun

Microsystems, when identifying the seven fallacies of distributed systems. James Gosling,

also of Sun extended these into the eight fallacies (shown below) which were later explained

succinctly in a white paper by Rotem-Gal-Oz [81].

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn’t change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

The Cloud Computing model provides an example of a form of distributed computing,

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider

interaction. A definition of cloud computing was put forward by the National Institute

of Standards and Technology (NIST) [82] followed by a special publication in 2012 with

a series of recommendations [83]. The report identified five essential characteristics, three

service models and four deployment models as shown in Table 2.1.
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The cloud model is composed of five essential characteristics, three service models, and

four deployment models.

Essential Characteristics On-demand self-service

Broad network access

Resource pooling

Rapid Elasticity

Measured Service

Deployment Models Private Cloud

Community Cloud

Public Cloud

Hybrid Cloud

Service Models Software as a Service (SAAS)

Platform as a Service (PAAS

Infrastructure as a Service (IAAS)

Table 2.1: NIST definition of Cloud Computing.

For infrastructure as a service (IAAS), the distributed nature of a solution is based

purely on the architecture used to build the system. Resources are provided, such as the

Simple Queue Service, the Elastic Compute Cloud, with architectural decisions on their

implementation left to the user. Platform as a service (PAAS) provides implementations

of Map-Reduce, a programming model designed to allow a cluster of computer nodes to

perform highly parallel operations on large datasets. Based largely on the LISP functions

of similar names, the technique allows for robust parallel operations to be performed in-

side a cluster of machines. The system aims at being fault-tolerant, providing automatic

parallelization and distribution to worker nodes while offering status monitoring. Large

volumes of data are processed in parallel by distributed CPU nodes using a distributed

file system. The open-source standard for this implementation is Hadoop running on the

Hadoop Distributed File System (HDFS) [84]. The technique should allow scaling to thou-

sands of CPU nodes with the right type of problem. While initial reference examples were

text search based, additional material has been published demonstrating successful imple-

mentation of the Map-Reduce technique in scientific data processing environments. This

system provides a programming paradigm that builds private HPC style solutions within
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a cloud infrastructure.

Each of the service models outlined by NIST exist as commercial services such as

Amazon’s AWS [85] an IAAS solution. Clouds can also be constructed using open source

technology such as OpenStack [86]. Lenk provides a useful list of vendors and technologies

used in cloud construction [87].

Distributed computing is currently in use by the scientific community and a consid-

erable amount of literature exists in reviewing the suitability, cost and performance of

clouds and other techniques used for scientific data processing [88], [89] [90] [91] [92] [93]

[94]. In December 2011 the Natural Sciences and Engineering Research Council of Canada

(NSERC) published a detailed report on the potential role of cloud computing in science

based mid-range computational and data intensive workloads [95]. A summary of these

findings is provided below.

1. The elastic nature of the cloud is a significant advantage, allowing for elastic provi-

sioning primarily through the use of virtualisation technologies.

2. There is a potential issue in the level of work required for porting existing approaches

to the cloud model, including considerable levels of skills required to do so. This

upfront cost should be considered as part of the economic analysis when deciding to

potentially move this model.

3. Significant gaps exist in managing data within the cloud environment and the process

is neither simple nor easily accessible. Scientific workflows are not specifically catered

for, and there is an inherent difficulty in exploiting the features of technologies such

as Map-Reduce. Other problems include the lack of bootstrap starting points and

complex management of cloud environments.

4. Economic benefits come from consolidating resources to improve system utilisation

(which it was felt exist in the US Department of Energy). Incorporating aspects

of the cloud model into existing data centres is a worthy objective. Private clouds

should be considered first before the use of commercial clouds avoiding issues of

security, data management and performance of public clouds.

5. Scientific applications have specific requirements that require cloud solutions tailored

to their needs.
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Various reactions to this report [96] would suggest that the DOE struggle with the

adoption of public clouds on the basis of a paradigm shift from HPC to Cloud being

non trivial, and the business model of pay-as-you-go not being fully compatible with the

scientific requirement of open-ended need for resources. Below is a brief overview of some

high profile projects, which are actively engaged in processing datasets using distributed

or cloud computing.

2.6.1 Scientific Projects Overiew

The Kepler Project (not to be confused with the Kepler spacecraft mission) uses a Map-

Reduce [97] programming model and demonstrates early results in processing biometric

scientific data for large HADOOP clusters [98]. One of the concerns being addressed

within this paper is that the Map-Reduce model still offers a layer of complexity, which

they believe excludes many from gaining access to its potential benefits.

Wiley [99] demonstrated the use of Map-Reduce for image co-addition using the Sloan

Digital Sky Survey imaging database to produce a single image from multiple image files

with improved signal to noise ratios (SNR). The basic Map function processed each file

as a single job, determining if it should be included in the co-added image, and if so, a

bitmap was passed on for the Reduce function to take and include in the new image. Of

interest is that 100,000 FITS files were processed using this technique and while many files

were not required for the final image, the research demonstrates the feasibility of FITs file

processing in some form.

The Kepler CCD data is downloaded from the spacecraft and processed on Linux

based clusters running 64 nodes with 512 CPU cores. Data is chopped into parallel jobs

for processing on worker nodes and a Java Message Service (JMS) used to distribute jobs

across 4 clusters [100] [50]. With worker nodes capable of being added, job definition is

flexible and the examples provided are single image in and calibrated image out the other

end of the pipeline, or multiple images in, and light curve out. Much of the processing

is done using MATLAB libraries and Oracle. Similar in many ways to formal cluster

computing, distributed elements and pipelines are controlled within a local cluster.

2.6.2 SETI@home

Public resource computing uses the spare CPU cycles of computers to perform data process-

ing. Early research in the use of unused processor capacity included The worm programs
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as early as 1978 at Xerox PARC using a small set of 100 machines to measure Ethernet

performance [101]. But it is the SETI@home project [102] which stands out as the best ex-

ample of a public resource project utilising spare CPU cycles from millions of online users.

Radio data is recorded at source and physically shipped every few days to its headquarters

in Berkeley (approximate 2 terabytes of data every few days) where the data is split into

work-units, which are accessed by clients across the world. Notable within this approach

is that this is a computationally intensive problem, each 350k of data requiring multiple

hours of processing. Low bandwidth requirements ensure that even users with modest

connections to the Internet can contribute to the overall project. Challenges identified

by the Berkeley team have centred on the requirement to issue duplicated work-units (3

sets) to combat malicious users, and the challenges in running and maintaining the server

infrastructure to support their data distribution model.

The SETI@home initiative demonstrated a distributed solution for astronomical data

processing as shown in Figure 2.14. The SETI pipeline splits work into parallel jobs,

which are processed by clients around the world in a distributed manner. A key factor, as

already mentioned, in the approach taken by the SETI project is that the I/O rates are

low and the computational requirements were high. For kilobytes of data, multiple hours

of computation are potentially required [102]. In 2001 the estimated processing completed

by the distributed system was approximately 437,000 years of CPU, leading to the claim

of being the largest supercomputer in the world (at the time). [103]

Figure 2.14: Distribution of radio data using SETI@Home (2002)

With most examples presented from the literature so far, existing models for large as-

tronomical data, processing is usually performed on centralised data centres. SETI@home

offers an alternative distributed approach but it stresses that the computation to data ratio
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should be high.

This research seeks to address the key question of whether a distributed model can be

created when the computation to data ratio is low while allowing for tens of terabytes of

data to be processed. The distributed model potentially offers a cost advantage to the

smaller institute/facility while providing a powerful processing network.

2.7 The data challenge

A dataset was provided by the Blackrock Castle Observatory (BCO), a research facility

engaged in high-speed photometry research. The reference dataset contained 3262 cubed

FITS4 files, each containing 10 images and each approximately 512x512 pixels in resolution

(0.7MB per image) and the total size of the dataset was 26GB. This data was replicated

to simulate a multi-terabyte data. The dataset was generated on September 22nd 2003

at Calar Alto, targeting S5 0716+71 as part of an engineering equipment test of a new

hardware/software stack using an Andor CCD device.

A reference image processing speed from BCO was in the order of 1 image processed

per second, which is 0.7MB of data processed per second, or roughly 60GB of data per day.

This processing pipeline was sequential in nature and used a fixed number of computing

devices, which could not be expanded during image processing.

Researchers at the Blackrock Castle Observatory in 2003, using a high-speed Electron

Multiplying Charge Coupled Device (EMCCD) detector, operating at 10 images per second,

with a detector resolution of 0.2 megapixels, generated approximately 7 megabytes of data

per second, equivalent to 200 gigabytes in an 8-hour period. Recent CMOS detectors

(Andor Zyla sCMOS 5.5) with a resolution of 5.5 megapixels are under test at that facility

and are capable of capturing 100 frames per second. With each pixel value stored as a 32

bit number (8 bytes), the size of a dataset can be calculated as per equation 2.19, where

Npix is the number of pixels on the detector, p is the numeric precision used to store the

pixel value (typically 8 bytes per pixel), tsec is the time in seconds for the data capture

period, and fps is the number of frames recorded per second.

Totalbytes = Npix ∗ p ∗ fps ∗ tsec (2.19)

Using the formula in Figure 2.15 the data production rate in terabytes per 8 hours can
4 FITS is the Flexible Image Transport System digital format used for storing and processing scientific

images
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be plotted for varying CCD or CMOS pixel resolutions and frame rates. While it may

not be feasible to operate at 100 frames per second continuously, it can be seen that at

lower capture rates the dataset generated within 8 hours is in the order of terabytes. With

capture rates in the order of terabytes per night, large dataset generation is clearly well

within the capability of smaller observatories. With the development of robotic farms,

even at the lower capture rates, these rates are clearly in the realm of big data.
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Figure 2.15: Data generation rates per 8 hours for varying camera resolutions running at

various frame rates. See Table A.1

2.7.1 Sequential versus Distributed Data Processing

The approaches to processing large datasets are largely dependent on the performance

requirement of the task and the volume of data. It is perfectly reasonable to use a brute

force approach to solving a problem when the problem is sufficiently small, or comput-

ing resources are sufficiently powerful. In these cases results can be produced within a

reasonable amount of time so there is no need to process data using any specific method

other than sequential. As the volume of data increases, and traditional approaches start

to incur unreasonable delays in processing time, further thought is required to address the

problem of performance and processing efficiency. Within a typical pipeline, the cleaning

and reduction process is a two-step sequential pipeline (Figure 2.16). The first step is

reading in a raw image, calibrating all the pixels in the image and writing a cleaned image

file. This is performed on all image files. The second step is reading the cleaned image

file and calculating a series of magnitude values for each star (or light source) and writing
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out a file containing magnitude values. In this pipeline, work is typically performed on a

single but powerful server. A sequential processing pipeline must have the capability of

processing data at the capture rate to ensure that the pipeline does not back up. If run

over 24 hours with a capture period of 8 hours then the slowest speed of the pipeline must

be 3x the capture rate. As resolutions or frame rates increase there is a race for processing

rates to keep pace. With the slowing down of processor rate improvements and the end of

Moore’s law in sight, alternative processing approaches are required.

Start

Clean

Image
Raw FileIntermediate File

Generate

Mag

Figure 2.16: A sequential processing pipeline. A raw file is read and has bias, flat

field and dark current master frames applied, creating an intermediate file from which

instrument magnitude values are calculated before the next file is read. Files are processed

in a sequential order.

A distributed processing approach has the advantage of potentially employing large

numbers of resources. To distribute the processing of data in a meaningful way, the data

must be parallelised to some extent. If the data must be processed in a sequence then

distributed computing may not be very relevant. Astronomical CCD data however can

be reduced in parallel once the calibration frames are provided with each image. As in

Figure 2.17 a distributed pipeline would take in blocks of raw data which can be processed

independently and have them queued waiting for a distributed CPU node to process them.

Ideally limits would not be imposed by the communications protocols between a work queue

and the CPU process. The NHPPS, Kepler and OPUS pipelines use a form of message

exchange to allow for multiple CPU nodes to communicate and receive notifications of

work to be performed.
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Figure 2.17: Distributed processing pipeline. A queue of work is created of available

raw files. Once distributed worker nodes are activated, they use the queue to get work in

parallel.

2.8 Conclusions

In this chapter a summary of the history of photometry has been presented along with

an overview of the current process involving the use of CCDs for taking images. Since its

introduction in the mid 1970’s, CCD technology has provided astronomers with the tools

to measure the flux from stars in an increasingly precise manner facilitating a significant

increase in the precision of magnitude calculation since the early work of Hipparchus.

To improve the accuracy of these measurements an understanding of the sources of

noise within the CCD instrument is required and the techniques required to minimise

them. The sources of noise and the steps required to reduce their impact on the final
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magnitude calculation have been outlined. As the number of images increases and the

resolution of the images goes up, the processing required to generate magnitude values is

also increasing.

While space based telescopes and large survey systems employ large high performance

computing solutions for initial data processing, this data, both raw and reduced is presented

to researchers for analysis. The online virtual observatory now provides access to almost

petabytes of data world-wide. Without software tools which easily facilitate large scale

distributed computing for image processing, the volume of data will become a barrier to

performing science. As the number of sources for data increase, possibly even moving to

robotic farms, the tsunami of data will overwhelm most researchers and institutes.

NIMBUS, a globally distributed pipeline is described in this thesis as an alternative

approach to the data processing techniques reviewed. This requires that the images be

processed in parallel with as little work performed as necessary without compromising the

quality of the data. Using the analysis of magnitude calculations, it can be shown that

data can be safely processed in parallel with the same outcome as a sequential pipeline as is

done in some existing pipelines. The methods used to allow the NIMBUS pipeline to scale

should ensure that the distribution of computing nodes can truly reach global levels and

not be restricted to local network domains. The following chapter discusses the approach

taken within the NIMBUS pipeline demonstrating through experimentation the capability

of a globally distributed system.
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Chapter 3

Research Methodology

The purpose of this research was to determine if a globally distributed network can process

terabytes of astronomical CCD image data per day and this chapter reviews the method-

ology used to make that determination.

The research performed is quantitative, iterative, and experimental based. With the use

of distributed non-homogenous resources, operating on shared network environments it was

felt that a theoretical analysis would not identify real world system performance limitations.

A pipeline was developed in the initial stages of this research as a pilot system against

which experiments were performed to ensure the accuracy of the core processing software

against a reference BCO pipeline [104]. The name given to this pipeline was FEBRUUS,

so named after the Roman god of purification. This pilot calibrated the cleaning software

and provided an image cleaning rate baseline against which the remaining experiments

would be compared. A list of the architectural designs which form the basis of this thesis

is shown in Table 3.1.

The initial pilot was performed within the Dublin Institute of Technology but later

experiments were performed across multiple locations in Ireland. The final experiment

was run using globally distributed resources.

A number of architectures were conceived for the purpose of testing the hypothesis that

a global distributed network can perform high speed data processing for large astronomical

CCD images. Existing pipelines and technologies have been reviewed and it has been shown

that the emphasis on parallel or distributed processing has been primarily confined to HPC

systems typically within large data centres. Kepler provides a clear example of a message

based distributed system which lacked the capability to scale as the data sets increased,

requiring a full system port to the Pleiades supercomputer. SETI@Home while a globally
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Experiment

Name

Description

FEBRUUS Pilot Pilot system designed to demonstrate the basic principles of data

image cleaning and to validate the accuracy of the reduction

against the existing BCO Matlab pipeline

IRAF Cloud System designed to consider the possible implementation of a se-

ries of IRAF virtual instances distributed within a cloud infras-

tructure

ACN Pipeline Pipeline designed to test the effectiveness of data compression and

distribution in a private cloud using an NFS queuing model.

NIMBUS Pipeline Pipeline designed to test a global processing pipeline which is

dynamically reconfigurable and which can deal with processing

nodes joining and leaving without impacting the integrity of the

pipeline.

Table 3.1: Experimental designs and pipelines discussed within this chapter

distributed architecture, has an underlying principle that there is a high CPU to I/O

ratio. In this chapter multiple architectures which were central to the iterative process

used within this thesis are presented and discussed.

In this chapter, the data used within this thesis is described and the two principle

distributed designs which form the basis of the research performed, the ACN pipeline and

the NIMBUS pipeline are introduced. The initial pilot study, FEBRUUS, is also presented

showing the core algorithms used for pixel calibration.

3.1 Dataset

Initial contact with the Blackrock Castle Observatory, Cork, in September of 2009 led to a

series of discussions which explored an existing reduction pipeline system in use by the BCO

research team to process raw CCD image data. BCO is engaged in high-speed photometry

research [105] and generates datasets which contain multiple images per second. The

BCO team had implemented a MATLAB based pipeline which had its science data output

compared and verified against an IRAF implementation of the same algorithms. The

MATLAB system provided, among other things, faster processing rates than the IRAF
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solution. The processing rate of this pipeline was approximately 1 image per second, while

the capture rate of the CCD device was about 10 images per second. Limitations of the

pipeline included the inability to take advantage of additional computing resources, and

difficulties in transferring data to alternative systems. A faster data processing pipeline was

required. The BCO are also developing a new science instrument, which has the potential

of generating terabytes of data. The TOφCAM [58] (Two-Channel Optical Photometric

Imaging Camera, pronounced toffee-cam, see figure 3.1) uses two CCD97 EMCCDs from

Andor Technologies each capable of generating 34 frames/s, approximately 68 Mbytes per

second or nearly two terabytes per 8 hours observing. Existing processing rates using the

MATLAB pipeline of 1 image/s would require almost 23 days of processing for a full night

of observation. BCO are involved in High time-resolution astrophysics (HTRA) and the

science objective of generating high-speed photometry images was part of a research project

to perform Point Spread Function fitting (PSF) photometry to an estimate accuracy over

a timeframe of about one hour [105].

Figure 3.1: The optical layout of the TOφCAM

A 26 Gigabyte dataset was supplied by BCO consisting of 36,820 images stored in

data cubes of 10 data images per file, with data frame integration times of 0.08 seconds

per image. This data set was the primary source of CCD images used in all experiments.

The dataset was generated on September 22nd 2003 at the Calar Alto Observatory in

southern Spain, targeting S5 0716+71 as part of an engineering equipment test of a new

hardware/software stack using an Andor CCD device. This dataset acts as a clear reference

when discussing existing processing techniques ensuring that future systems deliver the
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10 Images

Figure 3.2: Visualisation of the raw BCO data set with SUBRECT region shown in red.

The unique data set contains 3682 data cubes, each containing 10 raw images.

same science output. This also provided a point of qualitative and quantitative comparison

for new architectures.

The raw data images are stored in an uncompressed FITS (Flexible Image Transport

System) file format and are approximately 7MB in size using 32bit integer values. The

image borders of approximately 20 pixels have been removed from each raw file reducing

them in size. Details of the raw image FITS header file is shown in Table 3.2 giving

the precise FITS SUBRECT values, which define a clipped region of the CCD image. In

addition to the raw data frames, 200 bias frames stored in 20 data cubes of 10 images

each, and 111 single image flat field files were provided. No dark current frames were

taken. The flats and bias frames were taken without any SUBRECT which required the

correct alignment of master files against raw data image file as shown in Figure 3.2. The

total number of raw data pixels within this data set is approximately 6.6 billion pixels.

This dataset has already been processed [106] and it is for this reason that it was considered

a good reference data set allowing for calibration of the master bias and flat images and

comparison of reduced images against the BCO pipeline. Given the short integration times

of the data, and the fact that the data processing was focused on differential photometry,

the dark current master was not deemed a requirement by the BCO team. While the dark

current process has already been described in Chapter 2, dark current removal has not

been performed on the data.
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Keyword Value

SIMPLE = T / file does conform to FITS standard

BITPIX = -32 / number of bits per data pixel

NAXIS = 3 / number of data axes

NAXIS1 = 428 / length of data axis 1

NAXIS2 = 426 / length of data axis 2

NAXIS3 = 10 / length of data axis 3

EXTEND = T / FITS dataset may contain extensions

COMMENT FITS (Flexible Image Transport System) format defined in Astronomy and

Astrophysics Supplement Series v44/p363, v44/p371, v73/p359, v73/p365

HEAD =’DV887 ’ / Head model

ACQMODE = ’Kinetics’ / Acquisition mode

ACT = 1.304200E-01 / Integration cycle time

KCT = 1.304200E-01 / Kinetic cycle time

NUMACC = 1 / Number of integrations

NUMKIN = 10 / Series length

READMODE = ’Image ’ / Readout mode

IMGRECT = ’1, 512, 512, 1’ / Image format

HBIN = 1 / Horizontal binning

VBIN = 1 / Vertical binning

SUBRECT = ’30, 457, 453, 28’ / Subimage format

DATATYPE = ’Counts ’ / Data type

XTYPE = ’Pixel number’ / Calibration type

XUNIT = 0 / Type of system

TRIGGER = ’Internal’ / Trigger mode

CALIB = ’0,1,0,0 ’ / Calibration

EXPOSURE = 8.000000E-02 / Total Exposure Time

TEMP = -6.500000E+01 / Temperature

READTIME = 1.000000E-06 / Pixel readout time

OPERATN = 4 / Type of system

DATE = ’2003-09-22T02:04:34’ / file creation date (YYYY-MM-DDThh:mm:ss UTC)

Table 3.2: Raw Data Fits Header
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The 26 GB dataset was sufficient for the initial pilot and the ACN processing pipeline,

however for the NIMBUS pipeline, a much larger data set was required. To accomplish this

the BCO data was replicated a number of times and stored on multiple storage devices.

This was considered acceptable due to the fact the focus of the experimentation was to

review processing speed and did not require terabytes of unique data frames. The amount of

processing for duplicated image data was identical to processing of unique data. To ensure

this, data files when duplicated required unique names to eliminate the possibility of web

servers or worker nodes caching the image data and artificially reducing the processing

time of the system.

3.1.1 Performance Analysis

The calibration time of an individual CCD frame in most modern computing environments

is typically measured in seconds or fractions of a second. Given that images are often taken

over multiple seconds, many existing applications process astronomical images using soft-

ware not specifically optimised for performance. MATLAB-based custom applications and

of course the ubiquitous IRAF application offer reasonably easy access to image reduction

and processing for scientists, while the CPL and other frameworks are in use by larger

centres where specialised calibration workflows are required. However an issue arises, as

the number of CCD images increases and the processing time becomes a function of the

number of images to process. Data transfer, storage/backup, and retrieval also require

careful consideration due to the number of times these operations are performed. Ap-

parently trivial decisions relating to the use of intermediate files when cleaning an image,

or the use of compression can have a dramatic influence on overall system performance

and resource utilisation. For example, using a two step reduction process where the first

step uses Master Bias and Master Flat to clean the pixels, and the second step calculates

magnitudes, doubles storage requirements through the use of intermediate files.

In many cases much of the data captured within an image is not used in photometric

measurements, and generic workflows that calibrate this data result in work being per-

formed which does not contribute to the accuracy of a calculated magnitude. (E.g. Pixel

cleaning is performed on all pixels within the image, including pixels not used in reference

object magnitude calculations). It should be possible to only clean a subset of the image

and only calibrate pixels required for magnitude calculations, eliminating a high percentage

of work from the workflow as shown in Figure 3.3.
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Figure 3.3: Clip regions on a CCD frame Credit: BCO.

One reason why many infrastructures are not easily expanded is that most data reduc-

tion tools such as IRAF and CPL are sequential in nature, processing files interactively or

in a batch sequence relying on high performance hardware devices to ensure that the data

reduction process is kept within a reasonable timeframe.

As more data is captured and uploaded to archives and made available through the

Virtual Observatory the amount of data available for research is also increasing. When

processing archive raw data, calibration is often performed, and researchers need to find

resources for this data processing. Depending on the size of the dataset this could require

significant computing resources.

3.1.2 Parallel Data Processing

The first step in working out how data should be logically grouped it is necessary to

understand what data is relevant to the operations being performed. If pixels can be

determined as non-contributory to the generation of magnitude values then by not including

them in the data pipeline both the file IO and the CPU requirements may be reduced.

CCD image calibration is often performed as a series of steps within a pipeline. In

many cases this is done for flexibility within the pipeline framework allowing for a modular

approach to software development or image processing as shown in the Kepler Science

dataflow pipeline in Figure 2.9. It is worth reiterating that this research is focused on the

equivalent processing performed within Kepler’s CAL and the PA modules. As is evident
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from the Kepler pipeline there is a clear sequence that must be followed and which cannot

be performed in parallel. This is true for some logical portion of data however and not

necessarily true for the whole dataset, or for portions of that dataset. In the case of Kepler,

each CCD has its data processed within a parallel pipeline.

This research considers what work can be run in parallel and how this impacts perfor-

mance. As an example, looking at Figure 3.4, if the output goal of a pipeline is to calibrate

a pixel then all pixels can be treated as independent pieces of data which can be processed

in parallel without any issue. If the output goal was the magnitude calculation of a star, a

larger logical grouping of pixel data into a clipped region of the image is required. Multiple

images can be grouped into data cubes, but once the timestamp is preserved then these

images can be processed independently and then reassembled into light curves using the

time sequence. There are other considerations such as the grouping of images in data

cubes. Existing raw data from BCO has a FITS data cube containing 10 images but there

are other configurations possible. In many cases the reality of the file I/O costs of the

systems will have an impact on data processing.

Images

Clip Regions

P ixel

Figure 3.4: Identifying parallel processing opportunities
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3.2 System Designs

In addition to the FEBRUUS pilot study, three primary designs have been considered

and reviewed with two of them fully implemented. Experiments were devised for the

implemented designs to test their limits and capabilities, with lessons learned helping

improve the next evolution. The purpose of these experiments was to test the performance,

elasticity and flexibility of the architectures. Three primary designs were considered, and

the final design incorporated the key components of the other three.

• IRAF Virtualisation. Use of standard IRAF installations, virtualised and deployed

into a cloud environment, using torrents as a distribution and replication technique

for CCD image data. A torrent is a file sent via the BitTorrent protocol which is

initially incomplete. The file continues to download form multiple computers using

a torrent client which locates additional copies of the file on different computers.

• The ACN Pipeline: A distributed private cloud using commodity servers, with a

lightweight data processing appliance and a private centralised queue to advertise

work.

• The NIMBUS Pipeline: A distributed public cloud based on virtualised and physical

servers using a distributed web queue to advertise work.

The key reason for using a distributed model was to allow resources from multiple

locations to participate in the pipeline. This requires that data is accessible to processing

nodes, which obtain work from a central queue, download data, process it, and upload

results. The ACN and the NIMBUS pipelines were built to facilitate experimentation.

3.2.1 Pixel Calibration - FEBRUUS Pilot

The aim of the pilot system was to implement a series of programs designed to clean raw

CCD image data using the identified formulas presented in Chapter 2. The output of this

system was a series of calibrated images, which used Master Bias and Master Flat images.

A summary of the key objectives of this pipeline are presented below.

• Write a series of CFITSIO based programs to generate Master BIAS, and Master

FLAT frames
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• Write a lightweight program to perform pixel calibration of raw CCD images using

the Master Flat and Master Bias frames

• Develop a series for tools for comparing FITS files to calibrate the results with results

from BCO

• Determine the performance of a CFITSIO program compared to the MATLAB

pipeline from BCO

• Provide a benchmark for future processing pipelines

• Learn the process of image pixel calibration.

By implementing the standard pixel calibration algorithms it was possible to become

more familiar with the process to ensure decisions regarding what could be performed in

parallel and what could be excluded from magnitude calculations. By focusing on basic

calibration it was possible to obtain a basic benchmark for image cleaning. By using a

CFITSIO library within a C program, the speed of imaging cleaning within a sequential

environment could be estimated as a basis for comparison within a distributed environment.

In total seven CFITSIO based tools were built to support the pilot. Details of these

tools are provided below in Table 3.3

Program Function

gmb.c Generate the master bias frame through the combination of 200 bias frames

using an average pixel value per pixel coordinate

gmf.c Generate master flat through the combination of 111 flat frames using median

pixel values per pixel coordinate

bmf.c Bias reduce the master flat by subtracting the master bias values for each pixel

coordinate

nmf.c Normalise the values within the bias reduced master flat frame

rrf.c Reduce raw file by performing pixel calibration using the master bias and nor-

malised, master flat frames

cfd.c Compare two fits files by checking all pixel values to see if they are identical

lde.c List all of the pixel values or a subset of pixel values within a FITs file

Table 3.3: Basic tools developed to calibrate against the BCO MATLAB pipeline
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3.2.1.1 Generate Master Bias

The purpose of this program is to create a single two-dimensional image, which contains

an accurate representation of the systematic wide additive values, present in all pixels.

The program takes in as input a directory location, which contains a number of BIAS files

and the name of the required output master bias file. Debugging is offered at different

levels to have various amounts of data generated to the screen, which can be redirected

and reviewed. The output of this code is validated against a file supplied by BCO. While

initial differences were found when comparing the output of the gmb.c program and the

BCO supplied file, this was found to be related to a difference in precision for the stored

values during the average calculation. When the pipeline system performs calculations is

uses DOUBLE_IMG when setting the precision settings on the output MasterBIAS file.

Unless the corresponding file from BCO uses similar precision, the following differences

in values can occur. BCO Data: 233 compared to Pilot Data: 232.8800000000. Since this

is an additive source for noise it may well make more sense to store this in an integer

value within the Master Bias, however the primary aim is to retain as much high precision

processing as possible.

Algorithm 1 describes the operation of the gmb.c program and how a master bias frame

is created from a stack of bias images. The master bias is created one row at a time by

summing pixels from the same position across multiple images and then dividing them by

the number of images. This process is repeated for all pixels on a row by row basis. The

flowchart for this program is listed in Appendix B.

3.2.1.2 Generate Master Dark

The data provided by BCO did not require dark frame cleaning due to the specification of

the CCD device used, the image exposure time and the fact that differential photometry

was being performed. For completeness Algorithm 2 is presented which describes the

process of creating a bias reduced dark current image master.

3.2.1.3 Generate Master Flat

This process is similar to gmb.c in that there are multiple images which combine to form a

single image. There is an important difference however in that the flat files are created by

exposing the CCD to light which introduces the possibility of cosmic rays striking a pixel
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Algorithm 1 Generate Master Bias
1: procedure GMB(row, col, img) . row and columns width and no. of images

2: ImageRow[col]

3: PixV al[col]

4: BiasV al[col]

5: for i = 1 to row do

6: for j = 1 to img do

7: ImageRow ← readframerow[i, j]

8: for k = 1 to col do

9: PixV al[k]← PixV al[k] + imageRow[k] . sum all values for each pixel

10: end for

11: end for

12: for k = 1 to col do . calculate avg value for each pixel in the row

13: BiasV al[k]← PixV al[k]/img

14: end for

15: writerow(BiasVal) . write out 1 row of master bias values

16: end for . go to the next row

17: end procedure

causing its value to dramatically increase. The use of an average value across images which

includes these values could affect the overall result. Instead pixel values for a specific x,y

coordinate across all images are sorted to obtain the median value.

The median value for a pixel coordinate is not the final step in creating a master flat

file as it must be cleaned by eliminating the bias (using the master bias file) and then have

the pixel values normalised. For the purpose of calibration with the BCO system these

step were broken down into distinct steps.

The output from the gmf.c program was compared to the reference file provided by

BCO to ensure that resulting values were identical. Due to the fact that a median is

required and that the source data is a whole number, there is no need for higher precision

than INT, although a LONG data type was used. The bmf.c program uses the output of

the gmf.c and subtracts the bias value associated with the specific pixel coordinate from

the master bias frame. Sample output from this process is shown in Appendix B.

The discussion on pixel to pixel variation in sensitivity to light earlier in Chapter 2
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Algorithm 2 Generate Master Dark
1: procedure GMD(row, col, img) . row and columns width and no. of images

2: ImageRow[col]

3: PixV al[col]

4: DarkV al[col]

5: for i = 1 to row do

6: for j = 1 to img do

7: ImageRow ← readframerow[i, j]

8: for k = 1 to col do . sum all values for each pixel

9: PixV al[k]←= PixV al[k] + imageRow[k]

10: end for

11: end for

12: for k = 1 to col do

13: DarkV al[k]← PixV al[k]/img −BiasV al[i, k]

14: end for

15: writerow(DarkVal)

16: end for

17: end procedure

looks at the quantum efficiency of a pixel for a particular wavelength of light. Exposing a

CCD to a flat field of light should, in theory, produce the same value in each pixel after

subtracting the bias value. In reality the same value is not seen, which may be due to a

number of reasons such as the use of a non-uniform light source, the quantum efficiency

is actually variable across the CCD or dust particles which create shadows or patterns

across the CCD. If on average a pixel collected 1000 electrons during an exposure, then

to normalise a specific pixel the value needs to be divided by the average (in this case

1000). The result of this calculation is a normalisation value which can then apply to

actual readings in object files either reducing the recorded value (because this specific

pixel collects higher than average electrons) or increasing the recorded value (because this

specific pixel collect lower than average electrons). The flowcharts for these programs are

listed in Appendix B.

Algorithm 3 is a combination of these programs that creates a final master flat frame

from a stack of flat field images.
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Algorithm 3 Generate Master Flat
1: procedure GMF(row, col, img) . row and columns width and no. of images

2: ImageRow[col]

3: PixV al[col][img]

4: Medians[col]

5: Normalise[col]

6: . Generate Median pixel values from multiple Flat Frames

7: for i = 1 to row do

8: for j = 1 to img do

9: ImageRow ← readRow[i, j] . read in a row from each image

10: for k = 1 to col do

11: PixV al[j][k]← PixV al[j][k] + imageRow[k]

12: end for

13: end for

14: for (k = 1 to col) do

15: Median[k]←MEDIAN(QSORT (PixV al[k]))−BiasV al[i, k]

16: writeRow(Medians)

17: end for

18: end for . Go to next Row

19: for i = 1 to row do . Generate AVG pixel value

20: for k = 1 to col do

21: Total← Total +ReadMedianRow[i][k] . total all Flat Fids values

22: end for

23: end for

24: AVG=Total/(row*col) . Calculate avg value for Master Frame

25: for i = 1 to row do

26: for k = 1 to col do

27: NormaliseV al[i][k]← ReadMedianRow[i][k]/AV G

28: end for

29: writeRow(Normalise[i]) . write out 1 row of master flat values

30: end for

31: end procedure
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The following three primary steps are incorporated within the algorithm.

• Calculate the median pixel value across multiple flat field frames

• Remove the bias value for that pixel using the master bias frame

• Normalise the pixel values across the bias reduced image

The master flat frame is created a row at a time by obtaining the pixels value from the

same location across multiple images, sorting them, and identifying the median value. This

process is repeated for all pixels on a row by row basis. The purpose of using a median is

to eliminate from the calculation any effects from a cosmic ray which could significantly

distort an average value. To obtain a median value, all values must be sorted, and odd

and even numbers of images must be accounted for within the algorithm. Sample output

from this process is shown in Appendix B.

3.2.1.4 Pixel Cleaning Image Files

The rrf.c program is the primary appliance in the pilot system as it is responsible for

cleaning the raw data images using the Master Bias and the Master Flat files. The formula

used by this program has already been described in Chapter 2. For all pixels in a raw

object frame the corresponding pixel in the same location in the Master Bias frame is

subtracted. This value is then divided by the corresponding pixel in the same location

in the Master Flat frame, which adjusts the value up or down depending on the relative

quantum efficiency for the pixel as compared to the average efficiency across the CCD.

This final value is then written to the output file as the newly cleaned value.

Algorithm 4 demonstrate the simplicity of the actual calibration operation once master

frames have been created and pixel alignment between the master frames and the raw

images has been achieved. Where the raw images and the master frames are different in

size, as with the BCO dataset, clipping is required on the master frames, or the use of

an index into the master files to ensure pixel alignment with the raw images is correctly

performed.

3.2.1.5 Supporting Tools

Pixel level comparisons were performed on the pilot master bias, master flat and reduced

raw images agains the BCO equivalents to ensure that the basic processes were correctly
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Algorithm 4 Calibrate raw image
1: procedure Calibrate(row, col, img) . row and columns width

2: file raw . file handle for raw image

3: file cal . file handle for new calibrated image

4: file mb . file handle for Master Bias

5: file mf . file handle for Master Flat

6: file md . file handle for Master Dark Current

7: CalP ix[col] . 1 dimensional array to store calibrated pixels

8: for i = 1 to row do

9: for k = 1 to col do

10: biasV al← ReadPixel(mb, i, k)

11: flatV al← ReadPixel(mf, i, k)

12: darkV al← ReadPixel(md, i, k)

13: rawV al← ReadPixel(raw, i, k)

14: CalP ix[k]← (rawV al − biasV al − darkV al)/flatV al . clean pixel

15: end for

16: writerow(cal, CalP ix) . write out 1 row of new values

17: end for

18: end procedure

implemented. The full data set provided by BCO was processed using the rrf.c program

from a local NFS disk on a Linux system to determine the maximum processing rate using

a sequential processing approach. The rrf.c program held the master frames in memory

and opened and processed each image data cube in sequence until all were processed.

3.2.2 Virtual IRAF instances - Design 1

The initial design concept for cloud based distributed computing was for a virtualisation

of existing reduction pipelines, which ran on instances in a cloud environment as shown in

Figure 3.5. It was considered that an IRAF virtual machine appliance could be constructed

and copies of the virtualisation instance could be run within a variety of cloud infrastruc-

tures. Using pre-fabricated images, IRAF based virtual machines could be created on any

supported hypervisor.

Figure 3.6, shows a torrent [107] based solution for data movement and replication
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Figure 3.5: IRAF virtual instances in the cloud

where there were multiple copies of data distributed to various storage nodes. This design

considered a message swapping system similar to the blackboard model within the OPUS

pipeline. When data is uploaded to a remote storage location it is first replicated to other

data centres using a torrent based infrastructure. All data uploaded to a data store would

generate a message containing information about the data such as where it was, and what

processing was required. Worker nodes running in virtual machines would read the message

queue to consume a job which it would then download, process and upload to a location

also specified in the message.

Issues arose with this design quite quickly however. The complexity of the IRAF solu-

tion and the size of a full virtual machine image imposed a large data copying, installation

and management overhead for creating computing nodes. Instead of virtualizing an IRAF

instance, a smaller appliance could be virtualized or installed natively on a number of plat-

forms. A smaller appliance could be distributed more easily allowing for a greater number

of computing nodes to participate using fewer resources on the computing node. Other

reasons were also identified which ultimately led to a rejection of this design.

• IRAF contains components which are not relevant to the cleaning process.
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Figure 3.6: Torrents for data distribution using a central queue. A messages µ is down-

loaded by an IRAF instance containing a torrent file λ which is incomplete. The entire file

is downloaded using a torrent client within the IRAF instance which connects to multiple

torrent servers.
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• IRAF performance is reasonably slow [108].

• The installation and configuration of IRAF was non-trivial.

• There are many manual steps in using IRAF although batch processing is possible.

• IRAF would reduce the requirement to fully appreciate the details of CCD image

processing which was considered an essential skill to develop in order to potentially

understand future optimisations.

The BCO group are no longer using IRAF for cleaning and analysis of CCD images

instead using MFITSIO with MATLAB. MATLAB instead of IRAF was also considered

and rejected due to the license requirements for MATLAB, which would limit the number

of deployable instances when processing a large dataset in a distributed environment.

OCTAVE, a free alternative to MATLAB was also considered but this is based on the

libcfitsio library and it was considered more appropriate to implement CCD reduction

with the CFITSIO library using standard processing techniques. A lightweight processing

utility was considered preferable to facilitate a faster deployment of software to distributed

computing nodes.

Another issue with this design was the use of torrents for data distribution. Many

firewalls are configured to block traffic of this type. A private torrent server was built

internally for testing but this would limit data transfer to internal nodes. The data store

was still considered a generic storage facility and not specific enough at this point. This

design also required the creation of torrent files for all files. Unless the data was to be

downloaded by multiple sources there appeared also to be a considerable overhead in

storing the data multiple times to facilitate downloading. Unless the same data was to be

downloaded by multiple users then the swarm based download mechanism would not be

used which meant that the benefits of torrents were not being utilised. For large archive

storage sites however this might be a reasonably interesting protocol to support.

3.2.3 The ACN Pipeline - Design 2

Following the initial IRAF design, a proposal was made to HEAnet, (Ireland’s National

Educational and Research Network), to facilitate a peer-to-peer network between DIT,

and BCO for the construction of an Astronomical Data Processing Cloud. This proposal

was for a private network connection between the two institutes where data was moved to
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the DIT data centre and replicated to other storage facilities. Linux computing nodes are

distributed to locations within this cloud to process image data.

The Astronomical Data Process Cloud was expanded to include the Institute of Tech-

nology Tallaght in Dublin (ITTD) to allow a wider distribution of nodes as shown in

Figure 3.7. The private layer-2, point-to-point network, was constructed in 2011 with the

assistance of HEAnet.

This pipeline reduction software was developed in two phases. The first phase inte-

grated the previously verified calibration software used in the FEBRUUS pilot and the

second phase focused on increasing the functionality of the image processing by producing

magnitude values for stars. This required the creation of a single appliance written in

C which cleaned pixels and then performed aperture photometry, producing a range of

magnitude values for each star using multiple aperture sizes. This program ran on a Linux

ubuntu 12.04 server finding a filename using a shared NFS based queue before downloading

the actual data file from an Amazon Simple Storage Service (S3) bucket. The S3 storage

contained compressed versions of the BCO dataset, and the compressed and upload process

was included as part of the running pipeline. Table 3.4 summarises the experiments used

to test the ACN pipeline.

Reference Measure Experimental Objectives

Exp:ACN1 ACN-APHOT

Performance

Determining the performance of this program by run-

ning in multiple modes using various storage devices.

Two step versus one step cleaning is examined.

Exp:ACN2 Storage Performance Determining the Impact of the location of the storage

devices and their ability to support multiple queries.

Exp:ACN3 Data Compression Compression of data reduces the size of data for both

storage and transfer. Data compression techniques

and approaches are considered.

Exp:ACN4 Data Transfer Data stores are compared in terms of data transfer

rates.

Exp:ACN5 Pipeline Limits Determining how fast the pipeline can operate within

the proposed architecture.

Table 3.4: ACN performance experimental set
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Figure 3.7: ACN Pipeline: Multi-institute private cloud using AWS S3 storage. Worker

nodes download messages µ from an NFS based queue.
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3.2.4 NIMBUS Pipeline - Design 3

This design moved the queuing system to the distributed Amazon AWS Simple Queue

Service (SQS) [109] to allocate work to multiple computing nodes. This allowed global

access to the queue potentially increasing the number of systems which could participate in

image processing. The data set was replicated and pushed to a number of different NGINX

webservers within the DIT and within the AWS cloud to simulate distributed data sources.

In this pipeline, the data was already compressed and in position before data processing

began. The AWS SQS message queue service was used to store the location of work, which

a worker node could use to contribute to the overall experiment. The basic workflow is for

a controller to instruct a storage node to publish the address of all files in its data store,

and to then activate AWS EC2 nodes. Each node upgrades its software when activated, by

downloading the latest version of the package software with instructions on how it should

operate. The node then proceeds to take messages off the SQS system, download the

file named within the message and processes the file. Once results are obtained they are

written to an AWS S3 facility. Nodes can be added or removed at any time. Any work not

completed is automatically reinserted onto the queue for another node to take. A node can

run multiple threads, the number of files downloaded can be configured, the queue which

is used can be updated and the software used for processing can be updated centrally.

Multiple web servers containing data can all contribute to the worker queue, the instances

can be of any size or configuration once they can run the software stack downloaded from

the software distribution web server. The NIMBUS architecture is shown in Figure 3.8.

A summary of the variables controlled for within the architecture is shown below with

Table 3.5 providing details of high level experiments run.

• Number of worker nodes

• Size/type of the worker nodes

• Number of webservers activated

• Location of webservers activated

• Number of worker instances per node

• Batch size for a worker instance to process

• Length of time for the experiment to run
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The combinations of these variables causes a potentially large set of experiments to be

required to develop a comprehensive view of the system behaviour. In total approximately

100 different experimental combinations were run to provide a reasonable view of the

system capabilities.

Reference Measure Experimental Objectives

Exp:NIM1 SQS Performance Testing the read and writing times of the web mes-

sage queues

Exp:NIM2 Single-Instance Node

Performance.

Determine the variables which affect the performance

of the overall processing power of a single instance.

Exp:NIM3 Multi-Instances

Node Performance.

Focus on scaling the number of instances up to 100

looking for factors which could affect the scalability

of the system.

Exp:NIM4 System Limits. Identify the full scalability of the pipeline and to

identify strategies to continue improving the system

performance

Exp:NIM5 System Scalability. The scalability and flexibility of the system is tested

taking into account any limits observed in previous

experiments.

Table 3.5: NIMBUS: performance experimental set

There are six components central to this pipeline; (i) data capture and staging, (ii)

serving archive data, (iii) distributed worker queues, (iv) distributed data processing, (v)

results storage and (vi) monitoring. Each component is required to operate continuously

and asynchronously, allowing for resource utilisation to be varied without interrupting the

overall pipeline. While tested to a processing rate of 200 terabytes per day, the experiments

were not at the limit of possible processing rates, with the primary restriction being a

lack of additional resources available. Some of the larger experiments utilised over 10,000

processing worker threads across 100 distributed servers.

Data Capture Cloud

The data capture cloud consists of multiple distributed telescope sites containing

CCD devices which record image data to a local storage device. Lossless data com-

pression on images is performed to reduce the bandwidth required for data transfer.
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Image clipping reduces images to only include the pixels used in the calculations

of magnitude values. Compressed, clipped images are stored on fast storage disks

attached to static web servers which serve http requests from the global processing

cloud. The Webservers inform the distributed worker queue that there is work to be

performed.

Data Archive Cloud

The data archive cloud consists of multiple distributed websites containing image

datasets. Images will already be compressed and possibly clipped. The images are

stored on fast storage disks attached to static web servers which serve http requests

from the global data processing cloud. The Webservers advertise files to be processed

via the distributed worker queue.

Distributed Worker Queues

When the worker web queue is informed of a file available for processing it stores the

url of the file in a simple message which is available for worker nodes to read. The

web queue ensures that only one copy of a message can be read from the queue at a

time. When a worker completes its processing it permanently deletes the message.

If a worker node fails to complete the processing of the image, the message will

eventually reappear on the queue. This ensures that the overall system is resilient

against compute node failures1.

Global Processing Cloud

Worker nodes contain an initialisation boot script which installs worker sandboxes

using tools downloaded from a predefined URL. These tools ensure that the work

performed is configurable both in terms of the work to be performed and web queues

to listen or write to. Worker nodes within the processing cloud can be located

anywhere in the world. Workers can join or leave the processing cloud at any point,

without impacting the overall processing pipeline.

Results Cloud

When a worker has completed its work, the resulting data file is uploaded to a

distributed storage facility and a message is then written to the result queue that

contains the URL for the location of the upload file. Using this queue, a processing
1 A compute node failure is when a process terminates prior to the completion of the reduction process
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cloud can be reconfigured to read the message queue to identify the URL of the result

and to download results to a central location if required.

Monitoring Cloud

For both experimental and control reasons a series of message queues is constructed

to observe the performance of the pipeline. Worker nodes use queues to log their

progress, and all queues are monitored to determine their read and write rates.

3.2.5 Conclusion

The architectures considered within this chapter have each contributed in an iterative way

to the ultimate development of the NIMBUS pipeline. The methods used for evaluation

are quantitative, focusing on the overall processing speed of the pipeline architecture, while

considering the expandability and flexibility of the system.

The pilot system established a baseline for performing accurate calibration ensuring

that the tools required at the centre of the pipeline are representative of the work performed

on CCD images by the existing BCO MATLAB pipeline.

The initial IRAF virtualisation design proposed a central queueing system designed to

allow multiple virtual instances to obtain work. The method for data replication however

was torrent based and practical limitations within secure network environments prohibited

its use. The virtualisation image was large and would be an impediment to the dynamic

provisioning of computing nodes within a pipeline. This design was not implemented.

Design 2 focuses on the data compression and distribution using a central queue and

experiments are focused on identifying the limits of the system, seeking bottlenecks and

limitations within data compression and staging. Design 3 focuses on global scaling of the

processing nodes using a web queuing model to ensure worker nodes can be easily added to

the pipeline. Experiments for the ACN and NIMBUS pipelines were designed to identify

the limits and capabilities of each design and more detail regarding their architectures and

performance are presented in Chapter 4 and 5.
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Chapter 4

The Astronomical Compute Node (ACN)

Pipeline

Abstract

The scientific community is in the midst of a data analysis crisis. The increasing capacity of scien-

tific CCD instrumentation and their falling costs is contributing to an explosive generation of raw

photometric data. This data must go through a process of cleaning and reduction before it can

be used for high precision photometric analysis. Many existing data processing pipelines either

assume a relatively small dataset or are batch processed by a High Performance Computing centre.

A radical overhaul of these processing pipelines is required to allow reduction and cleaning rates to

process terabyte sized datasets at near capture rates using an elastic processing architecture. The

ability to access computing resources and to allow them to grow and shrink as demand fluctuates is

essential, as is exploiting the parallel nature of the datasets. A distributed data processing pipeline

is required. It should incorporate lossless data compression, allow for data segmentation and sup-

port processing of data segments in parallel. Academic institutes can collaborate and provide an

elastic computing model without the requirement for large centralised high performance computing

data centers. This paper demonstrates how a base 10 order of magnitude improvement in overall

processing time has been achieved using the ACN pipeline, a distributed pipeline spanning multiple

academic institutes.

Doyle, P; Mtenzi, F; Smith, N; Collins, A and O’Shea, B "Significantly reducing the process-

ing times of high-speed photometry datasets using a distributed computing model", Proc. SPIE

8451, Software and Cyber infrastructure for Astronomy II, 84510C (September 24, 2012); doi:

10.1117/12.924863;
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4.1 Overview

The Astronomical Compute Node pipeline (ACN) [110], was designed and implemented as part of

this research to demonstrate the feasibility of performing distributed data processing using large

data volumes hosted on a cloud based storage solution. The ACN also validated the effective use

of a centralised queue to manage multiple workers, facilitating a load balancing data processing

solution for disparate server types. This pipeline architecture uses a distributed private cloud

to demonstrate the scaling nature of the system across multiple Institutes of Technology. The

ACN pipeline builds upon the rrf.c program discussed in the previous chapter, which was a core

component of the FEBRUUS pilot system. The acn-aphot.c program uses the NASA CFITSIO

library, and extends the cleaning features of the rrf.c program to include magnitude calculations

for each reference star within an image. This pipeline incorporates hardware capable of running

a compiled instance of the acn-aphot.c program to contribute to the processing of FITS images.

The pipeline distributed design is shown in Figure 4.1 and the BCO dataset was used. The

following components are central to this pipeline and were designed and developed specifically

for this experiment. These components are described in more detail within the experimental

architecture section of this chapter. The code used for this pipeline is available on github in the

following repository. https://github.com/paulfdoyle/acn.git

• Storage Control. Storage services including data compression, transport to central storage

and downloading data to each of the ACN nodes.

• Queue Control. Management of the NFS locking system including queue creation and man-

agement.

• ACN Nodes. Individual workers and the infrastructure required to perform work.

• Node Control. Activation and control of connected node systems including defining work to

be performed.

A private point to point IP network was constructed between three institutes1 with 8 IBM

eServer 326 machines connected to the network at each location with each server operating as an

ACN node as shown in Figure 4.2. Multiple FreeNAS storage devices were added to provide the

ACN nodes with common utilities, and a central NFS queue was implemented to allow nodes to

obtain work. In addition to the physical IBM servers, VMware based ACN instances were added to

the network running on 4 Sun Microsystems x4150 servers. The internet was accessible through a

gateway router which provided network address translation of addresses thereby allowing all nodes

to access the S3 storage service.

1 Dublin Institute of Technology, Blackrock Castle Observatory (Cork Institute of Technology), and the

Institute of Technology Tallaght, Dublin
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Figure 4.1: ACN distributed design.
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Figure 4.2: ACN network diagram connecting multiple institutes.
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4.2 System Architecture

This pipeline has a number of distinct components, each of which collaborate to allow for a high

processing rate of images. All of the systems are implemented within a Linux shell environment or

are written using the C programming language using the CFITSIO library. The system spanned

three institutes, each of which contained processing nodes for data processing but only one of

which, the central control within the DIT, managed the queue of work to be performed. Data was

stored in a publicly accessible location which all nodes had access to, and a private queue only

accessible from within the Hybrid Cloud system. The four primary components of the design as

described in this section.

4.2.1 Storage Control

A high performance data storage system is essential to this design, as all nodes must have fast

access to raw data files to allow for scaling of nodes without blocking on the I/O performance of

the disks. Initially a single central FreeNAS [111] storage node was used which contained a full

copy of the BCO dataset, but bottlenecks in processing file requests were quickly evident due to

the limited number of disks physically used. Data was then replicated across a number of FreeNAS

nodes, however the equipment used clearly didn’t offer a scaling solution and bottlenecks continued

to be observed. The Amazon’s Simple Storage Service (S3) was selected instead given that it is

a scalable storage solution that is available to all processing nodes, simplifying any assumptions

regarding file location. The S3 storage also provides access to files using the HTTP protocol on port

80, which is typically not blocked by institutes. The Linux utility s3cmd was used to create storage

"buckets" on S3 and transfer data to the S3 system. Each file is downloadable using a command

line browser wget, a Linux utility. The S3 storage supports concurrent file requests and while it

has a significant delay in reading a single file, that delay is not cumulative and remains constant

over multiple concurrent file requests [112]. The S3 storage provided publicly accessible files to all

computing nodes and buckets were populated with compressed, clipped and uncompressed versions

of the dataset for use in performance experiments.

File compression was used to determine the difference in transfer costs for different file sizes.

Lossless compression was achieved on FITS files using fpack [113], a utility available within the

CFITSIO library.

Compression was performed by a multi-core Dell 410 PowerEdge Server with 64 GBs of RAM.

The assumption to test was that the cost of compressing a file and the transfer time for the

compressed file would be less than the transfer time of an uncompressed file. Compression was

seen as a potentially essential step to reduce transfer times across networks. A third version of the

dataset was prepared using a clipped region 2 of each image. For the calculation of a magnitude

2 A clipped region refers to a portion of an image which is identified for a boundary which is used to
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value for an object, the pixels around the star which contribute to that calculation are selected

to create a subset of the file. Each of these clipped regions is stored as a FITS file and can

be compressed independently of each other. The more reference stars, the higher the number of

files created. To simplify the process of image calibration, clipped master Bias, Dark, and Flat

Field images can be created with identical dimensions. Figure 3.3 shows the actual pixels used in

magnitude calculations, and in this dataset there are 5 clip regions. The processing of clipping

this dataset involves an increase in the number of files in the dataset but a reduction in the overall

number of pixels.

4.2.2 Queue Control

The process by which the ACN nodes determine what file is available for processing is the NFS

file locking system which only allows one process to change a filename. The queue is a directory

of empty filenames on an NFS mount point shared by all ACN nodes. Each filename corresponds

to a data file to be processed on the S3 storage system. The queue is created using a utility which

traverses the list of all available files and creates the set of empty files. The files conform to the

following naming convention with the files being initialised with the Queued name state tag.

1. Queued-<filename.fits>

2. Locked-<filename.fits>

Each ACN worker will traverse the queue as a directory listing looking at all filenames in turn.

When it finds a file with the Queued tag in the filename it will attempt to rename the file to add

the Locked tag. If the file is renamed successfully then an NFS lock was successfully obtained and

the ACN node will then download the file from S3, process it and upload the results file to an S3

storage location. If the NFS lock is not secured then the next file in the directory is checked.

This NFS locking system was both simple and reliable although there is a delay in obtaining

a lock as new nodes are brought online and have to traverse the entire list of files from the start

until it finds a file not yet processed (not marked as locked). The greater the number of files, the

longer it will be before a newly active worker node will be in finding a file to process. Similar

modifications to the process are possible, such as file removal once the uploading has occurred to

S3. The principle algorithm used to secure a lock is given in Algorithm 5.

4.2.3 Worker Nodes

The core function of the ACN node is to find work in the queue, download image data, process

it and upload the result, and to continue this process until there is no more work available. The

acn-aphot.c program, which runs at the heart of each ACN node, is a C program compiled for

identify a subset of the image
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Algorithm 5 File Locking using NFS
1: procedure obtainLock(QUEUEDIR) . Directory containing queue

2: nameparts[]

3: for filename in $(ls QUEUEDIR ) do

4: nameparts← $splitfilename(-) . Split filename into strings separated by -

5: if nameparts[0] 6= ”Queued” then . Request NFS lock

6: mv $QUEUEDIR/$filename to $QUEUEDIR/Locked− $nameparts[1]

7: if $? = ”0” then . NFS lock obtained

8: ProcessF ile(nameparts[1])

9: end if

10: end if

11: end for . go to the next file in the queue

12: end procedure

multiple Linux systems including the Mac OSX. Its primary function is to generate a valid magni-

tude estimate for stars in an image, ensuring that the pixels used in the calculation are correctly

calibrated. To support this process there are a number of supporting scripts within the node

which are activated when the node first starts. The basic process for each ACN node is given in

Figure 4.3. The queue of work is made available on an NFS shared drive. Once the worker node

is activated it cycles through the available files until the queue is empty.

The init scripts within the node will mount the central NFS directory containing the queue

and worker utilities. Once the directory is mounted, all cleaning data and utilities within the node

are removed. The latest version of the cleaning tools, including updated master frames, and any

node control scripts will be downloaded and installed onto the node. This is required to ensure

that with minimal effort, each node is always running the latest software versions. A script will

traverse the NFS queue and when it succeeds in obtaining a lock on a file, it downloads that file

from S3 to a working directory. The acn-aphot.c program is then called to perform the image

cleaning. If the program completes without any errors, then the results file is uploaded to the S3

storage.

The ACN node can process compressed, uncompressed or clipped files. All that is required is

that the latest cleaning scripts downloaded are configured to uncompress data as required. This

process continues until there are no files left in the queue.
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Figure 4.3: The ACN worker node processing flowchart.
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4.2.3.1 Aperture Photometry in ACN-APHOT

The acn-aphot.c program is built upon the rrf.c program from the initial pilot system. These

changes extend the functionality to include aperture photometry and the following new features

were developed.

• Use an initial set of coordinates find the centre of an object on the image file.

• Calculate the sky background.

• Calculate the flux intensity of the object using a partial pixel algorithm for a given aperture

size.

• Generate multiple magnitude values for an object using a range of aperture sizes.

• Calibrate pixels only as they are used.

• Calibrate all pixels without performing aperture photometry.

These features extended the core software within the pipeline to reduce the data to a range of

magnitude values for each star on each image. The result files are measured in kilobytes and not

megabytes allowing for faster uploading of results to improve the overall performance of the system.

The option to have pixels cleaned before they were used allows for a comparison of the performance

of a one phase reduction compared to a two phase reduction. In one phase reduction, the program

loads the master frames into memory and only when a pixel value is used in a calculation such

as sky background calculation or flux intensity is the pixel calibrated. If a pixel in the image is

not used, then it will never be calibrated. In two phase reduction the images are first calibrated

using the rrf.c program from the pilot system and these calibrated image files are passed to the

acn-aphot.c program which this time does not clean the pixels. Figure 4.4 provides an overview

of the acn-aphot.c work flow. The algorithms used to extend the program are briefly described

below.

4.2.3.2 Centroid Algorithm

The gradient centroid approach described in Chapter 2 was used and Algorithm 6 was implemented.

The initial x,y co-ordinate of the object is provided in this case using a preprepared co-ordinate

file containing references to the objects in the image as shown in Table 4.1. Additional information

is provided within this configuration file which will be discussed later. For the BCO dataset there

are 5 objects of interest. For each of these objects the centroid algorithm was run to determine

the centre of the object.
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Figure 4.4: ACN-APHOT Image cleaning and reduction process work flow.
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Xval Yval Radius Annulus DannulusBox Threshold

112 320 15 10 15 80 660

127 221 15 10 15 80 660

119 104 15 10 15 80 660

260 43 15 10 15 80 660

380 378 15 10 15 80 660

Table 4.1: ACN Configuration File for the ACN-APHOT program

Algorithm 6 Gradient Centroid Algorithm
1: procedure centroid(col, row, threshold, img)

2: for i = 1 to row do

3: for k = 1 to col do

4: if img[i, k] ≤ threshold then . test threshold to create a binary mask

5: img[i, k]← 0

6: else

7: img[i, k]← 1

8: TotalMasks← TotalMasks+ 1

9: end if

10: end for . go to the next column

11: end for . go to the next row

12: for i = 1 to row do

13: for k = 1 to col do

14: if img[i, k] = 1 then . test threshold to create a binary mask

15: Tx← Tx+ i . Sum all row gradients

16: Ty ← Ty + k . Sum all col gradients

17: end if

18: end for

19: end for . go to the next row

20: Cx← Tx/TotalMasks . Find X center point

21: Cy ← Ty/TotalMasks . Find Y center point

return Cx,Cy

22: end procedure
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4.2.3.3 Sky Background Algorithm

The sky background is a measure of the average amount of light contained within each pixel which

should be removed before calculating the intensity flux value. For a pixel value to be included in

the sky background calculation it must be fully within the sky annulus. Algorithm 7 shows how to

determine if a pixel is within the sky annulus. The sky background value per pixel is calculated as

the average value of all of the pixels fully within the sky annulus. The inner radius of the annulus

is the radius of the aperture used plus the annulus value given in the configuration file in Table

4.1. The dannulus is the width of the sky annulus, also given within Table 4.1.

Algorithm 7 Sky Background
1: procedure skybackground(x, y, centX, centY, radius, annulusval, dannulusval)

. The x,y values are the pixel coordinates

. CentX,centY are the centroid values

2: annulus = radius+ annulusval

3: dannulus = annulusval + dannulusval

4: distance = eucliddistance(x, y, centX, centY )

5: if distance < dannulus− 0.5 && distance > annulus+ 0.5 then

return TRUE

6: else

return FALSE

7: end if

8: end procedure

4.2.3.4 Partial Pixel Algorithm

Unlike the sky background, the calculation of the flux intensity required for the magnitude calcu-

lation uses a partial pixel algorithm. This is an extension of the sky background algorithm where

pixels can be partially within the radius value used for the aperture. Algorithm 8 was implemented

within the acn-aphot.c program.

4.2.4 Node Control

The pipeline is controlled via the ACN-Control script run on the Remote Control command console

system which must be on the same logical network as the DIT. From this command console a

number of functions are supported which control the running of the pipeline. These controls are

primarily for experimental execution.
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Algorithm 8 Partial Pixel
1: procedure intensitymeasure(pixval, radius, distance)

2: if distance = radius then . test if pixel is on the line of the aperture

3: val← (0.5 ∗ pixval)

4: else

5: if distance < (radius− 0.5) then

6: val← pixval . pixel is fully within the aperture

7: else

8: if distance > (radius+ 0.5) then

9: val← 0 . pixel is fully outside of the aperture

10: else

11: val← radius+ 0.5− distance . pixel is partially within the aperture

12: end if

13: end if

14: end if

return val

15: end procedure
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All ACN nodes be registered in a nodes file allowing experiments to be run with different

numbers of nodes. A nodes file contains the name, IP address and a storage location for data

retrieval is specified. The following commands are supported and executable from the ACN Pipeline

Controller via an SSH script which remotely connects to each node. A brief description of each

command is provided under each component of the pipeline.

• Activate-ACN -r NODEFILENAME This command will activate all ACN Nodes in the

nodes file so they start looking to a queue for image files to process. The ACN nodes will

wait for a queue to be created, but this option provides better control for experimentation so

it is clear which nodes are active. Once a node is running, it checks the queue for unlocked

files and locks them as already described. Once locked, the full image file is downloaded

from an S3 bucket and cleaned using the acn-aphot.c program. This program runs once for

each file downloaded.

• Activate-ACN -c NODEFILENAME This command will reset all ACN Nodes in the nodes

file so they stop running, remove all temporary data and download the latest utility files,

configuration files and Master Bias/Master Flat images ready for the next round of process-

ing.

• Activate-ACN -p NODEFILENAME Ping all of the nodes to ensure that they are accessible

to the pipeline.

• Activate-ACN -x NODEFILENAME Reboot all of the nodes to ensure that they have flushed

all caches. If a node processes the same data multiple times, it may operate faster on the

subsequent executions due to caching of data in memory.

• ACN-Control -q compressed | standard | clipped This command will create a list of empty files

in a directory, which can be used as a simple queue. Files are named with a prefix source and

traverse a dataset creating an entry in the queue for all files found. A compressed source file of

0000001.fits.fz has a corresponding queue entry of Queued-0000001.fits.fz. When successfully

locked for processing by an ACN-Node this is changed to LOCKED-0000001.fits.fz. The NFS

file system ensures only one lock can be obtained.

• fits-compress -p DATADIRECTORY This script has the option of performing compression

in parallel or in sequence. The parallel execution spawns off processes and requires a machine

with good RAM and processing capabilities. A comparison of performance for this script

running in both modes is given in this chapter.

• s3-upload -p DATADIRECTORY This script has the option of performing upload in paral-

lel or in sequence. The parallel execution spawns off processes and requires a machine with

sufficient RAM and processing capabilities. A comparison of performance for this script run-

ning in both modes is given in this chapter. Compressed or uncompressed data (depending
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on what is in the data directory) is uploaded to an S3 bucket. A comparison of performance

for this script running in both modes is given in this chapter.

4.3 Experimental Methodology

To ensure that all experiments are executed in a consistent manner, and that experiments were

repeatable, a strict process of experimental setup and execution was followed. Where possible issues

of caching were eliminated along with network contention issues. For example all experiments were

run late at night because of the requirement to use the Institute network to route all traffic to the

internet.

The network setup remained the same for all experiments. The storage servers used the same

disk types, ran on the same hardware and used a central FreeNAS server for NFS locking. Each

of the worker instances ran the same version of Ubuntu 12.04, and were fully cleaned before each

experiment ran. The central control script logged into each of the workers before an experiment via

SSH and removed all of the files in the user directory, then installed a new version of the software

taken from the central NFS server. This ensured that all worker instances ran the same version of

software. After each server was updated they were rebooted.

The queue was also constructed using a central script which created a list of empty files after

first archiving previous versions if they exist. The order of files created was consistent in each case,

as was the length of the queue.

The queue refers to files which have been uploaded to the S3 website prior to the experiment

and the scripts which take the files from the NFS queue will then construct a URL which be used

to access the file on the AWS service.

Once the queue has been created, the workers are reinstalled and rebooted and the files up-

loaded to S3, so the experiment is initiated. A central script forks off a process to remotely connect

to each of the worker instances and starts the cleaning script which obtains NFS locks, downloads

files, cleans them and uploads results to S3. All workers however remain in standby mode until a

specific file is detected in the central NFS server. When that file is detected by the worker it begins

the processing cycle. This process ensures that all workers are running before the experiment be-

gins. Each worker contains a timer which is written to a central directory on the NFS server when

they have completed all available work. Each worker records their name, the time spent cleaning,

the number of files cleaned and the average cleaning rate achieved.

Each worker instance only runs a single process for downloading, processing and uploading

results.

Multiple experiments were run to determine that the procedures were functional, then formal

experiment ran using the same experimental software to ensure they could be compared. Each ex-

periment focused on an increase in the number of servers processing data to record the incremental
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performance of each worker.

The experimental run script used for the ACN experiments is shown in Figure 4.5.

Start

Create Queue

Read Node File

Ping all Nodes

Clean Worker 2Clean Worker 1 Clean Worker N

Reboot Worker 2Reboot Worker 1 Reboot Worker N

Start Worker 2Start Worker 1 Start Worker N

Check for

GO Cmd

Check for

GO Cmd

Check for

GO Cmd

Clean FilesClean Files Clean Files

StopStop Stop

Figure 4.5: ACN experimental run script flow chart.

4.4 Results and Discussion

In this section, the performance of the ACN pipeline is reviewed seeking insights into the system

design which can be later used within the NIMBUS pipeline. Each of the nodes central to the

pipeline are performance tested. Table 4.2 provide a list of the primary experiments run. Each

experiment is discussed and the results presented. A summary and conclusion for these experiments

is provided at the end of the chapter. All data sources for all experiments and graphs are identified

in Appendix Table D.2 which references an accompanying supplementary USB disk which contains

raw and processed data relevant to these experiments.
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Reference Measure Description

Exp:ACN1 ACN-APHOT

Performance

Determining the performance of this program by run-

ning in multiple modes using various storage devices.

Two step versus one step cleaning is examined.

Exp:ACN2 Storage Performance Determining the Impact of the location of the storage

devices and their ability to support multiple queries.

Exp:ACN3 Data Compression Compression of data reduces the size of data for both

storage and transfer. Data compression techniques and

approaches are considered.

Exp:ACN4 Data Transfer Data stores are compared in terms of data transfer rates.

Exp:ACN5 Pipeline Limits Determining how fast the pipeline can operate within

the propose architecture.

Table 4.2: ACN performance experimental set.

4.4.1 ACN1: ACN-APHOT Performance

The purpose of this experiment is to look at how long it take for the BCO dataset to be fully

calibrated with magnitude values generated for all objects within all images using different hard-

ware, different approaches to cleaning and different file storage systems. The two programs used

are rrf.c and acn-aphot.c, and the IBMe326 and a Macbook Pro3 were the hardware platforms.

The dataset was either stored on the local disk of the hardware, or mounted as an NFS drive over

the network. Table 4.3 shows the results of this experiment with the processing rate given as file

per second. To compare with later experiments we convert the processing rate to gigabytes per

second4. The Step 1 time is the time it took for all raw image files to be pixel calibrated. In each

case, all of the pixels in all of the images were calibrated. When Step 1 has a time, the Step 2

time refers to the time taken to read in calibrated images and to calculate the magnitude values.

When Step 1 has an N/A then pixels in Step 2 were calibrated using the previously discussed just

in time process.

With the exception of P1-1, the experiment results are reasonably consistent and clear. The

time required to process images using two steps is almost double the time taken to use a single

step as shown in Figure 4.6. This can be attributed to the number of file input and output events

and using the CFITSIO library and the disk seek time. The amount of data read is only half of a

2 step approach, and the write operations are also dramatically reduced given the fact that result

3 MacBook Pro 2.4 Ghz Intel Core i5 and 8 GB RAM, IBM eServer 326 Operon 2.8Ghz and 4 GB RAM
4 Data was not compressed so with each file = 7.297920 MB, GB/s =rate ∗ 7.29792/1024

96



Ref Data

Store

ACNs Steps Hardware Step 1 Step 2 Rate Total GB/s

P1-1 Local 1 2 Macbook 11:21:45 00:54:48 0.083 12:16:33 0.0006

P1-2 Local 1 1 Macbook N/A 00:55:53 1.098 00:55:53 0.0078

P1-3 Local 1 2 IBMe326 00:49:00 01:15:23 0.493 02:04:23 0.0035

P1-4 Local 1 1 IBMe326 N/A 01:22:30 0.744 01:22:30 0.0053

P1-5 NFS 1 2 IBMe326 00:49:53 01:15:08 0.490 02:05:01 0.0035

P1-6 NFS 1 1 IBMe326 N/A 01:17:25 0.793 01:17:25 0.0057

P1-7 NFS 2 1 IBMe326 N/A 01:07:43 0.906 01:07:43 0.0065

P1-8 NFS 4 1 IBMe326 N/A 00:43:15 1.413 00:43:26 0.0101

Table 4.3: P1: Calibrating the processing time for full BCO Dataset using one or two

pass cleaning.

files are now measured in kilobytes rather than in megabytes. Raw data for this graph can be

found in the Appendix C, Table C.4.

When Step 1 is not used, the processing performed in Step 2 is slightly higher than in Step 1

but the processing times remain very similar. Step 2 holds the Master Bias and the Master Flat

file in memory and as each pixel value is used, it is first calibrated. The output result files from

these two approaches were compared and the results were identical. The disk storage had some

effect with the NFS disks operating slightly faster. This may have been due to the fact that they

were faster disks, but overall the storage location for these experiments was not significant.

In addition to testing the two step versus one step cleaning, the impact of adding additional

nodes was introduced. In P1-7 the two nodes accessed NFS storage, with each having access to

exactly half of the dataset. In P1-8 there were four nodes running each having access to a quarter

of the data. No queuing system was used, just a copy of the data made available in a private

location for each node. The processing times were reduced but not linearly with the number of

nodes. The NFS storage used contains a single disk and is most likely the bottleneck in processing.

The data transfer rates as shown are small and the network was unlikely to be the issue. The next

experiment, ACN2: Disk Testing explored this further.

4.4.2 ACN2: Disk Storage Testing

This experiment builds on the observations from experiment P1-4, where the file processing rate

was 0.744 files for a single node. The aim was to see how additional nodes could run in parallel

and still retain this processing rate by specifically looking at the disks used for serving data. In
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Figure 4.6: ACN1: One step versus two step cleaning using different storage media on

full dataset.
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these experiments the primary difference is the location of the data during processing. The data

was split into eight equal parts and copied to the local storage of each of the 8 nodes. Three

experiments were run.

• P2-1: Eight nodes processing 1
8 th of the data from a local disk

• P2-2: Eight nodes processing 1
8 th of the data from 3 NFS mounted disks

• P2-3: Comparing the NFS Storage Systems

The results of P2-1 are given in Table 4.4 showing a consistent processing rate for each of

the nodes, although the rate is less than seen in P1-4. In these experiment the overall data

processing time for the full dataset is the time at which the last node stopped processing. The

overall processing rate of the system is therefore 3682files/928seconds = 3.968 files per second,

or 0.028GB/s.

Ref Data

Store

Node

Number

Hardware Rate Time

P2-1-1 Local 1 IBMe326 0.522 00:14:41

P2-1-2 Local 2 IBMe326 0.512 00:14:59

P2-1-3 Local 3 IBMe326 0.514 00:14:56

P2-1-4 Local 4 IBMe326 0.500 00:15:28

P2-1-5 Local 5 IBMe326 0.499 00:15:23

P2-1-6 Local 6 IBMe326 0.496 00:15:28

P2-1-7 Local 7 IBMe326 0.497 00:15:27

P2-1-8 Local 8 IBMe326 0.504 00:15:14

Table 4.4: P2-1: File processing rates on local disks using 8 ACN Nodes.

Because the NFS processing times were faster than the local disks, P2-2 was run using 3

different NFS storage servers on the local network to see if further improvements were possible.

Since each of the nodes are identical, the differences observed in Table 4.5 are either related to the

NFS system or the network. Additional testing was then performed using P2-3 which repeated

eight single node tests against each of the NFS stores with no two tests running at the same time.

Using a smaller dataset of only 1
24 of the total, each of these experiments ran against each NFS

storage device. The results for P2-3 are given in Table 4.6 and clearly show a consistent processing

rate depending on the storage node used, with NFS1 providing the best rate. The reduction in

processing rates as the number of nodes increased, and the variability of the nodes resulted in a

move to the S3 storage system which offered more consistent download times
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Ref Data

Store

Node

Number

Hardware Rate Time

P2-2-1 NFS1 1 IBMe326 0.522 00:08:03

P2-2-2 NFS1 2 IBMe326 0.512 00:07:54

P2-2-3 NFS1 3 IBMe326 0.514 00:07:30

P2-2-4 NFS2 4 IBMe326 0.500 00:12:43

P2-2-5 NFS2 5 IBMe326 0.499 00:12:39

P2-2-6 NFS3 6 IBMe326 0.496 00:11:14

P2-2-7 NFS3 7 IBMe326 0.497 00:11:07

P2-2-8 NFS3 8 IBMe326 0.504 00:11:00

Table 4.5: P2-2: File processing rates using 3 different NFS servers and 8 ACN Nodes

4.4.3 ACN3: Data Compression

The compression used on the BCO data was the CFITSIO fpack utility. The raw dataset is 26.4GB,

but when compressed this is reduced to 4.6GB. If images are first clipped to only include the regions

around the objects for which magnitude values are required, then the dataset is further reduced

to 1.7 GB as shown in Figure 4.7. By compressing the data using a powerful server, transfer

times should be shorter. The fpack utility in this case reduced each image by over 80% making a

significant difference to the size of the total dataset.

1.7
Clipped Compressed Images

4.6
Compressed Images

26.24
Un-Compressed Images

0 5 10 15 20 25 30
Gigabytes

Figure 4.7: ACN3: BCO Dataset sizes in Gigabytes

To determine the optimal performance of the Dell 410 server, FITS lossless compression was

run using two different methods. The first compressed files in sequential order where a file-list

was given to a single instance of the utility. The second approach started thousands of processes

at staggered intervals where each process was running concurrently utilising large portions of the

available memory on the server. This approach is valid for a server with sufficiently large quantities

of memory and CPU cores. If there are not enough resources then the system begins to thrash. The
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Ref Data

Store

Node

Number

Hardware Rate Time

P2-3-1 NFS1 1 IBMe326 0.546 00:04:41

P2-3-2 NFS1 1 IBMe326 0.562 00:04:33

P2-3-3 NFS1 1 IBMe326 0.542 00:04:43

P2-3-4 NFS1 1 IBMe326 0.544 00:04:42

P2-3-5 NFS1 1 IBMe326 0.540 00:04:44

P2-3-6 NFS1 1 IBMe326 0.542 00:04:43

P2-3-7 NFS1 1 IBMe326 0.540 00:04:44

P2-3-8 NFS1 1 IBMe326 0.546 00:04:41

P2-3-9 NFS2 1 IBMe326 0.248 00:10:20

P2-3-10 NFS2 1 IBMe326 0.195 00:13:07

P2-3-11 NFS2 1 IBMe326 0.214 00:11:56

P2-3-12 NFS2 1 IBMe326 0.222 00:10:30

P2-3-13 NFS2 1 IBMe326 0.223 00:10:29

P2-3-14 NFS2 1 IBMe326 0.194 00:13:11

P2-3-15 NFS2 1 IBMe326 0.243 00:10:31

P2-3-16 NFS2 1 IBMe326 0.245 00:10:27

P2-3-17 NFS3 1 IBMe326 0.376 00:06:48

P2-3-18 NFS3 1 IBMe326 0.384 00:06:48

P2-3-19 NFS3 1 IBMe326 0.372 00:06:48

P2-3-20 NFS3 1 IBMe326 0.369 00:06:48

P2-3-21 NFS3 1 IBMe326 0.369 00:06:48

P2-3-22 NFS3 1 IBMe326 0.367 00:06:48

P2-3-23 NFS3 1 IBMe326 0.369 00:06:48

P2-3-24 NFS3 1 IBMe326 0.373 00:06:48

Table 4.6: P2-3: Comparing File Processing rates against each of the NFS storage systems
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compression time reading and writing files on the NFS server mount point are shown in Figure 4.8.

The parallel performance of the Dell 410 was instrumental in the pipeline providing a compression

time considerably faster than the sequential method. It was interesting to note that the older IBM

systems provided comparable compression times to the Dell when run in sequential mode.

109Dell PowerEdge 410 (parallel)

1327Dell PowerEdge 410 (Sequential)

1594IBM eServer 326 (Sequential)

0 400 800 1200 1600
Seconds

Figure 4.8: ACN3: Comparison of Data Compression times using different modes and

hardware

4.4.4 ACN4: Data Transfer

The transfer times of the datasets between different types of storage is shown in Figure 4.9. The

private network was connected via a gigabit switch to the DIT network, which has an external

institute-wide Internet connection of 1 Gigabits per second. Approximately 20% of the bandwidth

was used in this transfer although the use decreased to approximately 8% as the number of files

was increased. The nature of the network is that it is variable, however the experiments were run

late at night when the Institute’s network was lightly loaded. The clipped and compressed data

files were files where the FITS files were clipped into the smallest possible region around the star so

pixels, which were not going to be cleaned, were not transported. The time saved in data transfer

however was negligible.

4.4.5 ACN5: Pipeline Limits

Once all data was compressed and uploaded to the S3 storage system, the central queue was

activated to allow for as many nodes as possible to come online. It took approximately 20 seconds

to create the 3682 empty files in the NFS queue. Experiments were run using the compressed

dataset on S3 and using a one pass approach where data was cleaned only as pixels were used.

In each experiment the full dataset needed to be fully processed for the experiment to finish.

Experiments were run for increments of 5 ACN Nodes up to a maximum of 58 Nodes. The overall

processing time in seconds is given, and includes the data compression and data upload time to

S3. The single node processing time is taken from experiment P1-4 which had a time of 1 hour, 22

minutes and 30 seconds. Figure 4.10 shows a graph of the time in seconds for the full dataset to

be processed for varying numbers of ACN Nodes. Because of the way the compression and upload
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Figure 4.9: ACN4: Comparison of data transfer times between storage types.

process was performed, it is the limiting factor on the pipeline. As more nodes are introduced the

processing time moves closer to the compression and upload times. Table 4.7 provides full details

of the times and file processing rates for each experiment run. While these experimental results

have the compression and upload time costs added there is no specific dependancy on these steps

completing before the next step can start. A file could be compressed, uploaded and processed

while other files are going through the same process.

Due to the mixture of server types used within the last experimental set it is worth taking a

closer look at the breakdown of the nodes and their overall processing contribution to the pipeline.

Specifically we will look at ACN5-11 which had 58 nodes running. In Figure 4.11 the number of

nodes for each server type and server location is shown. Each of the institutes had 8 IBM e326

servers which were all configured exactly the same and had the same hardware specification. The

VMWare servers were all within the DIT and contained varying numbers of virtualised instances

of the ACN Nodes. All nodes were started within a few seconds of each other by the ACN-Control

system. The average file processing rate is also given for each of the servers. The IBM servers are

operating in line with previous experiments when running against an NFS server, but there is no

degradation of the processing rate as the number of ACN nodes increased. Two other interesting

observations can made by looking at Figures 4.12 and 4.13. Because of the introduction of the

queue to the system, each of the nodes will clean as fast as it can then move on to the next file.

Even when some of the nodes are considerably slower and cleaning less files as shown in Figure

4.13, all processing finished roughly at the same time.
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Figure 4.10: ACN5: Data cleaning for increasing numbers of ACN nodes in seconds.

Includes compression time of 109 seconds and upload time of 200 seconds

Ref Nodes Compression Upload Processing Total File/s GB/s

P1-4 1 00:01:49 00:03:20 01:22:36 01:27:45 0.699 0.005

ACN5-1 5 00:01:49 00:03:20 00:15:28 00:20:37 2.977 0.021

ACN5-2 10 00:01:49 00:03:20 00:08:05 00:13:14 4.637 0.033

ACN5-3 15 00:01:49 00:03:20 00:05:38 00:10:47 5.691 0.041

ACN5-4 20 00:01:49 00:03:20 00:04:15 00:09:24 6.528 0.047

ACN5-5 25 00:01:49 00:03:20 00:03:30 00:08:39 7.094 0.051

ACN5-6 30 00:01:49 00:03:20 00:03:04 00:08:13 7.469 0.053

ACN5-7 35 00:01:49 00:03:20 00:02:43 00:07:52 7.801 0.056

ACN5-8 40 00:01:49 00:03:20 00:02:33 00:07:42 7.970 0.057

ACN5-9 45 00:01:49 00:03:20 00:02:27 00:07:36 8.075 0.058

ACN5-10 50 00:01:49 00:03:20 00:02:20 00:07:29 8.200 0.058

ACN5-11 58 00:01:49 00:03:20 00:02:14 00:07:23 8.312 0.059

Table 4.7: ACN5: Clean rates per node and GB/s processing rate
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Figure 4.11: ACN5: Average file processing rate (files per second) per server type
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Figure 4.12: ACN5: Running time for each individual node.
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Figure 4.13: ACN5: Number of files cleaned by each individual node.
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4.5 Conclusion

The ACN pipeline provides a strong argument for a storage device which can service requests at

a consistent rate as the rate of requests increases. Experiments with local NFS devices proved to

be inconsistent and required that multiple copies of the dataset had to be available in multiple

locations to avoid network or read bottlenecks. The cost of compression and subsequent upload

were not significant compared to the initial cleaning time of the data when a single node was used.

By moving the dataset to a disturbed storage system, data replication was no longer required.

The NFS based queue, while simple and effective, limited access to worker nodes requiring

that they remain within the private network. A more public queue would allow ACN nodes to

join in the pipeline from other locations. The requirement to use SSH to access these nodes for

the purpose of control is also a limiting factor for further scaling. SSH ports are often restricted.

There is also a cost for Amazon S3 storage and an alternative Hadoop Distributed File System

(HDFS) implementation or high performance static web server could provide similar functionality.

The pipeline does provide clear evidence that the parallelised processing approach does sig-

nificantly reduce the processing time by allowing additional ACN Nodes to contributed. It has

also been verified that this process does not impact the calculation of the instrument magnitude

values and that the reduction in file read and write operations has also contributed to some of the

performance enhancements observed.

The systems used to control the experiments required that operations could be run in parallel

and in sequence for the purpose of comparison. Data compression and uploading should be incor-

porated into the data production cycle so that there is a constant flow of data into the pipeline.

The worker nodes should also be able to play a more proactive role in monitoring the queue and

ensuring they contain the latest software. This pipeline used a push model, but a pull model would

suit a distributed system.

Using the ACN pipeline it has been demonstrated that the processing rate for this dataset can

be reduced from the initial MATLAB time of 0.1 files per second to 8.3 files per second when using

58 nodes. If the overhead cost of the compression and uploading are removed that cleaning rate

could increase to 27.48 files per second however the rate of performance improvements as nodes

were added fell dramatically for larger numbers of nodes.

The lessons taken from this pipeline which are to be used within the NIMBUS system are as

follows.

• The queue needs to be globally accessible

• The workers need to be more self configurable

• Data stores need to be more distributed and globally available

• The linear increase in computing resources did not produce a linear increase in performance,
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most likely due to resource sharing.

• One pass pixel cleaning and magnitude generation speeds up individual ACN Nodes by

reducing the number of I/O operations.

• Compression is a net contributor to the system and should be continued.
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Chapter 5

The NIMBUS Pipeline

5.1 Overview

This NIMBUS pipeline, uses a public web queue to publish work to distributed computing nodes

build explicitly for this pipeline which are referred to as workers. Workers are computing instances

that can reside anywhere on the internet but are required to have internet access using port 80, as

all services accessed are HTTP based. Each worker uses at its core the acn-aphot.c program used

in the ACN Pipeline which runs in single step mode. For this pipeline the BCO dataset is also

used but it has been renamed and replicated so that there are multiple terabytes of data available

for processing, not just 26GB. The assumption with this pipeline is that the data is already

staged for processing, and the emphasis is on processing image data rather than compression

and uploading image files. From the previous experiments, the compression and upload costs

were already established. The architecture is shown in Figure 5.1 and breaks into the following

fundamental components which are described in more detail within this chapter. The code used for

this pipeline is available on github in the following repository. https://github.com/paulfdoyle/

NIMBUS.git

Figure 5.2 gives the basic work flow of the pipeline.

• Data Archive Cloud. A distributed collection of web servers which provide data for the

pipeline to process. Data has already been compressed and servers within this cloud can

be both virtual and physical. The archive is required to advertise the files it contains via a

distributed web message queue, and to service those files via HTTP requests.

• Distributed Worker Queue Cloud. The entire pipeline is centred around a series of web mes-

sage queues, and this is the central queue which contains work to be performed. The queue

cloud is a series of communication protocols which allow the overall pipeline to orchestrate

work in such a way that all workers operate at their peak performance by working as inde-

pendent consumers of work to produce a series of result files. Data is advertised as a web
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message, and workers are controlled using command queues. The worker queue specifically

contains the messages for workers to process.

• Monitoring System. Due to the highly distributed nature of the pipeline, monitoring also

needs to be distributed. Used primarily for experimental measurement monitoring is per-

formed on queues and workers. All workers record their progress in a distributed log queue

and queue sizes and rates of change are monitored. The web servers and worker nodes

contained monitoring software to review CPU and Network performance.

• Global Processing Cloud. All workers which contribute to the processing are required to

have an initialisation script within their boot sequence, and are assumed to be a Linux

based system. This script initiates worker processes on the server by downloading a customer

package which contains all instructions and tools for use by the workers. Workers can be

globally located and are self contained processing units which are assumed to be transient

resources.

• Results Cloud. When workers complete the processing for an image, the results are posted

to a distributed storage service and a web message is constructed which provides a reference

to the result. The reference can be used to reconstruct the sequence of the original images

if required.

• Control System. A central system was created to control experiments. Using an AWS API

in Python, workers and queues were created and monitored. All experiments are started

and shutdown using well defined procedures to ensure consistency across experiments. The

control system initialises the pipeline and the queues, instructs the storage nodes to advertise

work and the processing nodes to start processing.
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Figure 5.2: Distributed processing pipeline where worker nodes use the queue to work in

parallel.
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5.2 System Architecture

The NIMBUS pipeline is based on the requirement that all components operate in parallel with

the ability to scale up or down as required. This is a distributed system with no requirements

for locality built into the system, and where possible, sequential workflows are eliminated from

the system. While this pipeline uses an archive data cloud, the only requirement for a facility

producing new data to be included in the cloud is for data to be made available via a web server,

and be advertised on one of the worker queues.

5.2.1 Data Archive Cloud

The data archive cloud is comprised of storage nodes which are distributed web servers with

mounted file systems containing files to be processed by worker nodes. Each of the storage nodes

within the cloud provides a set of services to the pipeline as shown in the Table 5.1. Each service is

accessed either via the control system or as HTTP requests. The function of servicing web based

image file requests separated from the storage of image data allows for a flexible method of data

storage and upload. The storage node architecture is shown in Figure 5.3.

Storage

Node

Control System

Distributed

Worker

Queue

Processing

Cloud

Science Payload

WebServer

Mount Storage

Advertise Data

iSCSI S3EBS

Figure 5.3: Storage Node Architecture

• Upload is the process of placing image files into a disk storage devices which is accessible
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Service Description

Upload There are three primary methods of upload used, the first is for a storage device

containing images to be mounted by the web server, the second is via HTTP

POST requests to send data to the web server, the third is to instruct the web

server to initiate a download via HTTP from another data source.

Storage Image data can be stored on remote network storage system such as ISCSI

devices, or it can be locally attached storage. For the purposes of the web

server the method of mounting or attaching storage is irrelevant, however it

may cause some delays in servicing files depending on the read time of the

storage. Where possible files should be stored in a compressed state to reduce

the file transfer times.

Advertise A storage node will be required to populate an AWS Simple Queue Service

(SQS) message queue with the URL of all of the files that it currently has

stored. The storage node will do this via direct commands from the control

system, but could also perform this via a HTTP command. Work is advertised

and the contents of the message describe the location of the stored files and

how they may be accessed.

Download A web server is used to service HTTP requests providing access to files. This

NginX webserver is highly optimised for servicing static pages and can be tuned

to allow large number of simultaneous connections. Any web server however is

permissible, including the Apache server and S3.

Science

Payload

This service provides a static location for the downloading of the worker package

to each worker. This is a small package containing all of the instructions a

worker node will need to operate, including where to obtain work, where to

put results, what work to perform and how to perform the work. The function

of the payload and its operations are discussed within the Control system

Table 5.1: Storage Node Services.
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to the web server of the storage node. No specific method is presented within the NIMBUS

pipeline, but data transfer times have been reviewed in the ACN Pipeline in Figure 4.9.

Within the NIMBUS pipeline the data archive cloud was populated with images downloaded

from the ACN AWS S3 storage buckets using the s3fs FUSE system which mounts S3 storage

buckets allowing files to be copied to mounted storage blocks.

• Storage within the pipeline is flexible to the point that any mounted storage device which

can be accessed by a webserver can be accommodated. The speed at which a storage node

serves file requests will be determined by the network, the number of concurrent request

supported and the read speed of an image from the storage node. Three different configura-

tions were constructed to demonstrate this flexibility within the implemented pipeline. The

HEAnet iSCSI storage was mount on DIT based storage nodes while the AWS based storage

systems used the AWS Elastic Block Storage service.

An advantage of these devices is that through the use of the NFS file system, the storage

device can be mounted for use by multiple servers. An NFS storage for example could be

written to from a telescope location, but function as a read only mounted device running

a web server. The performance of the read and write of the storage does depend on the

configuration of the raw storage. If the storage uses multiple spindles then the write or read

times may be quite reasonable. A disturbed file system such as S3 is likely to provide a more

scaleable storage solution if there is a high rate of concurrent reading or writing.

• Advertise is the process of requesting a storage node to review the contents of its datastore

and to create a message for each file found. That file is then written to an SQS queue as

an advertisement of that file, indicating that it is accessible and ready for processing. The

control system can instruct a storage node to review its storage and write the messages. In

a production system it would be more realistic for the storage server to monitor for changes

in storage and to create new messages when files were added to the data storage devices.

The ability to reset and advertise everything rather than operate in an incremental fashion

would also be a reasonable requirement. Message formats are explained further under the

Distributed Queue Worker cloud section in this chapter.

• Download services the simple requirement of servicing static urls which provide access to

files. Port 80 is a ubiquitously open port which allows all workers to access the image files.

A worker node will read a message containing the URL of the image file and simply issue a

request to download using a Python script. The NginX web server is a fast static web server

which was used for most storage nodes. The entire pipeline works on the assumption that

work is obtained through URL downloads.

• Science Payload is essential to the creation of workers which can be reconfigured easily.

When creating 100′s of workers it is a requirement that a worker can be dynamically recon-

114



figured before it starts performing any work. The science payload solution is initiated from

the control system, but uses the storage node as a central point of advertising packages.

When requested, the central web node responsible for package management removes the

existing package from a standard location on the web server and creates and publishes a new

version of the package. New package details are obtained from a central GIT repository.

5.2.2 Distributed Worker Queue Cloud

Central to the design of this architecture is the Amazon Simple SQS which is a distributed web

based message delivery system. The service defines itself as Reliable, Scalable, Simple, Secure

and Inexpensive and is one of many similar distributed web messages services such as RabbitMQ.

A public message queue such as the AWS SQS system provides a transactional message system

allowing for distributed processes to communicate. A transactional system ensures that messages

can be read, held exclusively by one process and removed from the queue as required. The basic

lifecycle of a message is shown in Figure 5.4. Messages are sent to a distributed queue where they

are replicated and stored. When the message is read, the message visibility timer starts ensuring

that nobody else can receive the message. During the visibility timeout the process which received

the message can process the data and remove the message from the queue by deleting it. If the

process fails to compete and does not delete the message, then the message will become visible on

the queue once the visibility timeout has elapsed. The default timeout for messages within the

system is 120 seconds.

Visibility Timeout (in seconds)

Receive Message
Requests

Receive Message
Requests

Receive Message
Requests

Message Not Returned

Message returned Message returned

Figure 5.4: SQS message visibility.

A 2007 performance review of the SQS service supports the reliability of the service [114] and

although these tests were run using EC2 instances, the service is available outside of the Amazon

Cloud. It should be noted that these performance tests indicated a bottleneck reading messages at

high speed, approximately 5 messages per second, however this was done using a single threaded

system rather than using a distributed or multi-threaded system. As with many of the amazon

services SQS offers distributed computing opportunities. A more recent study of the lag time for
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messages being available from time of submission shows variability between 1 and 7 seconds [115],

however for a queue that grows faster than consumption this is not necessarily an issue. Writing

messages in parallel to the queue is also possible when there is little worry about the message

order.

A key feature of a distributed queue is that it relies on the principle of eventual consistency,

which means that given multiple SQS servers, each containing copies of the queue, when messages

are written to one queue, there is a delay in syncing the message queues. It is also for this reason

that message order is not preserved or guaranteed during delivery as shown in Figure 5.5. The

advantage offered by the distributed system is that writing to a single queue is a distributed write

operation allowing for the write operations to potentially occur in parallel. A series of tests were

performed on message writing as shown later in the chapter.

Msg 4 Msg 3

SQS Server 1

Msg 3 Msg 2

SQS Server 2

Msg 2 Msg 1

SQS Server 3

Figure 5.5: Distributed SQS Servers

Webservers were configured with data mounted from various data storage devices and used to

advertise the raw images as URLs for download. An SQS message was constructed to represent

each file in the data store which advertises a file available for processing, using the following form

http://webnode1.dit.ie/data/compressed/00-0001487.fits.fz

A worker node will read the queue, download the file, and process it. There is an implicit

relationship between the work performed and the work advertised. This is controlled by the work

initialisation processes where workers download the worker scripts which include pointers to specific

queues relevant to the worker script capabilities.

Within the NIMBUS architecture seven queues are used. Each queue allows for a worker

process to work asynchronously while allowing a form of central control throughout the system.

For each experiment each queue is deleted and then recreated in an empty state to ensure that it

only contains data relevant to a specific experiment. Queues are deleted rather than emptied, for

performance reasons, as it is possible for queues to contain hundreds of thousands of messages at

the end of an experiment. Each of the queues and their function are explained below.
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• workerq is the primary SQS queue containing the location of data files to be processed.

Items are added to the queue by storage nodes which advertise their files by writing them

to the queue as shown in Figure 5.6. Items from the queue are consumed by worker nodes

which process the image and post the result prior to deleting the message from the queue. It

is essential that the visibility timeout for the queue is set long enough for the worker node to

complete the image processing before the message is visible. If a node fails to complete then

the message reappears on the queue for another node to download and process. Storage nodes

are instructed to access their storage directories and write a single message for each file found.

The URL provided must be supported by the storage node through a web server running on

the storage node. In all cases the NginX web server runs on each storage node and servers

up files to requesting worker nodes. The message written to this queue is in the following

form. <NODEURL><filename>. For example http://webnode1.dit.ie/data/compressed/00-

0001487.fits.fz.
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Webnode1

Webnode2
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iSCSIiSCSI EBSEBS

Figure 5.6: SQS Worker Queue constructed from 8 different storage nodes

• supervisor is an SQS queue read by each worker before it looks for work, and is tested before

a worker checks the workerq. The supervisor queue contains approximately 100 messages

all of which contain identical messages. The message visibility timeout for this queue is set

to one second so that the message is put back onto the queue as soon as possible. At the

start of an experiment the queue is deleted and reconstructed to ensure that all messages
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Command Description

REGISTER This command requires that the worker writes a message to the register

queue before performing any other actions. The register message format

is as follows. <threadname><ipaddress><timestamp>

REBOOT This command requires that the worker performs a hardware reset and

reboots the machine

UPGRADE This command is an essential service where a worker node is required to

go to the service package location and download install an update to the

software being used to perform work on the worker node. It is through

this mechanism that a worker can be provisioned to service alternative

jobs.

LISTEN After a command has been performed the worker stops listening to avoid

endless reboots, upgrades or registrations. Because the workers may

come online at different times, the supervisor queue must continue to

advertise its instructions, but workers should only perform the action

once. This behavior can be over rotten by issuing the LISTEN command

which allows workers to once again listen for a supervisor command and

act upon it.

Table 5.2: Supervisor Queue control commands.

are identical. The reason that the queue is used is to control the behavior of a worker node,

usually on startup and messages need to be all the same so that all workers behave in the

same manner. This queue contains one of four messages shown in Table 5.2 "REGISTER",

"REBOOT","LISTEN", and "UPGRADE". The supervisor queue is checked before the

worker queue is read, and after each worker node cycle. Once a command is performed the

worker stops listening for REBOOT, UPGRADE or REGISTER commands to ensure that

endless cycles are not initiated by the worker. To reset the worker node to listen for these

commands the LISTEN command is used.
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Command Description

START This command informs the worker node to start processing messages

from the worker queue. A timestamp for the start of work is taken and

sent to the log queue. Messages are downloaded and a "do_work" script

is used to process the files.

STOP This command suspends message processing. A timestamp for the stop

event is taken and sent to the log queue.

SLEEP This command is pauses the woker node for 60 seconds after which time

it will continue to look for commands on the cmdq queue.

QUIT Nodes can be requested to terminate although this is an unlikely use case

as the node will require a reboot to automatically join the worker node

cloud. A QUIT command will stop the primary worker node software

from running and it will not check any queues, effectively leaving the

cloud.

Table 5.3: Command Queue control commands.

• cmdq is an SQS queue read by the worker after the supervisor queue has been read. As-

suming that the worker node is now registered and running the correct software, this queue

gives explicit instructions to the worker on how to proceed. The supported queue commands

are described in Table 5.3.

• workerregister is an SQS queue which is used to identify the workers as they become

activated. For some of the larger experiments the number of workers dramatically increases

as there are multiple workers per node. The message written to this queue is in the following

form.<threadname><ipaddress>TIMESTAMP<data:time>.

• logfile is an SQS queue which is a source of data used in the analysis of the system per-

formance. All workers write messages to the logfile queue to indicate progress and status.

A worker writes to this queue for key events during processing. For all messages written to

the logfile queue, core information about the worker is inserted with the message including

the version of the software running within the worker node. The following events gener-

ate messages. Message Received from the queue which is targeted for processing. Message

Processing Rate which keeps a count of the total number of files processed since the worker

has started and a private processing rate after each batch has been completed. Message

Deleted which is called just after a file has been processed, uploaded to the target storage

node and the result has been written to the result queue. This queue also contains some
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diagnostic information from the worker such as any supervisor or cmd queue events which

are processed. This queue generates more than double the number of messages processed.

WhereM is the number of messages processed by a single worker node, and B is the number

of files downloaded for processing as a batch1 a worker node will produce an estimate of log

messages l̂ where

l̂ =M × 2 +
M

B
(5.1)

This estimate ignores the comparatively few diagnostic messages generated by each worker.

To estimate L̂, the total number of log file messages created during an experiment, sum the

values of all worker nodes threads where there are n worker nodes2.

L̂ =

n∑
i=1

(M × 2 +
M

B
) (5.2)

If it is assumed that all messages in a worker queue are processed across all worker nodes,

then the sum of all messages processed by all workers is equal to the total number of messages

in the worker queue T . Hence the equation can be simplified as follows, with the assumption

that batch sizes are equal across all worker nodes.

L̂ = T × 2 +
T

B
(5.3)

The number of log messages created for a worker message queue of 500, 000 is 2× 500, 000+

500,000
10 which is equal to 1, 050, 000. The use of the log file queue creates additional work

for the worker node, slowing it down slightly, and establishes a need to process the log file

queue in order to review the results of the experiment. These log files are used as a monitor

on the pipeline to provide an alternative measure of the processing rates and worker node

behaviour. Similar to the writing of messages, a sequential approach to reading queues will

result in poor performance. A distributed set of reading processes are required. The message

written to the log queue is in the following form.

<threadname><ipaddress>TIMESTAMP<data:time><Message>

• resultq is the SQS queue which is written to once a processed file has been successfully

posted to its S3 destination. There should be a single message for all files processed, so the

number of messages in this queue should equate to the number of messages in the worker

queue once all processing has been completed. The message written to this queue is in the

1 Workers can be configured to download a specific number of messages before attempting to perform any

work on them. This is referred to as the worker Batch Number
2 A worker node may run multiple threaded versions of the worker nodes which operate as distinct worker

node processes
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following form.

<threadname><ipaddress>TIMESTAMP<data:time><resultfilename>.

• canaryq is used as an instrumentation queue to monitor the structure and behaviour of

the system. When a storage node advertises its work to the worker it contains the URL

and filename of an image. During the processing of the workerq it is a requirement that

the message be deleted. While it is possible to extend the visibility of a message within

the queue, only 120, 000 messages may be left in this condition. Messages in flight 3 cannot

exceed this value and thus the information within the workerq cannot be saved without

the use of another queue. The canaryq provides the opportunity to create a mirror of the

workerq which can be analyzed after an experiment has been run as it contains a record

of the writing order of the queue by using a timestamp. Further analysis of the queue is

provided later in this chapter. The message written to this queue is in the following form.

TIMESTAMP<data:time><URL><filename>.

5.2.3 System Monitoring

The monitoring system is a collection of different subsystems each contributing to the overall

monitoring and logging of the pipeline. This includes the logging queue which contains detailed

information from each of the running worker processes, a Python monitor which calculates the rate

that the workerq is being reduced over time, the canaryq which can be used to reconstruct message

delivery sequence, web server statistics using a system called Munin, and processing node perfor-

mance for AWS EC2 instances using their AWS monitoring service for special canary worker nodes.

This node has additional monitoring configured for each experiment with the assumption that it is

representative of other nodes performance. This is checked by seeing if the canary processes clean a

similar number of files to the rest of the nodes. Given the number of instances potentially running

in an experiment, this approach provides a snapshot of a single instance performance which can be

used as a generalisation of the other instances performance. When the experiments are running,

the primary monitor is the workerq monitor which estimates the cleaning rate over time. The

components within the monitoring system summaries below.

• Web Server Monitoring. Each web server is configured with the Munin monitoring

software. This is used to track system performance helping identify bottlenecks and resource

utilisation. The web server data is collected and shown as a series of graphs of system

performance covering a wide range of system resources including Disk I/O, CPU, Networking

and Memory utilisation. Using these metrics an experiment can be reviewed to determine

how the web servers were performing.

3 Messages in flight are messages which have been read from the queue and are within a visibility timeout

period
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• Canary Instance Monitoring. The AWS service provides monitoring facilities for EC2

instances and for SQS queues. Detailed monitoring is a paid service which is not enabled by

default. When activated the time resolution is for 1 minute time slots and graphs are provided

for Network In, Network Out and CPU utilisation. Assuming that the work performed by

the canary instance is similar to that of the other others, then it’s system performance

metrics are a reasonable estimate of all instances performance. For most experiments the

canary monitor is configured for AWS cloud monitoring.

• Canary Queue Monitoring. For some experiments, knowing the order of messages pro-

cessed is required to provide an accurate view of web server contribution to the experiment

over time. The canaryq queue is a full copy of the messages as they are processed including

a central timestamp so all messages can be reordered.

• Logging Queue. This has already been discussed, but it provides an alternative view to

the processing rate by allowing to determine how many files the pipeline or individual worker

processed. Differences in processing rates by web servers and workers can also be observed.

• Workerq monitor. Use a call to the workerq every second, requesting the size of the

queue, the rate of processing since the experiment began can be estimated. Because messages

which are consumed by workers nodes may not complete, this is not a cleaning rate, just a

consumption of messages rate. If for any reason a worker node fails to delete a message then

it will reappear on the queue. In a live pipeline with images potentially being added on a

regular basis, this queue monitor would not necessarily be as useful. For these experiments

however all data is in place and queues allowed to settle before monitoring begins.

5.2.4 Processing Cloud

Worker nodes, or worker instances, are servers which run worker processes. Worker processes are

individual program threads running on a physical or virtual machine. The majority of instances in

this pipeline, for the purpose of experimental control, are virtual machines hosted on the Amazon

Web Service using the EC2 service. For an experiment all instances are usually set to be the

same type as explained later in the Control System subsection in this chapter. Depending on the

configuration of the instance it may be possible to run multiple worker threads which could result

in an overall improvement in the amount of files processed by the instance. For simplicity, the

worker process is not written to be multi-threaded, rather the operating system is instructed to

run multiple copies of the same program which are kept in insolation from each other. Resource

sharing is handled by the operating system.

As with the previous pipelines the acn-aphot.c program is run at the heart of the worker

process. A control system implemented in Python wraps this program in a service which provides

image data for cleaning. The core cleaning program was not modified for this pipeline.
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In order for a server to join the global processing cloud it must first install an initialisation

script which is run when the server is first started. This script call be installed into an existing

server, or as in the case of this pipleine a reference virtual machine was constructed with this

script installed and an amazon machine image (AMI) produced from which large number of virtual

machine instance can be created.

This initialisation script will look for a science payload on a public web server then download

and execute it. The payload is designed to clean the instance directory spaces, install scripts

and utilities, and clone itself to create multiple programming processes if required and then begin

whatever tasks are set by the worker utility script.

To ensure that all experiments started in a consistent manner all experimental worker instances

were deleted and new instances were created from the reference AMI. The primary lifecycle of a

worker instance is shown in Figure 5.7 and described below.

Start

Boot Instance

Run init.d Script

Download

Science Payload

Install Pri-

mary Worker

Install Worker

Thread N

Install Worker

Thread 2

Start Worker Start Worker NStart Worker 2

Stop

Figure 5.7: Flow Chart showing worker node initialisation during the boot up process

• Start The control system is responsible for starting the worker instances. A standard

preconfigured AMI is used. In some experiments physical instances were also used.

• Boot Instance The standard Linux boot sequence brings the instance onto the network

and mounts the local storage.

• Run init script The nimbus-worker init script is run which ensure that the server is cleaned

of any previous experimental data.
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• Download Science payload The science payload is downloaded, moved to the worker

home directory on the server and installed. The work performed by a worker is detailed in

the this package. This ensure that there is a flexibility to the system allowing for multiple

types of processing to be performed depending on the payload. In most cases the worker

will perform image cleaning and calibration of the FITS files, however any tasks are feasible.

For the purpose of this pipeline the payload was altered to test network performance and

web server performance by downloading files but not processing them, and by doubling the

processing in an alternative payload to show the effects of a more CPU bound problem.

• Install Worker thread 1-N The installed system will create the required number of inde-

pendent threads which are then run.

• Start worker thread. The workers are ready to process data and listen to the supervisor

and command queue for the instruction to start downloading data to process.

• Stop/Delete The worker threads will sleep when there are no more messages to process,

periodically checking for work. When an experiment is finished the control system may stop

or terminate the running instance.

The flowchart for a running worker thread is shown in Figure 5.8. Each worker instance may

have multiple worker threads all operating at the same time. All threads are isolated from each

other however, with their own storage space and directory structure on the worker instance. The

control system which operates this thread is a Python script inside which any science payload

could potentially be inserted. The function of the worker thread is to listen to the sqs command

queues for instructions on how to operated. Instructions such as start, stop, and sleep provide

simple interfaces into the system. What to download and where to get it, is provided by the

configurable message queue, and how to process it is determined by a central do_work script

which then performs the required work. The output of the processing is then uploaded to a central

web server and information on its location is pushed to a sqs based results queue.

5.3 Experimental Methodology

The function of the control system is to initiate all experiments and ensure that all systems are

available and functioning correctly. It is important that experiments can be compared, and to

do this the starting state must be consistent in all cases. The control system runs a Python

script which tears down the experimental infrastructure, then rebuilds it before the start of the

experiment. All systems must be accessible from the control system which resides on a virtual

machine within the AWS cloud, running an Ubuntu instance on the EC2 service. A batch script

contains the series of experiments to run, which in turn calls a script to start and experiment.

The batch script contains a series of calls to the run-experiment.sh script, which takes a set of
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parameters, shown in Table 5.4. The pipeline can also be left in a running state, which means

that it will continue to process image files as they appear on queues one it has started, and new

workers can be added or removed dynamically. The full workflow of the experimental run system

run-experiment.sh is given in Figure 5.9. The experimental run script was required to ensure that

the starting point of each experiment was consistent for each experimental iteration. A sample of

the batch script used to run multiple experiments is shown in Appendix D.5.

Option Description

-a | -d | -n | -x Identify the combination of web servers to use in the experiment. -d uses the

DIT based web servers, -a indicates the use of the AWS based web servers,

-n uses the heanet based web servers and -x indicates that all web servers

should be used. For a web node to be used in an experiment it will advertise

the files it has storage to the SQS worker queue.

Instances The number of instances of workers to run for an experiment less the mon-

itoring node which always runs. The maximum number of concurrent in-

stances is set to 100 within these experiments. This limit required explicit

permission from AWS Ireland to run instances within the Irish region.

Time The maximum amount of time in seconds that the worker nodes should

be allowed to run. In most cases experiments were set to 20 minutes. An

experimental timer was set only when the EC2 instances were initiated and

confirmed to be running.

Name The name of the experiment so that it can be identified.

Number The number of web servers to run per type. Webservers are configured in

pairs, so if a DIT web server is selected then either 1 or 2 will be allowed to

run while 1-4 was the range allowable for AWS based web servers.

Size The size of the AQS EC2 instance to run. The parameter conforms to the

specific reference name that AWS uses for its instances. Most experiments

used either the t1.micro the m1.large or in some cases the m3.2xlarge

Package Pay-

load

In addition to changing the experimental options above, the package used

by a worker node can also be reconfigured. The most significant change

is specifying the number of threads a worker instance is allowed to initiate

when running. This ranged from 1 to 100. The number of files downloaded

by a worker before it begins processing the can also be specified. The

processing batch size for nearly all experiments was set to 10.

Table 5.4: Experimental execution options for the NIMBUS pipeline.
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The experimental run script is a Unix bash script which call a series of Python scripts on

remote system to control a specific experiment. The Python programming API used to control

AWS services is BOTO, which provides access to primary services such as S3, EC2 and SQS. To

ensure that an experiment starts consistently each time it is run efforts are made to ensure there is

little or no system caching being performed by any system. The S3 buckets are emptied to ensure

that no previous results are being counted for the experiment. Queues are deleted and recreated

to eliminate the chance of old messages contaminating an experiment. All worker instances are

created from a standard AMI instance and are deleted at the end of each experimental run.

The experimental pipeline performance has also been considered where possible to ensure that

steps in the process for creation or tear down of the system are as efficient as possible. Some of

the steps in the experiments are primarily focused on experimental integrity but are not essential

to a production pipeline, such as queue deletion, and S3 result deletion. Where large number of

entries are placed on queues a multi-threaded queue reader is employed to extract all messages.

As previously discussed the logfile contains the largest number of entries within an experiment

and as such the reader for this queue downloads messages via multiple threads. The process of

recombining these are sorting data into a sequential stream is the final generate metrics step in

the flow chart.

In preparation for the experiment a science payload is created and pushed to a web server as

shown in Figure 5.10. The payload will include details on how many independent workers are to

be created on the instance and what work each of these workers should perform and how it should

perform that work. The science payload consists of the following components:

• Datafiles directory. The specific location to download batches of files.

• Results directory. The location where results files are held until they are uploaded to the S3

service.

• Masterfiles directory. Contains the mastervbias and the master flat images for use in image

cleaning.

• bin directory. Contains the acn-aphot compiled utility used to clean image files and the

funpack utility to uncompress images.

• scripts directory. Contains the do_work.sh script which performs the image uncompress

and calls the acn-aphot program to perform cleaning, and the start-worker.sh script which

installs the required number of worker threads and starts them.

• sql-reader.py. The central control script which monitors queue, downloads images, passes

them to the do_work script, and uploaded results.
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Figure 5.9: NIMBUS Experimental run script flow chart
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Figure 5.10: Flow Chart showing creation of payload for distribution to worker nodes

5.3.1 Experiment Metrics System

At the end of each experiment when the messages are written to the log file queue, the monitor

queue, results queue and worker registration queue, a series of metrics are extracted to characterise

the experimental behaviour. These metrics are used in the analysis of the experiment performance

and to check that everything ran correctly.

• log file queue is a combination of all messages written by each of the workers to identify

key events during the processing cycle. The metrics available from this queue are given in

Table 5.5.

• Result queue contains messages written by workers after a message is successfully posted

to the results storage system S3. Messages in this queue are either equal to or just slightly

less than then total number of files found in the results directory. The metrics available from

this queue are given in Table 5.6.

• Worker register queue is written to by each of the worker threads for all instances. This

is used to ensure that the correct number of workers are active within the system to ensure

that rate calculations are correct based on the number of workers. In most cases the workers

all start, however if for any reason they fail, the registration message will not be present.

The metrics available from this queue are given in Table 5.7.

• Derived Metrics are generated from the raw data using a spreadsheet to compare the

data from multiple sources. Given the distributed nature of the data and the queues, and

considering that workers may be still processing data when an experiment is concluded
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differences in processing rates may be calculated using different metrics. It is also useful to

measure specific attributes of the data processing performance such as Results-Not-Posted,

which shows the number of files downloaded but not yet completed processing across workers.

Details of these derived metrics are shown in Tables 5.8 and Table 5.9

• Monitor queue is not a specific queue but rather the processing of monitoring the worker

queue throughout the experiment. Once the experiments starts the monitor will keep a

record on the reported number of messages in the worker queue and perform a calculation

of the rate of message processing over time. The metrics available from this queue are given

in Table 5.10 although the raw data can also be used to plot the performance over time.

Metric Description

Results-Posted The confirmed total of all files posted successfully to the S3 bucket.

This is an absolute count of work fully completed by all workers

Total-Downloads The total of all files pull from all web servers.

Web-Server-

Downloads

The total of all files pull from a specific web server.

Total-Instances The total number of virtual or physical instances performing work

during an experiment.

Total-Workers The total number of worker threads running across all instances

performing work during an experiment. This value is the same as

instances if only 1 worker thread is running on an instance.

First-Start The time that the first worker is first seen in the log file. Times

are UTC based.

Last-Start The time that the last worker is first seen in the logfile. Times

are UTC based.

Last-Download The time that the last file download occurred within a worker

Last-Upload The time that the last result file was uploaded to S3 by a worker

Table 5.5: Metrics extracted from worker logfile.
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Metric Description

Results-Posted The confirmed total of all files posted successfully to the S3

bucket. This is an absolute count of work fully completed by

all workers

Total-Per-Thread Each worker instance is a physical or virtual machine, and

within each of the instances a number of threads can be acti-

vated to a maximum of 10. This total is the number of results

posted for a specific thread across all instances

Total-Workers The total number of virtual or physical instances performing

work during an experiment.

Min-Worker The minimum number of files processed by a worker thread

across all instances

Max-Worker The maximum number of files processed by a worker thread

across all instances

Avg-Worker The average number of files processed by all worker thread

across all instances

STD Dev Standard deviation of files processed by all worker thread

across all instances

Total-Instances The total number of virtual or physical instances performing

work during an experiment.

Min-Instance The minimum number of files processed by an instance thread

across all workers

Max-Instance The maximum number of files processed by an instance thread

across all workers

Avg-Instance The average number of files processed by an instance thread

across all workers

STD Dev Standard deviation of files processed by an instance thread

across all workers

Table 5.6: Metrics extracted from Results Queue.
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Metric Description

Results-Posted The confirmed total of all files posted successfully to the S3

bucket. This is an absolute count of work fully completed by

all workers

Total-Per-Thread Each worker instance is a physical or virtual machine, and

within each of the instances a number of threads can be acti-

vated to a maximum of 10. This total is the number of results

posted for a specific thread across all instances

Total-Workers The total number of virtual or physical instances performing

work during an experiment.

Min-Worker The minimum number of files processed by a worker thread

across all instances

Max-Worker The maximum number of files processed by a worker thread

across all instances

Avg-Worker The average number of files processed by all worker thread

across all instances

STD Dev Standard deviation of files processed by all worker thread

across all instances

Total-Instances The total number of virtual or physical instances performing

work during an experiment.

Min-Instance The minimum number of files processed by an instance thread

across all workers

Max-Instance The maximum number of files processed by an instance thread

across all workers

Avg-Instance The average number of files processed by an instance thread

across all workers

STD Dev Standard deviation of files processed by an instance thread

across all workers

Table 5.7: Metrics extracted from worker register queue.
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Metric Description

Results-Not-Posted A count of the number of files confirmed to have ben down-

loaded from a web server but have not been posted to the re-

sults folder on S3. This difference is present when workers are

either intentionally or otherwise terminated during processing

of a file downloaded. It should be closely related to the mes-

sages in flight as the message is deleted after a result it posted

to S3.

Results-Not-Posted % The Results-Not-Posted metric expressed as a percentage of

the total number of files downloaded

MAX-Time The maximum amount of time that all of the workers were

active. This is take as the time in seconds, between the last

registration time of a worker (indicating that all workers were

active) and the last download time from a web server from any

worker. This is check to ensure that the approximate running

time of an experiment is as expected.

AVG-Logfile-Rate The total reported files uploaded to S3 by log file queue divided

by the experimental time (1200 seconds).Setup time per worker

may be included which is evident when reviewing the MAX-

Time metric above which allows for workers to register and

start downloading.

AVG-Result-Rate The total reported files uploaded to S3 by result queue di-

vided by the experimental time. A workers failure to write to

either the log file or results queue during processing may result

in differences with AVG-Logfile-Rate, however it should be a

nominal difference.

AVG-Monitor-Rate The total difference in the start queue size and the end queue

size divided by the experimental time. This metric may be

higher than AVG-Logfile-Rate and AVG-Result-Rate as it will

include any messages in flight. In cases of high volumes of

workers the queue size may not be accurate at that point in

time.

AVG-Rate Using the averages above an average of the overall average rate

across the three metrics can be obtained.

Table 5.8: Composite metrics derived from multiple raw metrics.
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Metric Description

Best-Rate The best cleaning rate achieved using the 3 average methods.

In most cases this should be the AVG-Monitor-Rate as ex-

plained above. With larger volumes of process, or larger num-

ber of workers the monitoring system may not return an accu-

rate queue size and may return a smaller size. This is due to

the eventual consistency feature of the SQS queues.

Logfile-Rate-Var The variance of the AVG-Logfile-Rate from the AVG-Rate.

This can be used to determine if there are larger differences

which may have skewed the calculation of the AVG-Rate.

Result-Rate-Var The variance of the AVG-Result-Rate from the AVG-Rate.

This can be used to determine if there are larger differences

which may have skewed the calculation of the AVG-Rate.

Monitor-Rate-Var The variance of the AVG-Monitor-Rate from the AVG-Rate.

This can be used to determine if there are larger differences

which may have skewed the calculation of the AVG-Rate.

Table 5.9: More composite metrics derived from multiple raw metrics.

Metric Description

Start-Q-Size Size of the worker queue at the beginning of the experiment.

If the monitor observes the queue size increasing that it waits

for it to decrease before beginning.

End-Q-Size Each worker instance is a physical or virtual machine, and

within each of the instances a number of threads can be acti-

vated to a maximum of 10. This total is the number of results

posted for a specific thread across all instances

Start-Time The total number of virtual or physical instances performing

work during an experiment.

End-Time The minimum number of files processed by a worker thread

across all instances

Table 5.10: Metrics extracted from Monitor queue.
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5.3.1.1 Experimental Parameters

Given the number of variables within the experimental setup, an exhaustive experimental approach

would involve thousands of experiments. In total approximately 100 experiments were conducted

with the primary aim of identifying the key variables within the system and to use that to maximise

the performance of the NIMBUS pipeline within the given constraints of cost. The following seven

variables were identified and where possible controlled for within each experiment.

• VAR1: Web Server Location. There are potentially significant impacts associated with

the location of the web server providing files to the pipeline. While the configuration of

6 of the web servers was similar, the network between them and the workers was quite

different. Network performance could have significant impact on the performance of a worker.

The locations of the web servers has already been highlighted in Figure 5.6. For most

experiments, the AWS US East (Virginia region) web servers were used while the remaining

web servers provided scaling options for larger scale experiments. The fastest performing

web server was provided on loan from HEAnet 4, a high performance balanced web server

highly tuned for large data transfer when the experimental requirement was to eliminate

the web server performance from an experiment. This resource was used in a number of

experiments producing the highest system performance.

• VAR2: Number of web servers. Initial testing reviewed the impact of increasing the

number of servers that served files to workers. Multiple servers allows for the testing of

the network performance when running small numbers of workers. There are 8 Nginx web

servers and 1 FTP cluster used.

• VAR3: Number of Instances. An instance is a virtual or physical machine running a

unix environment capable of running 1 or more workers. The instances are primarily AWS

EC2 ubuntu machines and the number run in an experiment ranged from 1 to 100.

• VAR4: Type of Instance. The EC2 instance types available range in size and config-

uration. Experiments can be run with a number of EC2 instance types such as T1.Micro,

T1.Large, M1.Large, M1.XLarge and C1.Xlarge. For a subset of experiments two physical

machines were also used. A Sun/Oracle x4150 and an IBM i326e Server. Details of the

specification of these given in Appendix Table D.3

• VAR5: Workers per Instance. For both single and multicore systems the use of multiple

threads running independent workers allows for an investigation of the balance of CPU and

Networking resources on an instances. Instances with more CPU cores should potentially

improve the performance of the system if multiple worker instances are run.

4 HEAnet is Irelands National Education and Research Network
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• VAR6: Experimental Time. Most experiments ran for 20 minutes which was deemed

long enough for the processing rate to be determined, and to ensure that a large volume

of data could be processed. Some exceptions to this occurred near the final experiments

to demonstrate that the processing rate could indeed be maintained over longer periods of

time.

• VAR7: Batch Size. The C program which processes images can process all files it finds in

a directory. If there is a single data file found then the file is read in along with the Master

Files. The images are processed, the results posted and the C program terminates and is

restarted for the new batch. If the batch size is 10 then the Master Files are read in and

held in memory while each of the 10 files are processed. This reduces the number of times

the C program is started and stopped and reduces the file I/O by only reading the Master

Files once per batch instead of once per data file.

5.4 Results and Discussion

This Chapter defined and executed a series of experiments to determine the overall performance

of the NIMBUS system architecture presented in this chapter. The results of each experiment

are broken down and analysed to provide a comprehensive view of the system. In some cases

the experiments cover multiple components of the system, but in all cases the context of the

results and their contribution to the overall pipeline are discussed. There are four basic sets of

experiments performed, message queue performance, single and multi node instance scaling, and

pipeline limit testing. Table 5.11 shows the high-level experiments performed which are further

broken down within this chapter. The web queues must be fast enough to service high levels of

concurrent requests and the globally distributed computing nodes should be able to scale linearly

until bottlenecks are observed. If bottlenecks are found then the architecture should be flexible

enough to work around them. All data sources for all experiments and graphs are identified in

Appendix Table D.2 which references an accompanying supplementary USB disk which contains

raw and processed data relevant to these experiments.

Limits imposed on the experiments were based on limits of available resources, although where

possible indications of scaling opportunities were identified. For the pipeline to be active a minimum

of 1 worker is required to perform image cleaning and reduction. Multiple workers processes can

run on a worker node/instance, which is typically a virtual AWS instance. The maximum number

of instances activated within the experiments was 100, but the maximum number of workers was

10, 000. In some cases multiple runs of the same experiment were performed to ensure results were

repeatable.

It is required that the processing rates used within these experiments are expressed correctly

and consistently. While the original data set is stored as multiple images per file, and the raw
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Reference Measure Description

Exp:NIM1 SQS Performance. Testing the read and writing times of the web message

queues

Exp:NIM2 Single Instance

Node Performance.

Determine the variables which affect the performance of the

overall processing power of a single instance.

Exp:NIM3 Multi-Instance

Node Performance.

Focus on scaling the number of instances up to 100 looking

for factors which could affect the scalability of the system.

Exp:NIM4 System Limits. Identify the full scalability of the pipeline and to identify

strategies to continue improving the system performance

Table 5.11: NIMBUS Experiments Overview

results from the experiments were measured as files per second, or images per second, a more useful

representation of the processing rates is the amount of data processed over time. The conversion

from files to bytes also needs to take into account that the data being processed is compressed so the

concept of equivalent uncompressed data rate is also given. The following values and calculations

are central to correctly determine processing rates.

• F Uncompressed File Size. An unprocessed image data cube is 7.297920 MB.

• Fc Compressed File Size. An unprocessed compressed data cube is 1.247040 MB.

• Fi Images per File. The number of images within an image data cube is 10.

• I Images size. An unprocessed compressed image.

I =
Fc

Fi
(5.4)

• C Compressed Rate. The size reduction of an image using the fpack utility.

C =
Fc

F
(5.5)

• Pfps Processing rate in files per second. The number of files processed per second using the

NIMBUS pipeline.

• Pgps Processing rate in GB per second.The number of gigabytes processed per second of

compressed data using the NIMBUS pipeline.

Pgps =
Pfps ∗ Fi ∗ I

1024
(5.6)

• P̂gps Processing rate in equivalent uncompressed GB per second. The number of gigabytes

processed per second of equivalent uncompressed data using the NIMBUS pipeline.

P̂gps =
Pgps

C
(5.7)
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Reference Measure Description

Exp:NIM1-1 SQS Write Performance

Single Node

Testing the writing time of a single storage node

using a series of threaded applications

Exp:NIM1-2 SQS Write Performance

Multi-Node

Testing the performance of the queue when multiple

sources writing to it

Exp:NIM1-3 SQS Distributed Read

Performance

Testing the distribution of messages from multiple

nodes and the impact this has on queue read per-

formance

Exp:NIM1-4 SQS Queue Read Rates Testing the read speed of an SQS queue using a

series of threaded approaches

Table 5.12: NIMBUS SQS Performance Experiment Overview

• P̂gph Processing rate in equivalent uncompressed GB per hour. The number of gigabytes

processed per hour of equivalent uncompressed data using the NIMBUS pipeline.

P̂gph = P̂gps ∗ 3600 (5.8)

• P̂tph Processing rate in equivalent uncompressed TB per hour. The number of terabytes

processed per hour of equivalent uncompressed data using the NIMBUS pipeline.

P̂tph =
P̂gph

1024
(5.9)

5.4.1 Simple Queue Service (SQS) Performance

To achieve a data cleaning rate of terabytes per hour it is essential that the queuing mechanism

is able to advertise data sufficiently quickly to present work at a rate higher that the expected

cleaning rate, and to ensure that work creation rates are expandable as the number of files to

be cleaned increases. This requires that the storage nodes within the NIMBUS architecture can

collectively create messages on the SQS worker queue at a rate of over 100 messages per second5. In

addition to writing messages to the queue to generate work, the architecture of the system requires

that queues are also used for monitoring and obtaining the results of an experiment. Experiments

were devised to determine the sqs queue read performance. A full list of the sqs experiments are

given in Table 5.12.

5 100 messages for a 10 image data cubed file represents, in this system, 700Megabytes of raw data where

each message points to a file of 7MB. 700MB per second ≈ 2.4 Terabtyes per hour
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5.4.1.1 Exp:NIM1-1 SQS Write Performance Single Node

This test investigates the performance of a single server writing to an SQS queue to understand

how quickly a storage node can advertise files to be cleaned. A series of experiments was executed

on a single storage node with modifications to the utility used to write to an SQS queue. The

storage node platform used was the IBM i326 server with 4GB of RAM and a 1 Terabyte remote

mounted iSCSI storage drive.

Four different approaches were used for writing messages. Sequential writing using a single

threaded application, sequential writing spawning a new process per message write, multi-threaded

processing for varying numbers of threads and connections to the SQS system. The results are

given in Figure 5.11.

12.795
Single Threaded, Sequential program

2.415
Multiple Process, Sequential program

40.0
Multi-threaded, 10 threads program

99.5
Multi-threaded, 20 threads program

144.9
Multi-threaded, 30 threads program

179.6
Multi-threaded, 40 threads program

168.5
Multi-threaded, 50 threads program

166.6
Multi-threaded, 60 threads program

0 50 100 150 200
Message writes per second

Figure 5.11: Exp:NIM1-1 SQS Write Performance Single Node. Average message writing

time per second from a single web server node using varying methods

The multi-threaded application used can be found in the Appendix D.2. Further description

of the various writing approaches are described below.

Single Threaded, Sequential program

This approach uses a single Python program which connects to the SQS queue and writes, in

strict sequence, 1,000 messages. The message writing rate is the time on average for a single

message to be written. This time takes into account the connection time which is spread

evenly across all of the writes. As more messages are written the connect time to the queue

would become less significant.

Multiple Process, Sequential program

Using the Linux environment to create multiple processes, a program was written which
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forked 1 processes per message. The poor performance of this approach can be attributed

to the creation time of the process and the fact that every single message requires a new

connection to be made to the SQS queue. Each forked process also requires its own memory

footprint within the server.

Multi-threaded

A multi-threaded program where 10 threads are created, each of which writes 1
10 of the

messages to the queue. In this case there is no cost for creating a full forked process for the

entire program but 10 connections are set-up to the SQS queue, one per thread.

Multi-threaded single connection

Further optimisation of the Python program allows for the multi-threaded system to spawns

an arbitrary number of processes. For the purposes of this experiment a set was selected

ranging from 20-60 threads which the results posted. In this program there is a single

connection made to the SQS which is shared by each of the threads. A Python queue is

created which loads all image filenames into it and allows the threads to use that queue to

generate messages. Threads now balance their work rate using the Python queue, with faster

threads writing more messages. This modification also allows the system to take arbitrarily

large numbers of files to the Python program. (see Code Listing in Appendix: D.2. Results

for varying threaded values are shown in Figure 5.11 with the optimal performance shown

around 40 threads. For the system tested this result provided the fastest message writing

rate but this thread number is not the optimal number of threads for all systems, as that

would be a factor of the number and performance of CPUs in the system.

The single connection with multiple threads allowed for almost 180 messages written per second

which on its own is greater that the required writing performance to generate a work list of over

3TB of data per hour. While a larger server may perform even faster, the next experiment focused

on having multiple servers write to the queue at the same time from different locations.

5.4.1.2 Exp:NIM1-2 SQS Write Performance Multi-Node

The results from Exp:NIM1-1 show a message creation rate of approximately 180 messages per

second, however the testing environment relied upon a local data store from a single node. Further

experimentation was required to consider the effect of different network storage configurations and

server types within the NIMBUS architecture, and the effect of multiple nodes concurrently writing

to the SQS queue form different locations. This experiment is designed to test the scalability of

the SQS queue to determine what message writing limitations may exist or may be relevant to this

pipeline.

The previous approaches implemented strict sequential message writing per thread, and due to

the fact that the threads were on the same system, an element of performance balancing between
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threads is to be expected by the underlying operating system. If the threads were running on

different storage nodes then a better understanding of the SQS central queue performance can be

obtained. Of primary concern is the rate of message writing performance when the number of

overall processes writing messages to a single queue is increased. Using our multi-threaded Python

message writing script on a number of different web nodes two things are testable. The first is to

see if the overall message write rate for the queue will increase as the number of nodes writing is

increased, and secondly will the rate of increase be a factor of the number of nodes running.

To exploit the distributed nature of the SQS queue in Exp:NIM1-2, 8 web servers were config-

ured, each containing image data which can be advertised to the worker queue. This experiment

attempts to see if a maximum write time could be obtained for the queue. Each of the 8 web

servers contained approximately 73, 000 raw image files. Initially they were run in sequence to get

a baseline of the speed at which they could write messages to the queue, next all of the nodes

were run in parallel with the primary objective of all 8 writing messages onto the SQS queue con-

currently. Given that each of the configurations and locations of the web servers were different as

shown in Figure 5.6, the network connectivity to the SQS queue was varied. It would be expected

that the difference in the performance of writing would arise as a result of issues such as network

latency and processor performance.

In Figure 5.12 the message write time is shown for a storage node run in isolation, and when

all of the storage nodes are running. It can clearly be seen that the performance of the SQS queue

was a function of the number of nodes. As the number of nodes increased, the number of messages

written also increased. Running in isolation, or with other storage nodes running and writing

messages, the performance of storage nodes writing was relatively unchanged. Using the longest

write time for a single node, an estimate of the average message write performance Wmsg can be

obtained where n is the number of nodes used, and maxT is the maximum time in seconds for one

of the nodes to complete writing. The total number of messages M written by all 8 nodes in this

example is 596,3658 with the last node finishing after 9 mins giving a message processing rate of

1104.5 messages per second (See Appendix Table D.1 for data details) which is equivalent to 26TB

of data advertised per hour.

Ŵmsg =
M

maxT
(5.10)

On consideration of the results presented in Figure 5.12 there are clear variations in storage

servers writing rates but that introduction of additional servers writing to the queue does not

impact the rate of writing for individual nodes. The message write rates for each server are shown

in Figure 5.13. The rate of writing for each node can be expressed as the number of messages m

written over time t.

w =
m

t
(5.11)
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Figure 5.12: Exp:Nim1-2 Comparison of sqs queue write rates per second web node for

standalone or multi-node writing. Source Data in Appendix Table D.1
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Figure 5.13: Exp:NIM1-2 Messages written to the queue over time for each storage node.

Amore accurate estimate of the system queue write rate is the sum of n storage nodes individual

write rates, W as shown in equation 5.12.

W =

n∑
1

w (5.12)

The data used in these graphs was based on the retrieval of messages from the SQS canary

queue, which was written to by the web nodes at the same time as messages are written to the SQS

worker queue. This data was taken from an experimental run where data was being processed using

9 web nodes. Because worker queue messages are deleted as they are processed the canary queue

offered a mirror of the queue. When reading the canary queue the SQS attribute SentTimestamp

was requested which provides the Coordinated Universal Time (UTC) for the message write time

to the queue. Message write order is reconstructed by combining all messages and sorting them

into time buckets (in this case seconds), and for that time period determine the number of messages

written from each web node. See code listing D.1. Figure 5.14 plots the same data with a simple

moving average with an interval of 9 using a central moving average. The raw data plot for this

image can be seen in Appendix Figure D.1. The reduction in the total write rate over time is due

to the fact that the node writing faster have run out of messages, so are no longer contributing to

the system.
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Figure 5.14: Exp:NIM1-3 Simple moving average of canary queue SQS message write

rate for all storage nodes.

5.4.1.3 Exp:NIM1-3 SQS Distributed Read Performance

As the SQS queue does not guarantee any specific order to message delivery it is important to

understand the mix of messages on the queue as presented to multiple readers, and to have an

appreciation of how that can affect a running system. From results presented in Figure 5.14 it can

be seen that the system wide message write rate reduces for the experiment as faster web nodes

exhaust the number of messages they have to put on the queue. If the queue delivered messages

in the same order as received then the same distribution of messages would be expected when the

queue is being read. A complication is that there is no single read point for this queue as messages

are read by multiple nodes. Given the distributed nature of the queue the message order will now

be split over these reading nodes. The SQS system does not provide a message read timestamp

so this cannot be used to reconstruct message read order. It is possible however to reconstruct an

approximation of the message delivery order to the reading worker nodes.

To simulate the worker node read behavior all messages are read using a multithreaded Python

program6 which spawn 40 threads, each of which creates it’s own log file that preserves the order

in which the messages were read. The population standard deviation of the number of messages

6 Code Listing D.3
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read by each thread is calculated 7 and the relative standard deviation is obtained, which in this

case is 0.25%. It can be assumed that each of the threads is downloading messages at a similar

rate, so by grouping each of the files into bins of 100 messages and combining them8, It can be

determined for each bin how many messages were downloaded from each storage node. Figure 5.15

plots this data using a simple moving average with an interval of 17 with a central moving average.

Consider webnode3 which wrote messages to the queue faster than any other node, it provides

consistently higher rate of messages early on in the graph and has all messages read before other

nodes. The slower webnode1 starts slower and finishes last. There is evidence of more random

behaviour midway through the read process. This may be attributed to a combination of the

distributed nature of the SQS queue and the method used for combining messages logs.

While it has been shown that the read order is not identical to the write order it is reasonable to

assume that nodes which contribute messages to the queue at a higher rate than other storage nodes

will have their messages presented to worker nodes more frequently than those that contribute at

a slower rate.
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Figure 5.15: Exp:NIM1-3 Simple moving average representation of messages read within

350 sequential time slots with 40 threads reading the SQS canary queue.

7 σ =
√

1
N

∑N
i=1(xi − µ)2

8 Code listing D.4
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5.4.1.4 Exp:NIM1-4 SQS Queue Read Rates

The issues of reading queue message in a none distributed or parallel manner are consistent will the

issues associated with writing messages to a queue. For each message read there is a connection

overhead, but in addition to this there is also the overhead of deleting the message from the

queue creating a double cost to message reading. When a message is read, a visibility timeout

it set leaving the message invisible to others. Messages within the visibility timeout are referred

to as a messages in flight, and the limit for the number of messages in flight is set currently at

120, 000. This provides a potential limit on the performance of a system using a single worker

queue. A system which has the capacity to read more that that number of messages at one time,

will be blocked reading messages until the total number of messages in flight is reduced below that

threshold. This requires that either a message is returned to the queue or deleted by the reading

worker.

While this is a limitation of the AWS SQS service it is not necessarily a limiting factor on the

pipeline as it is possible to operate a larger number of queues, each containing file information

for processing. If a pipeline was limited to operating at 120, 000 messages per second this would

equate to 1.2Million images per second using image data cubes of 10 stacked images, which in

this pipeline would represent about 1 Terabyte per second, or 2.8 Petabytes per hour.

The issue of reading queues quickly is more related to the processing of post experiment

analysis than with the running of the system. With the pipeline’s distributed nature, and the use

of batch downloading per worker node, the processing time of the images is the limiting factor

for the image processing rate, not the message download time for each worker. The use of the

queues for distributed sharing of log files and result files however does require some thought on

queue read performance. The reason a queue system is used to record result information and log

file information is that it allows the worker nodes to be more independent. By centralising key

information about their processing to a central queue, all of the pipeline log messages are available

in a single queue, although there is no specific reason why multiple queues could not be used.

If the log files are being monitored for issues with workers or with processing then they need

to be constantly read and monitored with key value pairs 9 being sought to identify issues. The

read rate of a log file queue must therefore have a similar read rate to the worker processing rate.

A monitoring process reading the queue will be doing considerably less processing that a worker

node, so it should be able to process messages considerably faster, or allow for multiple monitors

to operate simultaneously (which is the case). A single monitoring server reading queue messages

can read approximately 100 messages per second when running multiple threads, as shown below

in Figure 5.16. Multiple monitoring servers could therefore reasonably be assumed to be able to

read all log or result messages produced by a fully functional operating pipeline. Using Equation

9 A key/value pair could be a specific pattern within the log file data indicting an unusual or important

state for a worker, such as WorkerID:STOP
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5.3 it can be estimated that the message read rate would have to be slightly greater than twice the

message processing rate of a system since each worker generates just over 2 messages per image file

processed. If a single monitoring system can read 100 images per second, then the total monitoring

node requirements is the message processing rate of the system per second divided by 100.

25.5σ13.5%Single Threaded, Sequential program
100.8σ14.2%Multi-threaded, 40 threads program
100.1σ22.6%Multi-threaded, 60 threads program

0 50 100
Message reads per second

Figure 5.16: Exp:NIM1-4. Messages read per second from a single monitor server node

using varying levels of threads running with the standard deviation shown.

A number of strategies were considered for log file message reading which are briefly discussed.

• Serial Download requires a single-threaded application to read messages from the queue

one at a time. It is possible to increase the number of messages taken from the queue at

a single read, however this did not provide any significant performance improvements on

the message read performance. This approach, as shown in Figure 5.16 is not an optimal

solution.

• Multi-Threaded Download provided considerable improvements in the overall message

download rate with the number of threads being a configurable number similar to the Python

listings showing message writing. In this case messages are deleted once they have been read

so the queue is constantly reducing over time.

• Multi-Threaded Download with messages in flight is a faster message read given that

the message is not deleted, but rather messages are given an exceptionally long visibility

read time when downloaded. When a message is read, the time it remains off the queue can

be set. If no messages are deleted then the message limit of 120, 000 is a system bottleneck

after which no messages can be read until that number is reduced. This method only works

for queues which are relatively small. In the experiments performed, queue messages can

reach over 1 Million messages.

• Multi-Threaded Download with messages in flight hybrid is a compromise solution

which estimates the number of messages within the queue and has a policy of deleting

a proportion of them to take advantage of the messages-in-flight mechanism, while never

allowing the maximum number of messages to be in flight. For large queues however, the

advantage is diminished over time.
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5.4.1.5 Analysis

The message queuing system provides a number of advantages to the overall pipeline.

• Exp:NIM1-1. A single web node can advertise data at a rate of approximately 3TB per

hour.

• Exp:NIM1-2. Using multiple web nodes writing at the same time, the advertising rate for

the pipeline is over 26TB per hour, although this is unlikely the limit as write rates were

linear with the number of web nodes added.

• Exp:NIM1-3. Due to the fact that some nodes may write to the queue faster than others,

in the experiments where there are fixed numbers of messages written by each worker node,

the faster nodes will initially contribute more to the queue and reduce over time. This may

cause the process rate to appear to slowdown over time.

• Exp:NIM1-4. A single node read performance for messages is similar to the single node

write performance. Downloading of messages is naturally distributed for the pipeline. A

limit per queue existing which is equivalent to a processing rate of 2.8 PB per hour. All that

is required to overcome this is to increase the number of queues being used for reading.

5.4.2 Single Instance Node Performance

This group of experiments focuses on understanding the behaviour of a single instance by looking

at variables within the pipeline to determine how to optimise the instance performance. Give the

low volume of data being processed the results of the baseline experiments are shown as Pfps, files

processed per second.

There are three different variables which are tested in these experiments to determine their

impact on a single instance performance, the size of the instance (Memory, Network, CPU), the

number of worker threads running on the instance, and the web servers being used to provide images

to clean. All experiments run batches of size ten (downloading 10 messages before processing

begins), and all work performed by a worker is identical. Experiments are broken down by variable

under test and shown in Table 5.13

5.4.2.1 Exp:NIM2-1 Single Instance Webserver Performance

For this experiment the web servers used are those identified earlier in this chapter, and shown in

Figure 5.6. NginX web servers were run in multiple location, on both physical (DIT & HEANET)

and virtual environments (AWS EAST containing 1 webserver, and AWS WEST which had 4

webservers), in addition to a high performance FTP server from HEAnet which also serviced

HTTP requests. The worker instance was run on an AWS EC2 instance and the instance type

was T1.Micro, which is the smallest of the free tier system available. The worker instance ran 5
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Reference Measure Description

Exp:NIM2-1 Single instance web-

server performance

Testing the impact of different web server configura-

tions to service a single worker instance.

Exp:NIM2-2 Single instance per-

formance by type

Testing the impact of selecting different instance ma-

chine types.

Exp:NIM2-3 Single instance

multi-worker perfor-

mance

Testing the impact of increasing the number of worker

threads run on an worker instance.

Table 5.13: NIMBUS Single Instance experiments

worker threads. Figure 5.17 show the files per second processing rate of the instance (combining

the processing of each of the individual workers). From this graph it would appear that the web

server location, number of web servers and type has little impact on the performance of the server

instance.

A more detailed look at the breakdown between the time to download and the time to process

provides further information as shown in Figure 5.18. Using a kernel density function to plot

the download times for each worker during an experiment, it is clear that the AWS web servers

takes longer to download files compared to the DIT, HEANet or FTP web servers. Given that

there are no other demands being placed on the web servers these results are good indicators of

the maximum performance capabilities of the worker instance. In Table 5.14 the mean, standard

deviation and variance for file downloads is presented, showing a clear difference in the mean for

the AWS servers. It is also evident from the low variance that the web server response times are

reasonably consistent. In Table 5.15 the mean processing times of the workers is reasonably similar,

but the variance is quite high. Given that amazon report that the T1.micro instance has CPU

throttling, this would appear to be evident with some workers experiencing considerable longer

delays than the mean. With the mean values for processing times higher for the experiments

where faster downloads occur it would seem to indicate that all workers are more likely to be

processing data at the same time. As processing times become longer, then the CPU is most likely

closer to being close to a bottleneck.

It can be concluded from these experiments that there is a performance benefit from using the

non-AWS web servers for single instance processing. With limits inherent within the capability of

the T1.Micro instance, these benefits my not be evident, however using faster performing server

instances, improvements in file processing rates could be expected. This will be explored further

in Exp:NIM2-2.
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Figure 5.17: Exp:NIM2-1 Files Per Second: Varying Web servers and their impact on

T1.Micro Instance performance

Web Server Std. Dev. Mean Variance

FTP 1.565 4.59 2.451

AWS East (1) 2.759 22.49 7.616

AWS West (4) 3.278 25.00 10.746

HEANet 2.775 4.92 7.704

DIT 2.791 5.05 7.795

Table 5.14: Exp:NIM2-1 T1.Micro Single Instance 5Worker statistics for image downloads

per web server
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Figure 5.18: Exp:NIM2-1 Single Instance Performance breakdown for different Web

Servers, with 5 workers.

5.4.2.2 Exp:NIM2-2 Single Instance Performance by Type

Given that the FTP web server from HEANet provides a high performance load balanced web

server, that variable can remain constant for this next set of experiments. Looking at the per-

formance of a single instance running a single worker in Figure 5.19 it is clear that varying the

type of server instance makes little difference. In this experiment 1 physical server was used (the

IBMe326) and two different AWS instance types (T1.Micro, and M1.Large). There is a slightly

longer delay in download times from the IBM server but this is likely to do with the network

differences between the location of the virtual amazon instances and the physical IBM server in-

stance. If the differences between the web servers is processing power then further experiments

Web Server Std. Dev. Mean Variance

FTP 19.59 47.05 383

1 x AWS 18.66 36.17 348

4 x AWS 9.70 32.94 94

HEANeet 23.05 45.38 531

DIT 23.18 45.65 537

Table 5.15: Exp:NIM2-1 T1.Micro Single Instance 5 Worker statistics for image processing

per web server
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are required which increases the processing demand of the webserver. In Exp:NIM2-1 there were

5 workers running per server, while in this experiment there was only 1 worker running.

To verify that the web server would have an impact on the instance, a comparison of the

T1.Micro and the M1.Large virtual instances performance using both the FTP and the AWS web

server is shown in Figure 5.20. In this diagram the processing remains similar but the networking

time for the downloads is clearly slower when using the AWS web servers. To further explore the

instance type performance the number of workers running to determine how to take advantage of

the additional server performance must be considered. This will be explored further in Exp:NIM2-

3.

Figure 5.19: Exp:NIM2-2 Single Instance 1 Worker Performance breakdown for different

Instance types, using FTP Webserver

5.4.2.3 Exp:NIM2-3 Single Instance Multi-worker Performance

For this group of experiments a variety of physical and virtual machine instances are used to look

at the impact of running multiple workers on the same instance. The assumption is that if an

instance is busy downloading an image then the CPU resource is not being used. To fully utilise

the CPU, additional workers can run to balance the load of the CPU over time. Workers are

designed to cycle through downloading batches of files, processing them, and then uploading them.

A single worker will not use all of the instance resources fully at the same time. By increasing the

number of workers it would be reasonable to assume that the overall resources are being more fully

used, but that there is a point beyond which the number of workers being added does not increase

the performance of the instance.
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Figure 5.20: Exp:NIM2-2 Single Instance 1 Worker Performance breakdown, varying web

server and instance type

Since different instances have different performance characteristics such as CPU, RAM and

Networking, the performance characteristics should be varied across different server types and

configurations. Using the T1.Micro, M1.Large and the IBM 326 physical server for 1, 5, and 10

workers the processing rate can be drawn as shown in Figure 5.21. An increase in the rate of

files processed is seen across all instance types as the number of workers increases from 1, however

as the rate goes from 5 to 10, the effect is less significant in all cases. The instances with more

resources show the greater gain.

To verify the relationship between increased CPU capacity and an increase in the capacity

to run more worker threads, an additional experiment (see Figure 5.22 ) was run on an x4150

server which has 4 dual quad core CPUs compared to the M1.Large which has 2 CPU cores. The

x4150 was run with 10 and 50 workers. The larger server runs significantly faster using 10 workers

compared to the M1.Large, but while running 50 workers there is a levelling off of performance.

Assuming that the network and the web server were not a bottleneck at this point, then the CPU

is the most likely limiting factor.

Figures 5.23 and 5.24 compare, at a high level, the rate of cleaning of files per second by

both the T1.micro and the M1.large instances, varying web servers and the number of workers

per instance, with the data shown in Table 5.16. As expected the AWS versus the non-AWS web

servers have an overall impact on the instance performance, but the increase in the number of

workers is initially significant for an increase to 5 servers, but as the number of workers grows the

performance improvement does not improve in a linear manner.
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Figure 5.21: Exp:NIM2-3: Single instance performance by type, running multiple number

of workers.
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Figure 5.22: Exp:NIM2-3 Increasing the number of workers on faster CPU servers
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Figure 5.23: Exp:NIM2-3 Single T1.Micro

Instance file cleaning rate per second.
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Figure 5.24: Exp:NIM2-3 Single M1.Large

Instance file cleaning rate per second.

Exp.

Num.

Web

Server

Num.

Workers

Num. Web

Servers

t1.micro

fps

m1.large

fps

1 AWS East 1 1 0.25 0.31

2 AWS East 1 2 0.27 0.33

3 FTP 1 1 0.51 0.55

4 DIT 1 1 0.52 0.56

5 DIT 1 2 0.53 0.54

6 AWS East 5 1 0.78 1.43

7 AWS East 5 2 0.73 1.31

8 FTP 5 1 0.76 1.92

9 AWS East 10 1 0.68 1.64

10 AWS East 10 2 0.68 1.44

11 FTP 10 1 0.71 2.07

Table 5.16: Single Instance Experimental Results Table for Fig 5.23 and 5.24
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A more detailed comparison of the experiments is shown in Figure 5.22 where the same web

server is used in all cases, and selecting the first three experiments where the same number of

worker threads are running. This ensures that the primary variation is the CPU capability of the

server. In Figure 5.25 a density probability plot of time is shown, where the worker performance

is split into download times and processing times. The processing power of the instance becomes

the primary bottleneck when the web server and network are relatively unconstrained as with the

t1.micro, but not for the x4150. It is clear that each instance will require a different number of

workers to maximise their performance.

Figure 5.25: Exp:NIM2-3 Single Instance Performance breakdown with increasingly pow-

erful servers

Finally a comparison between the T1.Micro and the M1.Large is shown in Figure 5.26, breaking

down the performance of each worker by time to download files and time to process them, showing

results for 1, 5 and 10 worker experiments.

From these experiments it has been shown that the number of workers on a server instance

has the ability to grow the overall performance of the server w.r.t file processing rate. The rate

of increase is dependant on the exact configuration and capabilities of the server, but number of

CPU cores does appear to be relevant. There is a point beyond which the number of workers

added will cause a negative impact on the servers processing rate, For future work, it should be

possible for an instance to modify the number of worker threads it runs to maximise the overall

instance processing rate. The would require a local instance monitor to operate with the ability

to start-up new workers or shut them down. This could be accomplished by either multi-threaded

modifications to the existing workers or to create additional sandboxes for the single threaded
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Figure 5.26: Exp:NIM2-3 Single Instance Performance breakdown with increasing number

of workers
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version to run inside as it currently the case. For single instance systems the web server is unlikely

to create a bottleneck, however faster web servers will ensure that the optimal number of workers

is reached sooner as the CPU is kept busy due to consistently quick file downloads.

5.4.2.4 Analysis

These experiments provide basic information regarding the performance of a single instance within

the pipeline architecture.

• Exp:NIM2-1. For a single worker instance, running a single worker there is clearly a difference

observable in the download time from the AWS based web servers used.

• Exp:NIM2-2. For different worker server types, different worker processing rates are ob-

served. As the instance type CPU processing capability is increased, the rate CPU quickly

becomes a bottleneck. By increasing the CPUs on the server the number of workers can

continue to grow. If the worker nodes are increased the is a point of diminishing returns.

• Exp:NIM2-3. Each worker type will contain different characteristics such as CPU perfor-

mance. If the number of workers is increased then providing there are sufficient CPU re-

sources, the processing rate will improve. The overall pipeline will therefore run faster as

more powerful servers are utilised until the ability to download becomes a bottleneck.

5.4.3 Multi-Instances Node Performance

The experiments outlined in Table 5.17 are focused on understanding the effect of increasing the

number of server instances in an experiment. Experiments range from 1 to 100 EC2 amazon

instances. Building on the observations of running a single instance, the aim is to determine if the

increase in instances results in an overall improved performance of the system and to determine if

any specific limits have been reached.

The three variables being tested in these experiments are Web Servers, number of instances

and worker impact. Experiments are shown where the number of workers per server is consistently

set to 5 for T1.Micro server instances, and 10 for M1.Large server instances, batch downloads are

set to ten and all work performed is the same. Experiments are broken down by the variable under

test.

5.4.3.1 Exp:NIM3-1 Multi Instance Webserver Performance

When dealing with a single instance it was clear the the AWS web server delivered files to the

worker nodes slightly slower than the FTP, DIT and HEANet based web servers. As the number

of instances running is increased, the AWS versus Non-AWS web server performance are compared

to determine if the performance difference is sustained over larger number of file requests per
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Reference Measure Description

Exp:NIM3-1 Multi instance web-

server performance

Testing the impact of different web server configura-

tions to service multiple worker instances.

Exp:NIM3-2 Multi instance per-

formance by type

Testing the impact of selecting different instance ma-

chine types for multiple worker instances.

Exp:NIM3-3 Multi Instance

Scaling Analysis

Analysis of the rate of scaling from a single instance to

100 instances.

Exp:NIM3-4 Limit Testing Investigating the limits of the experimental setup

Table 5.17: NIMBUS Multi Instance experiments

second. Figure 5.27 shows a histogram of the overall file processing rate for 100 T1.Micro servers

running 5 workers against different web servers. It is clear that the DIT and single AWS East

server do not appear to scale with the increases in requests while the 4 AWS West web server

combination, the HEANet Servers and the FTP servers seem to be performing well. If the cleaning

rates of a single instance running 5 workers as given in Figure 5.17 are multiplied by 100, the

cleaning rates where the web server is not a bottleneck scale almost linearly, based on observation.

It is interesting to note that the web servers in the DIT and HEANet are identical in hardware

and software, possibly indicating that the network is a factor in the experiment.

Looking at the breakdown of the experiments based on download and processing time in Figure

5.28, the FTP, HEANet server configuration gives consistent download times for data, while the

other servers are consistently slower. The mean, standard deviation and variance in Table 5.18

from the FTP and HEANet servers indicate consistent reliable network performance throughout

the experiment. The processing performance in Table 5.19 again shows similar behaviour for

the experiments with fast downloads, while the slower web server based experiments have lower

variance, standard deviation and mean for the overall slower experiments as the CPU is less loaded

due to slower download of data.

It can be concluded from these experiments that there is a performance benefit from using the

non-AWS web servers when scaling worker instances. When using the FTP HEANet server the

increase in processing rates has been almost linear. Clearly there are also network effects given

different network configurations but identical hardware configurations for the DIT and HEANet

web servers. Combinations of multiple web servers such as the AWS West 4 server setup will also

allow the performance of the pipeline to continue to grow with the number of instances.

Given the limited processing performance of the T1.Micro instance, it is possible that bottle-

necks in the web servers have not yet been reached. As the larger M1.Large instance type puts
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Figure 5.27: Exp:NIM3-1 Files Per Second: Varying Web servers and their impact on

T1.Micro 100 Instance performance

Figure 5.28: Exp:NIM3-1 100 Instance Performance breakdown for different Web Servers,

with 5 workers.
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Web Server Std. Dev. Mean Variance

FTP 3.148 5.12 9.91

1 x AWS 10.813 66.62 116.90

4 x AWS 5.509 29.72 30.35

HEANeet 3.065 5,72 9.39

DIT 15.585 84.35 242.91

Table 5.18: T1.Micro 100 Instance 5 Worker statistics for image downloads per web server

Web Server Std. Dev. Mean Variance

FTP 28.67 52.85 822

1 x AWS 13.63 22.35 186

4 x AWS 20.15 32.27 405

HEANeet 28.06 51.54 787

DIT 13.24 25.45 175

Table 5.19: T1.Micro 100 Instance 5 Worker statistics for image processing per web server
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higher demands on the web servers due to the higher processing rates, additional experiments are

considered in Exp:NIM3-2 comparing the performance of the two instance types.

5.4.3.2 Exp:NIM3-2 Multi Instance Performance by Type

These experiments look at the ability of the system to continue increasing performance as the

number of instances is increased. The different instance types are explored to see if the increase in

performance is linear for all instance types using the FTP web server to service all requests.

In Figure 5.29 the T1.Micro and the M1.Large instance types are compared while running

10 workers per instance. If the mean time for workers to download and process data to those of

a single instance is compare in Table 5.20 and Table 5.21 it is clear that the T1.Micro network

mean is similar, but there is more fluctuation in the download times, while the T1.Large mean

is increasing. This might suggest that the increase in demand on the FTP server is starting to

indicate some pressure on its ability to service file requests. The CPU processing mean remains

similar for the T1.Micro and the M1.Large, but there is considerably more variance introduced

into both instance types. This could be due to the larger sample size. In Figure 5.30 the CPU of

one of the running instances of the M1.Large instance type is shown, indicating that the CPU of

the M1.Large is close to maximum for the length of the experiment while Figure 5.31 shows the

additional load generated by the experiment on the ftp.heanet.ie web server.

Figure 5.29: Exp:NIM3-2 100 Instance Performance breakdown for different instance

types running 10 workers using the FTP web server.

The overall processing rate of the T1.Micro is just over 72 files per second, while the M1.Large

is almost 192 files per second. From Table 5.16 the single instance processing times for 10 workers

for the T1.Micro was 0.71 files per second, and the M1.Large was 2.07 files per second indicating
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Instance Type Num. Instances Std. Dev. Mean Variance

T1.Micro 1 0.8 5.1 0.7

T1.Micro 100 3.2 5.8 10.4

M1.Large 1 0.6 3.5 0.3

M1.Large 100 8.9 13.8 79.4

Table 5.20: Comparing 1 vs 100 Instance 10 Worker network statistics using the FTP

web server

Instance Type Num. Instances Std. Dev. Mean Variance

T1.Micro 1 21.9 97.0 479.3

T1.Micro 100 57.7 120.8 3338

M1.Large 1 6.6 39.3 44.1

M1.Large 100 9.0 33.2 81.8

Table 5.21: Comparing 1 vs 100 Instance 10 Worker CPU statistics using the FTP web

server
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Figure 5.30: Exp:NIM3-2 CPU Performance for M1.Large canary instance during 100

instance run, with 10 workers.

Figure 5.31: Exp:NIM3-2 Network Performance for FTP.heanet.ie web server during

M1.Large 100 instance run, with 10 workers per instance.

that the increases in instances is indeed scaling linearly however fluctuations in the performance

of the workers is starting to occur.

5.4.3.3 Exp:NIM3-3 Multi Instance Scaling Analysis

From the previous section it can be seen that the increase from 1 to 100 instances appears to provide

an almost linear increase in performance for both the T1.Micro and the M1.Large instance types,

although the larger instance experiments are seeing more fluctuations in the worker performance.

To test the statistical significance of the increase in overall system performance a set of statistical
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tests have been run on the M1.Large instance type. This instance type was selected as it does

not have the reported T1.Micro CPU throttling issues reported by AWS, which eliminates yet

another variable from the results. As already shown, the web server performance has an effect on

the outcome of the experiments for larger numbers of instances. To eliminate this bottleneck from

experiments when seeking a correlation between the experiment performance and the number of

instances, the selection of experiments for larger instances was restricted to the faster web servers

configurations, (FTP, 4xAWS servers, HEANEet web servers). Experiments with either 5 or 10

workers were included. So only for the larger instances have the single AWS and DIT web servers

been removed.

Before running a correlation or a T-test a test for normality of the data must first be performed.

Taking two experiments, both using the FTP server and 10 workers per instance, where the first

has a single instance running and the second has 100 instances running, a density plot and the

corresponding Normal Q-Q plot is show in Figure 5.32. From this it can be assumed that the data

is reasonably normally distributed and it is appropriate to run a correlation test and T-test.

The Pearson product-moment correlation coefficient is used to measure the dependance between

instance numbers and files processed and the scatter plot along with the pearson coefficient is

given in Figure 5.33. With a value of ρ = 0.95 it can be determined that there is a strong

and positive correlation between the number of instances and the number of files process, for the

M1.Large instance type experiments. It is important to note that ρ provides a measure of the linear

relationship between these variable, however it does not in itself indicate a causal relationship.

Assuming the the data is normally distributed, a one-way ANOVA test could be run to perform

an analysis of the variance, however with a skewness of 0.859 (skewed to the right) and a kurtosis of

2.149, implying the data is platykurtic, it is prudent to transform the total number of files process

using a Log10 function. Testing can now be done testing the null hypothesis, that the means are

all equal. The P-value is calculated to help determine if the null hypothesis should be rejected.

The result of the one way ANOVA in Figure 5.34 is considered significant with a P value < 0.001,

so a pairwise comparison is performed to test if the differences are statistically significant, while

adjusting for Type 1 errors. The results of the pairwise test are shown in Figure 5.35 and with

p-values < 0.001 in most cases, it can be concluded that there is a statistically significant difference

comparing instance numbers to files processed.

5.4.3.4 Exp:NIM3-4 Limit Testing

The majority of experiments run and presented so far have been based on the T1.Micro instance

and M1.Large instance servers running within the amazon AMS environment. Due to physical

hardware limitations, some additional experiments were completed that have shown the ability of

the system to process higher rates of data when using more powerful servers, but the number of

physical servers was limited to 1.
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Figure 5.32: Exp:NIM3-3 Testing for normal distribution of worker performance for 1

and 100 M1.Large instance experiments

Figure 5.33: Exp:NIM3-3 Testing for a correlation between instances and files process.

Data for the scatter plot given in Appendix Table D.5
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Figure 5.34: Exp:NIM3-3 One Way ANOVA Table for increasing instances

Figure 5.35: Exp:NIM3-3 Pairwise T Test

It has also been shown that the impact of the number of workers and the web servers serving

data provides a dynamic which can often have smaller number of workers performance faster, or

comparable to those with higher numbers depending on how fast data is available to the server

and the CPU load generated on the instance. The T1.Micro and the L1.Large performances for

100 instances can be summarised in Figures 5.36 and 5.37, with the data for the figures given in

Table 5.22. In line with previous observations, experiment 6, which used the DIT web servers

has reduced performance across instance types, and while the T1.Micro instances have a CPU

bottleneck around 80 files per second, the M1.Large instances continue to increase the processing

rate as more workers are run per instances, and the web server capacity is increased.

To determine if the observations about the increased performance of the M1.Large can con-

tinue as larger instances are available (as shown with the x4150 server instance previously), two

additional AWS instance types were selected to continue a limited set of additional experiments.

This limitation was primary due to the cost of these systems. If the best performance obtained

using the T1.Micro instance and the M1.Large instance it taken, then as an instance type increases

its capacity to run more workers it can affect the overall performance of the instance. Where the

number of workers increases beyond the capacity of the CPU, a processing bottleneck is created and

the instance slows down as evidenced by the T1.Micro having poorer performance when running

10 workers per instance compared to 10 instances. It is also clear that the FTP.heanet.ie server

acts as a high-performance web server for these experiments without providing a significant bottle-

neck on file availability for workers. By continuing to use the ftp.heanet.ie server and by running

additional experiments, all of which execute 100 instances, it can be shown that larger capacity

instances can yield increased performance. Regardless of how large an instance is however there
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Figure 5.36: Exp:NIM3-4 100 T1.Micro In-

stances, file cleaning rate per second.
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Figure 5.37: Exp:NIM3-4 100 M1.Large In-

stance file cleaning rate per second.

Exp.

Num.

Web

Server

Num.

Workers

Num. Web

Servers

t1.micro

fps

m1.large

fps

1 AWS East 1 1 27.4 28.6

2 AWS East 1 2 26.1 28.9

3 FTP 1 1 55.8 58.1

4 AWS East 5/10 2 64.7 56.5

5 AWS East and West 5/10 4 75.0 107.8

6 DIT 5/10 2 39.9 39.1

7 HEANET 5/10 2 75.1 111.3

8 FTP 5/10 1 78.3 191.3

9 ALL 10/10 10 79.0 189.5

Table 5.22: 100 Instance Experimental Results Table for Figure 5.36 and 5.37
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should be a point at which a CPU bottleneck is observed. Figure 5.38 provides a histogram show-

ing the best processing rates obtained for all 100 instance experiments including the M1.XLarge

and the C1.XLarge instance types showing the number of workers per instance. All experiments

used the ftp.heanet.ie web server. As can be seen in Experiment 5 in Table 5.23, there is reducing

performance for the M1.Xlarge instance type as the number of workers is increased from 20 to 50.
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Figure 5.38: Exp:NIM3-4 Best file processing rates per second, for different instance

types using 100 Instance experiments. See Table 5.23

To better understand the behavior of the running experiment, the processing performance of

each experiment shown in Table 5.23 was plotted over time, showing the cumulative total of result

files written to the S3 Storage. Each experiment was 1,200 seconds in duration, and each ran 100

instances using the FTP server. Figure 5.39 shows the cumulative number of files posted over time.

From the graph, the throttle of the T1.Micro CPU is evident over time as the rate of processing

actually slows down after a period of time. The same effect is not seen by the other instance types.

As the number of workers increases there is a significant delay in starting the C1.XLarge

instances as there is a sequential process for copying and initialising each of the workers. This

minor sequential process causes no significant delays then the number of workers is small, however

it is increasingly significant as the number of workers increases. This would require additional
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Exp.

Num.

Web

Server Instance

Num.

Workers

Files per

Sec

GB per

Hr

1 FTP T1.micro 5 78.3 343.1

2 FTP M1.Large 10 191.3 838.7

3 FTP M1.XLarge 20 193.3 847.4

4 FTP M1.XLarge 20 223.1 978.0

5 FTP M1.XLarge 50 173.6 761.0

6 FTP C1.XLarge 100 212.2 930.5

7 FTP C1.XLarge 100 233.8 1024.1

Table 5.23: 100 Instance Experimental Results for different instance types using the FTP

web server. Table for Fig 5.38

modification of the worker software to eliminate this behaviour. The C1.XLarge processing rate

however, once established is slightly better that the other workers. The minor tail at the end of

the experiments is due to either the message queue becoming empty or the experiment concluding.

To ensure that the processing rates seen in Figure 5.39 are sustainable, the best performing

experiment, the C1.XLarge with 100 workers, was selected to run for 3,000 seconds. Figure 5.40

shows a consistent processing rate once all of the workers have started, with no indication of an

unsustainable process rate. The sequential initialisation process is evident as the instances start

up.

To investigate the slow start to the processing rate, further analysis was performed. The time

stamp used per instance which determine the time at which a result was posted to S3, are based on

the internal time of the instance, which may be slightly out of sync with other instances. As it is

possible that these times may be different across instances, two different plots are shown indicating

the time a worker first posts a result using two different times. The first is the time as recorded by

the instance, the second is an offset from when the instance initially registers itself. So in the case

where the actual time recorded by the instance is used, each worker first data publish time is shown

in black in Figure 5.41. An alternative plot is also shown in red, where the earliest result across

all of the instances is used, and using an assumption that all instances started approximately the

same time, each timestamp from each instance is calibrated back to align with the start time of

the earliest result posted.

Given that the Figure 5.40 uses the worker time and not a calibrated time, a more elongated

start time for workers would be expected in Figure 5.41, which is in fact observed.

Table 5.23 gives the details for Figure 5.38 which presents the most significant results of these

170



0 200 400 600 800 1,000 1,200
0

50,000

100,000

150,000

200,000

250,000

Seconds

T
ot
a
l
F
il
es
P
os
te
d

T1.Micro
M1.Large

M1.XLarge(20Workers)

M1.XLarge(50Workers)

C1.XLarge(100Workers

Figure 5.39: Exp:NIM3-4 Cumulative files processed over time.
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Figure 5.40: Exp:NIM3-4 Cumulative files processed over time for 100 C1.XLarge In-

stances, running 100 workers for 3,000 seconds.
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Figure 5.41: Exp:NIM3-4 Start times for each threaded worker across all Instances.

experiments. Further increases in either the instance types or the number of instances requires

additional funding and investment. As the instance type is increased, so is the overall performance.

At some point the web server providing the data will become the bottleneck for the system, however

this is not an issue once the data being processed is distributed across different locations.

Data generation rate must be slower than the data publication rate to ensure that work can

be advertised as quickly as it is generated. Work must also be processed faster then the generation

rate. So simply put D < W < P where D is the rate at which data is generated, W is the rate at

which work is processed and P is the rate at which work can be published.

For all experiments which have 100 instances running, the FTP web server is required or there

is a noticeable decrease in the performance of the overall system as the web server becomes the

bottleneck. For the system to scale, the source of the data being processed must be distributed.

Lower performance web servers which grouped together can match the high performance web server

from HEANet for example.

5.4.3.5 Analysis

The pipeline allows for instance types to vary, for the number of instances to increase and for

the number of web servers to be extended. Each of the these components contribute to the

overall performance of the system, and these experiments review the core factors as each of these
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components in increased. The key findings of these experiments are summarised below.

• Exp:NIM3-1. As the number of instances increases some of the web servers failed to scale

and download time increased on average. Where multiple slower web servers were used, they

maintained good performance due to the load balancing across them.

• Exp:NIM3-2. The differences in machine types performance continues as the number in-

stances increases, but there is a higher variance observerd most likely due to the increase in

the number of overall requests to the server. The M1.Large instance type is still maintaining

faster processing rates consistently compared to the T1.Micro.

• Exp:NIM3-3. As the number of instances increases so does the overall processing of the

pipeline. It is shown the this increase is statistically significant, and there is a high correlation

between the number of worker instances and the performance of the pipeline.

• Exp:NIM3-4. Limit based experiments demonstrate the core factors in system scaling. The

optimal number of worker threads on an instance is different for each instance type used,

and the web server ability to respond to increases in the number of requests varies by

configuration. If more web servers are used the load is spread out allowing the processing

rates to continue to grow literally with number of instances. Using the larger machine types

and the more powerful web servers high processing rates are observed, but the similarity in

resuls may indicate that despite the high processing rate, a limit may be emerging within

the system.

5.4.4 System Limits

Of interest in Figure 5.39 is the similarity of the processing rates across machine types. To deter-

mine if this is a CPU bottleneck or a web sever download issue, a more detailed look at the split

between these two activities for the worker node within each experiment is shown in Figure 5.42.

As expected the large amazon EC2 instances process data the fastest, however considering that

they are each using the same web server for download, there are clearly difference in download

times for each experiment. Given an overall lower processing rate for the T1.Micro experiment,

the FTP web server performance consistently well with fast download times, while the M1.XLarge

running 20 workers experiences considerably slower download rates. The M1.XLarge processing

times are faster than the download times, leaving the primary bottleneck as the web server. This

is reversed for the T1.Micro which has fast downloads but slower processing times. Of primary

concern in this graph is the increase in the download times for the C1.XLarge instances. As the

machine times get faster the mean download time gets longer, going from 5 seconds to 300 seconds.

The reduction in the download time could be an indication of a bottleneck with the overall system.

To investigate this issue, the following possible restrictions were considered and experiments de-
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signed to identify and eliminate the bottleneck to ensure that there were no underlying scalability

issues within the architecture. Table 5.24 contains details of these experiments.
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Figure 5.42: Breakdown of CPU and Network performance on fastest experiments by

instance type.

5.4.4.1 Exp:NIM4-1 Instance limitations based on workers

For these experiments a single M3.2XLarge instance type was chosen. Comparable to the C1.XLarge

instance type, this is an 8 VCPU instance with 30GB of RAM using SSD drives. This instance

type is described as a balance between compute, memory and network performance with the CPU

usually a high frequency Intel Xeon E5-2670 v2 processor.

In Figure 5.43 the breakdown of network download and performance for a single instance is

shown. The web server used was the ftp.heanet.ie server and as can be seen quite clearly, the

web server offers consistent performance, with the mean download time ranging from 3.39 to 3.76

seconds for a batch of 10 images with a standard deviation of less than 0.7 seconds (Table: 5.25).

The processing rate in seconds, for cleaning the downloaded batch of 10 images, demonstrates a

different behaviour showing a clear relationship between the number of workers and the processing

time for a batch of images. As the processing times increase as more workers are added, the overall

processing rate remains about the same for the experiment run. This relationship will be dependant

on the system configuration used, and may require additional monitoring and adjustment to obtain

an optimal rate over time. Assuming similar performance, less workers per system is preferred

purely for the reduction in complexity in post experimental analysis to provide a smaller data set

per instance for analysis. The file processing rate per second Pfps is calculated using Equation
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Reference Title Experimental Objective

Exp:NIM4-1 Instance limitations

based on workers

As the number of workers increases on a server in-

stance, even a larger server, at some point there may

be diminishing rates of returns for processing and/or

downloading files.

Exp:NIM4-2 Virtual Machine shar-

ing as a bottleneck

Depending on the configuration and deployment of

the virtual machine instance it is possible that the

service of the network could degrade as virtual ma-

chine instances shared physical networks. While is is

not knowable exactly how virtual instances are de-

ployed on physical machines, the basic transfer rates

can be looked at.

Exp:NIM4-3 Bandwidth as a Bottle-

neck

This would indicate that the network either had

bandwidth throttles or limited bandwidth available,

and that the overall experiments were exceeding

these values.

Exp:NIM4-4 Web Server as a bottle-

neck

Determine if the service form the web server had

some hard limit for servicing file requests.

Exp:NIM4-5 System Scalability. The scalability and flexibility of the system is tested

taking into account any limits observed in previous

experiments.

Table 5.24: NIM4: Testing the pipeline architecture for system bottlenecks

175



0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

m3.2xl Instance Download Performance 
 per worker

(All experiments use the FTP Servers)
Seconds

K
er

ne
l D

en
si

ty
 F

un
ct

io
n

Download times
10 Workers
20 Workers
30 workers
40 workers
50 workers

0 10 20 30 40 50 60 70

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

m3.2xl Instance CPU Performance 
 per worker

(All experiments use the FTP Servers)
Seconds

K
er

ne
l D

en
si

ty
 F

un
ct

io
n

Processing times
10 Workers
20 Workers
30 workers
40 workers
50 workers

Figure 5.43: Exp:NIM4-1 Breakdown of CPU and Network performance by number of

workers

5.13, where the experimental time Etime was limited to 1200 seconds, and Ftotal is the total number

of files processed by the experiment.

Pfps =
Ftotal

Etime
(5.13)

Num

Workers

Download

Mean

Download

Std.

Dev.

Download

Variance

CPU

Mean

CPU

Std.

Dev.

CPU

Vari-

ance fps

10 3.39 0.59 0.36 7.1 1.0 1.1 6.4

20 3.57 0.52 0.27 13.1 2.9 8.7 9.0

30 3.26 0.54 0.29 24.0 4.8 23.4 9.0

40 3.45 0.58 0.34 34.7 4.3 18.2 9.0

50 3.76 0.69 0.47 43.0 5.4 28.9 9.3

Table 5.25: Comparing single instance M3.2XLarge performance statistics and file pro-

cessing rate per second for different workers.
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5.4.4.2 Exp:NIM4-2 Virtual Machine sharing as a bottleneck

The aim of this experiment is to scale the number of instances until a bottleneck is evident using

instances from a single physical AWS location and to then determine if the limitation can be

overcome by ensuring that additional instances are created which do not share physical hardware.

To accomplish this multiple AWS server locations around the world are used, and in this way any

resource sharing at the network or physical machine level are eliminated. While the advertised

performance of the M3.2XLarge instance is set to "Fast" there is no specific performance service

level agreement given. The expectation is that the network performance of the instance should be

approximately 1GBits per second. From the specifications of the AWS services it is unclear if this

is a maximum burst capacity, or a sustainable data transfer rate. The possibility exists that virtual

machine deployment could dictate that sharing of network capacity exists to some extent. From

the experiments on a single instance with 20 workers, as shown in Table 5.25, and using the files

processed per second Pfps for a single instance, the data throughput for the network in Gigabits

per second, BGbps is calculated as follows, where n is the number of instances being run, and D

is the size of a data cubed image file in Megabytes. To convert from bytes to bits, the result is

multiplied by 8.

BGbps =
D

1024

n∑
i=1

Pfps ∗ 8 (5.14)

For the images used in these experiments the size is 2.4Mbytes, and unless otherwise stated,

experiments run for 1200 seconds. While the file process rate for an instance may vary to some

extent, it can be estimated that Pfps for 50 instances should be approximately 8.4 Gbps. This

should be well within the limits of the individual instance specifications which is 1 Gbps per server

and where a potential maximum network performance of 50Gbps (1 Gbps per instance). There

is a possibility that the virtual instances may not be able to perform at sustained data transfer

speeds or that the network connection between the instances and the HEANnet ftp server are

not sufficient to sustain these transfer rates. To determine if a limit of sustainable Gbps transfer

speed exists a set of experiments were run using varying numbers of M3.2XLarge instances each

running 20 workers. Figure 5.44 clearly shows a roughly linear increase in files processed per second

as instances are initially scaled, however as the number of instances rises, this linear increase in

performance does not continue after about 25 instances.

If this is a bottleneck due to physical resource sharing by virtual instances, the bottleneck

can be circumvented by running 25 of the instances from the initial location, and 25 additional

instances from alternative locations. If the linear scaling of the architecture is to continue, file

processing rates for 50 Instances should be twice that of 25 instances. Looking at Figure 5.44, the

label 50 Instances* represents an experiment where half of the instances were run in the primary

AWS location used for all experiments, while the remaining 25 instances were run in a different
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physical location. The bottleneck observed after 25 instances is still evident in the result, and as

such the sharing of virtual resources as the cause for this can be ruled out based on these results.

1 I
ns
tan

ce

10
In
sta
nc
es

20
In
sta
nc
es

25
In
sta
nc
es

35
In
sta
nc
es

40
In
sta
nc
es

50
In
sta
nc
es

50
In
sta
nc
es*

0

50

100

150

200

250

300

350

400

450

9

88

185

207
222

164

197

227

9

90

180

225

315

360

450 450

F
ile

s
P
er

Se
co
nd

Actual Result Linear Result

Figure 5.44: Exp:NIM4-2 File processing rates for different numbers of Instances using

the M3.2XLarge instance type using 20 workers.

5.4.4.3 Exp:NIM4-3: Bandwith as a Bottleneck

The issue of a bottleneck existing as a result of the shared physical network between the AWS and

the HEANet needs also to be considered. If the maximum connection speed between AWS and

HEAnet was reached after processing at a rate of 230 Files per second then no additional increase in

instances would affect the overall result. Using equation 5.14, the bandwidth required, in Gbps, for

300 file per second for files of size 2.4Mbytes, is less than 4.5 Gbps. Further investigation revealed
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that the actual connection between these two networks at the edge for the AWS networking within

Ireland, was 10Gbps. Data was limited to 1Gbps from AWS regions outside of Ireland which in

total 11Gbps. While network sharing would be expected to occur, experiments using the HEAnet

FTP server consistently showed a limit of approximately 4 to 4.5 Gbps regardless of the HEANet

FTP server load. The network bandwidth limitation between the instances and the server would

appear not be responsible for the bottleneck in performance.

5.4.4.4 Exp:NIM4-4: Web Server as a Bottleneck

Considering that experiments have shown that moving instances to different regions around the

AWS network allowed the architecture to use additional bandwidth and to ensure that machine

resource sharing was not an issue, the final set of tests considers the web server as the primary

bottleneck. As the number of requests increases it is possible that the web server’s ability to

service the requests is limited. The ftp.heanet.ie service uses a load balancing service which is

supported by four apache web servers. As requests are made to the ftp.heanet.ie url the load

balancer will offload requests to one of four web servers each of which has a replicated copy of the

data. The configuration of each of these web servers should allow for more concurrent connections

than requested from the processing pipeline. To eliminate the load balancer as an issue, tests were

run against one of the four web servers. With 50 instances running, the test used the same network

and instances as pervious tests. The result was that the total number of files processed in 1200

seconds was 66 thousand, which is approximately a quarter of the total processed when all four of

the web servers are utilised by the load balancer. From this observation it would appear that the

bottleneck in the experiments provided is the ftp.heanet.ie web server. While its performance was

superior to the other web servers used, its ability to process more that 250 file per second would

appear to be limited. As the 100 instances used in earlier experiments with the C1.2XLarge virtual

machine type was about the limit of the entire system, this bottleneck was not initially evident.

Only by increasing the instance performance, and splitting the download versus processing time

was this bottleneck evident.

5.4.4.5 Exp:NIM4-5 System Scalability

To ensure that the proposed architecture is scalable, modifications were made to the system to

address the possible bottlenecks die tidied and the actual web server bottleneck already discussed.

Three key changes were introduced.

• Diversity in the location of the virtual machines to eliminate resource sharing concerns. In

this case 4 AWS regions were chosen to run virtual machines. Ireland, Virginia, Tokyo and

San Paolo.

• Increase in the number of web servers. In the event of a single web server being a bottleneck
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due to the high rate of request, data should be spread across multiple servers. In this case

two additional servers were used which were also within the HEANet network.

• Increase the number of SQS queues. Although there was no reduction in the performance of

the get message requests, additional worker queue were created to demonstrate the flexible

nation of this approach. If worker instances have a choice of sqs queue to read, then they

could in theory self load balance by moving queues if the response time for a message started

to degrade.

Using these modifications, a final experiment was run which consisted of 25 instances in the

Ireland AWS region and 15 instances in the three additional AWS regions mentioned above. Each

instance was of type M3.2XLarge, and ran 20 workers threads each. One workerq contained

work for the FTP.HEANet.ie web server which was used by the Ireland based instances, and a

second wokerq pointing and two additional web servers which was used by the 3 non-Irish based

locations, each of which ran 15 instances for a total of 45 instances, giving 70 instances in all for the

experiment. Figure 5.45 shows consistent network download performance and CPU performance.

Within the experiment time a total of almost 400,000 files were processed, which equates to 322.9

files per second. Using the formula 5.9 this is an equivalent processing rate of 194 TB per 24 hours.
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Figure 5.45: Exp:NIM4-5 Breakdown of CPU and Network performance for 20 worker

per Instance experiment where Instances are located in multiple AWS regions and use

multiple web servers.

Figures 5.46, 5.47, and 5.48 plot different aspects of 43 experiments. Figure 5.46 shows the

increase in files per second for each experiment, with the final experiment giving the fastest pro-

cessing rate of 322.9 files per second. If this is cross referenced to Figure 5.47, which shows the

total number of workers operating within each experiment, it can be shown that the total num-

180



0 5 10 15 20 25 30 35 40 45
0

100

200

300

Experiment Number

T
ot
a
l
F
il
es
P
er
S
ec
on
d

Figure 5.46: Exp:NIM4-5 Files Per Second. See Appendix Table D.4.
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Figure 5.48: Exp:NIM4-5 Total Instances Per Experiment. See Appendix Table D.4.
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ber of workers does not necessarily correspond to faster process rates. The fastest experiment for

example ran 1400 worker instances, while previous experiments ran as many as 10,000.

Figure 5.48 shows the number of instances run per experiment and again the fastest experiment

had only 70 instances. While the number of instances was important, the number of workers per

instance was a function of the power of the server, with more powerful servers being able to

run more workers. The major difference however between the fastest experiments was that with

the introduction of additional web servers, the pipeline could continue to increase its processing

rate, whereas previous experiments were hitting a web server bottleneck. So it is shown that by

altering certain parameters of the pipeline, but without changing the underlying architecture, an

experiment with 70 globally distributed worker instances, running a total of 1400 worker threads,

outperformed all other experiments.

5.4.4.6 Analysis

The pipeline allows for an instance type to vary, for the number of instances to increase, the number

of worker queues expanded and for the number of web servers to be extended. Each of the these

components contribute to the overall performance of the system, and these experiments review the

core factors as each of these components in increased. The key findings of these experiments are

summarised below. Ultimately when all parameters were reviewed any observable limitations were

identified and the architecture of the pipeline allowed these to be eliminated.

• Exp:NIM4-1. As the number of worker threads per instances increases these experiments

show that the web server delivers images at a consistent rate, but the processing time as the

workers increase goes up. If the web server is not a limit then worker threads will eventually

become their own bottleneck if they continue to increase.

• Exp:NIM4-2. To eliminate the possibility that the virtual machine instances used with the

AWS, which were based in the same geographical region had limits on their collective shared

bandwidth, experiments were run with EC2 instances starting in multiple geographical re-

gions. Using tests with 50 instance, there was no significant difference on the overall result

based on the location of the virtual machines.

• Exp:NIM4-3. The bandwidth required for a processing rate of 300 files per second is less then

5GBs, the bandwidth connecting AWS to HEANet is 10Gbs. Experiments were run when

the HEANet server was both heavily and lightly loaded, and in all cases the data transfer

from the web servers was less 4Gbps. The HEANet bandwidth clearly could operate at a

higher rate, but the pipeline could not get better performance rates that about 230fps.

• Exp:NIM4-4. The HEAnet FTP web server was tested to see if it was a bottleneck. The web

server is load balanced, so testing was performed agains one of the servers and the processing
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rate dropped to one quarter of the previous results. It can be concluded that this websever

had finally hit a data serving limit, possibly due to disk access read limitations.

• Exp:NIM4-5. The final experiment was run taking all results into account. Using 70 virtual

machines distributed around the world, and using multiple web servers and worker queues

the processing rate achieved was close to 200TB per day. Further scalability may be possible,

but the budgets used were limited.

5.5 Conclusion

The NIMBUS pipeline extends the ACN pipeline into a global environment. The use of the publicly

accessibly SQS web queue service from AWS enabled computing resources from around the globe

to join the processing cloud which was a key modification to the ACN architecture. The SQS is

a distributed architecture which scales horizontally allowing for a maximum of 120,000 messages

in flight at a time for a single queue. NIMBUS allows for the used of multiple queues both

for advertising work, controlling the behaviour of the worker instances, and monitoring running

experiments.

Most of the worker instances used for experiments were EC2 virtual machines within the AWS

cloud. This was a convenience for experimentation rather than a primary required feature of the

architecture. Physical machines were also integrated into the pipeline for various experimental

purposes, specifically when reviewing maximum performance for individual servers. Experiments

ranged from single instances to a maximum of 100 instances. Each worker instance had multiple

threads activated to determine optimal configuration of the instance type.

The experimental variables modified while testing the architectures ability to scale to ter-

abytes per hour were, virtual machine location, virtual machine size, number of worker threads per

instance, web server type and number of web servers, and number of queue for advertising work.

The data processed by the system is assumed to be part of an existing data archive and is

already compressed. The requirement for a datastore to participate in the pipeline is to create an

SQS message for each file to be processed.

The final experiment demonstrated that horizontal scaling of all primary components is possi-

ble, and that this approach will ensure system bottlenecks are overcome.

The following is a summary of the experiments used to evaluate the performance of the pipeline.

• The SQS queue performance was evaluated to ensure that its ability to have messages written

was sufficiently fast to advertise work for processing, and for messages to be read by workers

within the processing cloud as it scales to thousands of worker threads. Work advertising

needs to be significantly faster than work processing. Multi-threaded Python programs were

required to ensure that the speed was sufficiently fast.
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• Before scaling to multiple worker instances, the performance limit of a single instance was

explored. By varying the type of instance, the number of worker threads run and the

web server used, a baseline was obtained against which the scaling architecture could be

compared. Multiple threads increased performance, but bottlenecks were identified after

too many threads were run. With a sufficiently fast web server to service requests, higher

performance from the worker instance was based on the number and speed of the CPUs

used.

• Scaling from a base of good performing single instances, the experiments reviewed the ability

of the web servers to maintain data rates. Multiple web servers provided the best solution

to ensure that data requirements from the scaling instances could be serviced. It was shown

that there was a strong correlation between instance numbers and the processing speed of

the pipeline.

• Despite the good performance of the scaling experiments, further investigation revealed pos-

sible limitations in the processing rate. A series of tests identified the possible sources of

these limits and a final experiment was run which increased the horizontal scaling of each of

the primary architectural components. This resulted in an overall processing rate improve-

ment using less instances. While funding limited the ability to run additional experiments,

the result of this final experiment were such that 192TB of data per 24hours processing

could be achieved, with evidence that further improvement would be possible through the

use of more instance types, and more web servers providing data.
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Chapter 6

Conclusion

The research hypothesis proposed within this thesis was to determine if a globally distributed

astronomical CCD image reduction pipeline can process data at a rate which exceeds existing data

processing requirements and is scalable such that it can meet future data processing challenges.

The hypothesis has been proven to be true in Chapter 4 (the ACN pipeline), and Chapter 5 (the

NIMBUS pipeline). The ACN demonstrates that data can be compressed and uploaded to a central

storage service at a rate higher than it can be generated. The NIMBUS pipeline demonstrates that

data can be distributed and processed using a horizontally scalable elastic architecture at proven

rates of 200 terabytes per day.

This thesis focused on the processing of CCD image reduction and photometry in a distributed

global network to determine if an architecture could be devised which had the ability to process

terabytes of data per day to meet the growing demands of data production for projects like the

LSST which are expected to reach tens of terabyte per day within the next few years. It has

been shown that a distributed horizontally scalable cloud based architecture can process hundreds

of terabytes of data per day, and that the architecture is flexible enough to continue to scale to

petabytes per day by allowing individual processing nodes to join and leave the pipeline without

impacting the integrity of the system. The form of CCD data used is such that it is suitable for

parallel processing, and the pipeline developed can be applied to alternative science areas with

similar characteristics.

Whilst existing solutions to CCD data processing for large scale projects, such as space crafts

or large ground-based observatories, are processed either serially or using large computing data

centres, much of the archive data made available to researchers still requires reprocessing. A

solution, such as NIMBUS, which is flexible and scalable, is needed to assist with this requirement

as the volume of data increases. With the increased availability and sensitivity of CCD or CMOS

devices, further innovative research opportunities exist to support high-speed photometry, and

robotic telescope farms. Each of these areas will require data processing rates to keep pace with

data generation rates.
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The NIMBUS processing pipeline architecture is presented as the final stage in an iterative

process, where a series of architectures were proposed and experiments designed to evaluate limits of

each of the bottlenecks identified through the research. The initial stage focused on a pilot system

called FEBRUUS, which performed basic calibration of CCD images to establish a benchmark

of performance for a sequential processing pipeline. Work on this pipeline clearly demonstrated

that parallel processing was a suitable solution that could clearly be used. The second stage was

the consideration of IRAF instances implemented within the cloud. This architecture considered

virtualisation instances of existing reduction software, communicating via a centralised queue.

From the analysis of this potential solution, the queuing design was identified as an essential

communication feature. A light-weight utility based on the FEBRUUS pilot, which also performed

photometry, was implemented for the ACN pipeline that focused on compression and uploading

of data to a distributed storage node, for a distributed processing private cloud to access. The

private process cloud was constructed across three Irish institutes of technology. Using a private

NFS queuing system limited the system to processing nodes which were logically within the same

network and hence failed to incorporate globally distributed nodes. The final pipeline, NIMBUS,

incorporated web based queues for advertising work and for controlling the processing cloud. With

work being advertised using a globally available message queue, the number of instances, and

the number of worker threads within the instances, were expanded and experiments were devised

to test the scaling nature of the system. Final experiments demonstrated the ability to process

hundreds of terabytes per day with limits of budget finally restricting additional experimentation.

No evidence was found that this final experiment was in any way the maximum processing rate

possible by the pipeline. Evidence suggests that further expansion of the system is likely through

an increase in available processing units.

6.1 Summary of Contributions and Achievements

The NIMBUS and ACN [110] architectures forms the core contribution of this thesis. The NIMBUS

architecture is focused on data processing of archive systems, while the ACN pipeline focused on

the compression and uploading of data to an archive. The NIMBUS system can support both

modes of operation, requiring only that all data to be processed is advertised via a central web

queue. While Amazon Web Services (AWS) were used in many of the experiments, this was for

convenience only and the NIMBUS architecture does not have to be AWS based. The following

are the core features of the pipeline, which form the contributions of this thesis.

A globally distributed data processing architecture

The global architecture is a combination of the ACN pipeline which was further extended

by the NIMBUS pipeline. An overview of NIMBUS is shown in Figure 6.1. Data was

produced either within a dispersed cloud of CCD generating detectors which compress data
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and service the data via http web requests, or is available from a data archive which contains

compressed images. Data availability was advertised via a distributed worker web queue,

which is readable by all workers within the data processing cloud. Worker Instances read

from the web worker queue, download data from the data provider, process it and upload

to a defined storage cloud containing a distributed storage system. A central controlling

server acts as a broker, publishing the location of the workers and the queues. A series of

monitoring systems are provided to help assess the overall system performance. Workers

and web servers can easily be added to the overall system allowing it to scale up as required.

A self configuring, balancing system that is scalable and resilient to failure

The use of web based message queues, as shown in the NIMBUS pipeline, decouples the

processing cloud from the individual worker performance. The extent of decoupling is that

different worker instance types can process work at different rates without holding up the

overall system. If for any reason an instance fails, the message is not lost but restored

back to the queue for another worker to process. The distributed set of web queues allows

for management of thousands of workers through a series of instructions which provide

instructions on where work can be found.

Reconfigurable for multiple science payloads

The NIMBUS pipeline works as a distributed data processing system that can be used

whenever workers can process files in parallel with no specific ordering required. Once the

files are advertised as available from a web server, the processing workers initialise themselves

by looking for a science payload to download, install and run. The pipeline provides the

necessary supporting architecture and calls the downloaded control scripts to perform the

work. This pipeline could be used for any process, which simply requires files to be processed

in parallel, where a worker performs a specific task on the file and uploads results when

completed.

Enabling real-time data processing

The processing speed of the NIMBUS pipeline was tested to just almost 200TB of data

per day, which equates to 3,220 images processed per second. Given multiple data sources

such as a robotics telescope farm, this processing speed would enable a process where real

feedback could be provided to a targeting system to modify the location they are searching,

thereby facilitating a real-time feedback loop.
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6.2 Future Work

Further optimisations of the pipeline are considered as possible future areas of research. Much of

the experimentation performed in this thesis demonstrated the extensive capability of a distributed

system and identified the key factors within the system. It is possible to take these factors and

monitor them such that a machine learning approach could be used to optimise a running system.

Further investigation into data compression and clipping optimisation could reduce the amount

of data to be transferred. Clipped images, if not stacked deeply enough, have considerable readwrite

costs, so data cubes could be constructed at source which are optimised for data movement to reduce

the data transfer requirements. Rather than providing a static measure of how many files should

be contained within the data cube, a machine learning approach could be used to find optimal

sizes for data given different characteristics of the processing pipeline.

With the increase in the number of survey telescopes and robotic telescope farms, data process-

ing requirements continue to grow. It should be possible to incorporate the NIMBUS pipeline into

such systems for data processing to be ongoing and automated. A full implementation of a user

interface would be required to provide flexibility regarding the science payloads to be used within

the pipeline. A more sophisticated identification of stars using the world coordinate system would

ensure that data could be categorised for future use. These science packages would be required to

extend the basic photometry of such a system, which performed fundamental analysis, from which

control commands could be incorporated back to the robotics farm.

Research should be performed into data storage and subsequent retrieval of processed data.

Integration with the Virtual Observatory would be a requirement for both raw and processed data

using search terms which were suitable for large scale data base queries such as NoSQL Column

Databases [116]. Objects should be identified by type, position and time index. This would allow

for research to be performed on objects observed at different times and with different instruments.

A review of the search capabilities and indexing of astronomical data sets would provide context

for the results of this pipeline.

To dramatically reduce the overall data movement where live telescopes are being used, data

processing at the telescope site, using a GPU system, could result in the transmission of processed

data, instead of the raw image. Work on light curve generation within the pipeline could also be

incorporated into the worker nodes. Further research would be required into data reduction at

the source of data production which would ensure that the NIMBUS pipeline could increase the

overall processing rates by changing the ratio between data movement and data processing.

The NIMBUS pipeline is applicable to other areas within science. A data analysis of exiting

science processing pipelines would be required to determine their suitability for data processing

using NIMBUS. The structure and format of the dataset would require that it facilitated parallel

processing at some level. If large volumes of data could be processed independently then a map-
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ping of data files to worker nodes is possible via the queue generation sequence, where the files

are advertised by each of the web stores where the data resides. Opportunities for distributed

processing also exists where data is naturally distributed and data must be categorised or pro-

cessed independently. Post processing of results similar to the map-reduce module would allow for

results to be recombined to form new datasets. The migration of existing science projects such

as the Solar Monitor, http:\\solarmonitor.org to the NIMBUS platform would demonstrate

the flexible nature of the architecture and its applicability to multiple scientific disciplines. The

Solar Monitor was developed by the Solar Research Group, Trinity College Dublin, led by Peter

Gallagher and is an IDL based system which integrates data from multiple sources to produce near

real time monitoring of active regions of solar flare activity [117].

NIMBUS and the ACN pipelines do not contain a security layer, and while the data being

processed is not sensitive for the purposes of this thesis, other datasets are likely to require some

form of security. Security within the pipeline should be researched, but where possible it should

incorporate the cost of additional processing into the distributed components of the system. Pub-

lic/private encryption could be performed with all data transferred over http port 80 or 8080 thus

ensuring that firewall restrictions would not impact the overall connectedness of the pipeline. Data

could either be encrypted at source, or by the web server before the data is advertised via a web

queue.

While the current pipeline demonstrated that data can be processed by distributed computers,

the process of preparing and advertising data also lends itself to opportunities for processing data

using citizen science. For example http://galaxyzoo.org is a galaxy classification project where

volunteers are presented with images within browsers, which they must then classify. The NIMBUS

pipeline could incorporate a browser based application which downloads messages from the web

queue which would include both the questions to be asked about the images, and links to the

images themselves. In this way a browser could act as a generic system providing a per message

citizen science question for the volunteer from a generic web based application. In this system the

data processing is done by the end user.

A final thought to possible expansions of the NIMBUS architecture is to enable a global data

processing cloud which uses the processing power of the mobile phone community. Given the

proliferation of these devices a cloud could be constructed within minutes which could provide the

processing power of a super computing thorough the use of millions of mobile devices. Possible

options to encourage the deployment of the application on the mobile application could be the

inclusion of a micro-payment scheme for applications that process specific amounts of data. Given

the public nature of this approach it is also likely that additional security would be required to

ensure that values returned were correct. Typical methods to ensure accurate data processing

requires data to be processed by multiple clients and only accepting results which are consistent

between clients. Using this method clients could download data while the phone is being charged
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and within WIFI range so there are no data download charges and the performance of the phone

was not compromised. A global flash cloud could be created easily which would be transient and

potentially cost controlled by ensuring processing was done using a pricing module similar to the

AWS spot price option where researchers could bid for computing resources at specific prices.

This research set out to determine if a distributed processing pipeline could scale to meet

the existing, and future demands, of image processing for astronomical photometry, which for

optical photometry is projected to be tens of terabytes of CCD image data per day in the near

future. NIMBUS is presented as an architecture that is truly global in scale, with a demonstrated

capability for processing hundreds of terabytes of CCD data per day. The limits of the scalability

of this architecture were not fully determined due to financial constraints, but evidence suggests

that significant scaling is still possible, in the order of petabytes per day. NIMBUS is also resilient,

and flexible enough to address the processing requirements of other large scientific datasets.
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Acronyms

ACN Astronomical Compute Node. 13

AMI amazon machine image. 121

BCO Blackrock Castle Observatory. 45

CCD Charge-Coupled Devices. 1

CMOS Complementary Metal Oxide Semiconductor. 2

CPL ESO Common Pipeline Library. 38

CPU Central Processing Unit. 2

CTE Charge Transfer Efficiency. 17

DSN Deep Space Network. 29

EC2 Elastic Compute Cloud. 33

EMCCD Electron Multiplying Charge Coupled Device. 45

ESO European Southern Observatory. 36

EVALSO Enabling Virtual Access to Latin-American Southern Observatories. 29

FITS Flexible Image Transport Systems. 23

GTC Gran Telescopio Canarias. 34

HDFS Hadoop Distributed File System. 103

HPC High Performance Computing. 29

HST Hubble Space Telescope. 30

IRAF Image Reduction and Analysis Facility. 30

ITTD Institute of Technology Tallaght in Dublin. 68
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JMS Java Message Service. 43

JPL Jet Propulsion Laboratory. 7

JWST James Webb Space Telescope. 30

LBT Large Binocular Telescope. 34

LSST Large Synoptic Survey Telescope. 10

MAST Mikulski Archive for Space Telescopes. 30

MPT Message Passing Toolkit. 33

NFS Network File System. 13

NHPPS NOAO High-Performance Pipeline System. 37

NIST National Institute of Standards and Technology. 40

NOAO National Optical Astronomy Observatory. 36

OpenMP Open MultiProcessing. 33

OPUS Operational Pipeline Unified System. 28

S3 Simple Storage Service. 68

SDSS Sloan Digital Survey Systems. 35

SKA Square Kilometre Array. 15

SOC Space Operations Center. 31

SQS Simple Queue Service. 110

STScI Space Telescope Science Institute. 28

STSDAS Space Telescope Science Data Analysis System. 30

TDRSS Tracking and Data Relay Satellite System. 29

UTC Coordinated Universal Time. 144

VO Virtual Observatory. 27
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Appendix A

Additional Material for Chapter 1

Time(secs) fps pixels bits terabytes

28800 100 5.5 MegaPixel 5.07E+14 63.36

28800 50 5.5 MegaPixel 2.53E+14 31.68

28800 25 5.5 MegaPixel 1.27E+14 15.84

28800 10 5.5 MegaPixel 5.07E+13 6.34

28800 5 5.5 MegaPixel 2.53E+13 3.17

28800 1 5.5 MegaPixel 5.07E+12 0.63

28800 100 4 MegaPixel 3.69E+14 46.08

28800 50 4 MegaPixel 1.84E+14 23.04

28800 25 4 MegaPixel 9.22E+13 11.52

28800 10 4 MegaPixel 3.69E+13 4.61

28800 5 4 MegaPixel 1.84E+13 2.30

28800 1 4 MegaPixel 3.69E+12 0.46

28800 100 2 MegaPixel 1.84E+14 23.04

28800 50 2 MegaPixel 9.22E+13 11.52

28800 25 2 MegaPixel 4.61E+13 5.76

28800 10 2 MegaPixel 1.84E+13 2.30

28800 5 2 MegaPixel 9.22E+12 1.15

28800 1 2 MegaPixel 1.84E+12 0.23

28800 100 1 MegaPixel 9.22E+13 11.52

28800 50 1 MegaPixel 4.61E+12 5.76

28800 25 1 MegaPixel 2.30E+12 2.88

28800 10 1 MegaPixel 9.22E+12 1.15

28800 5 1 MegaPixel 4.61E+11 0.58

28800 1 1 MegaPixel 9.22E+11 0.12
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28800 100 0.24 MegaPixel 3.02E+12 3.02

28800 50 0.24 MegaPixel 1.51E+12 1.51

28800 25 0.24 MegaPixel 7.55E+11 0.75

28800 10 0.24 MegaPixel 3.02E+11 0.30

28800 5 0.24 MegaPixel 1.51E+11 0.15

28800 1 0.24 MegaPixel 3.02E+10 0.03

Table A.1: CCD data generation raw data for 32bit pixel precision for varying resolutions

and frames per second over 8hr period
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Appendix B

Additional Material for Chapter 3

The FEBRUUS pilot is a series of CFITSIO files which are used to perform pixel calibration on

CCD images. The flowcharts for these programs are presented within this section of the appendix.

Figure B.1: FEBRUUS: Initial configuration for the Pilot Pipeline
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Figure B.2: FEBRUUS: The GMB.c program flowchart
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Figure B.3: FEBRUUS: The GMF program flowchart
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Figure B.4: FEBRUUS: The BMF program flowchart
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Figure B.5: FEBRUUS: The NMF program flowchart

200



Figure B.6: FEBRUUS: The RRF program flowchart

Figure B.7: FEBRUUS: bias reduced master flat output.
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Figure B.8: FEBRUUS: Normalised master flat output.
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Appendix C

Additional Material for Chapter 4

Command Description

Activate-ACN -r NODEFILENAME This command will activate all ACN Nodes in the

nodes file so they start looking to a queue for image

files to process. It is possible to have ACN nodes wait

for a queue, but this option provides better control

for experimentation so it is clean which nodes are ac-

tive. Once a node is running, it checks the queue for

unlocked files and locks them as shown in Figure 49.

Once locked, the full image file is downloaded from

an S3 bucket and cleaned using the acn-aphot pro-

gram. This program once for each file downloaded.

Activate-ACN -c NODEFILENAME This command will reset all ACN Nodes in the nodes

file so they stop running, remove all temporary data

and download the latest utility files, configuration

files and Master Bias/Master Flat images ready for

the next round of processing.

Activate-ACN -p NODEFILENAME This command will Ping all of the nodes to ensure

that they are accessible to the pipeline.

Activate-ACN -x NODEFILENAME Reboot all of the nodes to ensure that they have

flushed all caches. If a node processes the same data

multiple times, it may operate faster on the subse-

quent executions due to caching of data in memory.

Table C.1: Control Node commands.
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Command Description

fits-compress -p DATADIR This script has the option of performing compres-

sion in parallel or in sequence. The parallel execu-

tion spawns off processes and requires a machine with

good RAM and processing capabilities. A compar-

ison of performance for this script running in both

modes is given in the next chapter.

s3-upload -p DATADIR This script has the option of performing upload

in parallel or in sequence. The parallel execution

spawns off processes and requires a machine with

good RAM and processing capabilities. A compar-

ison of performance for this script running in both

modes is given in the next chapter. Compressed or

uncompressed data (depending on what is in the data

directory) is uploaded to an S3 bucket. The data

transfer rate through the server Ethernet card is in-

creased using this approach. A comparison of perfor-

mance for this script running in both modes is given

in the next chapter.

Table C.2: Storage Control commands.

Command Description

Activate-ACN -q compressed | standard

| clipped

This command will create a list of empty files in a

directory, which can be used as a simple queue. Files

are named with a prefix source and traverse a dataset

creating an entry in the queue for all files found. A

compressed source file of 0000001.fits.fz has a cor-

responding queue entry of Queued-0000001.fits.fz.

When successfully locked for processing by an ACN-

Node this is changed to LOCKED-0000001.fits.fz.

The NFS file system ensures only one lock can be

obtained.

Table C.3: Queue Control commands.
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Hardware

Storage

Type

Reduction

Steps

Step 1

Time

Step 2

Time

Total

Time

Files per

Sec

Macbook Pro SATA 2 11:21:45 00:54:48 12:16:33 0.8332

Macbook Pro SATA 1 0055:53 00:55:53 1.09812

eServer326 SCSI 2 00:49:00 01:15:23 02:04:23 0.49337

eServer326 SCSI 1 01:22:30 01:22:30 0.8332

eServer326 NFS 2 00:49:53 01:15:08 02:05:01 0.49087

eServer326 NFS 1 01:17:25 01:17:25 0.79268

Table C.4: Single Node performance data for 1 and 2 step reduction processing

Node Type Node Ref Seconds running

Files

Cleaned Cleaning Rate

VM-Tokyo 1 133 91 1.4615

VM-Tokyo 2 133 93 1.4301

VM-Tokyo 3 133 92 1.4456

VM-Tokyo 4 134 94 1.4255

VM-Sydney 5 132 93 1.4193

VM-Sydney 6 133 88 1.5113

VM-Sydney 7 133 88 1.5113

VM-Sydney 8 133 92 1.4456

VM-Paris 9 128 48 2.6666

VM-Paris 10 131 50 2.62

VM-Paris 11 132 46 2.8695

VM-Paris 12 132 49 2.6938

VM-Paris 13 133 53 2.5094

VM-Paris 14 133 52 2.5576

VM-Paris 15 133 53 2.5094

VM-Paris 16 134 53 2.5283

VM-Paris 17 134 52 2.5769

VM-Paris 18 134 52 2.5769

VM-Paris 19 134 51 2.6274

VM-Paris 20 134 53 2.5283

VM-London 21 131 37 3.5405
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VM-London 22 132 37 3.5675

VM-London 23 132 37 3.5675

VM-London 24 133 37 3.5945

VM-London 25 133 37 3.5945

VM-London 26 133 37 3.5945

VM-London 27 133 37 3.5945

VM-London 28 133 37 3.5945

VM-London 29 133 38 3.5

VM-London 30 134 38 3.5263

VM-London 31 134 38 3.5263

VM-London 32 134 38 3.5263

VM-London 33 134 38 3.5263

VM-London 34 134 37 3.6216

VM-London 35 134 38 3.5263

ITTD 36 133 78 1.7051

ITTD 37 134 71 1.8873

ITTD 38 134 77 1.7402

ITTD 39 134 77 1.7402

ITTD 40 134 73 1.8356

ITTD 41 134 78 1.7179

ITTD 42 134 76 1.7631

ITTD 43 134 77 1.7402

DIT 44 133 69 1.9275

DIT 45 133 70 1.9

DIT 46 133 77 1.7272

DIT 47 134 80 1.675

DIT 48 134 78 1.7179

DIT 49 134 71 1.8873

DIT 50 134 71 1.8873

DIT 51 134 70 1.9142

BCO 52 133 70 1.9

BCO 53 133 72 1.8472

BCO 54 133 72 1.8472

BCO 55 133 70 1.9

BCO 56 134 79 1.6962

BCO 57 134 79 1.6962

BCO 58 134 72 1.8611
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BCO 59 134 71 1.8873

Table C.5: ACN Multi-Node processing raw data
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Appendix D

Additional Material for Chapter 5

Webnode

No.

Msgs

Single

Node

Write

Time

Msg

Write

Rate

Multi

Node

Write

Time

Msg

Write

Rate

Webnode1 73620 8m47.279s 139.7 8m40.200s 141.6

Webnode2 73620 9m0.286s 136.3 8m57.302s 137.1

Webnode3 73620 3m7.055s 393.7 3m13.622s 381.5

Webnode4 73620 3m10.238s 387.5 3m21.267s 366.3

Webnode5 77342 7m11.410s 179.5 7m0.083s 184.2

Webnode6 77342 7m28.142s 172.6 7m26.385s 173.4

Webnode7 73620 3m49.490s 321.4 3m46.775s 325.8

Webnode8 73620 3m47.520s 324.3 3m40.521s 334.7

Table D.1: SQS queue write performance data

Exp.

Num.

Web

Server Instance

Num.

Instances

Workers

per Inst. FPS

1 FTP IBM326 1 1 0.42

2 FTP T1.Micro 1 1 0.51

3 FTP M1.Large 1 1 0.54

4 FTP T1.Micro 1 10 0.71.

5 HEANET T1.Micro 1 5 0.81
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6 FTP T1.Micro 5 10 1.45

7 FTP IBM326 1 5 1.61

8 FTP IBM326 1 10 1.66

ğ 9 FTP M1.Large 1 5 1.91

10 FTP M1.Large 1 10 2.04

11 AWS T1.Micro 10 1 2.64

12 FTP T1.Micro 5 1 2.70

13 FTP M1.Large 5 1 2.81

14 AWS M1.Large 10 1 3.13

15 FTP T1.Micro 5 5 3.60

16 FTP x4150 1 10 5.73

17 FTP x4150 1 10 6.47

18 AWS T1.Micro 25 1 6.79

19 AWS T1.Micro 10 5 7.19

20 AWS M1.Large 25 1 7.52

21 FTP x4150 1 50 8.20

22 FTP M1.Large 5 10 8.64

23 FTP M1.Large 5 5 9.33

24 AWS M1.Large 10 5 12.25

25 AWS T1.Micro 25 5 18.42

26 FTP T1.Micro 50 1 27.04.83

27 FTP M1.Large 50 1 28.37

28 AWS M1.Large 25 5 28.83

29 FTP T1.Micro 50 10 30.87

30 FTP T1.Micro 50 5 39.00

31 AWS M1.Large 50 5 53.11

32 FTP T1.Micro 100 1 55.66

33 FTP M1.Large 100 1 57.82

34 FTP T1.Micro 100 10 72.11

35 FTP T1.Micro 100 5 78.26

36 FTP M1.Large 50 10 99.42

37 FTP M1.Large 100 5 189.20

38 FTP M1.Large 100 10 191.31

39 FTP M1.XLarge 100 10 193.28

40 FTP C1.XLarge 100 100 212.27

41 FTP M1.XLarge 100 50 223.10

42 FTP C1.XLarge 100 100 233.79
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43 FTP/AWS C1.2XLarge 70 20 332.93

Table D.4: Big Picture processing rate summary data
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Figure D.1: Cumulative writing of messages to the canary queue

Ref. Directory Comment

RAW DATA DataSet-BCO/22-9-2003 BCO 26GB Raw CCD Data

FEBRUSS FEBRUUS-Pilot/Source Files C programs for processing FITS files

FEBRUSS FEBRUUS-Pilot/FITS-Testfiles Sample FITS files for accuracy testing

ACN ACN-Pipeline/ACN-C-Source Core CCD Image processing C files

ACN ACN-Pipeline/ACN-Controller BASH scripts for controlling experiments

ACN ACN-Pipeline/ACN-Worker BASH scripts for controlling Worker Nodes

ACN ACN-Pipeline/Experimental Data Excel Spreadsheets with Result Data

NIMBUS NIMBUS-Pipeline/ACN-APHOT-SRC C Program for cleaning and Photometry

NIMBUS NIMBUS-Pipeline/NIMBUS Controller Python source for experimental execution

NIMBUS NIMBUS-Pipeline/NIMBUS Worker Python source for Worker execution

NIMBUS NIMBUS-Pipeline/acn-science.pkg.tar.z Compressed Pkg an utilities tools

NIMBUS NIMBUS-Pipeline/Experimental Data Raw data with R-files and Excel

Table D.2: Data Sources for experiments and graphs
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Listing D.1: Generate Metrics: writes per node per second from RAW canaryq source files.

1 #!/bin/bash

2 # This generates a pair of values − epoch time and webserver

3 SERVERLIST=$(cat SQS∗ | awk −F "," ’{print $5 }’ | grep http | awk −F "http://"

’{print $2 }’ | awk −F "/" ’{ print $1 }’ | sort | uniq)

4

5 # Time is rounded to nearest second

6 TIMELIST=$(cat SQS∗ | grep SentTime | awk −F "," ’{print $1 $5}’ | awk −F "http://"

’{print $1 "," $2 }’ | awk −F "/" ’{print $1}’ | sed

s/\{u\’SentTimestamp\’\:[[:space:]]u\’// | awk −F "\’\}," ’{print $1}’ | sed

’s/\(^.\{10\}\).\{3\}\(.∗\)/\1\2/’ | sort −n −k 1 | uniq)

7

8 for times in $TIMELIST

9 do

10 echo −n $times ","

11 for servers in $SERVERLIST

12 do

13 counter1=$(cat SQS∗ | grep $times | grep $servers | wc −l)

14 echo −n $counter1 ","

15 done

16 echo

17 done

Family Type CPU

Memory

(GB)

Virtual-Micro t1.micro 1 0.65

Virtual-General m1.large 2 7.5

Virtual-General m1.xlarge 4 15

Virtual-Compute c1.xlarge 8 7

Physical x4150 8 64

Physical IMB326e 1 4

Table D.3: Instance Types and their Specification
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Listing D.2: Python code extract for multi-threaded single node SQS testing.

1 sqs_queue = conn.get_queue(args.queuearg)

2 canary_queue = conn.get_queue("canaryq")

3

4 class Sender(threading.Thread):

5 def __init__(self):

6 threading.Thread.__init__(self)

7 def run(self):

8 global sqs_queue,canary_queue,queue

9 while True:

10 try:

11 msg = queue.get(True,3)

12 m = Message()

13 m.set_body(msg)

14 status = sqs_queue.write(m)

15 except Queue.Empty:

16 return

17 except:

18 return

19 queue = Queue.Queue(0)

20

21 for file in sys.stdin:

22 file = ipadd+file

23 queue.put(file)

24

25 threads = []

26 for n in xrange(40):

27 t = Sender()

28 t.start()

29 threads.append(t)

30

31 for t in threads:

32 t.join()
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Listing D.3: Python code extract for multi-threaded SQS queue reading.

1

2 class Sender(threading.Thread):

3 def __init__(self):

4 threading.Thread.__init__(self)

5

6 def run(self):

7 global sqs_queue,queue

8 name = args.experiment+str(queue.get())+"−"+args.queuearg+".csv"

9 f = open(name,’w’)

10

11 while True:

12 try:

13 m = sqs_queue.read(60)

14 m = sqs_queue.get_messages(num_messages=1,

attributes=’SentTimestamp’)

15 print "This is the message−>",

m[0].attributes,m[0].get_body()

16 f.write(str(m[0].attributes)+str(m[0].get_body())+"\n")

17 sqs_queue.delete_message(m[0])

18 except:

19 if sqs_queue.count() < 1:

20 f.write(args.queuearg + " is empty\n")

21 return

22 queue = Queue.Queue(0)

23

24 threads = []

25 for n in xrange(40):

26 queue.put(n)

27 t = Sender()

28 t.start()

29 threads.append(t)

30

31 for t in threads:

32 t.join()
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Listing D.4: Bash code combining canary queue messages into bins.

1

2 #!/bin/bash

3 # This generates a pair of values − epoch time and webserver

4 FILELIST=$(ls SQS∗)

5 SERVERLIST=$(cat SQS∗ | awk −F "," ’{print $5 }’ | grep http | awk −F "http://"

’{print $2 }’ | awk −F "/" ’{print $1 }’ | sort | uniq)

6

7 for servers in $SERVERLIST

8 do

9 echo −n $servers ","

10 done

11 echo

12 x=1

13 y=$(($x+100))

14 filelen=$(cat SQS−canary9−∗ | wc −l)

15 loops=$(($filelen/100))

16

17 for (( loopcount=1; loopcount<=$loops; loopcount++ ))

18 do

19 for servers in $SERVERLIST

20 do

21 counter=0

22 for files in $FILELIST

23 do

24 counter1=$(cat $files | sed −n "$x,$y p" | grep $servers | wc −l)

25 counter=$(($counter+counter1))

26 done

27 echo −n $counter ","

28 done

29 echo

30 x=$(($x+100))

31 y=$(($x+100))

32 done
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Listing D.5: Experimental Batch Script for running multiple experiments.

1 #!/bin/bash

2 # Configuration options for running experiments

3 # −a Use Amazon Web servers

4 # −d Use DIT Web servers

5 # −n Use HEANT Web servers

6 # −x Use ALL Web servers

7 #

8 # Num Instances to Run

9 # Time in Seconds to run the experiment

10 # Name of the Experiment

11 # Number of Web Servers to run (1 or 2)

12 # Size of the instances to use in the experiment

13 # All experiments are formally names to correspond to a specific configuration

14 # Format of the run command below is as follows.

15 #

16 # webservertype instancenum seconds expname webservernum instancetype

17 #

18 #AWS Experiments group 1, Workers= 1 per instance, BatchSize = 10

19 #

20 # The following parameters must be set in the Worker Package

21 # Workers per instance in this case is 1

22 # Batch Size per worker is set to 10

23 #

24 # The canary1.nightsky.ie should also be running rounding up the

25 # number of instances by 1 in all cases

26 ./run−experiment.sh −a 9 1200 SetB5w.2 1 t1.micro

27 ./run−experiment.sh −a 24 1200 SetB5w.3 1 t1.micro

28 ./run−experiment.sh −a 49 1200 SetB5w.4 1 t1.micro

29 ./run−experiment.sh −a 99 1200 SetB5w.5 1 t1.micro

30 ./run−experiment.sh −a 4 1200 SetB5w.6 1 m1.large

31 ./run−experiment.sh −a 9 1200 SetB5w.7 1 m1.large

32 ./run−experiment.sh −a 24 1200 SetB5w.8 1 m1.large

33 ./run−experiment.sh −a 49 1200 SetB5w.9 1 m1.large

34 ./run−experiment.sh −a 99 1200 SetB5w.10 1 m1.large
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Num. Instances Web Servers. Files per Second

1 1AWS 1470

1 1AWS 1560

1 1AWS 1733

1 1AWS 1971

1 FTP 2295

1 FTP 2446

5 1AWS 7694

5 1AWS 7845

5 FTP 10366

5 FTP 11197

10 1AWS 14635

10 1AWS 14702

50 FTP 105423

50 FTP 119318

100 1AWS 129333

100 HEANET 133612

100 FTP 186777

100 FTP 227039

100 ALL 227514

100 FTP 229577

Table D.5: Files Processed by varying number of M1.Large instances
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